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Abstract. We analyze the average complexity of Brzozowski’s mini-
mization algorithm for distributions of deterministic automata with a
small number of final states. We show that, as in the case of the uni-
form distribution, the average complexity is super-polynomial even if we
consider random deterministic automata with only one final state. We
therefore go beyond the previous study where the number of final states
was linear in the number of states. Our result holds for alphabets with
at least 3 letters.

1 Introduction

In this article we continue our investigation of the average complexity of Brzo-
zowski’s algorithm [?] that was started in [?]. Recall that Brzozowski’s method
is based on the fact that determinizing a trim co-deterministic automaton that
recognizes a language L yields the minimal automaton for L. Hence, starting
from an automaton A that recognizes the language L, one can compute its min-
imal automaton by first determinizing its reversal, then by determinizing the
reversal of the resulting automaton.

This elegant method is not efficient in the worst case, since the first deter-
minization can produce an automaton that has exponentially many states, even
if one starts with a deterministic automaton (see [?] for a classical example). We
are therefore far from the efficient solutions available to minimize deterministic
automata, such as Hopcroft’s algorithm [?], which runs in O(n log n) time.

In [?] we proved that for the uniform distribution on deterministic and com-
plete automata with n states, or for distributions where each state is final with
(fixed) probability b ∈ (0, 1), the running time of Brzozowski’s algorithm is super-
polynomial3 with high probability. One limitation of this result is that under such
a distribution, an automaton with n states has around bn final states, for fixed

? This work is supported by the French National Agency (ANR) through ANR-10-
LABX-58 and through ANR-2010-BLAN-0204.

3 Grows quicker than nd for any positive d.



b, which therefore grows linearly with the number of states. However, in many
situations the automata that are built do not have that many final states (see,
for instance, Aho-Corasick automaton [?], which is used for pattern matching).
A natural question is whether this result still holds for automata with, for in-
stance, a fixed number of final states. This is the question we investigate in this
article.

The precise definition of a distribution of automata with a small number
of final states is given in Section 4, but it covers the cases of random size-n
automata with just one final state, with log n final states, or where each state is
final with probability 3

n or 2√
n

, and so on. It therefore differs significantly from

the cases studied in [?].

Notice that analyzing distributions of automata with a small number of final
states is an up-to-date question in the statistical study of automata. The main
results in this field, the average complexity of Moore’s algorithm and the asymp-
totic number of minimal automata, only hold for distributions of automata with
“sufficiently many” final states [?,?,?]. Some effort have been undertaken to ex-
tend them to, say, automata with only one final state, but with no success so
far. To our knowledge, we present in this article the first result of this kind.

We will see that the proof of our main result is not just simply an adaptation
of the proof proposed in [?] and we will need some deeper understanding of the
typical properties of a random automaton. In return, we will establish some new
facts that are interesting on their own, and that may be reused for further work
on statistical properties of random automata.

The paper is organized as follows. After recalling some basic definitions in
Section 2, we briefly revisit the article [?] in Section 3 to point out the difficulties
encountered when trying to reduce the number of final states. In Section 4 we
state our main result and prove it for automata with only one final state in
Section 5. In Section 6, we explain how to extend it to get the full proof.

2 Definitions

Let [n] denote the set of integers between 1 and n. If x, y are two real numbers,
let Jx, yK denote the set of integers i such that x ≤ i ≤ y. For any positive integer
n, let Sn denote the set of all permutations on [n].

Automata. Let A be a finite alphabet, an automaton A is a tuple (Q, δ, I, F ),
where Q is its finite set of states, I ⊆ Q is its set of initial states and F ⊆ Q is
its set of final states. Its transition function δ is a (partial) map from Q×A to

2Q. A transition of A is a tuple (p, a, q) ∈ Q×A×Q, which we write p
a−→ q, such

that q ∈ δ(p, a). The map δ is classically extended by morphism to Q×A∗. We
denote by L(A) the set of words recognized by A. A deterministic and complete
automaton is an automaton such that |I| = 1 and for every p ∈ Q and a ∈ A,
|δ(p, a)| = 1; for such an automaton we consider that δ is a (total) map from
Q×A∗ to Q to simplify the notations. A state q is accessible when there exists a
path from an initial state to q. It is co-accessible when there exists a path from
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q to a final state. If A is an automaton, we let Trim(A) denote the automaton
obtained after removing states that are not accessible or not co-accessible.

For any automaton A = (Q, δ, I, F ), we denote by Ã the reverse of A, which

is the automaton Ã = (Q, δ̃, F, I), where p
a−→ q is a transition of Ã if and only

if q
a−→ p is a transition of A. The automaton Ã recognizes the reverse4 of L(A).

An automaton is co-deterministic when its reverse is deterministic.
Recall that the minimal automaton of a rational language L is the smallest

deterministic and complete automaton5 that recognizes L. To each rational lan-
guage L corresponds a minimal automaton, which is unique up to isomorphism.

Subset construction and Brzozowski’s algorithm. If A = (Q, δ, I, F ) is
a non-deterministic automaton, it is classical that the subset automaton of A
defined by

B =
(
2Q, γ, {I}, {X ∈ 2Q | F ∩X 6= ∅}

)
is a deterministic automaton that recognizes the same language, where for every
X ∈ 2Q and every a ∈ A, γ(X, a) = ∪p∈Xδ(p, a). This is of course still true if we
only take the accessible part of B, and this is not a difficulty when implementing
it, since the accessible part of B can be built on the fly, using the rule for γ in a
depth-first traversal of B starting from I. We denote by Subset(A) the accessible
part of the subset automaton of A.

In [?], Brzozowski established the following result:

Theorem 1 (Brzozowski). If A is a trim co-deterministic automaton then
Subset(A) is the minimal automaton of L(A).

This theorem readily yields an algorithm to compute the minimal automaton of
the language recognized by an automaton A, based on the subset construction:
since B = Subset(Trim(Ã)) is a deterministic automaton recognizing the mirror
of L(A), then Subset(Trim(B̃)) is the minimal automaton of L(A).

Mappings. A mapping of size n is a total function from [n] to [n]. A mapping
f can be seen as a directed graph with an edge i→ j whenever f(i) = j. Such a
graph is a union of cycles of Cayley trees (i.e., rooted labelled trees), as depicted
in Fig. 1 (see [?] for more information on this graph description). Let f be a size-
n mapping. An element x ∈ [n] is a cyclic point of f when there exists an integer
i > 0 such that f i(x) = x. The cyclic part of a mapping f is the permutation
obtained when restricting f to its set of cyclic points. The normalized cyclic part
of f is obtained by relabelling the c cyclic points of f with the elements of [c],
while keeping their relative order6.

Automata as combinatorial structures. In the sequel, A is always a fixed
alphabet with k ≥ 2 letters. Let An (or An(A) when we want to make precise
the alphabet) denote the set of all deterministic and complete automata with

4 If u = u0 · · ·un−1 is a word of length n, the reverse of u is the word ũ = un−1 · · ·u0.
5 Minimal automata are not always required to be complete in the literature.
6 The notion of normalization will be used for other substructures, always for rela-

belling the atoms with an initial segment of the positive integers, while keeping their
relative order.
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Fig. 1. A mapping of size 17, on the left. On the upper right we have its normalized
cyclic part, and on the lower right its Cayley trees (not normalized).

input alphabet A whose set of states is [n] and whose initial state is 1. Such
an automaton A is characterized by the tuple (n, δ, F ). A transition structure
is an automaton without final states, and we denote by Tn the set of n-state
transition structures with the same label restrictions as for An. If A ∈ An, an
a-cycle of A is a cycle of the mapping induced by a, i.e., p 7→ δ(p, a). A state of
an a-cycle is called an a-cyclic state.

Distributions of combinatorial structures. Let E be a set of combinatorial
objects with a notion of size such that the set En of elements of size n of E
is finite for every n ≥ 0. The uniform distribution (which is a slight abuse of
notation since there is one distribution for each n) on the set E is defined for
any e ∈ En by Pn({e}) = 1

|En| . The reader is referred to [?] for more information

on combinatorial probabilistic models.

Probabilities on automata. Let A be an alphabet. We consider two kinds
of distribution on size-n deterministic and complete automata. The first one is
the fixed-size distribution on An of parameter m. It is the uniform distribution
on size-n automata with exactly m states. The parameter m may depend7 on
n; one can for instance consider the fixed-size distribution of parameter b

√
nc.

The second one is the p-distribution on An, where the transition structure of
the automaton is chosen uniformly at random and where each state is final with
probability p independently; in this model also, p may depend on n, for instance
p = 2

n yields automata with two final states on average.
Note that the Bernoulli model of parameter b of [?] is the same as the p-

distribution for p = b: it is the case where p does not depend on n.

Some terminology. We consider a (sequence of) distributions on E =
⋃
nEn.

Let P be a property defined on E. We say that P holds generically (or with

7 The term “fixed” stands for: for any given n, the number of final states is fixed.
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high probability) when the probability it holds tends to 1 as n tends to infinity.
We say that P is visible (or holds with visible probability) when there exists a
positive constant C and an integer n0 such that for every n ≥ n0 the probability
that P holds on size-n elements is at least C.

In the sequel we will implicitly use that if P and Q are generic then P ∧ Q
is generic; if P is generic and Q is visible, then P ∧Q is visible; if P and Q are
visible and independent, then P ∧Q is visible, and so on.

3 Result for a large number of final states

In [?] we proved that the complexity of Brzozowski’s algorithm is generically
super-polynomial for the uniform distribution on deterministic complete au-
tomata with n states. For this distribution, every state is final with probability
1
2 . Thus if one take such an automaton uniformly at random, with high proba-
bility it has around n

2 final states. The article also considers the case where the
probability of being final is some fixed b ∈ (0, 1).

In this paper we consider distributions on An where the typical number of
final states can be small, for instance in o(n), and we will try to reuse some ideas
from [?] to do the analysis. We therefore recall in this section, very briefly, the
proof of the following result:

Theorem 2. (De Felice, Nicaud [?]) Let A be an alphabet with at least 2
letters. If L is the language recognized by a deterministic and complete n-state
automaton over A taken uniformly at random, then generically the minimal au-
tomaton of the mirror of L has a super-polynomial number of states.

The first observation is the following lemma, which will be used in a slightly
modified version in this paper. It is the only result needed from automata theory;
the remainder of the proof consists in analyzing the combinatorial structure of
the underlying graph of a random automaton. A cycle is primitive when the
sequence of types of states (final and non-final) in the cycle forms a primitive
word.

Lemma 1 ([?]). Let A ∈ An be a deterministic automaton that contains m
primitive a-cycles C1, . . . , Cm of lengths at least two that are all accessible. The
minimal automaton of L(Ã) has at least lcm(|C1|, . . . , |Cm|) states.

The proof of Theorem 2 is organized as follows:

1. If we look just at the action of a in a random automaton, it is a random
mapping from the set of states to itself. Using the classical properties of
random mappings [?] we get that, with high probability, there are at least
n1/3 a-cyclic states.

2. The cyclic part of a uniform random mapping behaves likes a uniform ran-
dom permutation. We therefore want to use a celebrated result of Erdős
and P. Turán [?] which states that the lcm of the lengths of the cycles of a
random permutation8 is super-polynomial with high probability.

8 It is exactly the order of the permutation.
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3. We prove that the a-cycles of lengths at least log n are generically primitive
and accessible in a random automaton, using properties of random automata
established in [?].

4. We conclude by proving that even if we remove the cycles of lengths smaller
than log n in Erdős and P. Turán’s result, we still have a super-polynomial
lcm with high probability.

Now assume that we are considering the uniform distribution on automata with
just one final state. It is no longer true that the large cycles are generically prim-
itive: with high probability the final state is not in any a-cycle, which is therefore
not primitive. In the sequel we will show how to get around this problem, which
has consequences at every step of the proof (in particular we can no longer use
the result of Erdős and P. Turán).

4 Main result

A distribution on automata is said to have a small number of final states when
it is either a fixed size distribution or a p-distribution on size-n automata such
that the number of final states is in J1, n2 K with visible probability. Our main
result is the following:

Theorem 3. Let A be an alphabet with at least 3 letters. If L is the language
recognized by a random n-state deterministic and complete automaton following a
distribution with a small number of final states, then for any d > 0, the minimal
automaton of the mirror of L(A) has, with visible probability, more than nd

states.

Compared to the main result of [?] we capture many more distributions
on automata, by weakening the statement a bit: it holds for an alphabet of 3
or more letters and it does not hold generically but with positive probability.
The latter is unavoidable: as proved in [?] there is a linear number of states
that are not accessible in a typical random automaton. Thus for the fixed size
distribution with one final state, the final state has a positive probability of not
being accessible.

The average complexity of Brzozowski’s algorithm is a direct consequence of
Theorem 3.

Corollary 1. Let A be an alphabet with at least 3 letters. The average complex-
ity of Brzozowski’s algorithm is super-polynomial for distributions with a small
number of final states.

Proof. For any d > 0, the expected number of states after the first determiniza-
tion is at least nd times the probability that an automaton has at least nd states
after the first determinization. This probability is greater than some positive
constant C for n sufficiently large by Theorem 3, concluding the proof. ut

Our results hold, for instance, for the p-distributions with p = α
n for some

positive real α: there are α final states on average, and it is straightforward to
check that it has a small number of final states. They also hold for the fixed-size
distribution with b

√
nc final states, since 1 ≤ b

√
nc ≤ n

2 for n sufficiently large.
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5 Proof of Theorem 3 for automata with one final state

In this section we prove our main theorem for the fixed-size distribution of pa-
rameter 1, that is, for the uniform distribution on the sets A1

n of automata
with exactly one final state. From now on we are working over the alphabet
A = {a, b, c}, as adding more letters just makes the problem easier.

We start with a generalization of Lemma 1 from [?]. Let A be an automaton
with transition function δ and set of final states F , let C be an a-cycle of A of
length ` and let u ∈ A∗. The u-word of C is the word v = v0 . . . v`−1 of length
` on {0, 1} defined as follows: let x be the smallest element of C, we set vi = 1
if and only if δ(x, aiu) ∈ F , for i ∈ {0, . . . , `− 1}. This is a generalization of [?]
where the word associated with C is exactly the ε-word of C. The cycle C is
u-primitive when its u-word is a primitive word.

Lemma 2. Let u be a word of A∗ and let A ∈ An be a deterministic automaton
that contains m u-primitive a-cycles C1, . . . , Cm of lengths at least two that are
all accessible. The minimal automaton of L(Ã) has at least lcm(|C1|, . . . , |Cm|)
states.

Proof. (sketch) This is the same proof as in [?], except that we are considering
the sets δ−1(F, u) ∩ C instead of F ∩ C, where C = ∪mi=1Ci. ut

In the sequel we first find a suitable word u, then a collection of a-cycles with
good properties, in order to apply Lemma 2.

5.1 Finding u ∈ {b, c}∗ such that δ−1
A (f, u) is sufficiently large

For the first step, we consider letters b and c only and try to build a sufficiently
large set of states in the determinization of the mirror of an automaton with one
final state. In this section we prove the following result.

Proposition 1. There exists a constant w > 0 such that if we draw an element
A of A1

n({b, c}) uniformly at random, there exists a word u ∈ {b, c}∗ such that
δ−1A (f, u) has size between w

√
n and w

√
n log n with visible probability, where f

denotes the final state of A.

Of course, in Proposition 1 the word u depends on A. We need some preliminary
results on random mappings to establish the proposition.

Lemma 3. Generically, a random mapping of [n] has no element with more
than log n preimages.

Lemma 3 is used the following way. If we find a word v such that δ−1A (f, v)
has size greater than w

√
n log n, then there exists a prefix u of v such that

w
√
n ≤ δ−1A (f, u) ≤ w

√
n log n since the image of a set of states X by a letter

in Ã generically has size at most |X| log n. Hence, we just have to find a word v
such that δ−1A (f, v) ≥ w

√
n to conclude the proof.

A set of vertices X of a digraph is stable when there is no edge x → y for
x ∈ X and y /∈ X.
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Lemma 4. Let A be an element of A1
n taken uniformly at random, and let G

be the digraph induced on [n] by the actions of b and c (there is an edge x → y
if and only if δA(x, b) = y or δA(x, c) = y). Generically, G has a unique stable
strongly connected component, which has size greater than 1

2n.

Proof. (sketch) We first prove that generically there is no stable set of states of
size smaller than 1

4n: we overcount the number of transition structures having a
stable subset X of size ` by choosing the ` states, their images by both letters in
X and the images of the other states. This yields an upper bound of

(
n
`

)
`2`n2n−2`

for the number of such transition structures. Summing for ` from 1 to n/4 this
upper bound is sufficient to prove that it generically does not happen.

It is proven in [?] that in a random transition structure with n states on a
two-letter alphabet, the accessible part is generically of size greater than 1

2n.
If we have a transition structure with a stable strongly connected component
C of size between 1

4n and 1
2n, then by symmetry, the initial state is in C with

probability at least 1
4 . But in such a case, the accessible part has size at most

1
2n, which generically cannot happen according to [?]. This concludes the proof,
as there can be at most one component of size greater 1

2n. ut

Remark 1. If an automaton has a unique stable strongly connected component
C, then for every state q there exists a path from q to any state of C, as one can
see on the acyclic graph of strongly connected components. In particular, C is
necessarily accessible.

Recall that a mapping f on [n] can be seen as a union of cycles of Cayley trees.
Define the largest tree of f as its largest Cayley tree, taking the tree with the
smallest root label if there are several trees with the maximum number of nodes.
In a transition structure or in an automaton, the largest b-tree is the largest tree
for the mapping associated with the action of b. Our next lemma states that the
largest b-tree of a random structure behaves like a uniform random tree (when
there is only one tree of maximum size). Thus we can use classical results on
random mappings and Cayley trees to estimate the typical width of such a tree.

Lemma 5. Let t and n be two integers such that 1 ≤ n
2 < t ≤ n and let M

(t)
n

denote the set of mapping on [n] whose largest tree has t nodes. The normalized

largest tree of a uniform element of M
(t)
n is distributed as a uniform random

Cayley tree with t nodes.

The following result is the mix between a classical result on the largest tree
in a random mapping [?] and the analysis of the width of a random Cayley tree
done in [?].

Theorem 4 (Kolčin, Chassaing and Marckert). There exist two positive
constants w and C such that the probability that the largest tree of a random
mapping on [n] has width at least w

√
n is greater than C, for n sufficiently

large.

We can now give the proof of Proposition 1.
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Proof. (of Proposition 1) By Theorem 4, there is a b-tree T of width at least
w
√
n in a random size-n transition structure with input alphabet A′ = {b, c}

with positive probability. Moreover, by Lemma 4 such a transition structure
generically has only one stable strongly connected component C, which contains
more than 1

2n states. Hence if we add a final state uniformly at random, it is
in C with probability at least 1

2 . As stated in Remark 1, if the final state is in
the unique stable strongly connected component, then there exists a word v that
labels a path from the root of T to f . Consider the word v′ = ṽbi, where i is the
layer of T with the maximal number of nodes (the level that gives its width).
Then δ−1(f, v′) contains all the states of the ith layer of T , and it therefore
contains at least w

√
n elements.

By Lemma 3, every state has generically less than log n preimages. Thus if
|δ−1(f, v′)| ≥ w

√
n, then there exists a prefix u of v′ such that δ−1(f, u) contains

between w
√
n and w

√
n log n elements, concluding the proof. ut

5.2 Finding a good collection of a-cycles

We now switch to a-cycles and consider only the action of the letter a (the
actions of the three letters are independent). Recall that conditioned by its
number of cyclic points m, the cyclic permutation of a uniform random mapping
is a uniform permutation of Sm. We first establish some properties of random
permutations.

If σ is a permutation of [n], its sequence of cycles is the ordered sequence of
its cycles (C1, C2, . . . , Cm), where the cycles are ordered by their smallest element.
If (C1, C2, . . . , Cm) is the sequence of cycles of σ and d ≤ m, the d first cycles
of σ are the cycles C1, C2, . . . , Cd. Let Ld(σ) = (|C1|, . . . , |Cd|) denote the d first
cycles of σ, when σ has at least d cycles and let Ld(σ) = ⊥ otherwise.

Lemma 6. Let d be a positive integer. For any (`1, . . . , `d) ∈ J n3d ,
n
2dK

d, the
following lower bound holds for n sufficiently large:

P
(
Ld = (`1, . . . , `d)

)
≥ 1

nd
.

We now turn our attention to the lcm of the first d cycles of a random
permutation, and establish the following proposition.

Proposition 2. Let (x1, . . . , xd) be a uniform element of J n3d ,
n
2dK

d. There exists
a constant λ > 0 such that lcm(x1, . . . , xd) ≥ λnd with visible probability.

Let Cycled(n) be the set of permutations σ of [n] such that Ld(σ) ∈ J n3d ,
n
2dK

d and
lcm(`1, . . . , `d) ≥ λnd, with Ld(σ) = (`1, . . . , `d). We use the λ of Proposition 2.

If we take a permutation σ uniformly at random, conditioned by Ld(σ) ∈
J n3d ,

n
2dK

d, the vector Ld(σ) is not uniformly distributed in J n3d ,
n
2dK

d. However,
we can control the lack of uniformity and use Proposition 2 to obtain sufficiently
many permutations such that the lcm of their d first cycles is large enough.

Lemma 7. For any positive integer d, a uniform random permutation of [n] is
in Cycled(n) with visible probability.
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In [?], having generically more than n1/3 a-cyclic states was enough to implies
the desired result for the uniform distribution. Here we need something more
precise. In the next lemma we show that with positive probability, the number
of a-cyclic states is in Θ(

√
n).

Lemma 8. The cyclic part of a uniform random mapping of size n has size in
J
√
n, 2
√
nK with visible probability.

Proof. (sketch) We rely on tools from analytic combinatorics [?] applied to the
decomposition of a mapping into a union of cycles of Cayley trees, as in [?]. We
obtain that the expected number of cyclic points is asymptotically equivalent to√

πn
2 , which is already in [?], and that the standard deviation is asymptotically

equivalent to
√

(4−π)n
2 . The result follows by Chebyshev’s inequality. ut

At this point, we know that with visible probability, the cyclic permutation
of the action of a is in Cycled(i) for i ∈ J

√
n, 2
√
nK. To complete the proof, we

need to verify that they are accessible (which is easy since large a-cycles are
generically accessible) and that they are sufficiently often u-primitive for the u
of Proposition 1.

5.3 Completing the proof

We will use the following lemma to establish the primitivity of the first d a-cycles:

Lemma 9. Let n ≥ 2 be an integer and let i ∈ J1, n − 1K. For the uniform
distribution on binary words of length n having i occurrences of the letter 0, the
probability that a word is not primitive is smaller than 2

n .

We therefore have two independent random sets, δ−1(f, u) and the union of
the first d a-cycles, and are interested in their intersection. The two following
lemmas establish that this intersection is not trivial with visible probability.
Together with Lemma 9, this will ensure that these a-cycles are u-primitive with
positive probability.

Lemma 10. Let α and β be two positive real numbers. Let X be a subset of [n]
of size dα

√
ne and let Y be a uniform random subset of [n] of size dβ

√
ne. For

every integer j ≥ 0, there exists a positive constant Mj such that |X ∩ Y | = j
with probability at least Mj, for n sufficiently large.

Lemma 11. Let α be a positive real number. Let X be a subset of [n] of size
m = dα

√
ne and let Y be a uniform random subset of [n] of size m′ with 1 ≤

m′ < n
2 . The probability that X ⊆ Y is smaller than B

√
n2−α

√
n for some

positive constant B and for n sufficiently large.

We can now establish the proof of Theorem 3 for automata with one final state
as follows. For every x ∈ J

√
n, 2
√
nK, let E(x) denote the set of mappings of size

n whose cyclic part σ has size x and belongs to Cycled(x). By Lemma 8 and
Lemma 7, a random mapping is in ∪x∈J

√
n,2
√
nKE(x) with visible probability.
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Let us fix some mapping fa of E(x) for the action of a, and let σa be its cyclic

part. Let S1, S2, . . . , Sd be arbitrary subsets of size m = d
√
n

3d e of the first d cycles
of σa, and let S = ∪di=1Si. Since the actions of b and c are independent of the
action of a, by Proposition 2 there exists a word u such that Y = δ−1(f, u) has
size in Jw

√
n,w
√
n log nK with positive probability. Let Y ′ be a uniform subset of

Y of size y = dw
√
ne. By symmetry, the set Y ′ is a uniform random subset of size

y of [n]. Therefore by Lemma 10, with positive probability we have |S ∩Y ′| = d,
and a direct computation shows that this implies that, with positive probability,
|Si ∩ Y ′| = 1 for every i ∈ [d]. Moreover, since |Y | ≤ n

2 , by Lemma 11, the

probability that at least one Si is a subset of Y is smaller than dB
√
n2−

√
n.

Hence, with visible probability, the intersection of Y and Si is non-trivial for
every i ∈ [d], and so is the intersection of Y and the first d cycles of σa (since
they contain Si). Hence, by Lemma 9, there exists a constant M > 0 such that
the first d cycles are u-primitive with probability at least M for n sufficiently
large; and importantly, the value of M is the same for any x ∈ J

√
n, 2
√
nK and

any y ∈ Jw
√
n,w
√
n log nK. Therefore, if we sum the contributions for all x and y

with the good properties, we get that with visible probability the first d a-cycles
are u-primitive (for some word u) and therefore that the lcm of their lengths is
at least λnd/2.

But the first d a-cycle have lengths greater than
√
n

2d and are therefore generi-
cally accessible (this is Proposition 1 of [?]). This concludes the proof by Lemma 2:
by choosing d = 2d′+1 there are more than nd

′
states in the first determinization

step of Brzozowski’s algorithm with visible probability. ut

6 General case

The proof for a general distribution with a small number of final states is not
difficult once we have establish the result for the uniform distribution on au-
tomata with one final state. We consider two cases depending on whether the
automaton has between 1 and w

√
n final states or between w

√
n and n

2 final
states.

For the first case, we select one of the final states f and apply the same
construction as in Section 5. With visible probability, we therefore obtain a
word u such that δ−1(f, u) has size at least w

√
n, and therefore δ−1(f, u) also

has size at least w
√
n. Hence, by Lemma 3, there generically exists a prefix u′

of u such that δ−1(f, u) ∈ Jw
√
n,w
√
n log nK, and we can continue the proof as

in Section 5.
The second case is easier. We do not need to build the word u since F

is already large enough to apply Lemma 10 and still small enough to apply
Lemma 11. The general statement of Theorem 3 follows. ut

A natural question is whether the average super-polynomial complexity of
Brzozowski’s algorithm still holds for alphabets with two letters. The proof of this
paper relies on the fact that we built u ∈ {b, c}∗ and the a-cycles independently,
so that we can apply Lemma 9, Lemma 10 and Lemma 11. If u uses the letter a,
we need a more complicated proof that takes the dependency into account, which

11



is usually difficult. Thereforem the best way is probably to find a completely
different approach.
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