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Blind Separation of Underdetermined Convolutive
Mixtures using their Time-Frequency Representation

Abdeldjalil Aı̈ssa-El-Bey, Karim Abed-Meraim and Yves Grenier

Abstract— This paper considers the blind separation of nonsta-
tionary sources in the underdetermined convolutive mixture case.
We introduce, two methods based on the sparsity assumption of
the sources in the time-frequency (TF) domain. The first one
assumes that the sources are disjoint in the TF domain; i.e.
there is at most one source signal present at a given point in the
TF domain. In the second method, we relax this assumption by
allowing the sources to be TF-nondisjoint to a certain extent. In
particular, the number of sources present (active) at a TF point
should be strictly less than the number of sensors. In that case,
the separation can be achieved thanks to subspace projection
which allows us to identify the active sources and to estimate
their corresponding time-frequency distribution (TFD) values.
Another contribution of this paper is a new estimation procedure
for the mixing channel in the underdetermined case. Finally,
numerical performance evaluations and comparisons of the
proposed methods are provided highlighting their effectiveness.

Index Terms— blind source separation, underdeter-
mined/overcomplete representation, vector clustering, subspace
projection, speech signals, convolutive mixture, time-frequency
distribution, sparse signal decomposition/representation.

I. INTRODUCTION

THE OBJECTIVE of blind source separation (BSS) is to
extract the original source signals from their mixtures

and possibly to estimate the unknown mixing channel using
only the information of the observed signal with no, or very
limited, knowledge about the source signals and the mixing
channel. The BSS problem arises in many fields of study
including speech processing, data communication, biomedical
signal processing, etc [1]. Most approaches to blind source
separation assume the sources are statistically independent
and thus are often seek solutions of separation criteria using
higher-order statistical information [2] or using only second
order statistical information in the case where the sources have
temporal coherency [3], are nonstationary [4], or eventually are
cyclostationary [5].

Although the plethora of existing BSS algorithms, the un-
derdetermined case (UBSS for underdetermined blind source
separation) where the number of sources is greater than
the number of sensors remains relatively poorly treated es-
pecially in the convolutive case, and its resolution is one
of the challenging problems of blind source separation. In
the instantaneous mixture case, some methods exploiting the
sparseness of the sources in certain transform domain have
been proposed for UBSS [6]–[10]. Other methods consider
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similarly underdetermined mixtures of delayed sources [11],
[12]. All these methods proceed ’roughly’ as follows: The
mixtures are first transformed to an appropriate representation
domain; the transformed sources are then estimated using their
sparseness, and finally one recovers their time waveforms by
source synthesis (for more information, see the recent survey
work [13]).

The UBSS methods for nonstationary sources have been
proposed, given that these sources are sparse in the time-
frequency (TF) domain [7], [11]. The first method uses time-
frequency distributions (TFDs), whereas the second one uses
a linear TFD. The main assumption used in these methods
is that the sources are TF-disjoint. In other words, there is
at most one source present at any point in the TF domain.
This assumption is rather restrictive, though the methods have
also showed that they worked well under a quasi sparseness
condition, i.e. sources are TF-almost-disjoint.

In this paper, we focus on the UBSS in convolutive mixtures
case and target the relaxation of the TF-disjoint condition by
allowing the sources to be nondisjoint in the TF domain;
that is, multiple sources are possibly present at any point
in the TF domain. This case has been considered in [8]
for the separation of instantaneous mixtures, in [12] for the
deconvolution of single-path channels with non-zero delays,
in [14] where a priori information about the location of the
considered sources as well as an approximation of the filter
impulse response are considered, and in [15] where binary
TF-masking (or directivity pattern based masking [16], [17])
and ICA technique are jointly used. In particular, we limit
ourselves to the scenario where the number of sources present
at any point is smaller than the number of sensors. Under
this assumption, the separation of TF-nondisjoint sources is
achieved thanks to subspace projection. Subspace projection
allows us to identify at any point the active sources, and then
to estimate their corresponding TFD values.

The main contribution of this paper consists in two new
algorithms for UBSS in the TF domain; the first one uses
vector clustering while the other uses subspace projection.
Another side contribution of the paper is an estimation method
for the mixing channel matrix.

The paper is organized as follows. Section II-A formulates
the UBSS problem, introduces the underlying TF tools, and
states some TF conditions necessary for the separation of
nonstationary sources in the TF domain. In Section III-A,
we propose a new method for the blind estimation of mixing
channel. Section III-B deals with the TF-disjoint sources. It
proposes a cluster-based TF-CUBSS (Time-frequency con-
volutive underdetermined blind source separation) algorithm.
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Section III-C proposes the subspace-based TF-CUBSS al-
gorithm for TF-nondisjoint sources. Some comments and
remarks on the proposed methods are provided in Section IV.
Finally, the performance of the above methods are numerically
evaluated in Section V while Section VI is devoted for the
concluding remarks.

II. PROBLEM FORMULATION

A. Data model

Let s1(t), . . . , sN (t) be the desired sources to be recovered
from the convolutive mixtures x1(t), . . . , xM (t) given by:

x(t) =
K∑

k=0

H(k)s(t− k) + η(t) (1)

where s(t) = [s1(t), . . . , sN (t)]T is the source vector with
the superscript T denoting the transpose operation, x(t) =
[x1(t), . . . , xM (t)]T is the mixture vector, η(t) is the obser-
vation noise, and H(k) def= [h1(k), . . . ,hN (k)] are M × N
matrices for k ∈ [0,K] representing the impulse response
coefficients of the channel that satisfies:

Assumption 1: The channel is such that each column vec-
tor of

H(z) def=
K∑

k=0

H(k)z−k def= [h1(z), . . . ,hN (z)]

is irreducible, i.e. the entries of hi(z) denoted hij(z), j =
1, . . . ,M , have no-common zeros ∀i. Moreover, any M col-
umn vectors of H(z) form a polynomial matrix H̃(z) that it
full rank over the unit-circle, i.e. rank(H̃(f)) = M ∀f .

The sources are nonstationary, that is their frequency spectra
vary in time. Often, nonstationarity gives rise to more difficul-
ties in a problem, however, in this case it actually offers certain
diversity that allows us to achieve the BSS without using
higher-order approaches by directly exploiting the additional
information of this TF diversity across the spectra [4]. In that
case, we often use the powerful tool of time-frequency signal
analysis which basic concept is introduced next.

B. Time-frequency distributions

TF signal processing provides effective tools for analyzing
nonstationary signals, whose frequency content varies in time.
This concept is a natural extension of both the time domain and
the frequency domain processing that involves representing
signals in a two-dimensional space, the joint TF domain,
hence providing a distribution of signal energy versus time and
frequency simultaneously. For this reason, a TF representation
is commonly referred to as a time-frequency distribution
(TFD).

Well-known TFD1 and most used in practice is the short-
time Fourier transform (STFT):

Sx(t, f) ,
∫ ∞

−∞
x(τ)w(τ − t) e−j2πfτdτ, (2)

1In fact, the STFT does not represent an energy distribution of the signal
in the TF plane. However, for simplicity, we still refer to it as a TFD.

where w(t) is a windowing function and x(t) a given non-
stationary signal. Note that the STFT is a linear TFD and
thus has the advantage of simplicity compared to other non-
linear (quadratic) TFDs, e.g. Wigner-Ville and Cohen’s class
distributions [18].

C. TF conditions on the sources

In order to deal with UBSS, one often seeks for a sparse
representation of the sources [6]. In other words, if the
sources can be sparsely represented in some domain, then their
separation can be carried out in that domain by exploiting their
sparseness.

1) TF-disjoint sources: Recently, there have been several
UBSS methods, notably those in [7] and [11], in which the
TF domain has been chosen to be the underlaying sparse
domain. These two papers have based their solutions on the
assumption that the sources are disjoint in the TF domain.
Mathematically, if Ω1 and Ω2 are the TF supports of two
sources s1(t) and s2(t) then the sources are said TF-disjoint
if Ω1 ∩ Ω2 = ∅. However, this is a rather strict assumption.
A more practical assumption is that the sources are almost-
disjoint in the TF domain [7], allowing some small overlapping
in the TF domain, for which the above two methods (in [7]
and [11]) also worked.

2) TF-nondisjoint sources: In this paper, we want to re-
lax the TF-disjoint condition by allowing the sources to be
nondisjoint in the TF domain.

This is motivated by a drawback of the methods in [7],
[11]. Although these methods worked under the TF-almost-
disjoint condition, they did not explicitly treat the TF regions
(points) where the sources were overlapping. A point at the
overlapping of two sources was assigned ‘by chance’ to belong
to only one of the sources. As a result, the source that
picks up this point will have some information of the other
source while the latter loses some information of its own.
The loss of information can be recovered to some extent by
the interpolation at the intersection point using TF synthesis.
However, for the other source, there is an interference at this
point, hence the separation performance may degrade if no
treatment is provided. If the number of overlapping points
increases (i.e. the TF-almost-disjoint condition is violated), the
performance of the separation is expected to degrade unless
the overlapping points are properly treated.

This paper will give such a treatment using subspace pro-
jection. Therefore, we will allow the sources to be nondisjoint
in the TF domain; that is, multiple sources are allowed to be
present at any point in the TF domain. However, instead of
being inevitably nondisjoint, we limit ourselves by making the
following constraint:

Assumption 2: The number of active sources (i.e. sources
that overlap) at any TF point is strictly less than the number
of sensors.
In other words, for the configuration of M sensors, there exists
at most (M − 1) sources at any point in the TF domain. For
the special case when M = 2, Assumption 2 reduces to the
disjoint condition.
Note that in [15]–[17], the case of M overlapping sources has
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been treated thanks to additional strong assumptions that we
do not consider in our work. More specifically, the channels
are assumed to be of single-path with a given direction of
arrival, and the sources are such that one of them is present
alone at certain time instant and can be removed by binary
masking.

III. TF-CUBSS ALGORITHM

In order to solve the UBSS problem in the convolutive
case, we propose to identify first the impulse response of
the channels (see the algorithm’s diagram in Figure 1). This
problem in overdetermined case is very difficult and becomes
almost impossible in the underdetermined case without side
information on the considered sources. In this work and
similarly to [19], we exploit the sparseness property of the
audio sources by assuming that from time to time only one
source is present. In other words, we consider the following
assumption:

x2(t)

x1(t)

xM(t)

STFT ISTFT

FT

Short-Time

Fourrier

Transform

Short-Time

Fourrier

Transform

Inverse

Fourrier
Transform

UBSS

Algorithm

Channel

Identification

s (t)1

s (t)2

s (t)N

Fig. 1. Diagram of proposed TF-CUBSS algorithm combining channel
identification and UBSS technique in TF domain.

Assumption 3: There exists, periodically, time intervals
where only one source is present in the mixture. This occurs
for all source signals of the considered mixtures (see Figure 2).
To detect these time intervals, we propose to use information-
criteria based testing for the estimation of the number of
sources present in the signal (see Section III-A for more
details).

A. Channel estimation

Based on assumption 3, we propose here to apply SIMO
(Single Input Multiple Output) based techniques to blindly
estimate the channel impulse response. Regarding the problem
at hand, we have to solve 3 different problems: first, we have to
select time intervals where only one source signal is effectively
present; then, for each selected time interval one should apply
an appropriate blind SIMO identification technique to estimate
the channel parameters; finally, the way we proceed, the same
channel may be estimated several times and hence one has to
group together (cluster) the channel estimates into N classes
corresponding to the N source channels.
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Fig. 2. Time representation of 4 audio sources: this representation illustrates
the audio signal sparsity (i.e. there exists time intervals where only one source
is present).

1) Source number estimation: Let define the spatio-
temporal vector:

xd(t) = [xT (t), . . . ,xT (t− d + 1)]T =
N∑

k=1

Hksk(t) + ηd(t),

(3)
where Hk are block-Sylvester matrices of size dM×(d+K):

Hk =



hk(0) · · · hk(K) 0

. . . . . .
0 hk(0) · · · hk(K)




sk(t) def= [sk(t), . . . , sk(t − K − d + 1)]T and d is a chosen
processing window size. Under the no-common zeros assump-
tion (Assumption 1) and for large window sizes (see [20] for
more details), matrices Hk are full column rank.

Hence, in the noiseless case, the rank of the data covariance
matrix R def= E[xd(t)xH

d (t)] is equal to min(p(d + K), dM)
where p is the number of sources present in the considered
time interval over which the covariance matrix is estimated.
In particular, for p = 1, one has the minimum rank value equal
to (d + K).
Therefore, our approach consists in estimating the rank of the
sample averaged covariance matrix R over several time slots
(intervals) and select those corresponding to the smallest rank
value r = d + K.
In the case where p sources are active (present) in the
considered time slot, the rank would be r = p(d + K) and
hence p can be estimated by the closest integer value to r

d+K .
The estimation of the rank value is done here by Akaike’s
criterion [20] according to:

r = arg min
k

2
66664
−2 log

0
BBB@

MdQ
i=k+1

λ
1/(Md−k)
i

1
Md−k

MdP
i=k+1

λi

1
CCCA

(Md−k)Ts

+ 2k(2Md− k)

3
77775

,

(4)
where λ1 ≥ . . . ≥ λMd represent the eigenvalues of R and

Ts is the time slot size. This criterion represents the maximum
likelihood estimate of the system parameters (given here by the



4 ACCEPTED TO IEEE TRANSACTIONS ON AUDIO, SPEECH & LANGUAGE PROCESSING, JANUARY 31, 2007

signal eigenvectors and eigenvalues of the covariance matrix)
penalized by the number of free adjusted parameters under
the asymptotic Gaussian distribution of the latter (see [20] for
more details).

Note that it is not necessary at this stage, to know exactly
the channel degree K as long as d > K (i.e. an over-estimation
of the channel degree is sufficient) in which case the presence
of one signal source is characterized by:

d < r < 2d .

Figure 3 illustrates the effectiveness of the proposed method
where a recording of 6 seconds of M = 3 convolutive mixtures
of N = 4 sources is considered. The sampling frequency
is 8 KHz and the time slot size is Ts = 200 samples. The
sources consist of 3 speech signals corresponding to 2 men
and 1 woman plus a guitar signal. The convolutive channel is
of order K = 6 and its coefficients are generated randomly
using Gaussian law. One can observe that the case p = 1 (one
signal source) occurs approximatively 10% of the time in the
considered context.
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Fig. 3. Histogram representing the number of time intervals for each
estimated number of sources for 4 audio sources and 3 sensors in convolutive
mixture case.

2) Blind channel identification: To perform the blind chan-
nel identification, we have used in this paper the Cross-
Relation (CR) technique described in [21], [22]. Consider a
time interval where we have only the source si present. In this
case, we can consider a SIMO system of M outputs given by:

x(t) =
K∑

k=0

hi(k)si(t− k) + η(t), (5)

where hi(k) = [hi1(k) . . . hiM (k)]T , k = 0, · · · ,K.
From (5), the noise-free outputs xj(k), 1 ≤ j ≤ M are given
by:

xj(k) = hij(k) ∗ si(k), 1 ≤ j ≤ M, (6)

where ”∗” denotes the convolution. Using commutativity of
convolution, it follows:

hil(k) ∗ xj(k) = hij(k) ∗ xl(k), 1 ≤ j 6= l ≤ M. (7)

This is a linear equation satisfied by every pair of channels.
It was shown that reciprocally, the previous M(M − 1)/2
cross-relations characterize uniquely the channel parameters.
We have the following theorem [21]:

Theorem 1: Under the no-common zeros assumption (As-
sumption 1), the set of cross-relations (in the noise free case):

xl(k) ∗ h′j(k)− xj(k) ∗ h′l(k) = 0, 1 ≤ l < j ≤ M, (8)

where h′(z) = [h′1(z) . . . h′M (z)]T is a M × 1 polynomial
vector of degree K, is satisfied if and only if h′(z) = αhi(z)
for a given scalar constant α.
By collecting all possible pairs of M channels, one can easily
establish a set of linear equations. In matrix form, this set of
equations can be expressed as:

X Mhi = 0, (9)

where hi
def= [hi1(0) . . . hi1(K), . . . , hiM (0) . . . hiM (K)]T

and X M is defined by:

X 2 = [X (2), −X (1)],

X n =




X n−1 0
X (n) 0 −X (1)

. . .
...

0 X (n) −X (n−1)


 ,

(10)

with n = 3, . . . , M and:

X (n) =




xn(K) . . . xn(0)
...

...
xn(Ts − 1) . . . xn(Ts −K − 1)


 . (11)

In the presence of noise, equation (9) can be naturally solved
in the least-squares (LS) sense according to:

ĥCR = arg min
‖hi‖=1

hH
i X H

MX Mhi (12)

which solution is given by the least unit-norm eigenvector of
matrix X H

MX M . It is shown in [21] that the noise term in
the quadratic form (12) has a mean value proportional to the
identity matrix. Consequently, the channel estimates remains
unbiased under white additional noise assumption.

Remark: We have presented here a basic version of the CR
method. In [23] an improved version of the method (introduced
in the adaptive scheme) is proposed exploiting the quasi-sparse
nature of acoustic impulse responses. Other channel estimation
techniques in the overcomplete case, e.g. [24], can be used as
well at this stage.

3) Clustering of channel vector estimates: The first step of
our channel estimation method consists in detecting the time
slots where only one single source signal is ’effectively’
present. However, the same source signal si may be present
in several time intervals (see Figure 2 and Figure 3) leading
to several estimates of the same channel vector hi.
We end up, finally, with several estimates of each source
channel that we need to group together into N classes. This
is done by clustering the estimated vectors using k-means
algorithm [25]. The ith channel estimate is evaluated as the
centroid of the ith class.
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TABLE I
CLUSTER-BASED TF-CUBSS ALGORITHM USING STFT

1) Channel estimation; AIC criterion [20] to detect the number
of source, then application of the blind identification algorithm
in [21], [22] followed by vector clustering.

2) Mixture STFT computation by (15) and noise thresholding
by (16)

3) Vector clustering by (17) and (18).
4) Source STFT estimation by (19).
5) Source TF synthesis by [27].

B. UBSS algorithm with TF-disjoint assumption

As we have seen before, the STFT is often used for
speech/audio signals because of its low computational cost.
Therefore, in this section we propose a new cluster-based TF-
CUBSS algorithm using the STFT for convolutive mixture
case. Note that the STFT is a particular form of wavelet
transforms which have been used in [26] for the UBSS of
image signals.

After transformation into the TF domain using the STFT,
the model in (1) becomes (in the noiseless case):

Sx(t, f) = H(f)Ss(t, f), (13)

where Sx(t, f) is the mixture STFT vector, Ss(t, f) is the
source STFT vector and H(f) = [h1(f) . . .hN (f)] is the
channel Fourier Transform matrix. Under the assumption that
all sources are disjoint in the TF domain, (13) reduces to

Sx(t, f) = hi(f)Ssi(t, f), ∀(t, f) ∈ Ωi, ∀i ∈ N , (14)

where N = {1, . . . , N} and Ωi is the TF support of the ith

source.
Consequently, two TF points (t1, f1) and (t2, f2) belonging to
the same region Ωi (i.e. corresponding to the source signal si)
are ’associated’ with the same channel hi. It is this observation
that is used to derive the separation algorithm summarized in
Table I and detailed next.

First, we compute the STFT of the mixtures, Sx(t, f), by
applying (2) for each of the mixture in x(t), as follows:

Sxi(t, f) =
m=(L−1)/2−1∑

m=−(L−1)/2

w(t−m)xi(m)e−j2πfm, i = 1, . . . ,M,

(15a)

Sx(t, f) = [Sx1(t, f), . . . ,SxM
(t, f)]T . (15b)

where w(t) is a chosen window (in our simulations we chose
Hamming window) of length L.
Then, we apply a noise thresholding procedure which mitigates
the noise effect and reduces the computational cost as only
the selected TF points are further treated by our algorithm.
In particular, for each frequency f0, we apply the following
criterion for all the time points tk belonging to the frequency-
slice (t, f0)

If
‖Sx(tk, f0)‖

maxt {‖Sx(t, f0)‖} > ε1, then keep (tk, f0), (16)

where ε1 is a small threshold (typically, ε1 = 0.01). Then, the
set of all selected points, Ω, is expressed by Ω =

⋃N
i=1 Ωi,

where Ωi is the TF support of the source si(t). Note that,
the effects of spreading the noise energy while localizing the
source energy in the time-frequency domain amounts to in-
creasing the robustness of the proposed method with respect to
noise (see Part IV of [18]). Hence, by equation (16), we would
keep only time-frequency points where the signal energy is
non-negligible, the other time-frequency points are rejected,
i.e. not further processed, since considered to represent noise
contribution only. Also, due to the noise energy spreading, the
contribution of the noise in the source time-frequency points
is relatively, negligible at least for moderate and high SNRs.
On the other hand, note that the noise thresholding as well as
TF masking induce non-linear distortion in the reconstructed
signal. Now, how this distortion affects the source estimates
is an open problem that still raises many questioning and
research works including those which try to mitigate this
distortion in the TF domain, e.g. [28].

After noise thresholding, the clustering procedure can be
done as follows: For each TF point, we obtain the spatial
direction vectors by:

v(t, f) =
Sx(t, f)
‖Sx(t, f)‖ , (t, f) ∈ Ω, (17)

and force them, without loss of generality, to have the first
entry real and positive.

Next, we cluster these vectors into N classes {Ci | i ∈ N}
by minimizing the criterion:

v(t, f) ∈ Ci ⇐⇒ i = arg min
k

∥∥∥∥∥v(t, f)− ĥk(f)e−jθk

‖ĥk(f)‖

∥∥∥∥∥

2

(18)
where ĥk(f) is the Fourier Transform of the kth channel
vector estimate (given by (12) and the proposed clustering
procedure) and θk is the phase argument of ĥk1(f) (this is to
force the first entry to be real positive). The collection of all
points, whose vectors belong to the class Ci, now forms the
TF support Ωi of the source si(t).

Therefore, we can estimate the STFT of each source si(t)
by:

Ŝsi(t, f) =

{ bhH
i (f)

‖bhi(f)‖2Sx(t, f), ∀ (t, f) ∈ Ωi,

0, otherwise,
(19)

since, from (14), we have
bhH

i (f)

‖bhi(f)‖2
Sx(t, f) =

bhH
i (f)hi(f)

‖bhi(f)‖2
Ssi (t, f) ≈ Ssi (t, f), ∀ (t, f) ∈ Ωi.

C. UBSS algorithm with TF-nondisjoint assumption

We have seen the cluster-based TF-CUBSS methods, using
the STFT, as summarized in Table I. This method relies on
the assumption that the sources were TF-disjoint, which led to
the TF-transformed structure in (14). The latter is no longer
valid, when the sources are nondisjoint in the TF domain.

Under the TF-nondisjoint condition, stated in Assumption 2,
we propose in this section an alternative method using sub-
space projection.
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Recall that the first two steps of the cluster-based quadratic
TF-CUBSS algorithm do not rely on the assumption of TF-
disjoint sources (see Table I). Therefore, we can reuse these
steps to obtain the channel estimation and all the TF points of
Ω. Under the TF-nondisjoint condition, consider a TF point
(t, f) ∈ Ω at which there are J sources sα1(t), . . . , sαJ (t)
present, with J < M where α1, . . . , αJ ∈ N denote the
indices of the sources present at (t, f). Our goal is to identify
the sources that are present at (t, f), i.e. α1, . . . , αJ , and to
estimate the STFT of each of these contributing sources.

We define the following:

s̃ = [sα1(t), . . . , sαJ (t)]T , (20a)

H̃α(f) = [hα1(f), . . . ,hαJ (f)]. (20b)

Then, (13) is reduced to the following

Sx(t, f) = H̃α(f)Ss̃(t, f). (21)

Let H̃β(f) = [hβ1(f), . . . ,hβJ (f)] and Qβ(f) be the or-
thogonal projection matrix onto the noise subspace of H̃β(f)
expressed by:

Qβ(f) = I− H̃β(f)
(
H̃H

β (f)H̃β(f)
)−1

H̃H
β (f). (22)

We have the following observation:
{

Qβ(f)hi(f) = 0, i ∈ {β1, . . . , βJ }
Qβ(f)hi(f) 6= 0, i ∈ N\{β1, . . . , βJ }

. (23)

Consequently, as Sx(t, f) ∈ Range{H̃α(f)}, we have
{

Qβ(f)Sx(t, f) = 0, if {β1, . . . , βJ } = {α1, . . . , αJ }
Qβ(f)Sx(t, f) 6= 0, otherwise

.

(24)
If H(f) has already been estimated by the method presented

in Section III-A, then this observation gives us the criterion
to detect the indices α1, . . . , αJ ; and hence, the contributing
sources at the considered TF point. In practice, to take into
account noise, one detects the column vectors of H̃α(f) by
minimizing:

{α1, . . . , αJ } = arg min
β1,...,βJ

{‖Qβ(f)Sx(t, f)‖} . (25)

Next, TFD values of the J sources at TF point (t, f) are
estimated by:

Ŝs̃(t, f) ≈ H̃#
α (f)Sx(t, f), (26)

where the superscript (#) represents the Moore-Penrose’s
pseudo-inversion operator.

In the simulation, the optimization problem of (25) is solved
using exhaustive search. This is computationally tractable for
small array sizes but would be prohibitive if M is very large.

Table II provides a summary of the subspace projection
based TF-CUBSS algorithm using STFT.

TABLE II
SUBSPACE-BASED TF-CUBSS ALGORITHM USING STFT

1) Channel estimation; AIC criterion [20] to detect the number
of source, then application of the blind identification algorithm
in [21], [22] followed by vector clustering.

2) STFT computation and noise thresholding.
3) For all selected TF points, detect the active sources by (22)

and (25).
4) Source STFT estimation by (26).
5) Source TF synthesis by [27].

IV. DISCUSSION

We discuss here certain points relative to the proposed TF-
CUBSS algorithms and their applications.

1) Number of sources: The number of sources N is assumed
known in the clustering method that we have used. However,
there exist clustering methods [25] which perform the class
estimation as well as the estimation of the number N . In our
simulation, we have observed that most of the time the number
of classes is overestimated, leading to poor source separation
quality. Hence, robust estimation of the number of sources in
the UBSS case remains a difficult open problem that deserves
particular attention in future works.

2) Number of overlapping sources: In the subspace-based
approach, it is also possible to consider a fixed (maximum)
value of J that is used for all TF points. Indeed, if the number
of overlapping sources is less than J , we would estimate
close-to-zero source STFT values. For example, if we assume
J = 2 sources are present at a given TF point while only one
source is effectively contributing, then we estimate one close-
to-zero source STFT value. This approach increases slightly
the estimation error of the source signals (especially at low
SNRs) but has the advantage of simplicity compared to using
information theoretic-based criteria for estimating the value of
J .

3) Separation quality versus number of sources: Although
we are in the underdetermined case, the number of sources N
should not exceed too much the number of sensors. Indeed,
when N increases, the level of source interference increases,
and hence, the source quasi-disjointness assumption is ill-
satisfied. Moreover, for a large number of sources, the likeli-
hood of having two closely spaced sources, i.e. such that the
spatial directions hi and hj are ‘close’ to linear dependency,
increases. In that case, vector clustering performance degrades
significantly. In brief, sparseness and spatial separation are the
two limiting factors against increasing the number of sources.

4) Overdetermined case: Our algorithm can be further
simplified in the overdetermined case where M ≥ N . In that
context, the algorithm can be reduced to the channel estimation
step, the STFT computation and noise thresholding then source
STFT estimation using the channel matrix pseudo-inversion at
each frequency:

Ŝs(t, f) = Ĥ#(f)Sx(t, f).

V. SIMULATION RESULTS

In the simulations, we have considered an array of M = 3
sensors, that receives signals from N = 4 independent audio
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sources (3 speech signals corresponding to 2 men and 1
woman plus a guitar signal). The filter coefficients are chosen
randomly and the channel order is K = 6. The sample size is
T = 8192 samples (corresponding approximately to 1 second
recording of speech signals sampled at 8 KHz). The separation
quality is measured by the normalized mean squares estimation
errors (NMSE) of the sources evaluated over Nr = 200
Monte-Carlo runs and defined as:

NMSEi
def=

1
Nr

Nr∑
r=1

min
α

(‖αŝi,r − si‖2
‖si‖2

)
(27)

NMSEi =
1

Nr

Nr∑
r=1

1−
(

ŝi,rsH
i

‖ŝi,r‖‖si‖
)2

(28)

NMSE =
1
N

N∑

i=1

NMSEi . (29)

where si
def= [si(0), . . . , si(T − 1)], ŝi,r (defined similarly)

represents the rth estimate of source si and α is a scalar
factor that compensate for the scale indeterminacy of the BSS
problem.

In Figure 4, the top four plots represent the TF represen-
tation of the original source signals, the middle three plots
represent the TF representation of the M mixture signals and
the bottom four plots represent the TF representation of the
source estimates by the subspace-based algorithm (Table II)
using STFT of length 1024. Figure 5 represents the same
disposition of signals but in the time domain.

In Figure 6, we compare the separation performance ob-
tained by the subspace-based algorithm with J = 2 and the
cluster-based algorithm (Table I). It is observed that subspace-
based algorithm provides much better separation results than
those obtained by the cluster-based algorithm. This is mainly
due to the high occurrence of overlapping sources in the TF
domain for this type of signals so that the ’TF-disjointness’
assumption used by the TF-CUBSS algorithm is poorly satis-
fied. This can be observed also from Figure 4, where we can
see that the TFD supports of the 4 audio sources are clearly
overlapping.

In Figure 7, we present the performance of channel identi-
fication obtained by using SIMO identification algorithm (in
this case we choose only the time intervals where only one
source is present using AIC criterion) with SIMO and MIMO
identification algorithms2 (in this case we choose the time
intervals where we are in the overdetermined case; i.e. where
p = 1 or p = 2). It is observed that SIMO based identifi-
cation provides better results than those obtained by SIMO
and MIMO identification algorithms. Indeed, the advantage
of considering overdetermined MIMO system identification
resides in the fact that the occurrence of MIMO (i.e. number of
time intervals where this situation occurs as shown in Figure 3)
is much higher than that of SIMO case. However, as we
observe it, this does not compensate for the higher estimation
error of MIMO systems compared to SIMO systems.

2For the identification of MIMO system, we have used the subspace
method [29] for the equalization step followed by SOBI algorithm [3] for
the separation step.

(a) Ss1 (t, f) (b) Ss2 (t, f)

(c) Ss3 (t, f) (d) Ss4 (t, f)

(e) Sx1 (t, f) (f) Sx2 (t, f) (g) Sx3 (t, f)

(h) Sŝ1 (t, f) (i) Sŝ2 (t, f)

(j) Sŝ3 (t, f) (k) Sŝ4 (t, f)

Fig. 4. Simulated example (viewed in TF domain) for the subspace-based
TF-CUBSS algorithm in the case of 4 speech sources and 3 sensors. The top
four plots represent the original source signals, the middle three plots represent
the 3 mixtures, and the bottom four plots represent the source estimates.

The plot in Figure 8 (respectively in Figure 9) presents
the separation performance when using the exact matrix H
compared to that obtained with the proposed estimate Ĥ
using the cluster-based method (respectively the subspace-
based method). The observed performance loss is due to the
channel estimation error which is relatively high for low SNRs
and becomes negligible for high SNRs.

In Figure 10, we compare the performance obtained with
the subspace-based method for J = 2 and J = 3. In that
experiment, we have used M = 4 sensors and N = 5 source
signals. One can observe that, for high SNRs, the case of
J = 3 leads to a better separation performance than for the
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Fig. 5. Simulated example (viewed in time domain) for the subspace-based
TF-CUBSS algorithm in the case of 4 speech sources and 3 sensors.
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Fig. 6. Comparison between subspace-based and cluster-based TF-CUBSS
algorithms : normalized MSE (NMSE) versus SNR for 4 speech sources and
3 sensors.
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Fig. 7. NMSE versus SNR for 4 audio sources and 3 sensors in convolutive
mixture case : comparison of the performance of identification algorithme
using only SIMO system and the algorithm using SIMO and MIMO system.
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Fig. 8. Comparison, for the cluster-based TF-CUBSS algorithm, when the
mixing channel H is known or unknown: NMSE of the source estimates.

case of J = 2. However, for low SNRs, a large value of J
increases the estimation noise (as mentioned in Section IV)
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Fig. 9. Comparison, for the subspace-based TF-CUBSS algorithm, when the
mixing channel H is known or unknown: NMSE of the source estimates.

and hence degrades the separation quality.
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Fig. 10. Comparison between subspace-based and cluster-based TF-CUBSS
algorithms: NMSE of the source estimates for different ranks of the projection
subspace, for the case of 5 sources and 4 sensors.

Figure 11 illustrates the rapid degradation of the separation
quality when we increase the number of sources from N = 4
to N = 7. This confirms the remarks made in Section IV.

Figure 12 illustrates the algorithm’s performance when we
consider long impulse response channels. More specifically,
the plots represent the separation performance for channels
of length 50, 100 and 200 respectively. The channel taps are
generated randomly using Gaussian law. We observe a slight
performance degradation when the channel order increases but
the separation quality remains quite good.

In Figure 13, we compare the separation performance of our
algorithm, Deville’s algorithm in [30] and Parra’s algorithm
in [31] in the overdetermined case of 2 sensors and 2 speech
signals of one man and one woman (selected among the four
previous sources). The algorithms in [30], [31] separate the
sources only up to an unknown filter and hence we use in
this experiment the interference to signal ratio (ISR) criterion
defined in [31] instead of the NMSE. We observe a significant
performance gain in favor of the proposed method especially
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Fig. 11. Comparison between subspace-based and cluster-based TF-CUBSS
algorithms: NMSE versus number of sources.
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Fig. 12. NMSE versus SNR for 4 audio sources and 3 sensors: Comparison,
for the subspace-based TF-CUBSS algorithm, for different filter size K.

at high SNR values. Moreover, our method has the following
advantages : (i) it can treat the underdetermined case, (ii) it
estimates the sources up to a constant not to an unknown filter
like in [30], [31], (iii) the proposed frame selection procedure
does not involve any thresholding (the choice of an appropriate
threshold value is a difficult problem as it is strongly dependent
on the context) or ad-hoc selection of frequency range like
in [30].

VI. CONCLUSION

This paper introduces new methods for the UBSS of TF-
disjoint and TF-nondisjoint nonstationary sources in the con-
volutive mixture case using their time-frequency representa-
tions. The first proposed method has the advantage of simplic-
ity while the second uses a weaker assumption on the source
‘sparseness’, i.e. the sources are not necessarily TF-disjoint,
and proposes an explicit treatment of the overlapping points
using subspace projection, leading to significant performance
improvements. Simulation results illustrate the effectiveness of
our algorithms in different scenarios.
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des Télécommunications (ENST), Paris, France, in
1992, the M.S. degree from Paris XI University,
Orsay, France, in 1992, and the Ph.D. degree from
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(ENST), Paris, France, in 1995 (in the field of
signal processing and communications). From 1995
to 1998, he was a research staff at the Electrical

Engineering Department of the University of Melbourne where he worked
on several research projects related to “blind system identification for wire-
less communications,” “blind source separation,” and “array processing for
communications,” respectively. He is currently an Associate Professor (since
1998) at the Signal and Image Processing Department of ENST. His research
interests are in signal processing for communications and include system
identification, multiuser detection, space-time coding, adaptive filtering and
tracking, array processing, and performance analysis. Dr. Abed-Meraim is an
IEEE Senior Member and a past Associate Editor for the IEEE Transactions
on Signal Processing.

Yves Grenier was born in Ham, Somme, France, in
1950. He received the Ingénieur degree from École
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