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Recent studies have reported that the crosslinking of regulatory receptors (RRs), such 
as blood dendritic cell antigen 2 (BDCA-2) (CD303) or ILT7 (CD85g), of plasmacyt-
oid dendritic cells (pDCs) efficiently suppresses the production of type I interferons 
(IFN-I, α/β/ω) and other cytokines in response to toll-like receptor 7 and 9 (TLR7/9) 
ligands. The exact mechanism of how this B cell receptor (BCR)-like signaling blocks 
TLR7/9-mediated IFN-I production is unknown. Here, we stimulated BCR-like signaling 
by ligation of RRs with BDCA-2 and ILT7 mAbs, hepatitis C virus particles, or BST2 
expressing cells. We compared BCR-like signaling in proliferating pDC cell line GEN2.2 
and in primary pDCs from healthy donors, and addressed the question of whether 
pharmacological targeting of BCR-like signaling can antagonize RR-induced pDC 
inhibition. To this end, we tested the TLR9-mediated production of IFN-I and proin-
flammatory cytokines in pDCs exposed to a panel of inhibitors of signaling molecules 
involved in BCR-like, MAPK, NF-ĸB, and calcium signaling pathways. We found that 
MEK1/2 inhibitors, PD0325901 and U0126 potentiated TLR9-mediated production of 
IFN-I in GEN2.2 cells. More importantly, MEK1/2 inhibitors significantly increased the 
TLR9-mediated IFN-I production blocked in both GEN2.2 cells and primary pDCs upon 
stimulation of BCR-like or phorbol 12-myristate 13-acetate-induced protein kinase C 
(PKC) signaling. Triggering of BCR-like and PKC signaling in pDCs resulted in an upreg-
ulation of the expression and phoshorylation of c-FOS, a downstream gene product 
of the MEK1/2-ERK pathway. We found that the total level of c-FOS was higher in 
proliferating GEN2.2 cells than in the resting primary pDCs. The PD0325901-facilitated 
restoration of the TLR9-mediated IFN-I production correlated with the abrogation of 
MEK1/2-ERK-c-FOS signaling. These results indicate that the MEK1/2-ERK pathway 
inhibits TLR9-mediated type I IFN production in pDCs and that pharmacological tar-
geting of MEK1/2-ERK signaling could be a strategy to overcome immunotolerance of 
pDCs and re-establish their immunogenic activity.

Keywords: plasmacytoid dendritic cells, toll-like receptors 7 and 9 (Tlr7/9), B  cell-like receptor signaling, 
regulatory receptors, blood dendritic cell antigen 2, MeK1/2, c-FOs, type i interferon
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inTrODUcTiOn

Plasmacytoid dendritic cells (pDCs) are a highly specialized 
subset of dendritic cells that play a central role at the interface 
of innate and adaptive immunity. They are important actors in 
antiviral and antitumor immunity, but also potent inducers of 
autoimmune diseases (1–6). They sense viruses by endosomal 
toll-like receptors 7 and 9 (TLR7/9), recognizing ssRNA or 
CpG containing DNA. TLR signaling leads to the secretion of 
proinflammatory cytokines and chemokines, such as interleukin 
1, tumor necrosis factor α (TNF-α), IL-6, IL-8, and most impor-
tantly type I IFNs (IFN-I, α/β/ω) (7–10).

In addition to TLR7/9, pDCs express multiple specific recep-
tors that facilitate antigen capture and presentation and, moreo-
ver, regulate pDC function, preventing thus abnormal immune 
responses. These regulatory receptors (RRs), include Fc receptors 
and lectin-like receptors (11, 12), which signal through the B cell 
receptor (BCR)-like pathway involving spleen tyrosine kinase 
(SYK) associated with the immunoreceptor tyrosine-based acti-
vation motif-containing adapter of RR, Bruton’s tyrosine kinase, 
B-cell linker protein, phospholipase Cγ 2, MEK1/2-ERK, and 
induction of intracellular Ca2+ mobilization (8, 9, 12). Among 
these RRs, blood dendritic cell antigen 2 (BDCA-2, CD303, 
CLEC4C) is an lectin-like receptor (13), while immunoglobulin-
like transcript (ILT7, CD85g) binds to and can be activated by bone 
marrow stromal cell antigen 2 (BST2, CD317, tetherin, HM1.24) 
protein, the expression of which is found on cells pre-exposed 
to IFN-I or on the surface of human cancer cells (14). Signaling 
via pDC RRs attenuates TLR-induced production of IFN-I and 
proinflammatory cytokines by an unknown mechanism (8–13, 
15, 16). This physiological feedback mechanism of IFN control 
is hijacked in the pathogenesis of several chronic viral infections 
and cancers, leading to immune tolerance (10, 17–19). We have 
recently shown that hepatitis C virus (HCV) particles inhibit the 
production of IFN-α via the binding of E2 glycoprotein to RRs 
BDCA-2 and DCIR (dendritic cell immunoreceptor) and induce 
a rapid phosphorylation of AKT and ERK, in a manner similar to 
the cross-linking of BDCA-2 or DCIR (10, 17, 19).

Here, we addressed the question of whether specific pharma-
cological targeting of BCR-like signaling can restore functionality 
to pDCs abrogated by ligation of RRs, and what the underlying 
mechanism of this abrogation is. In our previous work, we 
demonstrated that a highly specific inhibitor of SYK blocks both 
BCR-like and TLR7/9 signaling and, therefore, it is not compat-
ible with restoration of pDC function (15). In this study, we have 
tested the effects of inhibitors of c-Jun N-terminal kinase (JNK), 
MEK1/2 kinase, p38 kinase, and calcium-dependent phosphatase 
calcineurin, acting through a BCR-like signaling pathway, and of 

NF-κB activating TANK binding kinase 1 (TBK1) on the IFN-I 
production in pDCs exposed to a TLR9 agonist. Surprisingly, 
we found that inhibitors of MEK1/2 potentiated IFN-I and IL-6 
production in pDC cell line GEN2.2, but not in primary pDCs 
stimulated by the TLR9 agonist. More importantly, inhibitors of 
MEK1/2 significantly increased TLR9-mediated production of 
IFN-I that had been blocked in both GEN2.2 cells and primary 
pDCs by ligation of RRs with BDCA-2 and ILT7 mAbs, or HCV 
particles, or with BST2 expressing cells. Moreover, the restaura-
tion of IFN-I production by MEK1/2 inhibitor was observed 
when TLR9 signaling had been blocked by phorbol 12-myristate 
13-acetate (PMA), an agonist of protein kinase C (PKC), which 
stimulates MEK1/2-ERK signaling.

Furthermore, our results show that BCR-like and PKC signaling 
induced in pDCs the expression and phoshorylation of c-FOS, a 
downstream gene product of the MEK1/2-ERK pathway. c-FOS is 
known to associate with c-JUN to form activator protein 1 (AP-1) 
transcription factor and to exert within the cell a pleiotropic effect, 
including cell differentiation, proliferation, apoptosis, and the 
immune response (20–23). While a previous study reported that 
the c-FOS induced by tumor progression locus 2 (TPL-2) inhibits 
TLR9-mediated production of IFN-I in mouse macrophages and 
myeloid DCs, but not in pDCs (24), we show that MEK1/2-ERK-
induced c-FOS was involved in the inhibition of TLR9-mediated 
production of IFN-I in human pDCs. Our results suggest that 
the MEK1/2-ERK-dependent expression and phosphorylation of 
c-FOS exerts an intrinsic block of TLR9-mediated production of 
type I IFN. Pharmacological targeting of MEK1/2-ERK signaling 
could be a strategy to overcome immunotolerance of pDCs and 
re-establish their immunogenic activity.

resUlTs

MeK1/2 inhibitor Potentiates  
cpg-a-induced Production of iFn-α in 
pDc cell line gen2.2
In order to restore TLR7/9-mediated production of IFN-I 
blocked by ligation of RRs, we first searched for an inhibitor of 
BCR signaling that does not inhibit signaling triggered by TLR7/9 
agonists. To this end, we selected a panel of kinase inhibitors 
involved in BCR-like, MAPK, NF-ĸB, and calcium signaling, and 
control inhibitors of TLR7/9 signaling, and tested their effect on 
the production of IFN-α in a pDC cell line GEN2.2 exposed to 
TLR9 agonist CpG-A (Figures 1A,B; Figure S1 in Supplementary 
Material). To facilitate biochemical analyses of cell signaling, 
which is still difficult to perform in rare and in vitro short living 
human primary pDCs, we performed our studies in human pDC 
line GEN2.2, which shares the key features of human primary 
pDCs (15, 25–30).

While inhibitors of JNK (SP600125), TBK1 (BX795), 
NF-ĸB (Bay11-7082), p38 MAPK (SB253080), and calcineurin 
(FK506) inhibited dramatically IFN-α production, MEK1/2 
inhibitor PD032590 significantly increased IFN-α production 
(p = 0.0022, Figure 1B). In repeated independent experiments 
(N  =  34), production of IFN-α in CpG-A-stimulated GEN2.2 
cells increased 2.55  ±  0.63 times (mean  ±  SEM, p  <  0.0001), 

Abbreviations: AP-1, activator protein 1; BLNK, B-cell linker protein; BCR, 
B  cell receptor; BDCA-2, blood dendritic cell antigen 2; BST2, bone marrow 
stromal cell antigen 2; BTK, Bruton’s tyrosine kinase; FcRs, Fc receptors; geq, 
genome equivalent; HCV, hepatitis C virus; ITAM, immunoreceptor tyrosine-
based activation motif; IL-1, interleukin 1; IFN-I α/β/ω, type I interferons; PMA, 
phorbol myristoyl acetate; PLCγ2, phospholipase Cγ 2; PKC, protein kinase C; 
RRs, regulatory receptors; SRE, serum response element; SYK, spleen tyrosine 
kinase; TNF-α, tumor necrosis factor α; TPL-2, tumor progression locus 2; TBK1, 
TANK binding kinase 1.
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FigUre 1 | Effect of MEK1/2 inhibitor PD0325901 on cytokine production in CpG-A and phorbol myristoyl acetate (PMA)-stimulated GEN2.2 cells. (a) 
Experimental outline. GEN2.2 cells separated from MS-5 feeder cells were exposed or not to inhibitors of Jun N-terminal kinase (JNK), TANK binding kinase 1 
(TBK1), NF-ĸB, p38 MAPK, calcineurin, or MEK1/2 for 1 h and then stimulated with CpG-A at 4 µg/ml. The concentration of IFN-α, IL-6, and tumor necrosis factor 
α (TNF-α) in the cell-free supernatant was determined by ELISA after a 16 h treatment. (B) The production of IFN-α by GEN2.2 cells stimulated with CpG-A in the 
presence of JNK (SP600125, 10 µM), TBK1 (BX795, 1 µM), NF-ĸB (Bay11-7082, 1 µM), p38 MAPK (SB253080, 1 µM), calcineurin (FK506, 0.1 µM), or MEK1/2 
(PD0325901, 1 µM) inhibitors. The PD0325901 concentration-dependent production of IFN-α (c,F), IL-6 (D,g), and TNF-α (e,h) in CpG-A-induced (c–e) or 
PMA-induced (F–h) GEN2.2 cells. The data show mean and SEM of two independent experiments in biological triplicates (B–h). **, p < 0.01; two-tailed 
Mann–Whitney test.
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from 18.4  ±  1.4  ng/ml in the absence of MEK1/2 inhibitor to 
44.2 ± 2.7 ng/ml in the culture pretreated with 1 µM PD0325901 
(Figure S2 in Supplementary Material). In spite of the variability 
of IFN-α production in CpG-A-stimulated GEN2.2 cells, the 
ratio of IFN-α production in GEN2.2 cells cultured in the pres-
ence and in the absence of PD0325901 was highly reproducible. 
The same results were obtained with MEK1/2 inhibitor U0126 
(data not shown). We found that in addition to IFN-α also IL-6 
production in CpG-A-stimulated GEN2.2 cells was synergized 
by MEK1/2 inhibitor PD0325901 (Figures  1C,D), whereas 
production of TNF-α was inhibited (Figure  1E), suggesting 

that the MEK1/2-ERK pathway positively regulates TNF-α 
expression or secretion (31). The strongest synergistic effects 
on IFN-α production (synergistic index >3) were observed for 
combinations of ≥0.01  μM PD0325901 and 4  µg/ml CpG-A. 
Synergistic effects of these combinations were also demonstrated 
for the production of IL-6 (synergistic index >2). In contrast to 
the synergistic effect observed with ≥0.01 μM PD0325901, the 
combination of 0.001 µM PD0325901 with 4 µg/ml CpG-A had 
only an additive effect on the production of IL-6 (Figure 1D). In 
the control experiment, PMA-induced the production of TNF-α 
(but not that of IFN-α and IL-6), which was strongly inhibited by 
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FigUre 2 | Effect of MEK1/2 inhibitor PD0325901 on the potentiation of IFN-α production stimulated with HSV-1, human cytomegalovirus (HCMV), or CpG-B. (a) 
Experimental outline. GEN2.2 cells separated from MS-5 feeder cells were incubated with the MEK1/2 inhibitor PD0325901 (1 µM) for 1 h before stimulation with 
HSV-1 or HCMV at the MOI of 10 TCID50 per cell, or with 4 µg/ml CpG-B. After a 16 h culture, the IFN-α production was determined in the cell-free supernatants by 
ELISA. N = 3, **, p < 0.01; two-tailed Student’s t-test. (B) The production of IFN-α by GEN2.2 cells stimulated with HSV-1 or HCMV in the presence or absence of 
PD0325901. (c) The production of IFN-α by GEN2.2 cells stimulated with CpG-B in the presence or absence of PD0325901. The data show mean and SEM of 
three independent experiments. N = 7, **, p < 0.01; two-tailed Mann–Whitney test.
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PD0325901 (Figures 1F–H). Collectively, these results show that 
the CpG-A-induced TLR9-mediated production of IFN-α and 
IL-6 are potentiated by MEK1/2 inhibitor PD0325901.

MeK1/2 inhibitor Potentiates herpesvirus- 
and cpg-B-induced Production of iFn-α 
in pDc cell line gen2.2
CpG-A is a synthetic mimic of an unmethylated CpG-rich 
dsDNA of bacteria and viruses. Therefore, we tested whether 
production of IFN-α in GEN2.2 cells stimulated with natural 
TLR9 agonists, herpes simplex virus type 1 (HSV-1), and human 
cytomegalovirus (HCMV) could be potentiated with PD0325901 
(Figures 2A,B). Our results show that PD0325901 significantly 
potentiated production of IFN-α in GEN2.2 cells exposed to 
HSV-1 (2.14-fold, N  =  3, p  =  0.0022), or HCMV (1.98-fold, 
N = 3, p = 0.0022).

While aggregating CpG-A is transported to the interferon-
regulatory factor 7 endosomes, where activates production 
of IFN-I, monomeric CpG-B is transferred to the NF-κB 
endosomes, which leads to maturation of pDCs, formation of 
pro-inflammatory cytokines and only a limited production of 
IFN-α (7–10). PD0325901 significantly potentiated production 
of IFN-α in CpG-B-stimulated GEN2.2 cells (1.43-fold, N = 7, 
p  =  0.007), although less strongly than in CpG-A-stimulated 
cells (Figure 2C). Taken together, MEK1/2 inhibitor PD0325901 
potentiated production of IFN-α in pDC cell line GEN2.2 
stimulated with synthetic TLR9 agonists CpG-A and CpG-B, and 
natural agonists HSV-1 and HCMV.

MeK1/2 inhibitors Partially restore  
Tlr9-Mediated iFn-α Production Blocked 
by ligation of rrs with BDca-2 and  
ilT7 mabs
Subsequently, with respect to the ability of PD0325901 to synergize 
TLR7/9-mediated IFN-α production, we investigated the capacity 
of PD0325901 to reverse the inhibitory effect of the ligation of RRs 
on TLR9-mediated IFN-α production. We exposed PD0325901-
pretreated GEN2.2 cells and primary pDCs to 5 µg/ml of BDCA-2 
mAb and subsequently to TLR9 agonist CpG-A (Figure 3A). In 
the absence of the MEK1/2 inhibitor, the production of IFN-α 
induced in GEN2.2 cells by CpG-A was suppressed by BDCA-2 
mAb to 13% (p  =  0.0006, Figure  3B). As already shown in 
Figure 1C, PD0325901 significantly potentiated CpG-A-induced 
production of IFN-α in GEN2.2 cells (3.8-fold, N = 6, p = 0.0022, 
Figures 3B,C). As expected, PD0325901 potentiated the produc-
tion of IFN-α inhibited in GEN2.2 cells by BDCA-2 mAb. This 
partial restoration of IFN-α production in GEN2.2 cells was high-
lighted after standardization to the quantity of IFN-α produced in 
the absence of PD0325901 (7.3-fold, p = 0.0022, Figure 3C).

As in GEN2.2 cells, exposure of primary pDCs from healthy 
donors to BDCA-2 mAb suppressed the production of IFN-α 
induced by CpG-A to 11.5% (N  =  9, p  =  0.0039, Figure  3D). 
The major difference observed in primary pDCs compared to 
GEN2.2 cells consisted in the lack of the potentiation of CpG-
A-induced production of IFN-α by PD0325901 in the absence 
of BDCA-2 mAb (Figures 3B–E). In contrast, a similar restora-
tion effect to the one in GEN2.2 was observed in primary pDCs 
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FigUre 3 | Effect of MEK1/2 inhibitor PD0325901 on the blockade of IFN-α production by ligation of regulatory receptors of GEN2.2 cells or primary plasmacytoid 
dendritic cells (pDCs) with blood dendritic cell antigen 2 (BDCA-2) mAb. (a) Experimental outline. GEN2.2 cells separated from MS-5 feeder cells or primary pDCs 
were incubated with the MEK1/2 inhibitor for 1 h before stimulation with BDCA-2 mAb and CpG-A. After a 16 h culture, the IFN-α production was determined in the 
cell-free supernatants by ELISA. (B,D) The IFN-α production was normalized to the level induced by CpG-A in the presence of IgG1 and in the absence of the 
MEK1/2 inhibitor. (c,e) The same data showing the IFN-α production in panels (B–D) were normalized to the level induced by CpG-A in the absence of the MEK1/2 
inhibitor. The data show mean ± SEM of (B,c) six independent experiments with GEN2.2 cells, **, p < 0.01; ***, p < 0.001; two-tailed Mann–Whitney test, and 
(D,e) nine independent experiments with primary pDCs from different healthy donors, **, p < 0.01; two-tailed paired Wilcoxon test.
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exposed to PD0325901 prior to BDCA-2 mAb (Figures 3D,E). 
PD0325901 significantly restored the production of IFN-α 
inhibited by BDCA-2 mAb (2.4-fold, p = 0.0039, Figure 3E). A 
similar restoration effect was observed with PD0325901 at 10 nM 
concentration (Figure S3 in Supplementary Material) and with 
MEK1/2 inhibitor U0126 using ILT7 mAb for crosslinking RR 
(Figure S4 in Supplementary Material). In conclusion, these 
results show that MEK1/2 inhibitors significantly increased the 
TLR9-mediated IFN-I production blocked by ligation of RRs.

MeK1/2 inhibitor restores  
Tlr7/9-Mediated iFn-α Production 
Blocked by hcV Virions
We and others reported that some viruses, such as HCV (19, 32), 
HBV (18), or HIV (17), interact via their envelope glycoproteins 

with RR BDCA-2 expressed on pDCs, and activate the BCR-like 
pathway leading to the inhibition of IFN-α production. We tested 
whether MEK1/2 inhibitor PD0325901 restores IFN-α produc-
tion in pDC cell line GEN2.2 (Figures  4A,B) and in primary 
pDCs (Figures  4A,C) stimulated with CpG-A, and in parallel 
exposed to HCV particles (10 HCV geq/cell). We confirmed that 
in the absence of MEK1/2 inhibitor, HCV virions inhibited IFN-α 
production in both cell types, to 35% in GEN2.2 cells (Figure 4B) 
and to 34% in primary pDCs (Figure 4C) (19, 33). We observed 
that the treatment with PD0325901 significantly restored CpG-
A-stimulated production of IFN-α inhibited by HCV virions in 
GEN2.2 cells (4.2-fold, p  =  0.025, Figure  4B) and in primary 
pDCs (3.2-fold, p =  0.0059, Figure 4C), in a more robust way 
than that observed with BDCA-2 mAb (Figure 3). Collectively, 
pharmacological targeting of MEK1/2-ERK abrogates the HCV 
suppression of IFN-α production.
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FigUre 5 | Effect of MEK1/2 inhibition on the blockade of IFN-α by 
co-culture of GEN2.2 cells with BST2-expressing HEK293T cells. (a) 
Experimental outline. In total 105 GEN2.2 cells pretreated with 1 µM 
PD0325901 were added to a monolayer of 105 control HEK293T cells or to 
the same amount of BST2-expressing HEK293T cells in a volume of 200 µl. 
The proportion of BST2-expressing cells in the lentivirus-transduced 
HEK293T cells was determined by flow cytometry using the anti-BST2-PE 
antibody (Figure S4 in Supplementary Material). The co-cultures of GEN2.2 
and HEK293T cells were kept for 1 h at 37°C before adding CpG-A. After a 
16 h culture, the IFN-α production was determined in the cell-free 
supernatants by ELISA. (B) The IFN-α production was normalized to the 
IFN-α level induced in GEN2.2 cells by CpG-A in co-culture with the 
mock-transduced BST2-negative HEK293T cells and in the absence of 
PD0325901. The data show mean ± SEM of five independent co-culture 
experiments of GEN2.2 cells with BST2-negative or BST2-positive HEK293 
cells, *, p < 0.05; ***, p < 0.001; two-tailed Mann–Whitney test.

FigUre 4 | Effect of MEK1/2 inhibition on the hepatitis C virus (HCV) blockade of IFN-α in GEN2.2 cells or primary plasmacytoid dendritic cells (pDCs). (a) 
Experimental outline. GEN2.2 cells separated from MS-5 feeder cells (B), or primary pDCs (c), were incubated with 1 µM MEK1/2 inhibitor PD0325901 for 1 h and 
then treated with HCV virions at MOI = 10 geq/cell for 1 h before CpG-A stimulation. After a 16 h culture, the IFN-α production was determined in the cell-free 
supernatants by ELISA. (B,c) The IFN-α production was normalized to the level induced by CpG-A in the presence of a mock-infected control and in the absence of 
PD0325901. The data show mean ± SEM of (B) two independent experiments with GEN2.2 cells, *, p < 0.05; unpaired, two-tailed t-test and (c) ten independent 
experiments with primary pDCs from different healthy donors, **, p < 0.01; two-tailed paired Wilcoxon test.
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MeK1/2 inhibitor restores Tlr9-Mediated 
iFn-α Production Blocked by ligation of 
rrs with BsT2 expressing heK293T cells
ILT7 is another pDC-specific receptor with a regulatory func-
tion that signals through the BCR-like pathway and inhibits 
TLR-mediated IFN-α production (11). In order to evaluate the 
restoration effect of MEK1/2 inhibitors, we exposed GEN2.2 cells 
to a HEK293T cell line which expressed BST2, a natural ligand of 
ILT7 (11), in approximately 95% of cells (Figure 5A; Figure S5 in 
Supplementary Material). In the absence of MEK1/2 inhibitor, the 
co-culture of GEN2.2 cells with the BST2 expressing HEK293T 
inhibited IFN-α production induced by CpG-A to 47.4% 
(p  =  0.001, Figure  5B). When the GEN2.2 cells were exposed 
to 1  µM PD0325901 prior to co-culture with BST2 expressing 
HEK293T  cells and CpG-A simulation, the IFN-α production 
significantly increased (4.7-fold, p = 0.001, Figure 5B). In con-
clusion, the MEK1/2 inhibitor restored TLR9-mediated IFN-α 
production blocked by ligation of RR ILT7 with BST2.

MeK1/2 inhibitor restores Tlr9-Mediated 
iFn-α Production Blocked by PMa
A recent study showed that treatment of pDCs with PMA, an 
agonist of PKC activating MEK1/2-ERK signaling pathway, has 
led to a dose-dependent reduction of IFN-α secretion (34). We 
investigated the capacity of PD0325901 to reverse the inhibitory 
effect of PMA on TLR9-mediated IFN-α production (Figure 6A). 
In the absence of the MEK1/2 inhibitor, the production of IFN-α 
induced in GEN2.2 cells by CpG-A was suppressed by PMA to 
25% (N  =  6, p  =  0.0022, Figure  6B). PD0325901 significantly 
potentiated CpG-A-induced production of IFN-α in GEN2.2 cells 
(1.56-fold, N = 6, p = 0.0022, Figure 6B). PD0325901 completely 
restored the production of IFN-α inhibited in GEN2.2 cells by 
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FigUre 6 | Effect of MEK1/2 inhibitor PD0325901 on the blockade of IFN-α 
production in phorbol myristoyl acetate (PMA)-stimulated GEN2.2 cells. (a) 
Experimental outline. GEN2.2 cells separated from MS-5 feeder cells were 
incubated with the MEK1/2 inhibitor for 1 h before stimulation with PMA. 
After a 16 h culture, the IFN-α production was determined in the cell-free 
supernatants by ELISA. (B) The IFN-α production was normalized to the level 
induced by CpG-A in the presence of DMSO and in the absence of the 
MEK1/2 inhibitor. The data show mean ± SEM of six independent 
experiments with GEN2.2 cells. **, p < 0.01; two-tailed Mann–Whitney test.

FigUre 7 | c-FOS in proliferating GEN2.2 cells, GEN2.2 cells starved in the 
serum-free medium and in primary plasmacytoid dendritic cells (pDCs). (a) 
Experimental outline. Total cell extracts were prepared from GEN2.2 cells 
immediately after their separation from MS-5 feeder cells (GEN2.2), GEN2.2 
cells separated from MS-5 feeder cells and starved overnight in the 
serum-free medium (GEN2.2 serum-starved), and from primary pDCs 
isolated from two healthy donors by magnetic-bead purification without any 
further culture (pDCs-1, pDCs-2). (B) c-FOS levels were determined in the 
total cell extract by Western blotting by rabbit polyclonal Ab c-FOS (sc-52). 
The values shown below each band represent relative quantity of c-FOS 
determined by densitometry normalized to proliferating GEN2.2 cells. GAPDH 
was used as a loading control.
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PMA (6.18-fold, p = 0.0022, Figure 6B). In conclusion, activation 
of MEK1/2-ERK pathway by PMA inhibited the TLR9-mediated 
IFN-α production and this effect was abrogated by PD0325901.

c-FOs levels in pDc cell line gen2.2 are 
higher Than Those in Primary pDcs
The implication of MEK1/2 in the crosstalk of BCR-like and 
TLR7/9 signaling led us to investigate the role of c-FOS, a down-
stream immediate early response gene (20), in the regulation of 
TLR7/9 response. To this end, we compared the levels of c-FOS 
protein in the GEN2.2 cell line with those in primary pDCs 
(Figures 7A,B). We found that the quantity of c-FOS in GEN2.2 
cells cultured in complete medium was approximately double that 
of primary pDCs (Figure 7B). Among numerous transcription 
factor binding sites in the upstream promoter region of c-FOS, the 
serum response element plays a central regulatory role in respond-
ing to external stimuli by growth factors and mitogens (20). To 
assess the basal level of c-FOS in GEN2.2 cells, we determined 
c-FOS levels in GEN2.2 starved for 16 h in serum-free medium. 
The starvation reduced the quantity of c-FOS in GEN2.2 cells to 
the level present in primary pDCs (Figure 7B).

expression of c-FOs induced by BDca-2 
crosslinking Precedes and exceeds That 
induced by cpg-a
We determined the effect of CpG-A and BDCA-2 mAb on the 
kinetics of expression of the c-FOS gene in the serum-starved 
GEN2.2 cells pretreated or not with PD0325901 (Figure  8A). 

The peak of c-FOS transcription occurred 60 min after stimula-
tion with CpG-A (Figure  8B), while crosslinking of BDCA-2 
induced an earlier (30  min) and a stronger transcription of 
c-FOS (Figure 8C). Pretreatment with PD0325901 blocked the 
induction of c-FOS transcription by both CpG-A and BDCA-2 
mAb (Figures 8B,C). In addition to the quantification of c-FOS 
mRNA by qRT-PCR, we determined the c-FOS protein levels in 
the serum-starved GEN2.2 cells exposed to CpG-A or BDCA-2 
mAb by western blot (Figures  8D,E). While stimulation of 
GEN2.2 cells with CpG-A decreased the level of c-FOS protein 
(0.82-fold), crosslinking of BDCA-2 increased the production of 
c-FOS (1.46-fold).

PD0325901 inhibits g1/s Phase Transition 
of gen2.2 cell cycle
While pDC line GEN2.2 shares many features with primary pDCs 
(15, 25–30), GEN2.2 cells principally differ from primary pDCs 
by their capacity to proliferate. To further analyze this difference, 
we tested whether the higher basal level of c-FOS in proliferating 
GEN2.2 cells relative to primary pDCs is related to the MEK1/2-
ERK-mediated c-FOS induction and G1/S phase transition of the 
cell cycle (21) (Figures 9A,B). Proliferating GEN2.2 cells were 
treated with PD0325901, corresponding concentration of DMSO, 
CpG-A, and BDCA-2 mAb, or starved in serum-free medium, and 
the impact on their cell cycle was analyzed 16 h later. Cell cycle of 
a control culture of GEN2.2 cells was analyzed immediately after 
separation from MS-5 cells. We found that the MEK1/2-ERK 
pathway inhibitor PD0325901 blocked the cell cycle in proliferat-
ing GEN2.2 cells. The cell cycle was also strongly inhibited in the 
serum-starved GEN2.2 cells, although the impairment of the cell 
cycle in this cell culture did not permit to calculate residual S phase 
and G2/M phase cells according to mathematical model used in 
our analyses. As expected, BDCA-2 crosslinking did not block, 
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FigUre 8 | c-FOS mRNA and protein expression in GEN2.2 stimulated with TLR9 or RR agonists. (a) Experimental outline. GEN2.2 cells separated from MS-5 
feeder cells and starved in a serum-free medium for 16 h were pretreated or not with MEK1/2 inhibitor PD0325901 for 1 h and then exposed to CpG-A (B,D) or 
blood dendritic cell antigen 2 (BDCA-2) mAb (c,e). (B,c) The expression of human c-FOS mRNA was quantified after 30 or 60-min exposure to CpG-A (B) or 
BDCA-2 mAb (c) by TaqMan qRT-PCR in the total cellular RNA. The data normalized to time zero show mean ± SEM of three independent experiments; *, 
p < 0.05; two-tailed Mann–Whitney test. (D,e) c-FOS protein levels were determined after 240 min exposure to CpG-A (D) or BDCA-2 mAb (e) in the total cell 
extract by Western blotting by rabbit polyclonal Ab c-FOS (sc-52). Relative quantity of c-FOS protein normalized to mock-treated GEN2.2 cells determined by 
densitometry is shown below each band. GAPDH was used as a loading control (representative result of three independent experiments).
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but stimulated G1/S phase transition, consistently with increase 
of c-FOS level in BDCA-2-crosslinked cells (Figure 8E). CpG-A 
stimulation had only slight effect on G1/S phase transition. Cell 
cycle arrest in the GEN2.2 cells pretreated with PD0325901 or 
starved for serum (Figure 9B) correlated with the decline in the 
c-FOS level (Figures 7 and 8D,E) and with the potentiation of 
CpG-A-induced production of IFN-α (Figure 1C).

BDca-2 crosslinking induces 
Phosphorylation of c-FOs
It was reported that ERK1/2-mediated post-translational phos-
phorylation enhances c-FOS stability and transcriptional activity 
(20, 22, 23). We assessed the phosphorylation of ERK1/2 at T202/
Y204 and c-FOS at T325 in serum-starved GEN2.2 cells treated 
with RR agonist BDCA-2 mAb, TLR9 agonist CpG-A, and PKC 
agonist PMA (Figure 10A). c-FOS phosphorylation was analyzed 
using Western blotting with the P(T325)-c-FOS antibody. In 
the control experiment, 15 or 60 min exposure of GEN2.2 cells 
to PMA-induced strong phosphorylation of ERK1/2 at T202/
Y204 and the c-FOS at T325, which was efficiently inhibited by 
PD0325901 (Figure 10B). The levels of total c-FOS and ERK1/2 
remained unchanged in GEN2.2 cells stimulated with PMA for 
15 or 60 min (Figure S6 in Supplementary Material). Stimulation 
with BDCA-2 mAb induced strong phosphorylation of ERK1/2 
at T202/Y204 and the c-FOS phosphorylation at T325, which was 

abrogated by pretreatment with MEK1/2 inhibitor PD0325901 
(Figure 10C; Figure S7 in Supplementary Material). In contrast 
to BDCA-2 mAb or PMA, CpG-A-induced ERK-1/2 T202/Y204 
phosphorylation without inducing the phosphorylation of c-FOS 
T325 (Figure  10D). In conclusion, all three agonists induced 
phosphorylation of ERK-1/2, which was inhibited by 1  µM 
PD0325901. BDCA-2 mAb and PMA induced phosphorylation 
of c-FOS while CpG-A did not. The phosphorylation of c-FOS 
was inhibited by PD0325901, which is consistent with the regula-
tion of c-FOS by MEK1/2-ERK signaling.

BDca2 crosslinking in gen2.2 cells and 
Primary pDcs induces Upregulation of 
c-FOs
A recent study reported that BDCA-2 crosslinking and internali-
zation result in up to 16 hr-lasting resistance of pDCs to TLR7/9-
mediated stimulation suggesting a stability of the IFN-I inhibitory 
signal (35). Although c-FOS expression is usually rapid and 
transient, c-FOS stability is enhanced by phosphorylation (20, 22, 
23). These observations led us to investigate the stability of c-FOS 
levels after stimulation of the BCR-like or TLR9 pathways. We 
analysed the quantity of c-FOS in the GEN2.2 cell line 16 h after 
stimulation with the control PMA, BDCA-2 mAb, and CpG-A 
by flow cytometry in the presence or absence of PD0325901 
(Figure 11A). The results show that stimulation with PMA and 
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FigUre 9 | Cell cycle analysis of GEN2.2 cells cultured in the presence of PD0325901, CpG-A, blood dendritic cell antigen 2 (BDCA-2) mAb, or in serum-free 
medium. (a) Experimental outline. GEN2.2 cells separated from MS-5 feeder cells were exposed for 16 hr to 1 µM PD0325901, 4 µg/ml CpG-A, 0.25 µg/ml 
BDCA-2 mAb, or DMSO (mock-treated control), or analyzed immediately after separation from MS-5 cells. (B) Cell cycle analysis using Hoechst 33342 stain. 
Histograms of live GEN2.2 cells (representative result of three independent experiments) stained with Hoechst 33342 dye showing DNA content distribution. Live/
Dead cell discrimination was performed by Zombie Green™ Fixable Viability Kit. ND, not determined.
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BDCA-2 mAb induced a sustained increase in c-FOS levels, while 
stimulation with CpG-A did not (Figure 11B). The increase in 
c-FOS levels in the PMA and BDCA-2 stimulated GEN2.2 cells 

was inhibited by PD0325901. MFI of c-FOS significantly increased 
after BDCA-2 crosslinking and PMA stimulation of GEN2.2 cells 
but not after stimulation with CpG-A (N = 3, Figure 11C). While 
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FigUre 10 | Activation of c-FOS and ERK in GEN2.2 cells stimulated with phorbol myristoyl acetate (PMA), blood dendritic cell antigen 2 (BDCA-2) mAb and 
CpG-A. (a) Experimental outline. GEN2.2 cells separated from MS-5 feeder cells and starved in a serum-free medium for 16 h were pretreated or not with MEK1/2 
inhibitor PD0325901 for 1 h and then stimulated with PMA (B), BDCA-2 mAb (c), or CpG-A (D). The activation of c-FOS was evaluated by analysis of c-FOS 
phosphorylation using Western blotting with the P(T325)-c-FOS antibody. The phosphorylation of ERK-1 was determined by P(T202/Y204) ERK-1. Ponceau red 
was used as a loading control. Figure (c) is composed of two images of two different gels with samples from the same experiment. The two images are separated 
by a dotted line. Full scans of the original gels are shown in Figure S7 in Supplementary Material.
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PD0325901 almost completely inhibited c-FOS production in 
GEN2.2 cells stimulated by PMA, it exerted only partial inhibi-
tion in BDCA-2 mAb-crosslinked cells.

To assess whether stimulation of BDCA-2 in primary pDCs 
also upregulates the expression of c-FOS, we exposed PBMCs from 
three healthy donors to BDCA-2 mAb and determined the level of 
c-FOS in a rapidly dying population of primary pDCs 4 hr later. 
Because the low proportion of pDCs in PBMCs makes their bio-
chemical analyses difficult, we used flow cytometry for this purpose 
(Figures 11A, D–F). The MFI of c-FOS induced by BDCA-2 mAb 
increased 2.19 ± 0.85 times compared to isotypic IgG1 control in 
pDCs (Figure 11E). These results show that the stimulation of RRs 
of pDCs results in a sustained increase of the c-FOS level not only 
in the GEN2.2 cell line but also in primary pDCs.

DiscUssiOn

Our results demonstrate the important role of MEK1/2-ERK sign-
aling in the RR-mediated inhibition of IFN-α and IL-6 production 

in pDCs. We showed that MEK1/2 inhibitors PD0325901 and 
U0126 were the only constituents of the panel of inhibitors of 
BCR-like signaling that not only did not abrogate, but even 
stimulated TLR9 signaling in GEN2.2 cells. Pharmacological tar-
geting of MEK1/2 in GEN2.2 cells or primary pDCs significantly 
abrogated inhibition of the TLR9-mediated production of IFN-I 
induced by BCR-like or PKC signaling. Both BCR-like and PKC 
signaling activated MEK1/2-ERK pathway.

The molecular mechanism by which the ligation of the RRs 
antagonizes TLR7/9 signaling in pDCs remains elusive despite 
years of intense research in many laboratories (8–10, 12–14, 16, 
35). We show here that MEK1/2-ERK signaling upregulated the 
production and phosphorylation of c-FOS. Thus, the potentia-
tion of IFN-I by PD0325901 treatment of GEN2.2 cells could be 
consequence of a natural role of c-FOS in cell proliferation. The 
role of c-FOS in the activation of the G1/S cell cycle transition 
and in the inhibition of IFN-α and IL-6 production in GEN2.2 
cells should be further investigated. A higher level of c-FOS in 
proliferating GEN2.2 cells in comparison with resting primary 
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FigUre 11 | Induction of total c-FOS in GEN2.2 cells and primary plasmacytoid dendritic cells (pDCs). (a) Experimental outline. GEN2.2 cells separated from MS-5 
feeder cells exposed or not to PD0325901 were stimulated with phorbol myristoyl acetate (PMA), blood dendritic cell antigen 2 (BDCA-2) mAb, or CpG-A for 16 h. 
Peripheral blood mononuclear cells (PBMCs) of healthy donors were exposed to BDCA-2 mAb or IgG1 isotype Ab and quantity of the total c-FOS in pDCs gated 
from PBMCs was determined 4 h later. (B) Fluorescence intensity of the total c-FOS in GEN2.2 cells. Viable GEN2.2 cells were gated according to Live/Dead 
Zombie Green kit, semipermeabilized and stained with PE-conjugated c-FOS (9F6) rabbit mAb. Control light shaded areas show c-FOS in unstimulated PD0325901 
mock-treated GEN2.2 cells. Dark shaded areas show c-FOS in PD0325901-treated GEN2.2 cells. Representative result of three independent experiments. (c) The 
data show mean MFI ± SEM of the total c-FOS in GEN2.2 cells determined in three independent experiments. *, p < 0.05; unpaired, two-tailed t-test. (D) Primary 
pDCs in PBMCs were gated negatively for Zombie green- (living cells) and FITC-Lin− and positively for APC-CD123+. (e) c-FOS in semipermeabilized primary pDCs 
gated from PBMCs stimulated with BDCA-2 mAb or IgG1 isotype for 4 h was stained with PE-c-FOS (9F6) rabbit mAb. Representative result of three independent 
experiments with PBMCs from different healthy donors. (F) The data show mean MFI ± SEM of the total c-FOS in primary pDCs gated from BDCA-2-stimulated or 
unstimulated PBMCs determined in three independent experiments in PBMCs of different donors.
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pDCs represents a major difference between these cell types and is 
consistent with the different outcome of MEK1/2-ERK inhibition. 
The demonstration of the synergistic effect of MEK1/2 inhibitors 
on the CpG-A-induced production of IFN-α suggests that under 
steady-state conditions a natural intrinsic block regulated by 
MEK1/2 controls the IFN-α level in GEN2.2 cells to a higher level 
than that in primary pDCs. Release of this block could be a part 
of the restoration mechanism of IFN-α by MEK1/2 inhibitors in 
pDCs exposed to RR agonists.

The levels of inhibition of IFN-I production by crosslinking 
of RR and their restoration by MEK1/2-ERK inhibitors varied 
depending on the RR ligand. This could be related to differences 
in the cell-surface distribution of targeted receptors (BDCA-2, 
ILT7, DCIR) and avidity of tested ligands (BDCA-2 and ILT7 
mAbs, HCV particles, or BST2 expressing cells). Among them, 
BDCA-2 mAb was the most potent inhibitor of IFN-I produc-
tion. Surprisingly the relative levels of inhibition and restoration 
of IFN-I production were similar in GEN2.2 cell line and primary 
pDCs. In addition to differences in receptor/ligand interactions, 
the levels of inhibition and restoration of IFN-I production were 
dependent on the mechanism of stimulation of MEK1/2-ERK 
pathway by BCR-like or PKC signaling. While pretreatment with 
PD0325901 led to almost complete inhibition of c-FOS expres-
sion induced by PMA, c-FOS expression induced by BDCA-2 
mAb was only partially inhibited. This suggests that expression 
of c-FOS induced by BDCA-2 crosslinking and internalization 
could be partially MEK1/2-ERK independent.

MEK1/2 inhibitor PD0325901 potentiated production of 
IFN-α in pDC cell line GEN2.2 stimulated by both synthetic 
(CpG-A and CpG-B) and natural (HSV-1 and HCMV) agonists. 
In the absence of PD0325901, exposure of pDCs to HSV-1 and 
HCMV results in a non-permissive infection and TLR9-mediated 
production of IFN-α (36, 37). Interestingly, the quantity of IFN-α 
produced by murine pDCs exposed to murine CMV (MCMV) is 
down-modulated by MCMV-induced stimulation of DAP12, an 
adaptor molecule of murine RR (38). Recent study demonstrated 
that EBV and double-stranded DNA viruses induce TRIM29 
leading to suppression of IFN-α production (39). The potential 
role of TRIM29 in HSV-1 and HCVM-mediated inhibition of 
IFN-α production in pDCs needs to be clarified.

A previous report implicated c-FOS induced by MAP3-kinase 
TPL-2 in the negative regulation of TLR9-mediated production 
of IFN-β in mouse macrophages and myeloid (mDCs), but not in 
mouse pDCs (24). In contrast, we show here that c-FOS induced 
by MEK1/2-ERK signaling is involved in the regulation of TLR9 
signaling in human pDCs. It is possible that TPL-2 and MEK1/2-
ERK signaling are interpreted differently in mouse and human 
pDCs compared with macrophages and mDCs as a consequence 
of an interaction of ERK activation with other signaling pathways 
triggered by TLR9 (18). Several cell type-specific studies have 
shown that the interaction of TLR7/9 with BCR-like signaling 
may be regulated in a different way in human pDCs (7, 12, 14, 
16, 35, 40).

Activation of Ras/MEK1/2/ERK downregulates expression 
of IFN-I also in human epithelial cancer cells (41). Together 
with our experiments, these results suggest that MEK1/2-ERK 
signaling can play a general role in regulation of IFN-I. Another 

recent study demonstrated that MEK1/2-ERK-mediated phos-
phorylation of c-FOS in HCV-infected hepatocytes induced 
miR-21, which targeted MyD88 and IRAK1 and contributed to 
the suppression of IFN-I production (42). We did not detect a 
significant increase of miR-21 level in GEN2.2 cells exposed to 
BDCA-2 mAb or CpG-A (not shown).

We have demonstrated that inhibitors of MEK1/2 restore the 
production of IFN-I inhibited by ligation of RRs with HCV par-
ticles or with BST2 expressing cancer cells. These results suggest 
that pharmacological targeting of MEK1/2-ERK signaling could 
be a strategy to overcome immunotolerance of pDCs and re-
establish their immunogenic activity. This finding complements 
our previous results showing that an inhibitor of SYK, a protein 
kinase involved in both TLR7/9 and BCR-like pathways, could 
be a useful tool to suppress the overproduction of IFN-I and to 
re-establish tolerogenic homeostatic functions of pDCs (15). The 
role of IFN-I in the pathogenesis of chronic viral infections and 
cancer is unclear and ambivalent. IFN-I responses are critical 
in the early phases of immune response to infections, but the 
chronic and systemic activation of pDCs can paradoxically lead 
to deleterious consequences for the immune system (43, 44). It 
is likely that an intense signaling occurs in the mucosa, involv-
ing a local accumulation of pDCs producing IFN-I early during 
HIV-1 infection, which is associated with the chronic activation 
of the immune system (45, 46). While in this era of great success 
of direct-acting antivirals against HIV and HCV the stimulation 
of IFN response might represent an adjuvant therapy, important 
namely in the case of virus escape, the induction of IFN-I in com-
bination with existing antivirals may cure HBV infection (47–49). 
IFN-I also plays an important role in antitumor immunity (3, 50). 
The addition of exogenous IFN-α reverts the immunotolerance of 
tumor-associated pDCs in breast and ovarian carcinoma (4, 51). 
Pharmacological targeting of MEK1/2 signaling may constitute 
an attractive new approach to study mechanisms of modulation 
of pDC activation in pathophysiological conditions such as 
chronic viral infections and cancer.

MaTerials anD MeThODs

isolation and culture of Primary pDcs
Peripheral blood mononuclear cells (PBMCs) from healthy anon-
ymous donors were obtained from the national blood services 
(Etablissement Francais du Sang, Marseille, France). Blood sam-
ples were obtained after written consent following the approval 
of the EFS, Marseille, France, and the Center de Recherche en 
Cancérologie de Marseille (CRCM) in accordance to the conven-
tion signed the 20th May 2014. pDCs purified from PBMCs as 
described previously were 75–95% pure, with a contamination of 
less than 5% mDCs (32, 33, 52, 53). Isolated pDCs were cultured 
in RPMI 1640 supplemented with 10% fetal calf serum (FCS). 
To optimize viability in overnight experiments, recombinant IL-3 
(R&D Systems Europe, Ltd., Abingdon, UK) was added to a final 
concentration of 10 ng/mL.

pDc line gen2.2
Human pDC line GEN2.2 (25) was grown in a RMPI 1640 medium 
supplemented with L-glutamine, 10% FCS, 1% sodium pyruvate, 
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and 1% MEM nonessential amino acids, on a monolayer of the 
murine stromal feeder cell line MS-5 grown in RPMI 1640 sup-
plemented with L-glutamine, 10% FCS, and 1% sodium pyruvate. 
For the measurement of cytokine production, the dynamic flow 
cytometry and the Western blot experiments, GEN2.2 cells were 
separated from the MS-5 feeder cells.

inhibitors, antibodies, and reagents
MEK-1/2 inhibitor PD0325901 obtained from InvivoGen 
(Toulouse, France) and U0126 obtained from Sigma (Sigma-
Aldrich, Lyon, France) were used as recommended by supplier. 
PD0325901 is a selective non-ATP-competitive allosteric 
MEK1/2 inhibitor with in  vitro IC50 0.33  nM, which was 
shown to be specific against a panel of 70 different kinases at 
10  µM range (54). U0126 inhibits MEK 1/2 with an in  vitro 
IC50 of 0.5  µM. JNK inhibitor SP600125, TBK1 inhibitor 
BX795, NF-ĸB inhibitor Bay11-7082, p38 MAPK inhibitor 
SB253080, and calcineurin inhibitor FK506 were all purchased 
from InvivoGen, San Diego, USA. For in vitro pDC stimulation 
assays, CpG-A (ODN 2216), CpG-B (ODN 2006), and PMA (all 
InvivoGen, San Diego, USA), and BDCA-2 antibody (Miltenyi 
Biotech, Paris, France), and ILT7 antibody (eBioscience) were 
used.

In Vitro pDc stimulation
To determine cytokine production, purified primary human 
pDCs (in the presence of IL-3) or GEN2.2 cells were kept at a con-
centration of 106 cells/ml aliquoted in 100 µl quantities in 96-well 
round-bottom culture plates and stimulated with 4 µg/ml CpG-A 
or CpG-B, 25 ng/ml PMA, 20 µg/ml of BDCA-2 or ILT7 antibody, 
or 10 HCV geq/cell for 16 h. In some experiments, BDCA-2 or 
ILT7 antibody-exposed cells were further crosslinked with goat-
antimouse F(ab')2 (15 µg/ml) (Jackson ImmunoResearch).

Production and Purification of cell 
culture-Derived hcVcc (JFh-1 3 M), hsV-1, 
and hcMV Virus stocks
Hepatitis C virus cc particles were prepared in Huh7.5 cells (55) 
(kindly provided by APATH L.L.C.) on the basis of plasmid 
pJFH-1 displaying mutations, F172C and P173S in core and 
N534K in E2 (56), as described previously (33). The ultracentri-
fuged virus purified through a cushion of 20% sucrose was resus-
pended in RPMI 1640 to obtain a 1,000-fold concentrated virus 
suspension containing 107 FFUHuh7.5/1011 HCV RNA copies/ml.  
Stocks of HSV-1, strain Praha, and HCMV, strain AD-169, were 
prepared as described previously (57, 58).

Preparation of BsT2 expressing heK293T 
cells
The BST2 sequence from pCMV-Sport6-BST2 was cloned into 
the pRRL.PPT.SF.i2GFPp expression vector to produce a lentivi-
ral vector pRRL-BST2-GFP. HEK293T cells were transduced by 
the resulting lentivirus construct at MOI = 10 and GFP-positive 
cells were selected by FACSAria (BD Biosciences). The expression 
of GFP and BST2 in transduced cells was determined by flow 
cytometry by LSRII (BD Biosciences).

Determination of c-FOS expression
Total cellular RNA was isolated using RNeasy Mini Kit (Qiagen). 
cDNA was synthesized using High Capacity cDNA Reverse  
Transcription Kit (Applied Biosystems). Human c-FOS was amplified  
with SYBR® Green PCR Master Mix (Applied Biosystems) using  
the following primers: c-FOS: forward: 5′-CAAGCGGAGACAGAC  
CAACT-3′and reverse 5′-AGTCAGATCAAGGGAAGCCA-3′; 
GAPDH: forward: 5′-GCGAGATCCCTCCAAAATCAA-3′and 
reverse 5′-GTTCACACCCATGACGAACAT-3′. Relative expres-
sion levels were calculated using 2−ΔΔCT method. GAPDH was used 
as endogenous control.

Determination of erK and c-FOs by 
immunobloting
Total c-FOS and ERK in the whole cell lysate of GEN2.2 cells 
or primary pDCs were determined by Western blotting by 
means of rabbit polyclonal c-FOS (sc-52) and ERK1/2 (sc-154) 
Abs (Santa Cruz Biotechnology, Dallas, USA). Phosphorylation 
of ERK and c-FOS in the whole cell lysate of GEN2.2 cells was 
analyzed by Western blotting using phospho-c-FOS-T325 Ab 
from Abcam (Cambridge, UK) and ERK Ab T202/Y204 (Santa 
Cruz Biotechnology, Dallas, USA) as described previously (15). 
After incubation with the appropriate horseradish peroxidase-
conjugated secondary antibody, the membranes were washed and 
the protein bands were detected with Super Signal™ enhanced 
chemoluminiscent substrate detection reagent (ThermoFisher 
Scientific, Villebon-sur-Yvette, France). Densitometric analyses 
were performed using Amersham Imager 600 (GE Healthcare 
Life Science). Band intensities were normalized to GAPDH or 
Ponceau red.

Determination of c-FOs by Dynamic Flow 
cytometry
To determine total c-FOS by dynamic flow cytometry, 106 
GEN2.2 cells or 2 × 106 PBMCs per milliliter were kept in the 
RPMI 1640 medium supplemented with 10% FCS. Aliquots of 
106 GEN2.2 cells or 8 × 106 PBMCs were stimulated with 4 µg/
ml CpG-A, 100 ng/ml PMA, 10 µg/ml of BDCA-2 mAb for 16 hr 
(GEN2.2 cells) or 4 hr PBMCs. Live/Dead cell discrimination was 
performed by Zombie Green™ Fixable Viability Kit (BioLegend, 
San Diego, USA). For flow cytometry analysis of total c-FOS, cells 
were fixed in 4% formaldehyde for 10 min, permeabilized by 90% 
methanol for 30 min, and stained by PE conjugated c-FOS (9F6) 
rabbit mAb (Cell Signaling, Danvers, USA). For determination of 
c-FOS in primary pDCs, PBMCs were stained by APC-conjugated 
anti-human CD123 mouse mAb (BD Biosciences, San Jose, USA) 
and FITC-conjugated anti-human lineage cocktail mouse Abs 
(BioLegend, San Diego, USA). pDCs in PBMCs population were 
defined as Lin-, CD123+ cell population. Samples were analyzed 
using a BD LSR FORTESSA cytometer (BD Biosciences, San Jose, 
USA) and data were processed using FLOWJO software (Treestar, 
San Carlos, USA).

cell cycle analysis
For analysis of cell cycle, 106 GEN2.2 cells/ml of RPMI 1640 
medium supplemented with 10% FCS were aliquoted in 1  ml 
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quantities in 6-well flat-bottom culture plates and exposed to 
1  µM PD0325901, 4  µg/ml CpG-A, and 10  µg/ml of BDCA-2 
mAb for 16 h. The cells were then resuspended in the RPMI 1640 
medium containing 6 µg/ml Hoechst 33342 Dye (ThermoFischer 
Scientific) and incubated at 37°C in 5% CO2 for 30 min and the 
amount of DNA was determined by flow cytometry. Live/Dead 
cell discrimination was performed by Zombie Green™ Fixable 
Viability Kit (BioLegend, San Diego, USA). Samples were ana-
lyzed using a BD LSR FORTESSA cytometer (BD Biosciences, 
San Jose, USA) and data were processed using FLOWJO software 
(Treestar, San Carlos, USA). Phases of the cell cycle were calcu-
lated by Dean-Jett-Fox model.

Determination of secreted iFn-α, TnF-α, 
and il-6
The quantities of total IFN-α, TNF-α, and IL-6 produced by pDCs 
or GEN2.2 were measured in cell-free supernatants using human 
ELISA kits (IFN-α and IL-6 from Mabtech, and TNF-α from BD 
Biosciences). The index of synergism was determined from the 
following formula: the level of cytokine production after stimula-
tion with the combination of CpG and PD0325901 divided by the 
sum of cytokine production level after stimulation with CpG and 
PD0325901 separately. PD0325901 alone did not induce a detect-
able quantity of respective cytokines. Combinations resulting in 
an index of synergism >1.5 were considered to be synergistic. The 
combinations resulting in an index of synergism ≤1.5 and in a 
30% increase in stimulation compared to the stimulation observed 
with either of the two stimulators were considered to be additive.

statistical analysis
Quantitative variables are expressed as the mean ± SEM (standard 
error of the mean). To compare the levels of cytokine production 
and transcription of c-FOS mRNA by pDCs, we used a Mann–
Whitney or a Wilcoxon two-tailed non-parametric tests. For flow 
cytometry analyses, we used two-tailed t-test. Data were analyzed 
with GraphPad Prism 4 (GraphPad Software, La Jolla, CA). A  
p value ≤ 0.05 was considered to be significant.
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