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Random Deterministic Automata?

Cyril Nicaud

LIGM, Université Paris-Est & CNRS, 77454 Marne-la-Vallée Cedex 2, France
cyril.nicaud@univ-mlv.fr

Abstract. In this article, we consider deterministic automata under the
paradigm of average case analysis of algorithms. We present the main re-
sults obtained in the literature using this point of view, from the very
beginning with Korshunov’s theorem about the asymptotic number of
accessible automata to the most recent advances, such as the average
running time of Moore’s state minimization algorithm or the estima-
tion of the probability that an automaton is minimal. While focusing on
results, we also try to give an idea of the main tools used in this field.

This article is dedicated to the memory of Philippe Flajolet.

1 Introduction

Automata theory [30] is a fundamental field of computer science, which has
been especially useful in classifying formal languages, while providing efficient
algorithms in several field of applications, such as text algorithms [17]. In this
article, we consider deterministic automata under the paradigm of average case
analysis of algorithms. We present the main results obtained in the literature
with this approach, from the very beginning with Korshunov’s theorem [35] to
the most recent advances. We do not claim to be exhaustive, but hope to give a
fair overview of the current state of this research area.

Following Knuth’s seminal approach [33, Ch. 1.2.10], the area of analysis of
algorithms aims at a more thorough analysis of algorithms by gaining insight
on their running time in the best case, the worst case and the average case.
Establishing that an algorithm behaves better in average than in the worst case
is often done in two steps. First, one looks for properties of the inputs that makes
the algorithm run faster. Then, using precise quantifications of various statistics,
these properties are proved to hold with high probability1 for random inputs.

To assist the researcher in spotting these properties, the community of anal-
ysis of algorithms also developed algorithms that randomly and uniformly gen-
erate a large variety of combinatorial structures. As we will see in the sequel,
there several solutions available that are both efficient and quite generic. These
random samplers are also very useful as substitutes for benchmarks for studying

? This work is supported by the French National Agency (ANR) through ANR-10-
LABX-58 and through ANR-2010-BLAN-0204.

1 i.e., with probability that tends to 1 as the size tends to infinity.



algorithms experimentally. A random generator is considered good if structures
of size thousand can be generated in a few seconds. A very good generator can
generated objects of size one billion within the same amount of time.

The two main mathematical tools for analyzing the average running time of
algorithms are discrete probabilities [23] and analytic combinatorics [25]. The
latter is a field of computer science that aims at studying large combinatorial
structures (such as permutations, trees, . . . ) using their combinatorial properties.
The analysis starts from an enumerative description of these objects, encoded
into generating series, that is, the formal series

∑
n≥0 cnz

n, where cn denote
the number of objects of size n. When possible, these series are interpreted as
analytic functions from C to C. A precise analysis of these functions then pro-
vides information on the initial combinatorial structures, especially approximate
estimations of various parameters, such as the expected number of cycles in a
permutation, the typical height of a tree, and so on.

Under the impulsion of Flajolet, efforts were made to systematize the ap-
proach as much as possible. It was done in two main directions. First, by provid-
ing techniques to directly characterize the generating series from a combinatorial
description of the structures of interest. Then, by stating theorems that yield
useful and general results, while hiding the technical complex analysis methods
within their proofs. Though its main domain of application is the average case
analysis of algorithms and the design of efficient random generators, analytic
combinatorics has also proved useful in various fields such as statistical physics
or information theory.

As an example, consider the set of total maps from [n] to itself.2 If f is such
a map, its functional graph is the directed graph with vertex set [n] and with
an edge from x to y whenever f(x) = y. Such a graph may consist of several
components, each a cycle of trees (a forest whose roots are connected by a cycle).
For n and k two positive integers, let mn,k denote the number of maps from [n]
to itself having exactly k cyclic points, where x is a cyclic point of f when there
exists a positive i such that f i(x) = x. Intuitively, cyclic points are the vertices
of the functional graph belonging to a cycle. Assume we want to estimate the
proportion of cyclic points in a random map from [n] to [n], for large values of n.
The symbolic method [25, Ch. II] allows to directly translate the combinatorial
specification “maps = set of cycles of trees” into the equality

M(z, u) :=
∑
n≥1

∑
k≥1

mn,k

n!
znuk =

1

1− uT (z)
with T (z) = z eT (z) .

At this point, M(z, u) is viewed as an analytic function and the singularity
analysis techniques [25, Ch. VI] yield that the average number of cyclic points
is asymptotically equivalent to

√
π n/2.

Since a random deterministic automaton has a lot of useless states with high
probability, we focus on the combinatorics of accessible automata in Section 2.

2 For any positive integer n, [n] denote the set {1, . . . , n}.
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We give some combinatorial bijections between automata and other combina-
torial structures, as well as asymptotic results on the number of automata. In
Section 3, we present on a toy example a useful technique, which is widely used
in the analysis of random automata. With this technique, one can export a
probabilistic property of random automata to random accessible automata at
low cost, avoiding the difficulty of dealing with accessible automata directly. We
investigate the problem of generating accessible automata uniformly at random
in Section 4. In Section 5, we briefly explained an important result, which states
that a non negligible ratio of accessible automata are minimal. We then present
the average case analysis of an algorithm, namely Moore’s state minimization
algorithm, in Section 6. In Section 7, we state some recent results about the ran-
dom synchronization of automata and present some open problems that seem to
be relevant for further studies.

Though not always explicitly mentioned, analytic combinatorics and discrete
probabilities are used to establish most of the results presented in this article.3

2 Combinatorics of Automata

We start our presentation by studying the combinatorics of deterministic au-
tomata. As a guideline, we will answer the following question:4

Question 1: What is the asymptotic number of accessible deterministic
and complete automata with n states?

Let us formalize the question first. Let A be a fixed alphabet with k ≥ 2 letters.5

For any n ≥ 1, an n-state transition structure T on A is a pair (q0, δ), where
q0 ∈ [n] is the initial state and δ is a total map from [n] × A to [n] called the
transition function of T . Since δ is a total map, a transition structure is a classical
deterministic and complete automaton with set of states [n], with q0 as initial
state, but with no final states. An n-state deterministic and complete automaton
on A is a tuple (q0, δ, F ), where (q0, δ) is an n-state transition structure and F ⊆
[n] is the set of final states. Let Tn and An denote the set of n-state transition
structures and n-state automata respectively. Obviously, we have |Tn| = n · nkn
and |An| = n · nkn · 2n. Since we will only consider deterministic and complete
automata, we simply call them automata in the sequel.

Recall that a word u is recognized by the automaton A when it labels a path
from the initial state to a final state. To define it formally, we extend δ to words
in A∗ by setting inductively that for every p ∈ [n], u ∈ A∗ and a ∈ A, δ(p, ε) = p
and δ(p, ua) = δ(δ(p, u), a). A word u is recognized by A when δ(q0, u) ∈ F . Let
L(A) denote the language recognized by A, i.e., the set of words it recognizes.

3 For instance, the probabilistic study of the number of cyclic points in a random map,
presented above, is one of the cornerstone of [10, 19, 20, 42].

4 For the exact number of automata, see Remark 7.
5 Automata on alphabets with only one letter are very specific. See [40] for information

on their typical behavior when taken uniformly at random.
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Fig. 1. An accessible automaton and its associated surjection φ: a transition p
a−→ q

indicates that φ(p
a−→) = q and φ(→) designates the initial state.

A state p of an automaton or a transition structure is accessible when there
exists u ∈ A∗ such that δ(q0, u) = p. An automaton or a transition structure is
accessible when all its states are accessible. Similarly, a state p of an automaton is
co-accessible when there exists u ∈ A∗ such that δ(p, u) ∈ F , and an automaton
is co-accessible when all its states are co-accessible.

States that are not accessible or not co-accessible are useless, since they can
be removed without changing the recognized language. We will see that from a
probabilistic point of view, an accessible automaton is co-accessible with high
probability (see Remark 9). The number of automata with no useless states is
therefore asymptotically equivalent to the number of accessible automata. This
justifies the choice of Question 1, and we now turn our attention to the set Cn
of n-state transition structures that are accessible.

In a transition structure, the action of each letter a ∈ A, i.e, the map p 7→
δ(p, a), is a total map from [n] to [n]. Using for instance techniques of analytic
combinatorics [25], it is not difficult to establish that the expected number of
elements with no preimage by a random map from [n] to [n] is e−1n (see [24]).
Hence, roughly speaking, in a random element of Tn on a two-letter alphabet,
there are around e−1n states with no incoming transition labelled by a and
e−1n states with no incoming transition labelled by b. “Therefore”, there are
around e−2n states with no incoming transition. This informal argument can be
turned into a proof. It establishes that with high probability an element of Tn
is not accessible, as only the initial state can have no incoming transition in an
accessible structure. Hence, |Cn| is asymptotically much smaller than |Tn|.

The idea of Korshunov [35] is to consider elements Tn whose states have at
least one incoming transition, except possibly the initial state. Let T′n denote
the set of such transition structures. Of course, an element of T′n is not always
accessible: two strongly connected components that are totally disjoint form a
non-accessible element of T′n. But we will see in the sequel that it is a reasonable
approximation of Cn. Let En = [n]×A ∪ {→} and let Sn denote the set of sur-
jections from En onto [n]. To each element T = (q0, δ) of T′n one can associate
bijectively an element f of Sn, by setting f(→) = q0 and f((p, a)) = δ(p, a) (an
example is depicted in Fig. 1). Hence |T′n| is equal to the number S(kn+ 1, n) of
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Fig. 2. An accessible automaton and its associated diagram, as introduced in [7].
The states are labelled following a breadth-first traversal of the automaton, taking
a-transitions before b-transitions. Every column of the diagram corresponds to a tran-
sition p

a−→ q. The height of a column is the number of states discovered so far in the
traversal, and there is a cross in the row corresponding to the target q of the tran-
sition. For example, 3 states were discovered when considering the transition 3

a−→ 1.
Therefore, the associated column has height 3 and there is a cross in the first row, as
1 is the target state of this transition.

surjections from a set with kn+1 elements onto a set with n elements. Good [27]
used the saddle point method (see [25, Ch. VIII]) to obtain an asymptotic equiv-
alent of S(n,m) when m = Θ(n). Using his result we get that the number of
surjections from [kn+ 1] onto [n] satisfies

S(kn+ 1, n) ∼ αk βnk nkn+1 ,

where αk > 0 and βk ∈ (0, 1) are two computable constants.

Remark 1. The quantity αkβ
n
k is exactly the probability that a mapping from

[kn + 1] to [n] is a surjection. By Good’s result, this probability is hence expo-
nentially small.

The main result of Korshunov in [35] is that, asymptotically, the number of
accessible transition structures differs from |T′n| by a multiplicative constant: if
|A| ≥ 2 then |Cn| ∼ γk |T′n|, where γk > 0 is an explicit constant. The proof is
too complicated to be sketched here. It relies on a precise combinatorial study of
the shape of a random element of T′n. Using Good’s estimation for the number
of surjections, we therefore get the answer to Question 1:

|Cn| ∼ γk αk βnk nkn+1 2n .

Remark 2. If ρk is the smallest positive solution of the equation x = k(1− e−x),

then βk = kk(eρk−1)
ekρkk

. Numerically, we have β2 ≈ 0.836 and β3 ≈ 0.946.

Remark 3. Korshunov gave a complicated formula for γk, using limits of con-
verging series. Lebensztayn greatly simplified it with the theory of Lagrange
inversion [36].
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Fig. 3. On the left, an automaton with inner symmetries: there are only 3 different
ways to label this shape. The automaton on the right is accessible; hence it has no
inner symmetry and there are 3! different ways to label it.

Remark 4. Korshunov also proved that the number of strongly connected tran-
sition structures has the same order of growth: it is asymptotically equivalent to
δk β

n
k n

kn+1, for some positive δk.

Remark 5. In [7], Bassino and the author used another encoding for elements
of T′n. Instead of surjections, these transition structures are represented by dia-
grams obtained during a breadth-first traversal, as shown on Fig. 2. They have
the advantage that there is a simple characterization of diagrams that corre-
spond to accessible transition structures. These diagrams were used by Bassino,
David and Sportiello to count the asymptotic number of minimal automata [6].
This result is presented in Section 5.

The answer we gave to Question 1 may seem to be unsatisfactory, since
we consider two automata that only differ by their state labels as different.
An isomorphism of transition structures is a bijection φ from the states of a
transition structure T = (q0, δ) to those of T ′ = (q′0, δ

′) such that φ(q0) = q′0
and for every state p and every letter a, δ′(φ(p), a) = φ(δ(p, a)). For the definition
of isomorphism of automata we also require that φ(p) is final if and only if p
is. It can seem more relevant to count the number of isomorphic classes rather
than the number of transition structures or automata.

There is not the same number of automata in every isomorphic class, as
depicted in Fig. 3. Such situations can make the counting of the number of classes
quite difficult. Fortunately, the situation is easier when considering only the
number of accessible structures: each state p of an n-state accessible automaton
(or transition structure) is completely characterized by the smallest word u for
the radix order,6 also called the length-lexicographic order, such that δ(q0, u) =
p. Hence, every bijection from the set of those words to [n] define a different
labelling for the automaton. Each isomorphic class of an accessible automaton or
transition structure therefore contains exactly n! elements. Thus, using Stirling
formula, we can give the final answer to Question 1:

Answer 1: The number of isomorphic classes of accessible automata
with n states is asymptotically equivalent to γ′k β

′n
k n(k−1)n+1/2 2n, where

γ′k = γkαk√
2π

and β′k = e · βk are two computable positive constants.

6 Compare the length first, and use the lexicographic order if they have same length.
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Fig. 4. On the left, a transition structure T with 5 states. Its states 1 and 3 are not
accessible. The accessible part of T is depicted on the right. It is obtained by removing
1 and 3, and by normalizing the remaining state labels while preserving their relative
order: 2 7→ 1, 4 7→ 2 and 5 7→ 3.

3 From Automata to Accessible Automata

Our next goal is to obtain information on the typical properties of random
accessible automata. However, we saw in the previous section that working with
accessible structures can be quite complicated. In particular, we do not know
any useful formula for their generating series. We therefore cannot directly use
well-established techniques, such as analytic combinatorics, in order to obtain
statistics on accessible automata. In this section we will explain how, in some
situations, we can establish a property on random accessible automata by first
proving it on random automata. We illustrate this technique on Question 2
below, which is a toy question we use to emphasize the method. More important
applications will be presented in the following sections. Recall that a state p is
a sink state if for every a ∈ A, δ(p, a) = p.

Question 2: Does a random accessible automaton often has a sink state?

The question is easy if we remove the accessibility condition. A random automa-
ton with n states for the uniform distribution can be seen as choosing the initial
state uniformly in [n], then, independently, choosing δ(p, a) uniformly in [n] for
every p ∈ [n] and every a ∈ A. Assume for this section that A = {a, b}. The
probability that a given state p is a sink state is therefore 1

n2 . Hence, by the
union bound, the probability that there is a sink state is7 at most 1

n : a uni-
form random automaton has no sink state with high probability. We will now
show how to use this simple result to establish a similar statement for random
accessible automata.

For any T ∈ Tn, the accessible part of T is the accessible transition structure
obtained by removing the states that are not accessible. If the accessible part
has m states, we relabel them with [m] while preserving their relative order, as
depicted in Fig. 4.

Let m be an integer with 1 ≤ m ≤ n and let T be an element of Cm. We
want to compute the number of elements of Tn whose accessible part is T . To

7 In fact, it is exactly 1− (1− 1
n2 )n.
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build such a transition structure, we first choose one of the
(
n
m

)
possible size-m

subsets of [n] for labelling the states of T . Then observe that the transitions
outgoing from an accessible state are already defined by the choice of T and
that the other transitions can end anywhere without changing the accessible
part. Therefore, there are exactly

(
n
m

)
nk(n−m) elements of Tn whose accessible

part is T . A crucial observation here is that this quantity only depends on n
and m: two elements of Cm are the accessible part of a random element of Tn
with the same probability. Using the vocabulary of probability: conditioned by
its size m, the accessible part of a uniform random element of Tn is a uniform
random element of Cm.

Let #acc(An) be the random variable associated with the number of states of
the accessible part of a random element An of Tn. By summing the contribution
of all T ∈ Cm, and since |Tn| = nkn+1, we get that

P
(
#acc(An) = m

)
=

1

n

(
n

m

)
|Cm|n−km . (1)

This is the starting point of the study of #acc(An) done by Carayol and the
author in [13]. Thanks to Korshunov’s result presented in Section 2, a fine anal-
ysis of the distribution of #acc(An) is possible. In particular, we proved that
there exists a computable constant vk ∈ (0, 1) such that E[#acc(An)] ∼ vk n.
Numerically, v2 ≈ 0.7968, meaning that about 80% of the states are accessible
in a typical automaton over a two-letter alphabet. The distribution is also con-
centrated around its mean: for any ε > 0 the accessible part has size between
(1−ε)vk n and (1+ε)vk n with high probability. Moreover, there exists a positive
constant ωk such that

P
(

#acc(An) = bvk nc
)
∼ ωk√

n
. (2)

Remark 6. The main contribution of [13] is that the sequence of random vari-
ables #acc(An) is asymptotically Gaussian, of expectation and standard devi-
ation asymptotically equivalent to vk n and σk

√
n respectively, where vk and

σk are two computable positive constants. Hence once properly normalized, it
converges in distribution to the normal law.

We can now give an answer to Question 2. Let An denote a random ele-
ment of Tn, let acc(An) denote its accessible part and let #acc(An) denote
the number of states in acc(An). We first use the fact that conditioned by
its size, the accessible part of an automaton is a uniform accessible automa-
ton: the probability that an element of Cm has a sink state is equal to the
probability that an element of Tn has a sink state in its accessible part given
the accessible part has size m. Therefore, we aim at studying the quantity
P(acc(An) has a sink state | #acc(An) = m). But if there is a sink state in
the accessible part, there is a sink state in the automaton. Hence,

P
(
acc(An) has a sink state | #acc(An) = m

)
≤ P

(
An has a sink state | #acc(An) = m

)
.

8



Using the definition of conditional probability, we get

P
(
An has a sink state | #acc(An) = m

)
=

P
(
An has a sink state, #acc(An) = m

)
P
(
#acc(An) = m

)
≤ P(An has a sink state)

P
(
#acc(An) = m

) .

We already proved that the numerator is at most 1
n at the beginning of the

section. Moreover, by Equation (2), if we choose n such that m = bvk nc, then
n = Θ(m) and the denominator is in Θ( 1√

m
). Therefore, the probability that an

element of Cm has a sink state is in O( 1√
m

). This gives the answer to Question 2:

Answer 2: With high probability, a random accessible automaton has
no sink state.

Remark 7. Equation (1) rewrites in nkn+1 =
∑n
m=1

(
n
m

)
|Cm|nk(n−m). This is a

way to calculate the values of |Cm| using a computer. The first values of the
number 1

m! |Cm| of accessible transition structures up to isomorphism are,8 for
k = 2,

1, 12, 216, 5248, 160675, 5931540, 256182290, . . .

This formula for |Cm| was given by Liskovets [37]. See also Harrison [28] for the
first formulas that enumerate several kind of automata.

Remark 8. The answer to Question 2 we gave follows the article [13], but the idea
we used is already in Korshunov’s paper [35]. To apply the method and prove
that a property P does not hold with high probability for Cn, it is sufficient that
(i) the probability P holds for Tn is in o( 1√

n
) and that (ii) if T ∈ Cn satisfies P ,

then any transition structure whose accessible part is T also satisfies P .

Remark 9. By moving randomly the initial state and by using our result on the
size of the accessible part, we can observe that a random automaton should have
a unique stable9 strongly connected component with high probability, which has
size around vk n. This implies that for any state p, there exists a path from p to
this stable connected component. Moreover this component has a final state with
high probability. Using the same technique as for sink states, this “proves” that
an accessible automaton is co-accessible with high probability. By controlling
the error terms, this informal argument can be turned into a full proof [20].

Remark 10. In the classical Erdős-Rényi model, a random graph with n vertices
has an edge between any two vertices with probability pn, independently. The
phase transition result [11] states that there are three phases for the connected-
ness of such a graph: if pn � 1

n then a typical graph is completely disconnected,

8 This is the sequence A006689 of the Online Encyclopedia of Integer Sequences.
9 A set S is stable when there is no transition p→ q for p ∈ S and q /∈ S.
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with very small connected components; if 1
n � pn � logn

n , there is a giant con-
nected component of linear size and the other connected components are much
smaller; if logn

n � pn, the graph is connected with high probability. This result
have been extended by Karp to directed graphs [31]. One could think that by tak-
ing pn = k

n , one would obtain a good approximation of the underlying structure
of an automaton over a k-letter alphabet. In particular, the expected number
of edges is kn. However, this is not really the case since random automata have
a unique component with high probability according to the previous remark,
whereas random graphs with pn = k

n do not.

4 Random Generation of Accessible Automata

As explained in the introduction, random generation is an important subfield
of analysis of algorithms. Given a combinatorial class C, the goal is to build an
algorithm that efficiently generates elements of C of size n with the required
distribution (usually the uniform distribution, in which all elements of size n
have equal probability). Most basic structures, such as permutations or binary
trees, have their own ad-hoc random generators. But researchers of this field
also developed generic methods that translate combinatorial specifications into
random samplers. They can directly be applied for objects like set partitions,
partial injections, and so on. For more intricate structures, such as accessible
automata, some additional work is usually required. But these general techniques
form a guideline to design advanced generators, as we will see by addressing the
following question:

Question 3: Is there an efficient algorithm to generate accessible au-
tomata with n states uniformly at random?

A first idea could be to use a rejection algorithm: repeatedly generate a random
automaton until it is accessible. Unfortunately, the probability pn that an au-
tomaton is accessible is exponentially small. Since the number of iterations of
this process follows a geometric law of parameter pn, the average running time
of this generator is exponential in n.

A second idea is to use the encoding into surjections of [kn + 1] to [n] pre-
sented in Section 2. If we can generate efficiently such a surjection, then we can
successfully use the idea of a rejection algorithm. Indeed, by Korshunov’s result,
the probability that a random surjection corresponds to an accessible automa-
ton tends to a positive constant. The average number of rejections is therefore
in O(1). Moreover, using appropriate data structures, building the automaton
from the surjection and testing whether it is accessible can be done in linear
time. Hence, the limiting factor of this approach is the efficient generation of a
random surjection from [kn+ 1] onto [n].

Such a generator can be built using the recursive method, which has been
introduced by Nijenhuis and Wilf [43] and developed by Flajolet, Zimmermann
and Van Cutsem [26]. Let us illustrate this method on our example. Recall
that S(m,n) denote the number of surjections from [m] onto [n]. In such a

10



surjection f we distinguish two cases, depending on whether f(m) has one or
more preimage by f (m is of course one of these preimages). If f(m) has only one
preimage, then the restriction of f to [m − 1] is a surjection onto [n] \ {f(m)};
since there are n choices for f(m), there are nS(m− 1, n− 1) such surjections.
Similarly, there are nS(m− 1, n) surjections such that f(m) has more than one
preimage. Hence, adding the correct initial conditions, we have the recursive
formula S(m,n) = nS(m − 1, n − 1) + nS(m − 1, n). The recursive method
consists of two steps. First, all the values S(i, j) are computed, for i ∈ [kn + 1]
and j ∈ [n]. Then, we use the formula to build the surjection inductively: we
randomly generate the image of m by f , then decide whether it has one or more

preimage. It has one preimage with probability nS(m−1,n−1)
S(m,n) , in which case we

remove f(m) from the possible images. We then switch to m−1, and so on. The
running time of the preprocess is O(n2) and then each surjection is generated
in linear time. But this analysis holds for a RAM model, where each arithmetic
operation and each random choice is done in constant time. This is not realistic,
since we saw that S(kn + 1, n) grows extremely fast. In practice, it is hard to
generate accessible automata with more than a few thousand states using this
method. We have to find a better solution.

Remark 11. Following [21], it is possible to use floating point approximations to
avoid the computation and the storage of O(n2) big integers. Assume that we
have an approximate value p≈ of a probability p, with |p − p≈| ≤ ε. To draw a
Bernoulli law of parameter p, we generate an element x of [0, 1]. If x < p≈ − ε
we return 1, if x > p≈ + ε we return 0, and if x is in the unknown zone, i.e.,
|x − p≈| ≤ ε, we compute a more precise estimation of p. This idea is classical
in random generation but requires a careful implementation.

Remark 12. Instead of generating the surjections and rejecting those that are not
valid (not associated to an accessible automaton), we can directly work on valid
surjections. Indeed, valid surjections satisfies the same recurrence formula as
surjections, but with different border conditions. This is the technique developed
in [16, 41], using valid diagrams of Remark 5 instead of valid surjections.

Remark 13. The algorithm designed by Almeida, Moreira and Reis [2] is another
example of using the recursive method for generating accessible automata. The
encoding is different, as they use string representations for accessible automata.

Boltzmann samplers were introduced in [22] and quickly became very popular
in the field. This is an elegant technique that proved very efficient in many
situations. Boltzmann samplers are parameterized by a positive real number x.
They do not generate objects of fixed size, and the value of x has to be tuned so
that the expected size of a generated object is near n. However, two objects of the
same size always have the same probability to be generated. If the distribution
of sizes is concentrated enough, the algorithm produces objects of size around n
with high probability. The main idea of this method is thus to allow variations
on the sizes in order to obtain more efficient samplers.
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In our setting, the Boltzmann samplers for surjections onto [n] consists of
the following steps. First generates the sizes s1, . . . , sn of the preimage of each
element of [n]. Each preimage size is generated independently using a non-zero
Poisson law10 of parameter x. Then fill every preimage with elements of [m]
wherem =

∑n
i=1 si. This can be done by generating a random permutation of [m]

once and taking the elements in that order. The law for the si’s guarantees that
we sample surjections onto [n] following a Boltzmann distribution of parameter
x. For x correctly chosen, the value of m is concentrated around kn+ 1. But we
need m to be exactly kn + 1 for our transformation into automata to doable.
This can be achieved by doing an extra rejection step: if m 6= kn + 1 we start
the process again from the beginning. Every construction can be done in linear
time, and it can be shown that the average number of rejections is in Θ(

√
n). All

in all, it results in an efficient random sampler for accessible automata of size n
with an average running time in Θ(n3/2).

Remark 14. The correct value for the Boltzmann parameter x is the ρk of Re-
mark 2. It also satisfies ρk = k + W0(−k e−k), where W0 is the Lambert-W

function. The series expansion of W0 is W0(z) =
∑
n≥1

(−n)n
n! zn, which can be

used to compute a good approximation of ρk, as −k e−k is small. This approxi-
mation is necessary for the algorithm, in order to generate the si’s.

The third approach to random generation consists in using the result on
the accessible part of a random automaton [13], which has been presented in
Section 3. Recall that if m ≤ n, then conditioned by its size m, the accessible part
of a random automaton is a uniform accessible automaton with m states. Since
the size of the accessible part is concentrated around vk n, one can simply build
a random sampler for size-m accessible automata by generating an automaton
of size n

vk
and extracting its accessible part. This is particularly efficient if we

allow approximate sampling: if we use rejections until the resulting accessible
automaton has size in [(1− ε)m, (1+ ε)m], the average running time is linear. To
generate an accessible automaton of size exactly m, we use a rejection algorithm
once again, and the average running time of the process is Θ(m3/2). It is therefore
competitive with the previous method and much simpler to implement.

Remark 15. Computing vk is not difficult, as vk = ρk
k , where ρk can be approx-

imated as explained in Remark 14.

The story is not over yet. In a recent preprint [8], Bassino and Sportiello
presented a new method to achieve the random generation of surjections. It is
based on the recursive method, mixed with the idea presented in Remark 11:
probabilities are estimated more precisely only when needed. Using their method,
the random generation of a surjection from [kn + 1] onto [n] can be done in
linear expected time, yielding a linear expected time algorithm for generating
accessible automata. Remark that implementing completely this technique seems

10 That is, P(s = i) = xi

i!(ex−1)
, for any i ≥ 1.
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to be quite challenging. We therefore choose to state the answer to Question 3
as follows.

Answer 3: Using simple algorithms, one can randomly generate acces-
sible automata with n states in expected time Θ(n3/2), and accessible
automata having between (1− ε)n and (1 + ε)n states in linear expected
time. Advanced techniques under development will soon allow the gener-
ation of accessible automata with n states in linear expected time.

Remark 16. Some implementations of these algorithms are available, such as
Regal [3] for the method using Boltzmann samplers and Fado [1] that uses the
recursive method on string representations (see Remark 13). The algorithm that
consists in extracting the accessible part of a random automaton can be easily
implemented: the random generation of an automaton is elementary, the acces-
sible part is computed using a depth-first traversal and a good evaluation of
vk = ρk

k is obtained by truncating the series of Remark 14.

5 Proportion of Minimal Automata

Let A = (q0, δ, F ) be an n-state automaton. For every state p ∈ [n], let Lp(A) =
{u ∈ A∗ : δ(p, u) ∈ F}, i.e., the words recognized when the initial state is
moved to p. Two states p and q of A are equivalent when Lp(A) = Lq(A). We
write p ∼ q when p and q are equivalent. An automaton is minimal when its
states are pairwise non-equivalent. Minimal automata are important in automata
theory. In particular, up to isomorphism, there is a unique minimal automata
that recognizes a given regular language L. Moreover, it is the deterministic
automaton recognizing L that minimizes the number of states.

Experimentations done at the end of the nineties [41] suggested that the
proportion of minimal automata amongst accessible automata is not negligible.
This motivate the question of this section:

Question 4: What is the probability that a random accessible automaton
is minimal?

Bassino, David and Sportiello gave the answer to this question [6]. Their proof
is complicated, we will just give the main ideas here. Two states p and q are
strongly equivalent when both are in F or both are not in F , and for all a ∈
A, δ(p, a) = δ(q, a). Clearly, if p and q are strongly equivalent then they are
equivalent, and the automaton is not minimal.

The first step of their proof is to establish that if a random accessible automa-
ton is not minimal, then with high probability it contains two states that are
strongly equivalent. To do so, they used the technique we presented in Section 3
and proved it for random automata first. It is easier but still quite involved.

They then estimated precisely the probability of having no pair of strongly
equivalent states. The critical case is for two-letter alphabets, for which this
probability tends to a positive constant. Intuitively, in a random automaton, the
probability that 4 given states p, p′, qa and qb are such that δ(p, a) = δ(p′, a) = qa
and δ(p, b) = δ(p′, b) = qb is 1

n4 . Since there are Θ(n4) choices for these 4
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states, this indicates that there should be a positive probability that a random
automaton is not minimal. Turning this intuition into a formal proof is difficult,
especially since we have to deal with accessible automata. To do so, they use the
diagram encoding depicted in Fig. 2. The main theorem of [6] is a very beautiful
result, which answers Question 3:

Answer 4: If |A| = 2, then the probability that an accessible automaton
is minimal tends to a computable constant c2 ∈ (0, 1). If |A| ≥ 3, the
probability that a random accessible automaton is minimal tends to 1 as
the number of states tends to infinity.

Remark 17. There is a related work of Berend and Kontorovich where they
study the size of the minimal automaton of the language recognized by a ran-
dom automaton [9]. They mostly rely on discrete probabilities to establish that
when minimizing a random automaton, one obtains an automaton with vkn +
O(
√
n log n) states with high probability.

Remark 18. Thanks to the answer to Question 4, the algorithms of Section 4 can
be directly used to generate minimal automata with a given number of states. We
just need to add a rejection step where we test whether the accessible automaton
is minimal, and start again from the beginning if it is not. Testing minimality
can be done in time O(n log n) and the average number of rejections is bounded.
The average running time is therefore O(n3/2) or O(n log n) depending on the
algorithm used for generating accessible automata.

6 Average Case Analysis of Minimization Algorithms

A minimization algorithm computes the minimal automaton of a regular lan-
guage, which is usually given by an automaton. Minimal automata are important
in automata theory, and there is a rich literature on the topic, with many algo-
rithms, experimental studies, worst-case running time analysis, and so on. The
best known solution to the minimization problem is Hopcroft’s algorithm [29],
whose worst-case running time is O(n log n). This algorithm can be viewed as
a tight optimization of Moore’s algorithm [39], whose worst-case running time
is O(n2). Amongst the many other solutions, the most famous one is probably
Brzozowski’s algorithm [12], which is based on a different idea11 and which also
works if the input is a non-deterministic automaton. However, the running time
of this elegant algorithm is exponential in the worst case, even for deterministic
automata.12

Despite its quadratic worst-case running time, authors of libraries that im-
plements classical algorithms for automata13 noticed that Moore’s minimization

11 This is not entirely true, there are works that explain how it is related to the other
minimization algorithms [15].

12 For non-deterministic automata, the exponential blow up cannot be prevented in
the worst case.

13 Such as Vaucanson [38].

14



algorithm behaves well in practice. This motivates the question of this section,
which is the following.

Question 5: What is the average running time of Moore’s minimization
algorithm?

Recall that two states p and q of an automaton are equivalent when the
languages Lp and Lq are equal, where Lp is the language recognized if the initial
state is moved to p. If p is a state and ` ≥ 0 is an integer, let L≤`p = Lp ∩ A≤`
denote the set of words of length at most ` that are in Lp. Two states p and q
are `-equivalent, p ∼` q, when L≤`p = L≤`q . It can be shown that if ∼`=∼`+1,
then ∼j=∼ for every j ≥ `. Moreover, in an n-state automaton we always have
∼n−2=∼. Based on this facts, Moore’s algorithm iteratively computes ∼0, ∼1,
. . . until ∼`=∼`−1. Using appropriate data structures, each iteration can be done
in linear time. Hence, the running time of the algorithm is O(n`), where ` is the
number of iterations, that is, the smallest ` such that ∼`=∼`−1. The minimal
automaton is then built by merging states that are in the same equivalence class.

Let A be an automaton such that ∼` 6=∼`−1 and ∼`+1=∼` for some given ` ≥
1. Then there exists two states p and q that are distinguished after ` iterations,
but not before: p ∼`−1 q and there exists a word u of length ` such that u ∈ Lp
and u /∈ Lq (or u /∈ Lp and u ∈ Lq). Thus for every prefix v of u that is not
equal to u, δ(p, v) and δ(q, v) are both final or both not final. Let G be the
undirected graph whose vertices are the states of A and with an edge between
δ(p, v) and δ(q, v) for any prefix v of u that is not equal to u. In the conference14

paper [4], Bassino, David and the author proved that this graph is acyclic and
has exactly ` edges. Observe that in a connect component of this graph, either
all the states are final or none of them is final. But for fixed p, q and u, the graph
only depends on the transition structure of A: if we randomly choose the set of
final states, the probability that the connected components satisfy the property
is 2−`. For a good choice of ` ∈ Θ(log n), this proves that the average running
time of Moore’s algorithm is in O(n log n).

Importantly, the proof we just sketched does not depend on the shape of
the automaton: if we consider a probabilistic model where a transition structure
with n states is chosen following any distribution and then a set of final states
is added uniformly at random, then the result still holds. In particular it holds
for subclasses of automata such as acyclic automata, group automata, and so
on. David [18] proved that for the uniform distribution of automata, the average
running time of Moore’s algorithm is in Θ(n log log n). The proof is too involved
to be presented here, but this gives the answer to Question 5:

Answer 5: For the uniform distribution, the average running time of
Moore’s algorithm is in O(n log log n). For any distribution on transition
structures, if final states are added uniformly at random then the average
running time of Moore’s algorithm is in O(n log n).

14 In the journal version [5] there is no reference to this graph, the proof is done on
partitions directly.
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Remark 19. The proofs of [5, 18] also work if each state is final with fixed prob-
ability p ∈ (0, 1) independently. David’s result, though stated for random au-
tomata, is still valid for the uniform distribution on accessible automata, using
the technique presented in Section 3 (see [6, 13]).

Remark 20. The proofs do not work for distributions with few final states, such
as the uniform distribution on accessible automata with exactly one final state.
See Section 7 for a discussion on such models.

Remark 21. Hopcroft’s algorithm maintains a set of tasks to be performed. This
set can be implemented in many ways (queue, stack, . . . ) without affecting its
worst-case running time. David [18] proposed a structure for this set of tasks that
guarantees that the algorithm performs at least as well as Moore’s algorithm.
Hence, using this implementation for the set of tasks, the average running time
of Hopcroft’s algorithm satisfies the same bounds as those stated in Answer 5
for Moore’s algorithm.

Remark 22. De Felice and the author proved that not only Brzozowski’s algo-
rithm is inefficient in the worst case, but also that its running time is super-
polynomial15 with high probability [19]. It is thus also super-polynomial on av-
erage. This result uses a famous theorem of Erdős and Túran, which states that
the order of a random permutation of [n] is super-polynomial with high proba-
bility.16

7 Recent Results, Ongoing Works and Open Questions

An automaton is synchronizing when there exists a word that maps every state
to the same state. Such a word is called a synchronizing word. In 1964, Černý [14]
gave a family of synchronizing n-state automata whose smallest synchronizing
word has length (n − 1)2 and asked whether this bound is tight: does every
synchronizing n-state automaton admit a synchronizing word of length at most
(n− 1)2? The question, now known as the Černý conjecture, is still open and is
one of the most famous conjecture in automata theory.

The probabilistic version of this conjecture is to ask whether random au-
tomata are often synchronizing, and whether the Černý conjecture holds with
high probability. In a recent preprint [10], Berlinkov proved that a random au-
tomaton is synchronizing with probability 1 − Θ( 1

n ) on a two-letter alphabet.
This is a deep and difficult result, which was expected for quite some time, since
simulations clearly shows that automata are synchronizing with high probability.
Berlinkov’s proof is based on classical techniques developed around the Černý
conjecture and uses advanced properties of random maps from [n] to [n], fol-
lowing the approach of [34]. In another preprint [42], the author uses a different

15 i.e., grows faster that any polynomial in n.
16 Their result is much more precise, giving a limit law for the random variable logOn,

where On is the order of a random permutation of [n].
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method to establish that with high probability17 there exists a synchronizing
word of length O(n1+ε), for any positive ε. Hence, the Černý conjecture holds
with high probability. There is still room for sharper results in this direction, as
experimentations [32] seem to indicate that the expected length of the smallest
synchronizing word grows in

√
n.

Automata taken uniformly at random tends to have too many final states, as
in practice automata with few final states are not uncommon. Unfortunately, as
stated in Remark 20, most results presented in this article cannot be adapted to
automata with, say, one final state. The only exception is the recent analysis of
Brzozowski’s algorithm for that kind of distributions [20]. One of the interesting
open questions here is to confirm experimental studies that indicates that a
random automaton with one final state should be minimal with non-negligible
probability.

An other series of questions that is widely open is the study of the average
state complexity of the classical operations on regular languages. The state com-
plexity of a regular language is the number of states of its minimal automaton.
A typical question in this area is “What is the average state complexity of the
intersection of two languages of state complexities n?”. The only known results
are for unary alphabets [40] and for the reverse operation [19].

In this article, we presented different results about random deterministic
automata. It is natural to try to answer the same kind of questions for non-
deterministic automata too. Unfortunately, it is quite challenging to define dis-
tributions on non-deterministic automata that are both meaningful and math-
ematically tractable. For instance, a non-deterministic automaton taken uni-
formly at random recognizes all the words with high probability. The uniform
model is therefore not relevant. Proving formally the experimental results such
as those presented in [44], where non-deterministic automata are drawn under
the Erdős-Rényi model for random graphs [11], would be an important first step
in the analysis of the typical properties of random non-deterministic automata.
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