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Underdetermined Blind Separation of Nondisjoint
Sources in the Time-Frequency Domain

Abdeldjalil Aı̈ssa-El-Bey, Nguyen Linh-Trung, Karim Abed-Meraim, Adel Belouchrani and Yves Grenier

Abstract— This paper considers the blind separation of non-
stationary sources in the underdetermined case, when there are
more sources than sensors. A general framework for this problem
is to work on sources that are sparse in some signal representation
domain. Recently, two methods have been proposed with respect
to the time-frequency (TF) domain. The first uses quadratic time-
frequency distributions (TFDs) and a clustering approach, and
the second uses a linear TFD. Both of these methods assume that
the sources are disjoint in the TF domain; i.e. there is at most one
source present at a point in the TF domain. In this paper, we relax
this assumption by allowing the sources to be TF-nondisjoint to
a certain extent. In particular, the number of sources present
at a point is strictly less than the number of sensors. The
separation can still be achieved thanks to subspace projection
that allows us to identify the sources present and to estimate
their corresponding TFD values. In particular, we propose two
subspace-based algorithms for TF-nondisjoint sources, one uses
quadratic TFDs and the other a linear TFD. Another contribution
of this paper is a new estimation procedure for the mixing matrix.
Finally, then numerical performance of the proposed methods
are provided highlighting their performance gain compared to
existing ones.

Index Terms— blind source separation, underdeter-
mined/overcomplete representation, spatial time-frequency
representation, vector clustering, subspace projection, speech
signals, sparse signal decomposition/representation.

I. INTRODUCTION

SOURCE SEPARATION aims at recovering multiple
sources from multiple observations (mixtures) received

by a set of linear sensors. The problem is said to be ’blind’
when the observations have been linearly mixed by the transfer
medium, while having no a priori knowledge of the trans-
fer medium or the sources. Blind source separation (BSS)
has applications in several areas, such as communication,
speech/audio processing, and biomedical engineering [1]. A
fundamental and necessary assumption of BSS is that the
sources are statistically independent and thus are often sought
solutions using higher-order statistical information [2]. If some
information about the sources is available at hand, such as
temporal coherency [3], source nonstationarity [4], or source
cyclostationarity [5] then one can remain in the second-order
statistical scenario.
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The BSS is said to be underdetermined if there are more
sources than sensors. In that case, the mixing matrix is not
invertible and, consequently, a solution for source estimation
must also be found even if the mixing matrix has been esti-
mated. A general framework for underdetermined blind source
separation (UBSS) is to exploit the sparseness, if it exists, of
the sources in a given signal representation domain [6]. The
mixtures are then transformed to this domain; one may then,
estimate the transformed sources using their sparseness, and
finally recover their time waveforms by source synthesis. For
more information on BSS and UBSS methods, see for example
a recent survey [7].

Recently, several UBSS methods for nonstationary sources
have been proposed, given that these sources are sparse in
the time-frequency (TF) domain [8]–[10]. The first method
uses quadratic time-frequency distributions (TFDs), whereas
the second one uses a linear TFD. The main assumption used
in these methods is that the sources are TF-disjoint; in other
words, there is at most one source present at any point in the
TF domain. This assumption is rather restrictive, though the
methods have also showed that they worked well under a quasi
sparseness condition, i.e. sources are TF-almost-disjoint.

In this paper, we want to relax the TF-disjoint condition
by allowing the sources to be nondisjoint in the TF domain;
that is, multiple sources are possibly present at any point in
the TF domain. This case has been considered in [11] (which
corresponds to part of this work) and in [12] for the parametric
mixing matrix case. In particular, we limit ourselves to the
scenario where the number of sources present at any point is
smaller than the number of sensors. Under this assumption,
the separation of TF-nondisjoint sources is achieved thanks to
subspace projection. Subspace projection allows us to identify
at any point the sources present, and hence, to estimate the
corresponding TFD values of these sources.

The main contribution of this paper is proposing two
subspace-based algorithms for UBSS in the TF domain; one
uses quadratic TFDs while the other uses linear TFD. In line
with the cluster-based quadratic algorithm proposed in [8],
we also propose here a cluster-based algorithm but using a
linear TFD, which is not a block-based technique like the
quadratic one. Therefore, its low cost computation is useful
for processing speech and audio sources. Another contribution
of the paper is a method of estimation for the mixing matrix.

The paper is organized as follows. Section II-A formulates
the UBSS problem, introduces the underlying TF tools, and
states some TF conditions necessary for the separation of
nonstationary sources in the TF domain. Section III deals
with the TF-disjoint sources. It reviews the cluster-based
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quadratic TF-UBSS algorithm [8], and from that, proposes a
cluster-based linear TF-UBSS algorithm. Section IV proposes
two subspace-based TF-UBSS algorithms for TF-nondisjoint
sources, using quadratic and linear TFDs. In this section, we
propose also a method for the blind estimation of mixing
matrix. There is some discussion of the proposed methods
in Section V. The performance of the above methods are
numerically evaluated in Section VI.

II. PROBLEM FORMULATION

A. Data model

Let s1(t), . . . , sN (t) be the desired sources to be recovered
from the instantaneous mixtures x1(t), . . . , xM (t) given by:

x(t) = As(t), (1)

where s(t) = [s1(t), . . . , sN (t)]T is the source vector
with the superscript T denoting the transpose operation,
x(t) = [x1(t), . . . , xM (t)]T is the mixture vector, and A =
[a1, . . . ,aN ] is the mixing matrix of size M×N that satisfies:

Assumption 1: The column vectors of A are pair-wise
linearly independent.
That is, for any index pair i, j ∈ N , where N = {1, . . . , N},
and i 6= j, we have ai and aj linearly independent. This
assumption is necessary because if otherwise, we have a1 =
αa2 for example, then the input/output relation (1) can be
reduced to

x(t) = [a1,a3, . . . ,aN ] [s1(t) + αs2(t), s3(t), . . . , sN (t)]T ,

and hence the separation of s1(t) and s2(t) is inherently
impossible.

It is known that BSS is only possible up to some scaling
and permutation. We take advantage of these indeterminacies
to further assume, without loss of generality, that the column
vectors of A all have unit norm, i.e. ‖ai‖ = 1 for all i ∈ N .

The sources are nonstationary, that is their frequency spectra
vary in time. Often, nonstationarity imposes more difficulties
on a problem, however, in this case it actually offers a solution:
one can solve the BSS problem without using higher-order
approaches by directly exploiting the additional information of
this TF diversity across the spectra; this solution was proposed
in [4]. We defer to a little later making TF assumptions on the
sources, and for now we introduce the concept of TF signal
processing.

B. Time-frequency distributions

TF signal processing provides effective tools for analyzing
nonstationary signals, whose frequency content varies in time.
This concept is a natural extension of both the time domain
and the frequency domain processing that involve representing
signals in a two-dimensional space the joint TF domain, hence
providing a distribution of signal energy versus time and
frequency simultaneously. For this reason, a TF representation
is commonly referred to as a time-frequency distribution
(TFD).

The general class of quadratic TFDs of an analytic signal
z(t) is defined as [13]:

ρzz(t, f) ,
∫∫∫ ∞

−∞
ej2πν(u−t) Γ(ν, τ)×

z(u +
τ

2
)z∗(u− τ

2
) e−j2πfτ dν du dτ,

(2)

where Γ(ν, τ) is a two-dimensional function in the so-called
ambiguity domain and is called the Doppler-lag kernel, and the
superscript (∗) denotes the conjugate operator. We can design
a TFD with certain desired properties by properly constraining
Γ.

When Γ(ν, τ) = 1 we have the following famous Wigner-
Ville distribution (WVD):

ρwvd
zz (t, f) ,

∫ ∞

−∞
z(t +

τ

2
)z∗(t− τ

2
) e−j2πfτ dτ. (3)

The WVD is the most widely studied TFD. It achieves
maximum energy concentration in the TF plane around the in-
stantaneous frequency for linear frequency-modulated (LFM)
signals. However, it is in general non-positive and it introduces
the so-called “cross-terms” when multiple frequency laws (e.g.
two LFM components) exist in the signals, due to the quadratic
multiplication of shifted versions of the signals.

Another well-known TFD and most used in practice is the
short-time Fourier transform (STFT):

Sz(t, f) ,
∫ ∞

−∞
z(τ)h(τ − t) e−j2πfτdτ, (4)

where h(t) is a window function. Note that the STFT is a
linear TFD1, and its quadratic version, called the spectrogram
(SPEC), is defined as:

ρspec
zz (t, f) , |Sz(t, f)|2 . (5)

Clearly, from the definition, there is no cross-terms effect
present in STFT, hence in the SPEC. However, these distri-
butions have very low TF resolution in comparison with the
WVD. The low cost of implementation for the STFT, hence for
the SPEC, in comparison with that for the WVD and, together
with the advantage of being free of cross-terms, justifies the
fact that the STFT is most used in practice, especially for
speech or audio signals. But when it comes to FM-like signals,
the WVD is preferred.

To combine the high resolution of the WVD while using the
free cross-term property of the SPEC, the masked Wigner-Ville
distribution (MWVD) is derived so that:

ρmwvd
zz (t, f) , ρwvd

zz (t, f) · ρspec
zz (t, f). (6)

There are many other useful TFDs in the literature, notably
those that give high TF resolution while effectively minimizing
the cross-terms, for example the B distribution [14]. However,
we only introduce here the TFDs above since they will be
used in the later sections.

1In fact, the STFT does not represent an energy distribution of the signal
in the TF plane. However, for simplicity, we still refer to it as a TFD.
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C. TF conditions on sources

Now, as we have introduced the concept of TF signal
processing as a useful tool for analyzing nonstationary signals,
some TF conditions need to be applied to the sources. Note
that the TF method in [4] does not work for UBSS because the
mixing matrix is not invertible. In order to deal with UBSS,
one often seeks for a sparse representation of the sources [6].
In other words, if the sources can be sparsely represented in
some domain, then the separation is to be carried out in that
domain to exploit the sparseness.

1) TF-disjoint sources: Recently, there have been several
UBSS methods, notably those in [8] and [9], in which the TF
domain has been chosen to be the underlaying sparse domain.
These two papers have based their solutions on the assumption
that the sources are disjoint in the TF domain. Mathematically,
if Ω1 and Ω2 are the TF supports of two sources s1(t) and
s2(t) then Ω1 ∩ Ω2 = ∅. This condition can be illustrated
in Figure 1. However, this is a rather strict assumption. A more
practical assumption is that the sources are almost-disjoint in
the TF domain [8], allowing some small overlapping in the
TF domain, for which the above two methods also worked.
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Fig. 1. Source TF-disjoint condition: Ω1 ∩ Ω2 = ∅ (when Ω1 ∩ Ω2 ≈ ∅,
sources are said to be TF-almost-disjoint).

2) TF-nondisjoint sources: In this paper, we want to re-
lax the TF-disjoint condition by allowing the sources to be
nondisjoint in the TF domain; as illustrated in Figure 2.
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Fig. 2. TF nondisjoint condition: Ω1 ∩ Ω2 6= ∅

This is motivated by a drawback of the method in [8]. Al-
though this method worked well under the TF-almost-disjoint
condition, it did not explicitly treat the TF regions where the
sources were allowed to have some small overlapping. A point
at the overlapping of two sources was assigned ‘by chance’
to belong to only one of the sources. As a result, the source
that picks up this point will have some information of the

other source while the latter loses some information of its own.
The loss of information can be recovered to some extent by
the interpolation at the intersection point using TF synthesis.
However, for the other source, there is an interference at this
point, hence the separation performance may degrade if no
treatment is provided. If the number of overlapping points
increases (i.e. the TF-almost-disjoint condition is violated), the
performance of the separation is expected to degrade unless
the overlapping points are treated.

This paper will give such a treatment using subspace pro-
jection. Therefore, we will allow the sources to be nondisjoint
in the TF domain; that is, multiple sources are allowed to be
present at any point in the TF domain. However, instead of
being inevitably nondisjoint, we limit ourselves by making the
following constraint:

Assumption 2: The number of sources that contribute their
energy at any TF point is strictly less than the number of
sensors.
In other words, for the configuration of M sensors, there exist
at most (M − 1) sources at any point in the TF domain. For
the special case when M = 2, Assumption 2 reduces to the
disjoint condition.

We also make another assumption on the TF conditioning
of the sources.

Assumption 3: For each source, there exists a region in
the TF domain, where this source exists alone.
Note that, this assumption is easily met and hence not restric-
tive for audio sources and FM-like signals. Also, it should be
noted that this last assumption is, however, not a restriction on
the use of subspace projection, because it will only be used
later for the estimation of the mixing matrix. If otherwise, the
mixing matrix can be obtained by another method, for example
the one in [15], then Assumption 3 can be omitted.

III. CLUSTER-BASED TF-UBSS APPROACH FOR DISJOINT
SOURCES

A. Quadratic TFD approach

In this section, we review a method proposed in [8] based
on the idea of clustering; hence, it is now referred to as
the cluster-based quadratic TF-UBSS algorithm. For a signal
vector z(t) = [z1(t), . . . , zN (t)]T , the Spatial Time Frequency
Distribution (STFD) matrix is given by [4]:

Dzz(t, f) ,




ρz1z1(t, f) . . . ρz1zN (t, f)
...

. . .
...

ρzN z1(t, f) . . . ρzN zN (t, f)


 , (7)

where, for i, j ∈ N , ρzizj (t, f) is the quadratic cross-TFD
between zi(t) and zj(t) as obtained by (2), but with the first
z being replaced by zi and the second by zj . By definition,
the STFD takes into account the spatial diversity.

By applying the STFD defined in (7) on both sides of the
BSS model in (1), we obtain the following TF-transformed
structure:

Dxx(t, f) = ADss(t, f)AH (8)

where Dss(t, f) and Dxx(t, f) are, respectively, the source
STFD matrix and mixture STFD matrix.
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TABLE I
CLUSTER-BASED QUADRATIC TF-UBSS ALGORITHM USING STFD

1) Mixture STFD computation by (10); noise thresholding by (11).
2) Noise thresholding and auto-source point selection by (11).
3) Vector clustering by (12) and k-means algorithm; source TFD

estimation by (13).
4) Source TF synthesis by [16].

Let us call an auto-source TF point a point at which there is
a true energy contribution/concentration of source or sources
in the TF domain, and a cross-source point a point at which
there is a ‘false’ energy contribution (due to the cross-term
effect of quadratic TFDs). Note that, at other points with no
energy contribution, the TFD value is ideally equal to zero.
Under the assumption that all sources are disjoint in the TF
domain, there is only one source present at any auto-source
point. Therefore, the structure of Dxx(t, f) is reduced to

Dxx(ta, fa) = ρsisi
(ta, fa)aiaH

i , ∀(ta, fa) ∈ Ωi, (9)

where Ωi denotes, hereafter, the TF support of source si(t).
The observation (9) suggests that for all (ta, fa) ∈ Ωi, the

corresponding set of STFD matrices {Dxx(ta, fa)} will have
the same principal eigenvector ai. It is this observation that
leads to the general separation method using quadratic TFDs
in [8]. Indeed, [8] proposed several algorithms and pointed
out that the choice of the TFD should be made carefully in
order to have a ‘clean’ (cross-term free) TFD representation
of the mixture, and chose the MWVD as a good candidate.
This algorithm is summarized in Table I, and further detailed
below for later use.

1) STFD mixture computation and noise thresholding: The
STFD of the mixtures using the MWVD is computed by the
following:

[
Dwvd

xx (t, f)
]
k,l

= ρwvd
xkxl

(t, f) (10a)

[
Dstft

xx(t, f)
]
k,l

=

{
Sxk

(t, f), for k = l,

0, otherwise,
(10b)

Dmwvd
xx (t, f) = Dwvd

xx (t, f)¯
∣∣Dstft

xx(t, f)
∣∣2 (10c)

In (10), k, l ∈ N , and ¯ denotes the Hadamard product.
2) Noise thresholding and auto-source point selection:

A ‘noise thresholding’ procedure is used to keep only those
points having sufficient energy, i.e. auto-source points. One
way to do this is: for each time-slice (tp, f) of the TFD rep-
resentation, apply the following criterion for all the frequency
points fq belonging to this time-slice:

If

∥∥Dmwvd
xx (tp, fq)

∥∥
maxf {‖Dmwvd

xx (tp, f)‖} > ε1, keep (tp, fq), (11)

where ε1 is a small threshold (typically, ε1 = 0.05). This
’hard thresholding’ procedure has been preferred to the ’soft
thresholding’ using power-weighting of [9] as it contributes
also to reducing the computation complexity. The set of all
the auto-source points is denoted by Ω. Since sources are TF-
disjoint, we have Ω =

⋃N
i=1 Ωi. This partition is found in the

following way:

3) Vector clustering and source TFD estimation: For each
point (ta, fa) ∈ Ω, compute its corresponding spatial direction
a(ta, fa)

a(ta, fa) =
diag

{
Dstft

xx(ta, fa)
}

∥∥∥diag
{
Dstft

xx(ta, fa)
}∥∥∥

, (12)

and force it, without loss of generality, to have the first entry
real and positive.

Having the set of spatial direction {a(ta, fa)|(ta, fa) ∈ Ω}
one can cluster them into N classes using any unsupervised
clustering algorithm (see [17] for different clustering meth-
ods). The clustering algorithm used in [8] is rather sensitive
due to the threshold in use; a robust method should be
investigated, and this deserves another contribution. If the
number of sources has been well estimated, one can use the
so-called k-means clustering algorithm [17] to achieve a good
clustering performance. The output of the clustering algorithm
is a set of N classes {Ci|i ∈ N}. Also, the collection of all
the points that correspond to all the vectors in the class Ci

forms the TF support Ωi of the source si(t).
Then, estimate the TFD of the source si(t) (up to a scalar

constant) as:

ρ̂wvd
si

(t, f) =

{
trace

{
Dwvd

xx (t, f)
}

, (t, f) ∈ Ωi,

0, otherwise.
(13)

4) Source TF synthesis: Having obtained the source TFD
estimate ρ̂wvd

si
(t, f), the estimation of the source si(t) can be

done through a TF synthesis algorithm. The method in [16]
is used for TF synthesis from a WVD estimate, based on the
following inversion property of the WVD [13]:

x(t) =
1

x∗(0)

∫ ∞

−∞
ρwvd

x (
t

2
, f) ej2πft df ,

which implies that the signal can be reconstructed to within
a complex exponential constant ejα = x∗(0)/|x(0)| given
|x(0)| 6= 0.

It can be observed that in this version of the quadratic TF-
UBSS algorithm, the STFD matrices are not fully needed as
only their diagonal entries are used in the algorithm. This
should be taken into account to reduce the computational cost.

B. Linear TFD approach

As we have seen before, the STFT is often used for
speech/audio signals because of its low computational cost.
Therefore, in this section we briefly review the STFT method
in [9], and propose simultaneously a cluster-based linear
TF-UBSS algorithm using the STFT to avoid some of the
drawbacks in [9].

First, under the transformation into the TF domain using
the STFT, the model in (1) becomes:

Sx(t, f) = ASs(t, f), (14)

where Sx(t, f) is the mixture STFT vector and Ss(t, f) is the
source STFT vector. Under the assumption that all sources are
disjoint in the TF domain, (14) is reduced to

Sx(ta, fa) = aiSsi(ta, fa),∀(ta, fa) ∈ Ωi, ∀i ∈ N . (15)
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TABLE II
CLUSTER-BASED LINEAR TF-UBSS ALGORITHM USING STFT

1) Mixture STFT computation by (17); noise thresholding by (18)
2) Vector clustering by (19) and (20).
3) Source STFT estimation by (21).
4) Source TF synthesis by [18].

Now, in [9], the structure of the mixing matrix is particular
in that it has only 2 rows (i.e. the method uses only 2 sensors)
and the first row of the mixing matrix contains all 1. Then, (15)
is expanded to

[Sx1(ta, fa)
Sx2(ta, fa)

]
=

[
1

a2,i

]
Ssi

(ta, fa),

which results in
a2,i =

Sx2(ta, fa)
Sx1(ta, fa)

. (16)

Therefore, all the points for which the ratios on the right-hand
side of (16) have the same value form the TF support Ωi of a
single source, say si(t). Then, the STFT estimate of si(t) is
computed by:

Ŝsi(t, f) =

{
Sx1(t, f), ∀(t, f) ∈ Ωi,

0, otherwise.

The source estimate ŝi(t) is then obtained by converting
Ŝsi(t, f) to the time domain using inverse STFT [18]. Note
that, the extension of the UBSS method in [9] to more than
two sensors is a difficult task. Second, the division on the
right-hand side of (16) is prone to error if the denominator is
close to zero.

To avoid the above mentioned problems, we propose here
a modified version of the previous method referred to as the
cluster-based linear TF-UBSS algorithm. In particular, from
the observation (15), we can deduce the separation algorithm
as shown next, and summarized in Table II.

1) Mixture STFT computation and noise thresholding:
Compute the STFT of the mixtures, Sx(t, f), by applying (4)
for each of the mixture in x(t), as follows:

Sxi(t, f) =
∫ ∞

−∞
xi(τ)h(τ − t)e−j2πfτdτ, i = 1, . . . , M,

(17a)

Sx(t, f) = [Sx1(t, f), . . . ,SxM (t, f)]T . (17b)

Since the STFT is totally free of cross-terms, a point with a
nonzero TFD value is ideally an auto-source point. Practically,
we can select all auto-source points by only applying a noise
thresholding procedure as that in the cluster-based quadratic
TF-UBSS algorithm. In particular, for each time-slice (tp, f)
of the TFD representation, apply the following criterion for
all the frequency points fk belonging to this time-slice

If
‖Sx(tp, fk)‖

maxf {‖Sx(tp, f)‖} > ε2, then keep (tp, fk), (18)

where ε2 is a small threshold (typically, ε2 = 0.05). Then, the
set of all selected points, Ω, is expressed by Ω =

⋃N
i=1 Ωi,

where Ωi is the TF support of the source si(t). Note that,
the effects of spreading the noise energy while localizing
the source energy in the time-frequency domain amounts to
increasing the robustness of the proposed method with respect
to noise. Hence, by equation (18) (or equation (11)), we would
keep only time-frequency points where the signal energy is
significant, the other time-frequency points are rejected, i.e.
not further processed, since considered to represent noise
contribution only. Also, due to the noise energy spreading, the
contribution of the noise in the source time-frequency points
is relatively, negligeable at least for moderate and high SNRs.

2) Vector clustering and source TFD estimation: The clus-
tering procedure can be done in a similar manner as in
the quadratic algorithm. First, we obtain the spatial direction
vectors by:

v(ta, fa) =
Sx(ta, fa)
‖Sx(ta, fa)‖ , (ta, fa) ∈ Ω, (19)

and force them, without loss of generality, to have the first
entry real and positive.

Next, we cluster these vectors into N classes {Ci | i ∈ N},
using the k-means clustering algorithm. The collection of all
points, whose vectors belong to the class Ci, now forms the
TF support Ωi of the source si(t). Then, the column vector
ai of A is estimated as the centroid of this set of vectors:

âi =
1
|Ci|

∑

(t,f)∈Ωi

v(t, f), (20)

where |Ci| is the number of vectors in this class.
Therefore, we can estimate the STFT of each source si(t)

by:

Ŝsi(t, f) =

{
âH

i Sx(t, f), ∀ (t, f) ∈ Ωi,

0, otherwise.
(21)

since, from (15), we have

âH
i Sx(t, f) = âH

i aiSsi(t, f) ≈ Ssi(t, f), ∀ (t, f) ∈ Ωi.

Note that the STFT is a particular form of wavelet trans-
forms which have been used in [19] for the UBSS of image
signals.

IV. SUBSPACE-BASED TF-UBSS APPROACH FOR
NONDISJOINT SOURCES

We have seen the cluster-based TF-UBSS methods, using
either quadratic TFDs such as the MWVD or linear TFDs
such as the STFT, as summarized in Table I or Table II,
respectively. These methods relied on the assumption that the
sources were TF-disjoint, which has led to the enabling TF-
transformed structures in (9) or (15). When the sources are
nondisjoint in the TF domain, then these equations are no
longer true.

Under the TF-nondisjoint condition, stated in Assumption 2,
we propose in this section two alternative methods, one for
quadratic TFDs and the other for linear TFDs, for the UBSS
problem using subspace projection.
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A. Subspace-based quadratic TF-UBSS algorithm

Recall that the first two steps of the cluster-based quadratic
TF-UBSS algorithm do not rely on the assumption of TF-
disjoint sources (see Table I). Therefore, we can reuse these
steps to obtain the set of auto-source points Ω. Now, under
the TF-nondisjoint condition, consider an auto-source point
(tb, fb) ∈ Ω such that there are K sources, K < M , present at
this point. Our goal is to identify the sources present at (tb, fb)
and to estimate the energy each of these sources contributes.

Denote α1, . . . , αK ∈ N the indices of the sources present
at (tb, fb), and define the following:

s̃ = [sα1(t), . . . , sαK
(t)]T , (22a)

Ã = [aα1 , . . . ,aαK
]. (22b)

Then, under Assumption 2, (8) is reduced to

Dwvd
xx (tb, fb) = ÃDs̃s̃(tb, fb)ÃH , (23)

Consequently, given that Ds̃s̃ is of full rank, we have

Range {Dxx(tb, fb)} = Range{Ã}. (24)

Let P be the orthogonal projection matrix onto the noise
subspace of Dwvd

xx (tb, fb). Then, from (24), we obtain:

P = I−VVH , (25)

and {
Pai = 0, ∀ i ∈ {α1, . . . , αK} ,

Pai 6= 0, ∀ i ∈ N\{α1, . . . , αK}
(26)

In (25), V is the matrix formed by the K principal singular
eigenvectors of Dxx(tb, fb).

Assuming that A has been estimated by some method,
the observation in (26) enables us to identify the indices
α1, . . . , αK ; and hence, the sources present at (tb, fb). In
practice, to take into account the estimation noise, one can
detect these indices by detecting the K smallest values from
the set {‖Pai‖ | i ∈ N}, as mathematically expressed by:

{α1, . . . , αK} = arg min K {‖Pai‖ | i ∈ N} , (27)

where minK denotes the minimization to obtain the K small-
est values. The TFD values of the K sources at (tb, fb) are
estimated as the diagonal elements of the following matrix:

D̂s̃s̃(tb, fb) ≈ Ã#Dxx(tb, fb)
(
Ã#

)H

, (28)

where the superscript (#) is the Moore-Penrose’s pseudo-
inversion operator.

Here, we propose also an estimation method for A by using
Assumption 3. This assumption states that, for each source
si(t), there exists a TF region Ri where si(t) exists alone.
In other words, Ri contains all the single-source auto-source
points of si(t). Therefore, we can reuse the observation (9) in
the TF-disjoint case, but for some TF regions, as below:

Dxx(t, f) = ρsisi(t, f)aiaH
i , ∀(t, f) ∈ Ri, ∀i ∈ N .

The union of these regions, R =
⋃N

i=1 Ri, is detected by the
following:

If
∣∣∣∣
λmax{Dwvd

xx (t, f)}
trace{Dwvd

xx (t, f)} − 1
∣∣∣∣ < ε3, then (t, f) ∈ R, (29)

TABLE III
SUBSPACE-BASED QUADRATIC TF-UBSS ALGORITHM USING MWVD

1) Mixture STFD computation by (10).
2) Noise thresholding and auto-source point selection by (11).
3) Single-source auto-source point selection by (29); mixing ma-

trix estimation by (30) and (31)
4) For all auto-source points, perform subspace-based TFD esti-

mation of sources by (25), (27) and (28)
5) Source TF synthesis by [16].

where ε3 is a small threshold value (typically, ε3 ≤ 0.1)
and λmax{Dwvd

xx (t, f)} denotes the maximum eigenvalue of
Dwvd

xx (t, f). Then, we can apply the same vector clustering
procedure as in Section III-A.3 to estimate A. In particular,
we first obtain all the spatial direction vectors:

a(t, f) =
diag

{
Dstft

xx(t, f)
}

∥∥∥diag
{
Dstft

xx(t, f)
}∥∥∥

, ∀(t, f) ∈ R. (30)

Next, we cluster these vectors into N classes {Di|i ∈ N}
using the k-means clustering algorithm. The collection of all
points, whose vectors belong to the class Di, now forms the
TF region Ri of the source si(t). Finally, the column vectors
A are estimated as the centroid vectors of these classes as:

âi =
1
|Di|

∑

(t,f)∈Ri

a(t, f), ∀i ∈ N (31)

where Di is the number of points in Ri.
Table III gives a summary of the subspace-based quadratic

TF-UBSS algorithm.

B. Subspace-based linear TF-UBSS algorithm

Similarly, we propose here a subspace-based linear TF-
UBSS algorithm for TF-nondisjoint sources using STFT. We
also use the first step of the cluster-based linear TF-UBSS
algorithm (see Table II) to obtain all the auto-source points
Ω. Under the TF-nondisjoint condition, consider an auto-
source point (tb, fb) ∈ Ω at which there are K sources
sα1(t), . . . , sαK (t) present, with K < M . Then, (8) is reduced
to the following

Sx(tb, fb) = ÃSs̃(tb, fb), ∀(tb, fb) ∈ Ω (32)

where Ã and s̃ are as previously defined in (22).
Let Q represent the orthogonal projection matrix onto the

noise subspace of Ã. Then, Q can be computed by:

Q = I− Ã
(
ÃHÃ

)−1

ÃH . (33)

We have the following observation:
{

Qai = 0, i ∈ {α1, . . . , αK}
Qai 6= 0, i ∈ N\{α1, . . . , αK}

. (34)

If A has already been estimated by some method, then
this observation gives us the criterion to detect the indices
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TABLE IV
SUBSPACE-BASED LINEAR TF-UBSS ALGORITHM USING STFT

1) STFT computation.
2) Noise thresholding and auto-source point selection
3) Mixing matrix estimation by (20) and (37), and k-means

algorithm.
4) For all auto-source points, perform subspace-based TFD esti-

mation of sources by (33), (35) and (36).
5) Source TF synthesis by [18].

α1, . . . , αK ; and hence, the contributing sources at the auto-
source point (tb, fb). In practice, to take into account noise,
one detects the column vectors of Ã minimizing:

{α1, . . . , αK} = arg min
β1,...,βK

{
‖QSx(t, f)‖ | Ãβ

}
(35)

where Ãβ = [aβ1 , . . . ,aβK
].

Next, TFD values of the K sources at TF point (t, f) are
estimated by:

Ŝs̃(t, f) ≈ Ã#Sx(t, f). (36)

Here we propose a method for estimating the mixing matrix
A. This is performed by clustering all the spatial direction
vectors in (19) as for the preview TF-UBSS algorithm. Then
within each class Ci we eliminate the far-located vectors from
the centroid (in the simulation we estimate vectors v(t, f) such
that:

‖v(t, f)− âi‖ > 0.8 max
v(t,f)∈Ωi

‖v(t, f)− âi‖, (37)

leading to a size-reduced class C̃i. Essentially this is to keep
the vectors corresponding to the TF region Ri, which are
ideally equal to the spatial direction ai of the considered
source signal. Finally, the ith column vector of A is estimated
as the centroid of C̃i.

Table IV provides a summary of the subspace projection
based TF-UBSS algorithm using STFT.

V. DISCUSSION

We discuss here certain points relative to the proposed TF-
UBSS algorithms and their applications.

1) Number of sources: The number of sources N is assumed
known in the clustering method (k-means) that we have used.
However, there exist clustering methods [17] which perform
the class estimation as well as the estimation of the number
N . In our simulation, we have observed that most of the time
the number of classes is overestimated, leading to poor source
separation quality. Hence, robust estimation of the number of
sources in the UBSS case remains a difficult open problem
that deserves particular attention in future works.

2) Number of overlapping sources: In the subspace-based
approach, we have to evaluate the number K of overlapping
sources at a given TF point. This can be done by finding out the
number of non-zero eigenvalues of Dwvd

xx (t, f) using criteria
such as Minimum Description Length (MDL) or Akaike
Information Criterion (AIC) [20]. It is also possible to consider
a fixed (maximum) value of K that is used for all auto-source
TF points. Indeed, if the number of overlapping sources is less

than K, we would estimate close-to-zero source STFT values.
For example, if we assume K = 2 sources are present at a
given TF point while only one source is effectively contribut-
ing, then we estimate one close-to-zero source STFT value.
This approach increases slightly the estimation error of the
source signals (especially at low SNRs) but has the advantage
of simplicity compared to using information theoretic-based
criterion. In our simulation, we did choose this solution with
K = 2 or K = 3.

3) Quadratic versus linear TFDs: We have proposed two
algorithms using quadratic and linear TFDs. The one using
the quadratic TFD should be preferred when dealing with
FM-like signals and for small or moderate sample sizes. For
audio source separation often the case the sample size is large,
and hence, to reduce the computational cost one should prefer
the linear TFD based UBSS algorithm. Overall, the quadratic
version performs slightly better than the linear one but costs
much more in computations.

4) Separation quality versus number of sources: Although
we are in the underdetermined case, the number of sources N
should not exceed too much the number of sensors. Indeed,
when N increases, the level of source interference increases,
and hence, the source disjointness assumption is ill-satisfied.
Moreover, for a large number of sources, the likelihood of
having two sources closely spaced, i.e. such that the spatial
directions ai and aj are ‘close’ to linear dependency, in-
creases. In that case, vector clustering performance degrades
significantly. In brief, sparseness and spatial separation are the
two limiting factors against increasing the number of sources.
Figure 8 illustrates the performance degradation of source
separation versus the number of sources.

VI. SIMULATION RESULTS

A. Simulation results of subspace-based TF-UBSS algorithm
using STFT

In the simulations, we use a uniform linear array of M = 3
sensors. It receives signals from N = 4 independent speech
sources in the far field from directions θ1 = 15, θ2 = 30,
θ3 = 45 and θ4 = 75 degrees respectively. The sample
size is T = 8192 samples. In Figure 3, the top four plots
represent the TF representation of the original sources signal,
the middle three plots represent the TF representation of the
M mixture signals and the bottom four plots represent the
TF representation of the estimate of sources by the subspace-
based algorithm using STFT (Table IV). Figure 4 represents
the same disposition of signals but in the time domain. In
Figure 5, we compare the separation performance obtained by
the subspace-based algorithm with K = 2 and the cluster-
based algorithm (Table II). It is observed that subspace-based
algorithm provides much better separation results than those
obtained by the cluster-based algorithm.

In the subspace-based method, one first needs to estimate
the mixing matrix A. This is done by the cluster-based method
presented previously. The plot in Figure 6 represents the nor-
malized estimation error of A versus the SNR in dB. Clearly,
the proposed estimation method of the mixing matrix provides
satisfactory performance, while the plot in Figure 7 presents
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(a) Ss1 (t, f) (b) Ss2 (t, f)

(c) Ss3 (t, f) (d) Ss4 (t, f)

(e) Sx1 (t, f) (f) Sx2 (t, f) (g) Sx3 (t, f)

(h) Sŝ1 (t, f) (i) Sŝ2 (t, f)

(j) Sŝ3 (t, f) (k) Sŝ4 (t, f)

Fig. 3. Simulated example (viewed in TF domain) for the subspace-based TF-
UBSS algorithm with STFT in the case of 4 speech sources and 3 sensors.
The top four plots represent the original source signals, the middle three
plots represent the 3 mixtures, and the bottom four plots represent the source
estimates.

the separation performance when using the exact matrix A
compared to that obtained with the proposed estimate Â.

Figure 8 illustrates the rapid degradation of the separation
quality when we increase the number of sources from N = 4
to N = 7. This confirms the remarks made in Section V.

In Figure 9, we compare the performance obtained with
the subspace-based method for K = 2 and K = 3. In that
experiment, we have used M = 4 sensors and N = 5 source
signals. One

can observe that, for high SNRs, the case of K = 3
leads to a better separation performance than for the case of
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Fig. 4. Simulated example (viewed in time domain) for the subspace-based
TF-UBSS algorithm with STFT in the case of 4 speech sources and 3 sensors.
The top four plots represent the original source signals, the middle three
plots represent the 3 mixtures, and the bottom four plots represent the source
estimates.

K = 2. However, for low SNRs, a large value of K increases
the estimation noise (as mentioned in Section V) and hence
degrades the separation quality.

B. Simulation results of subspace-based TF-UBSS algorithm
using STFD

In this simulation, we use a uniform linear array of M = 3
sensors with half wavelength spacing. It receives signals from
N = 4 independent LFM sources, each has 256 samples, in the
presence of additive Gaussian noise where the SNR=20 dB.

We compare the cluster-based (Table I) and the pro-
posed subspace-based (Table III) TF-UBSS algorithms. Fig-
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Fig. 5. Comparison between subspace-based and cluster-based TF-UBSS
algorithms using STFT: normalized MSE (NMSE) versus SNR for 4 speech
sources and 3 sensors.
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Fig. 6. Mixing matrix estimation: normalized MSE versus SNR for 4 speech
sources and 3 sensors.
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Fig. 7. Comparison, for the subspace-based TF-UBSS algorithm using STFT,
when the mixing matrix A is known or unknown: NMSE of the source
estimates.

ures 10-(a,d,g,j) represent the TFDs (using WVD) of the four
sources. Figures 10-(b,e,h,k) show the estimated source TFDs
using the cluster-based algorithm, whereas Figures 10-(c,f,i,l)
are those obtained by the subspace-based algorithm.

From Figures 10-(b,e) we can see that the overlapping points
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Fig. 8. Comparison between subspace-based and cluster-based TF-UBSS
algorithms using STFT: NMSE versus number of sources.
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Fig. 9. Comparison between subspace-based and cluster-based TF-UBSS
algorithms using STFT: NMSE of the source estimates for different sizes of
the projector, for the case of 5 sources and 4 sensors.

between source s1(t) and source s2(t) were picked up by
source s2(t) with the cluster-based algorithm. On the other
hand, using the subspace-based algorithm, the intersection
points have been redistributed to the two sources (Figure 10-
(c,f)).

In general, the overlapping points in the nondisjoint case
have been explicitly treated. This provides a visual perfor-
mance comparison.

In Figure 11, we compare the statistical separation perfor-
mance between the subspace-based algorithm and the cluster-
based algorithm using STFD, evaluated over 1000 Monte-
Carlo runs.

One can also notice that the gain here is smaller than the
one obtained previously for audio sources. This is due to the
fact that the overlapping region of the considered signals is
smaller. This result confirms the previous visual observation
with respect to the performance gain in favor of our subspace-
based method.

VII. CONCLUSIONS

This paper introduces new methods for the UBSS of TF-
nondisjoint nonstationary sources using time-frequency repre-
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(b) Ŵs1 (cluster)

0 0.05 0.1 0.15 0.2 0.25

80

100

120

140

160

180

normalized frequency

tim
e 

sa
m

pl
es
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Fig. 10. Simulated example (viewed in TF domain) for the subspace-
based TF-UBSS algorithm with STFT in the case of 4 LFM sources and
3 sensors. From left to right, the figures respectively represent the original
source TF signatures, the estimated source TF signatures using the cluster-
based algorithm, and the estimated source TF signatures using the subspace-
based algorithm.

sentations. The main advantages over the proposed separation
algorithms are, first, a weaker assumption on the source
‘sparseness’, i.e. the sources are not necessarily TF-disjoint,
and second, an explicit treatment of the overlapping points
using subspace projection, leading to significant performance
improvements. Simulation results illustrate the effectiveness
of our algorithms in different scenarios compared to those
existing in the literature.
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He has visited the École Nationale Supérieure des
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des Télécommunications (ENST), Paris, France, in
1992, the M.S. degree from Paris XI University,
Orsay, France, in 1992, and the Ph.D. degree from
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