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We analyze the average complexity of Brzozowski’s minimization algorithm for distribu-

tions of deterministic automata with a small number of final states. We show that, as in
the case of the uniform distribution, the average complexity is super-polynomial even if

we consider random deterministic automata with only one final state. Such results were

only known for distributions where the expected number of final states was linear in the
number of states.
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1. Introduction

In this article we analyze the average case complexity of Brzozowski’s state min-

imization algorithm [3]. Recall that this method is based on the fact that deter-

minizing a trim co-deterministic automaton that recognizes a language L yields the

minimal automaton of L. Hence, starting from an automaton A that recognizes

the language L, one can compute its minimal automaton by first determinizing its

reversal, then by determinizing the reversal of the resulting automaton.

This elegant method is not efficient in the worst case, since the first deter-

minization can produce an automaton that has exponentially many states, even

if one starts with a deterministic automaton (see [8] for a classical example). We

are therefore far from the efficient solutions available to minimize deterministic

automata, such as Hopcroft’s algorithm [12], which runs in O(n log n) time.

In [8] we proved that for the uniform distribution on deterministic and com-

plete automata with n states, or for distributions where each state is final with

∗This work is supported by the French National Agency (ANR) through ANR-2010-BLAN-0204.
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(fixed) probability b ∈ (0, 1), the running time of Brzozowski’s algorithm is super-

polynomiala with high probability. For such distributions, on average, an asymp-

totically constant proportion of the states are final. In many situations, however,

the automata considered have few final states. Thus, a natural question is whether

this result still holds for automata with, for instance, a fixed number of final states.

This is the question we investigate in this article.

Our setting is defined precisely in Section 2.2. It covers the cases of random

automata with just one final state, with log n final states, or where each state is

final with probability 3
n or 2√

n
, and so on. It therefore differs significantly from the

cases studied in [8].

The analysis of distributions of automata with a small number of final states is

an active topic in the statistical study of automata (see [14] for a recent survey).

The main results in this field, the average complexity of Moore’s algorithm and the

asymptotic number of minimal automata, only hold for distributions of automata

with “sufficiently many” final states [1, 6, 2]. Efforts have been undertaken to extend

them to, say, automata with only one final state, but with no success so far. To our

knowledge, we present in this article the first result of this kind.

The paper is organized as follows. After recalling some basic notions and defining

our distributions on automata in Section 2, we state our main result in Section 3.

Our principal tool from automata theory is then presented in Section 4. Section 5

is devoted to the proof of our main theorem. Some further directions are finally

proposed in Section 6.

This article is the full version of the extended abstract [9], where all the missing

proofs have been included.

2. Definitions

Let [n] denote the set of integers between 1 and n. If x, y are two real numbers, let

Jx, yK denote the set of integers i such that x ≤ i ≤ y. For any positive integer n,

let Sn denote the set of all permutations on [n].

2.1. Automata

An automaton A is a tuple (A,Q, δ, I, F ), where A is its non-empty finite alphabet,

Q is its finite set of states, I ⊆ Q is its set of initial states and F ⊆ Q is its set

of final states. Its transition function δ is a (possibly partial) map from Q × A to

2Q. A transition of A is a tuple (p, a, q) ∈ Q× A×Q, which we write p
a−→ q, such

that q ∈ δ(p, a). The map δ is classically extended by morphism to Q × A∗. We

denote by L(A) the set of words recognized by A. A deterministic and complete

automaton is an automaton such that |I| = 1 and for every p ∈ Q and a ∈ A,

|δ(p, a)| = 1; for such an automaton, we consider δ as a total map from Q× A∗ to

aA sequence is super-polynomial when it grows faster than nγ , for any positive γ.
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Q to simplify the notation. A state q is accessible when there exists a path from an

initial state to q. It is co-accessible when there exists a path from q to a final state.

An automaton is trim when all its states are accessible and co-accessible. If A is an

automaton, let Trim(A) denote the automaton obtained after removing states that

are not accessible or not co-accessible.

For any automaton A = (A,Q, δ, I, F ), let Ã be the reverse of A. It is the

automaton Ã = (A,Q, δ̃, F, I), where p
a−→ q is a transition of Ã if and only if

q
a−→ p is a transition of A. The automaton Ã recognizes the reverseb of L(A). An

automaton is co-deterministic when its reverse is deterministic.

Recall that the minimal automaton of a rational language L is the smallest

deterministic and complete automatonc that recognizes L. To each rational language

L corresponds a minimal automaton, which is unique up to isomorphism. The state

complexity of a regular language is the number of states of its minimal automaton.

If A = (A,Q, δ, I, F ) is a non-deterministic automaton, the subset automaton

of A is the automaton B =
(
2Q, δ′, {I}, {X ∈ 2Q | F ∩X 6= ∅}

)
, where δ′(X, a) =

∪p∈Xδ(p, a), for every X ⊆ Q and every a ∈ A. It is a deterministic automaton that

recognizes the same language as A. This is still true if we only take the accessible

part of B. This accessible part can be built on the fly, using the rule for δ′ in any

traversal of B, starting from I. We denote by Subset(A) the accessible part of the

subset automaton of A.

In [3], Brzozowski established the following result:

Theorem 1 (Brzozowski) If A is a trim co-deterministic automaton then

Subset(A) is the minimal automaton of L(A).

This theorem readily yields an algorithm to compute the minimal automaton of

L(A), based on the subset construction: since B = Subset(Trim(Ã)) is a deter-

ministic automaton recognizing the reverse of L(A), then Subset(Trim(B̃)) is the

minimal automaton of L(A). This is known as Brzozowski’s minimization algorithm.

2.2. Probabilities on automata

A mapping of size n is a total function from [n] to [n]. A mapping f can be seen

as a directed graph with an edge i→ j whenever f(i) = j. Such a graph is a union

of cycles of Cayley trees (i.e., rooted labelled trees), as depicted in Fig. 1 (see [10]

for more information on this graph description). Let f be a mapping of size n. An

element x ∈ [n] is a cyclic point of f if there exists an integer i > 0 such that

f i(x) = x. The cyclic permutation of a mapping f is the permutation obtained

when restricting f to its set of cyclic points. The normalized cyclic permutation of

f is obtained by relabelling the c cyclic points of f with the elements of [c], while

bIf u = u0 · · ·un−1 is a word of length n, the reverse of u is the word ũ = un−1 · · ·u0.
cMinimal automata are not always required to be complete in the literature.
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Fig. 1. A mapping of size 17, on the left. On the upper right we have its normalized cyclic part,
and on the lower right its Cayley trees (not normalized).

keeping their relative orderd.

In the sequel, A is always a fixed alphabet with k ≥ 2 letters. Let An denote the

set of all deterministic and complete automata with input alphabet A whose set of

states is [n] and whose initial state is 1. Such an automaton A is characterized by

the tuple (n, δ, F ). A transition structure is an automaton without final states. Let

Tn denote the set of transition structures with n states and with the same rules

of labelling we used for An. If we want to specify the alphabet A, we write Tn(A)

instead of Tn. If A ∈ An and a ∈ A, an a-cycle of A is a cycle of the mapping

induced by a, i.e., p 7→ δ(p, a). A state of an a-cycle is called an a-cyclic state.

Let E be a set of combinatorial objects, equipped with a notion of size, such

that the subset En ⊆ E of elements of size n is finite for every n ≥ 0. The uniform

distribution (which is a slight abuse of notation since there is one distribution for

each n) on the set E is defined for any e ∈ En by Pn({e}) = 1
|En| . The reader

is referred to Part C of [11] for more information on combinatorial probabilistic

models.

Consider a (sequence of) distributions on E =
⋃
nEn. Let P be a property

defined on E. We say that P holds with high probability when a random object

from En has P with probability that tends to 1 as n tends to infinity. We say that

P is visible (or holds with visible probability) when there exists a constant C > 0

and an integer n0 such that for every n ≥ n0, a random element of En has P with

probability at least C.

For any given n, a distribution on the subsets of [n] is label-independent if any

two subsets of the same cardinality have the same probability.

We are interested in the distributions on An such that the transition structure

dThe notion of normalization will be used for other substructures, always for relabelling the atoms

with an initial segment of the positive integers, while keeping their relative order.
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is chosen uniformly in Tn, and the set of final state is chosen independently, using

a label-independent distribution. We call such distributions good. If furthermore

the number of final states is in J1, n2 K with visible probability, we say that the

distribution is a a good distribution with a small number of final states.

Natural examples of good distributions with a small number of final states are:

• The fixed-size distribution on An of parameter m, where the set of final

states is chosen uniformly amongst all subsets of size m of [n], for m ≤ n
2 .

The parameter m may depende on n; one can for instance consider the

fixed-size distribution of parameter b
√
nc.

• The p-distribution on An, where each state is final with probability p ≤ 1
2 ,

independently; in this model also, p may depend on n, for instance p = 2
n

yields automata with two final states on average.

Notice that for p = 1
2 , the p-distribution is the uniform distribution on An. The

results presented in this article therefore covers the uniform case. However, they are

weaker than those established in [9], which is dedicated to such distributions.

3. Main result

Our main result is the following:

Theorem 2. Let A be an alphabet with at least 3 letters. If A is a random deter-

ministic and complete automaton with n states following a good distribution with

a small number of final states, then, for any positive γ, the state complexity of the

reverse of L(A) is at least nγ with visible probability.

Compared to the main result of [8], we capture many more distributions on

automata, by weakening the statement: it does not hold with high probability but

with positive probability only, and we need an alphabet with at least three letters.

The result cannot hold with high probability: as proved in [4], there is a linear

number of states that are not accessible in a typical random automaton; thus for the

fixed size distribution with one final state, the final state has a positive probability

of not being accessible. The result may hold for binary alphabets, see Section 6

for a discussion on that point. Notice also that we slightly improved over [9] by

generalizing the possible distributions for the set of final states.

The average complexity of Brzozowski’s algorithm is a direct consequence of

Theorem 2.

Corollary 3. Let A be an alphabet with at least 3 letters. The average complexity

of Brzozowski’s algorithm is super-polynomial for good distributions with a small

number of final states.

eThe term “fixed” stands for: for any given n, the number of final states is fixed.
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Proof. For any γ > 0, the expected number of states after the first determinization

is at least nγ times the probability that an automaton has at least nγ states after the

first determinization. By Theorem 2, this probability is greater than some positive

constant C for n sufficiently large, concluding the proof.

4. A criterion to lower bound the state complexity of the reverse

Recall that An only contains automata that are deterministic and complete.

Let A = (n, δ, F ) be an automaton of An, let α ∈ A and let u ∈ A∗. We define

the u-word v ∈ {0, 1}` of an α-cycle C of length ` as follows. If x is the smallest

element of C, we set vi = 1 if and only if δ(x, αiu) ∈ F , for i ∈ {0, . . . , ` − 1}. In

other words, starting from x, we follow the cycle and record whether u maps each

state to a final state or not. The cycle C is u-primitive if its u-word v is a primitive

word (i.e., v cannot be written as v = wt for some word w and some t ≥ 2).

Lemma 4. Let α ∈ A and u ∈ A∗. Let A ∈ An be an automaton that contains m

distinct accessible u-primitive α-cycles C1, . . . , Cm of length at least two. Then the

state complexity of L(Ã) is at least lcm(|C1|, . . . , |Cm|).

Proof. Let A = (n, δ, F ). By Theorem 1, the minimal automaton of the reverse of

L(A) is obtained by determinizing the trim part of the reverse of A. Let F ′ ⊆ F be

the set of accessible final states, and let U = δ−1(F ′, u). The set F ′ is not empty

by hypothesis on the Ci’s. Clearly U is one of the states reached during the subset

construction applied to the trim part of the reverse of A. We now consider the sets

Ui = δ−1(U,αi), which are also reached during this subset construction.

Let C = ∪j∈[m]Cj and let σ be the permutation of C defined by σ(x) = y if and

only if δ(y, α) = x. This permutation is well defined, as every element of C has a

unique preimage by α that lies in C. Observe that Ui ∩ C = σi(U ∩ C).

We are interested in the natural action of 〈σ〉, the subgroup generated by σ,

on the subsets of C. Each Ci is stable by σ and since it is u-primitive, the or-

bit of U ∩ Ci under the action of 〈σ〉 has size |Ci|. Hence the orbit of U ∩ C
has size lcm(|C1|, . . . , |Cm|): the sets Ui ∩ C’s are pairwise distinct for 0 ≤ i ≤
lcm(|C1|, . . . , |Cm|)− 1, and so are the sets Ui’s.

Lemma 4 is the first ingredient of our proofs. This is a sufficient condition on

the combinatorial structure of an automaton that gives a lower bound on the state

complexity of its reverse language.

5. Proof of Theorem 2

In this section, we establish our main theorem. From now on, we are working with

the ternary alphabet A = {a, b, c}, as adding more letters just makes the problem

easier. The good distributions on An can be obtained by choosing independently the

actions of a, b and c, and then, independently, the set of final states. By definition,
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the actions of the letters are chosen uniformly at random in the set of all possible

mappings from [n] to [n]. As we shall see in the proof of Theorem 2, the action of a

is used to produce large cycles, while the actions of b and c are used to make these

cycles primitive and accessible.

5.1. The lcm of the first d cycles of a random permutation

In this section, we establish that if we take d cycles in a random permutation of

[m], the lcm of their length is in Θ(md) with visible probability.

If σ is a permutation of [m], its sequence of cycles is the ordered sequence of

its cycles (C1, C2, . . . , C`), where the cycles are ordered by their smallest element. If

(C1, C2, . . . , C`) is the sequence of cycles of σ and d ≤ `, the first d cycles of σ are

the cycles C1, C2, . . . , Cd. Let Ld(σ) = (|C1|, . . . , |Cd|) denote the lengths of the first

d cycles of σ, if σ has at least d cycles, and let Ld(σ) = ⊥ otherwise.

Lemma 5. Let d and m be two positive integers. Let (`1, . . . , `d) ∈ Jm3d ,
m
2dK

d.For

the uniform distribution on Sm and m sufficiently large we have:

P
(
Ld = (`1, . . . , `d)

)
≥ 1

md
.

Proof. Recall that the length of the first cycle of a random permutation of [m] is

uniformly distributed: for every j ∈ [m], the probability that it has length j is 1
m .

Conditioned by the size `1 of its first cycle, the remainder of the permutation is

a uniform permutation on a set of size m − `1. Hence, the probability that C2 has

length `2 given that C1 has length `1 is 1
m−`1 . Therefore, by direct induction, the

following equality holds for m sufficiently large:

P
(
Ld = (`1, . . . , `d)

)
=

1

m(m− `1)(m− `1 − `2) · · · (m− `1 − · · · − `d−1)
.

This yields the announced lower bound.

We now focus on the lcm of the lengths of the first d cycles of a random permu-

tation.

Proposition 6. Let (x1, . . . , xd) be a uniform element of Jm3d ,
m
2dK

d. There exists a

constant λ > 0 such that lcm(x1, . . . , xd) ≥ λmd with visible probability.

Proof. Let Im = Jm3d ,
m
2dK. We are interested in the uniform distribution on Idm, the

set of d-tuples of elements of Im.

For any p ≥ 2 one can prove by direct counting that the probability

Pm (p divides) that p divides a uniform random element of Im satisfies∣∣∣∣Pm (p divides)− 1

p

∣∣∣∣ ≤ 1

|Im|
. (1)
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Let Zm denote the random variable defined by on Idm by

Zm(x1, . . . , xd) =
∑

p divides at least one xi

log p,

where p range over the prime numbers smaller than or equal to |Im|. This random

variable can be decomposed into (dependent) random variables

Zm = X2,m + . . .+Xpm,m,

where pm is the greatest prime number smaller than or equal to m and

Xp,m(x1, . . . , xd) =

{
log p if p is prime and divides at least one xi,

0 otherwise.

By Equation (1), the probability that a prime number p divides at least one xi
satisfies

P (p divides at least one xi) = 1− P (p divide no xi)

= 1− (1− Pm (p divides))
d

≥ 1−
(

1− 1

p
+

1

|Im|

)d
.

For x ∈ [0, 1], we have (1− x)d ≤ 1− dx+ d(d−1)
2 x2, thus

P (p divides at least one xi) ≥
d

p
− d

|Im|
− d(d− 1)

2

(
1

p
− 1

|Im|

)2

≥ d

p
− d

|Im|
− d(d− 1)

2

1

p2
.

Hence, for p ≤ |Im| we have

E [Xp,m] ≥ d log p

p
− d log p

|Im|
+O

(
log p

p2

)
.

Thus, by linearity of the expectation

E [Zn] ≥
∑

p prime ≤|Im|

(
d log p

p
− d log p

|Im|
+O

(
log p

p2

))
.

The asymptotic of the first term is given by Mertens’ first theorem (see Section 1.4

of [15]): ∑
p prime ≤|Im|

d log p

p
= d log |Im|+O(1).

For the second term, we use the fact that the number of primes smaller than or

equal to x grows in x
log x , so that it is smaller than 2x

log x for x sufficiently large:∑
p prime ≤|Im|

log p ≤ 2
|Im|

log |Im|
log |Im| ≤ 2|Im|,
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which yields ∑
p prime ≤|Im|

d log p

|Im|
≤ 2d = O(1),

The third term is also in O(1) as the series converges. Hence we have

E [Zm] ≥ d log |Im|+O(1),

so that for some positive C and m sufficiently large, we have exp(E [Zm]) ≥ C ·md.

Since the function x 7→ exp(x) is convex, Jensen’s inequality applies and we

have exp(E [Zm]) ≤ E [exp(Zm)]. Moreover,

exp (Zm(x1, . . . , xd)) = exp
( ∑
p divides at
least one xi

log p
)

=
∏

p divides at
least one xi

p ≤ lcm(x1, . . . , xd).

And therefore, E [lcm(x1, . . . , xd)] ≥ C ·md.

We can now conclude the proof, writing “lcm” for lcm(x1, . . . , xd) to simplify

the notations:

E [lcm] ≤ P
(

lcm ≤ 1

2
Cmd

)
· 1

2
Cmd + P

(
lcm >

1

2
Cmd

)
·md

≤ 1

2
Cmd + P

(
lcm >

1

2
Cmd

)
·md.

And thus

P
(

lcm(x1, . . . , xd) >
1

2
Cnd

)
≥ 1

2
C,

yielding the announced statement by setting λ = 1
2C.

Let Cycled(m) denote the set of permutations σ of Sm such that Ld(σ) ∈
Jm3d ,

m
2dK

d and lcm(`1, . . . , `d) ≥ λmd, with Ld(σ) = (`1, . . . , `d). We use the λ of

Proposition 6.

If σ is a random permutation conditioned by Ld(σ) ∈ J n3d ,
n
2dK

d, the vector

Ld(σ) is not uniformly distributed in Jm3d ,
m
2dK

d. However, we can control the lack

of uniformity and use Proposition 6 to obtain sufficiently many permutations such

that the lcm of their first d cycles is sufficiently large.

Lemma 7. For any positive integer d, a uniform random permutation of [m] is in

Cycled(m) with visible probability.

Proof. Let Ed(m) denote the set of elements (`1, . . . , `d) ∈ Jm3d ,
m
2dK

d such that

we have lcm(`1, . . . , `d) ≥ λmd. By Proposition 6, there exists C > 0 such that

|Ed(m)| ≥ C
∣∣Jm3d , m2dKd∣∣ for m sufficiently large. Hence, by Lemma 5,

P(Cycled(m)) =
∑

(`1,...,`d)∈Ed(m)

P
(
Ld = (`1, . . . , `d)

)
≥ |Ed(m)|

md
≥ C

∣∣Jm3d , m2dK∣∣d
md

.

This conclude the proof, as 1
m

∣∣Jm3d , m2dK∣∣ tends to 1
6d .
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5.2. Some properties of random mappings

In this section we establish two different properties of random mappings. By first

working on the cyclic part of the random mapping associated with the action of a,

we exhibit some a-cycles such that the lcm of their lengths is sufficiently large (using

the results of Section 5.1). Next, we focus on the largest tree in the decomposition

of the action of b; this will be needed to prove that the a-cycles we obtained are

primitive sufficiently often, which is required in order to apply Lemma 4.

5.2.1. Some properties of the cyclic part of a random mapping

We first use classical techniques of analytic combinatorics to obtain some informa-

tion on the size of the cyclic part of a random mapping.

Lemma 8. The cyclic part of a uniform random mapping of size n has size in

J
√
n, 2
√
nK with visible probability.

Proof. Let Cn denote the random variable that counts the number of cyclic points

in a mapping of size n. Classically, the exponential bivariate generating function of

mappings where cycles are marked is (see [11]):

M(z, u) :=
∑
n,k

mn,k

n!
znuk =

1

1− uT (z)
, with T (z) = z exp(T (z)),

where mn,k is the number of size n mappings with k cycles and T (z) is the exponen-

tial generating function of (rooted) Cayley trees. From [10], the unique dominant

singularity of T (z) is ρ := e−1 and near ρ the following development holds:

T (z) = 1−
√

2
√

1− ez + o
(√

1− ez
)
.

To obtain the expected number of cycles, we compute the derivative of M(z, u) with

respect to u:

d

du
M(z, u)

∣∣∣
u=1

=
T (z)

(1− T (z))
2 =

1

2(1− ez)
+ o

(
1

1− ez

)
.

If [zn]A(z) denote the n-th coefficient of the series A(z), the Transfer Theorem

(Corollary VI.1 p. 392 of [11]) yields, using the notation M(z) = M(z, 1),

[zn]
d

du
M(z, u)

∣∣∣
u=1
∼ en

2
and [zn]M(z) ∼ en√

2πn
.

Thus, the expected number of cyclic points satisfies:

E[Cn] =
[zn] dduM(z, u)

∣∣∣
u=1

[zn]M(z)
∼
√
πn

2
.

We now compute the variance of the number of cyclic points using the following

formula for the second moment of Cn:

E[C2
n] =

[zn] d
2

du2M(z, u)
∣∣∣
u=1

+ [zn] dduM(z, u)
∣∣∣
u=1

[zn]M(z)
.
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We have

d2

du2
M(z, u)

∣∣∣
u=1

=
2T (z)2

(1− T (z))3
=

1√
2(1− ez)3/2

+ o

(
1

(1− ez)3/2

)
.

Hence, using the Transfer Theorem again:

[zn]
d2

du2
M(z, u)

∣∣∣
u=1
∼
√

2n

π
en and E[C2

n] ∼ 2n.

This yields the following asymptotic equivalent for the variance of Cn:

V[Cn] = E[C2
n]− E[Cn]2 ∼ 4− π

2
n.

The result follows by Chebyshev’s inequality,f as
√
n ≤

√
π n/2 ≤ 2

√
n.

Let G(n, d) denote the set of mappings f of size n such that:

(1) The number m of cyclic points of f is in J
√
n, 2
√
nK.

(2) The normalized cyclic permutation of f is in Cycled(m).

Proposition 9. A mapping of size n is in G(n, d) with visible probability. Moreover,

for n sufficiently large, the first d cycles of every element of G(n, d) have sizes in

J
√
n
3 ,
√
nK and the lcm of their lengths is at least λnd/2.

Proof. By definition, if σ denote the normalized cyclic permutation we have

P (G(n, d)) =
∑

m∈J
√
n,2
√
nK

P (Cn = m, σ ∈ Cycled(m))

=
∑

m∈J
√
n,2
√
nK

P (σ ∈ Cycled(m) | Cn = m) · P (Cn = m) .

As conditioned by its size, the normalized cyclic permutation of a uniform random

mapping is a uniform permutation, Lemma 7 directly yields that for m sufficiently

large, P (σ ∈ Cycled(m) | Cn = m) ≥ δ, for some positive δ. Thus,

P (G(n, d)) ≥ δ
∑

m∈J
√
n,2
√
nK

P (Cn = m) = δ P
(
Cn ∈ J

√
n, 2
√
nK
)
.

By Lemma 8, a mapping is therefore in G(n, d) with visible probability. The last

part of the statement follows from the definitions of G(n, d) and Cycled(m).

fNote that the distribution is not concentrated around is mean, since the expectation and standard

deviation have the same order of growth in
√
n.
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5.2.2. Some properties of the largest tree of a random mapping

Recall that a rooted Cayley tree is a rooted, non-plane, labelled tree. It means that

if there are n nodes, they are labelled with pairwise distinct elements of [n], and

that the children of a node are unordered. As mentioned before, a mapping of size n

can be seen as a union of cycles of Cayley trees (the roots of the trees are cyclically

linked and form the cyclic permutation of the mapping).

Define the largest tree of a mapping f as the largest Cayley tree of its decom-

position, taking the tree with the smallest root label if there are several trees with

the maximum number of nodes. Our next lemma states that conditioned by its size,

the largest tree of a random mapping behaves like a uniform random tree.

Lemma 10. Let t and n be two integers such that 1 ≤ n
2 < t ≤ n and let M

(t)
n

denote the set of mapping on [n] whose largest tree has t nodes. The normalized

largest tree of a uniform element of M
(t)
n is distributed as a uniform random Cayley

tree with t nodes.

Proof. Let T and T ′ be two Cayley trees with t nodes. Let φ denote the map

from M
(t)
n into itself that operates as follows: if the largest tree normalizes in T , we

change the shape of the tree so that it now normalizes in T ′ (there is a unique way

to do that), and conversely if it normalizes in T ′ we change it so that it normalizes

to T (there is also a unique way to do that). If the largest tree does not normalize in

T or T ′, the mapping remains unchanged by φ. As an involution, the map φ is one-

to-one. Hence, when f is a uniform random mapping, so is φ(f). The probability

that the largest tree normalizes in T is the therefore the same that it normalizes in

T ′, concluding the proof.

For any w > 0, let H(n, d, w) denote the set of mappings of size n such that the

largest Cayley tree of its decomposition is of width at least w
√
n.

Proposition 11 below is established using a classical result on the size of the

largest tree of a random mappings [13] and the analysis of the width of a random

Cayley tree [5].

Proposition 11. There exists a positive real number w such that a mapping of

size n is in H(n, d, w) with visible probability.

Proof. From [13] p. 164, we get that with positive probability, the largest tree of

a random mapping has more than 2
3n nodes. By Lemma 10, conditioned by its size

t, this largest tree behaves like a uniform random Cayley tree with t nodes. By [5],

the width of such a Cayley tree is greater than w′
√
t with positive probability, for

some w′ > 0. Taking w = w′
√

2/3 yields that the width of the largest tree is at

least w
√
n with visible probability, concluding the proof.
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5.3. Some properties of random transition structures

In this section, we use well established results on random deterministic au-

tomata [14] to obtain a word v on A′ = {b, c} such that δ−1(f, v) is sufficiently

large, with visible probability, where f is a random final state.

A set of vertices X of a digraph is stable if there is no edge x → y for x ∈ X
and y /∈ X. We shall need the following results in the sequel:

Lemma 12. Let A be a transition structure of Tn(A′) taken uniformly at random.

Let G be the underlying digraph induced on [n] by the actions of b and c (there is

an edge x → y if and only if δ(x, b) = y or δ(x, c) = y). With high probability, G

has a unique stable strongly connected component, which has size greater than 1
2n.

Proof. We first prove that, with high probability, there is no stable set of states

of size smaller than 1
4n: we overcount the number of transition structures having a

stable subset X of size ` by choosing the ` states, their images by both letters in X

and the images of the other states. This yields an upper bound of
(
n
`

)
`2`n2n−2` for

the number of such transition structures. Hence the probability that there is such

a small stable subset is bounded above by:

1

n2n

n/4∑
`=1

(
n

`

)
`2`n2n−2` =

n/4∑
`=1

(
n

`

)(
`

n

)2`

≤
n/4∑
`=1

(en
`

)`( `
n

)2`

=

n/4∑
`=1

(
e`

n

)`
,

which is O( 1
n ), as one can see by isolating the term ` = 1.

We now consider the uniform distribution on Tn × [n], where a pair (A, i) is

seen as a transition structure of initial state i. In [4] it is proven that in a random

transition structure with n states on a two-letter alphabet, the accessible part has

size greater than 1
2n with high probability. The proof is established when 1 is the

initial state, but by symmetry it still holds if we choose the initial state uniformly

at random. Let En denote the set of transition structures with n states that have a

stable strongly connected component of size between 1
4n and 1

2n. If the initial state

we add to a transition structure of En is inside a stable component of size at most
1
2n, then the generic property of [4] does not hold. The number of couples Tn × [n]

such that the property of [4] does not hold is therefore at least n
4 |En|, and it is

also in o(n|Tn|). Hence |En| = o(|Tn|), and generically there is no stable strongly

connected component of size smaller than 1
2n. This conclude the proof, as there can

be at most one strongly connected component of size greater 1
2n.

We shall also need the following result of [8]:

Lemma 13 (Proposition 1 in [8]) Let A be an alphabet with at least 2 letters

and let α ∈ A. With high probability, all the α-cycles of length greater than log n

are accessible in a uniform random transition structure on A.

The main result of this section is the following proposition.
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Proposition 14. Let A be a uniform random transition structure of Tn(A′). Let

f be a state of A chosen uniformly in [n] and independently from A. There exists a

positive real number w such that, with visible probability, f is accessible and there

exists a word v ∈ {b, c}∗ such that δ−1(f, v) has size at least w
√
n.

Proof. We choose w as in Proposition 11. Thus, with visible probability the action

of b is in H(n, d, w) and therefore it contains a tree of width at least w
√
n. Let r

be the root of this tree. By Lemma 12, with high probability A has only one stable

strongly connected component C, of size at least 1
2n. As the intersection of a visible

property and a property that holds with high probability is visible, A satisfies both

properties with visible probability.

When a final state is chosen randomly and independently, it is in C with probabil-

ity at least 1
2 . Moreover, if the final state is in the unique stable strongly connected

component, then there exists a word u that labels a path from r to f : when there

is a unique stable strongly connected component, it is necessarily accessible from

anywhere. Consider the word v = ũbi, where i is the layer of T with the maximal

number of nodes (the level that gives its width). Then δ−1(f, v) contains all the

states of the i-th layer of T , and it therefore contains at least w
√
n elements. By

independence of the choice of f , this happens with visible probability.

5.4. Proof of the main theorem

At this point we have, with visible probability, sufficiently many a-cycles to obtain a

super-polynomial lower bound, provided we can apply Lemma 4. Lemma 13 ensures

that these a-cycles are accessible with high probability, so we only have to focus on

their primitivity. For this, we will use Proposition 14 and find a word u such that

the a-cycles are u-primitive with visible probability.

The next technical lemma ensures that, with visible probability, δ−1(f, v) inter-

sects each of the first d a-cycles, for the v of Proposition 14:

Lemma 15. Let x and y be two positive real numbers. Let X be a subset of [n]

of size dx
√
n e and let Y be a uniform random subset of [n] of size dy

√
n e. For

every integer j ≥ 0, there exists a positive constant Mj such that |X ∩ Y | = j with

probability at least Mj, for n sufficiently large.

Proof. Let m = dx
√
n e and m′ = dy

√
n e. We prove the result by induction on j.

For j = 0, the probability that X ∩ Y = ∅ is(
n−m
m′

)(
n
m′

) =
(n−m)!

n!

(n−m′)!
(n−m−m′)!

≥ (n−m−m′)m

nm
=

(
1− m+m′

n

)m
.

The quantity on the right tends to exp(−x(x + y)) as n tends to infinity, and is

therefore greater than M0 = 1
2 exp(−x(x+ y)) for n sufficiently large.
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By first choosing the elements of the intersection, then the other elements of Y ,

the probability that |X ∩ Y | = j is exactly

Pj =

(
m
j

)(
n−m
m′−j

)(
n
m′

) .

Observe that

Pj+1

Pj
=

(
m
j+1

)(
n−m

m′−j−1
)(

m
j

)(
n−m
m′−j

) =
m− j
j + 1

· m′ − j
n−m−m′ + j + 1

−−−−→
n→∞

xy

j + 1
.

Hence, if the property holds for j, then Pj+1 ≥ xy
2(j+1)Mj for n sufficiently large,

concluding the proof.

Our next lemma ensures that these intersections are not too large, i.e., that we do

not have one of the first d a-cycles completely included in δ−1(f, v):

Lemma 16. Let x be a positive real number. Let X be a subset of [n] of size m =

dx
√
ne and let Y be a uniform random subset of [n] of size m′ with 1 ≤ m′ ≤ n

2 .

For n sufficiently large, the probability that X ⊆ Y is smaller than n2−x
√
n.

Proof. We add some random elements to Y until we have a set Y ′ of size ` = bn2 c.
The probability that Y contains X is smaller than the probability that Y ′ contains

X, which is exactly (
n−m′

`−m
)(

n
`

) ≤ 2n−m(
n
`

) ,

which concludes the proof since
(
n
`

)
∼
√

2
πn2n.

Our last lemma will be used to prove that when δ−1(f, v) intersects non-trivially

the first d a-cycles, then they are primitive with high probability.

Lemma 17. Let n ≥ 2. Let µ be a probability mass on {0, 1}n such that µ(0n) =

µ(1n) = 0 and such that two words with the same number of 0’s have the same

probability. Then the probability that a word is not primitive for µ is at most 2
n .

Proof. Let Ln be the random variable that count the number of 0’s. By symmetry

between 0’s and 1’s in the definition of primitivity, we work for Ln = i with 1 ≤
i ≤ n

2 only. The conditions on µ imply that, conditioned by Ln = i, we have the

uniform distribution on the words with i occurrences of 0.

If u is not primitive, then u = v` for some ` ∈ J2, iK that divides both i and

n. For every such ` and every v of length n/` with i/` occurrences of 0, there is

exactly one non-primitive u of the form v`, but there are
(
n−n/`
i−i/`

)
words with the

correct number of 0’s whose prefix is v. Hence for any valid `, the probability that

u = v` is bounded from above by
(
n−n/`
i−i/`

)−1
. When i = 2, ` = 2 is the only possible
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value for `, yielding an upper bound of
(
n−n/2

1

)−1
= 2

n for even n. If i ≥ 3, then

i− i/` ≥ 2 for valid values of ` and n− n/` ≥ n
2 . Thus, using the properties of the

binomial coefficients, for each valid value of ` the upper bound is at most 8
n(n−2) .

This concludes the proof for any given value of i, as there are at most n − 2 valid

values for `. Since the bound does not depend on i, this yields the result.

We can now prove our main result.

Proof of Theorem 2. By definition of a good distribution with a small number

of final states, if Fn is the random variable that counts the number of final states,

then Fn ∈ J1, n2 K with visible probability. We first condition on Fn = nf , for any

nf ∈ J1, n2 K such that P (Fn = nf ) 6= 0. As final states and transition structures are

chosen independently, we are interested in the uniform distribution on transition

structures on A = {a, b, c} having exactly nf final states. We also denote by f a

final state chosen uniformly at random amongst the set of final states. By definition

of a label-independent distribution, f follows a uniform distribution on [n].

By Proposition 9, the action of a is in G(n, d) with probability at least Ca, for

some positive Ca, when n is sufficiently large. By Proposition 14, f is accessible in

the automaton restricted to the transitions labelled by b’s and c’s, and there exists

a word v ∈ {b, c}∗ such that δ−1(f, v) has size at least w
√
n with probability at

least Cbc, for some positive Cbc, when n is sufficiently large. By independence of the

action of the letters in a uniform random element of Tn, and by independence of

f , all these properties hold with probability at least CaCbc for n sufficiently large.

Let Xn denote the set of automata that satisfy these conditions.

We now consider the uniform distribution on elements of Xn with nf final states.

By definition of G(n, d), the first d cycles C1, . . . , Cd of δa have sizes at least d
√
n
3 e.

Let Si be a uniform subset of size d
√
n
3 e of each such Ci. Observe that if a map

φ ∈ G(n, d), then every relabelling of φ, i.e. considering σ◦φ◦σ−1 for a permutation

σ ∈ Sn, is also in G(n, d). Hence, X := ∪di=1Si is a uniform random subset of [n] of

size dd
√
n
3 e.

Let F ′ be the set of accessible final states. As δ−1(f, v) has size at least w
√
n

and f ∈ F ′, δ−1(F ′, v) also has size at least w
√
n, as f is accessible. Moreover,

δ−1(F ′, ε) has size at most nf ≤ n
2 . Therefore, there exists a prefix u of v such that

δ−1(F ′, u) has size in Jw
√
n, n2 K.

Let Y be a uniform random subset of size dw
√
n e of δ−1(F ′, u). By Lemma 15,

|X ∩ Y | = d with visible probability. A direct computation shows that in this case,

Y intersects each Si exactly once also with visible probability. Moreover, Lemma 16

ensures that no Si is included in δ−1(F ′, ε) with high probability.

As a conclusion, for the uniform distribution on automata of Xn with nf final

states, δ−1(F ′, ε) intersects non-trivially each Ci, with visible probability. By inde-

pendence of the actions of the letters in a uniform element of Xn, we can therefore

apply Lemma 17, and obtain that with probability at least C, every Ci is primi-



December 10, 2015 12:44 WSPC/INSTRUCTION FILE dlt˙long˙revised

17

tive, for some positive constant C and n sufficiently large. Importantly, C does not

depend on nf , as everything is done starting from one final state f .

We conclude the proof as follows. For n sufficiently large, the Ci’s are all primitive

for a constant proportion of automata in Xn with nf final states. But this set of

automaton is also a constant proportion of the automata with nf final states. Hence,

a uniform random automaton with nf states has this property with probability at

least CaCbcC, which does not depend on nf . Let Yn denote the subset of automata

in Xn such that the Ci’s are all primitive. By the law of total probabilities, we have

P (A ∈ Yn) =
∑

nf∈J0,nK

P (A ∈ Yn | Fn = nf ) · P (Fn = nf )

≥
∑

nf∈J1,n/2K

P (A ∈ Yn | Fn = nf ) · P (Fn = nf )

≥ CaCbcC
∑

nf∈J1,n/2K

P (Fn = nf ) .

The last sum is exactly the probability that there are between 1 and n
2 final states.

By definition of a distribution with a small number of final states, this is visible,

and thus an automaton is in Yn with visible probability.

By Lemma 13, the Ci’s are also accessible with high probability. Hence, even if

we only keep the trim part of the random automaton, there is a path from the initial

state to the Ci’s, which are u-primitive. By Lemma 4, this yields a lower bound of

λnd/2 for the state complexity of the reverse. This concludes the proof by taking

d ≥ 2γ + 1.

6. Conclusions

A natural question is whether the average super-polynomial running time of Brzo-

zowski’s algorithm still holds for alphabets with two letters, for good distributions

of automata with a small number of final states. The proof of this paper relies on

the fact that we built u ∈ {b, c}∗ and the a-cycles independently. This proof cannot

be adapted to binary alphabet without taking into account the dependencies be-

tween a word u using the letter a and the a-cycles. This is probably quite difficult

to handle. A completely different approach is probably required in order to obtain

the generalization to binary alphabets.

Another interesting direction would be to give some insight on distributions on

accessible (or even trim) automata, instead of on any deterministic and complete

automata. This is possibly much more difficult, as the classical tool to prove such

results fails here (see Section 3 of [14]).
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Appendix: answer to the referees’ comments

We first want to thanks the referees and the editor for their very useful comments.

The article is much better now.

We took all the comments into account in the current version of the paper, and

reorganized the subsections of Section 5 as suggested. We just chose to keep the

notion of “state complexity”, which is quite standard in automata theory: we added

its definition at the beginning of the article, and reworded some statements to make

it appear everywhere it was meaningful.


