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This paper introduces new algorithms for the blind separation of audio sources using modal decomposition. Indeed, audio signals
and, in particular, musical signals can be well approximated by a sum of damped sinusoidal (modal) components. Based on this
representation, we propose a two-step approach consisting of a signal analysis (extraction of the modal components) followed by
a signal synthesis (grouping of the components belonging to the same source) using vector clustering. For the signal analysis, two
existing algorithms are considered and compared: namely the EMD (empirical mode decomposition) algorithm and a parametric
estimation algorithm using ESPRIT technique. A major advantage of the proposed method resides in its validity for both instanta-
neous and convolutive mixtures and its ability to separate more sources than sensors. Simulation results are given to compare and
assess the performance of the proposed algorithms.
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1. INTRODUCTION

The problem of blind source separation (BSS) consists of
finding “independent” source signals from their observed
mixtures without a priori knowledge on the actual mixing
channels.

The source separation problem is of interest in various
applications [1, 2] such as the localization and tracking of
targets using radars and sonars, separation of speakers (prob-
lem known as “cocktail party”), detection and separation in
multiple-access communication systems, independent com-
ponent analysis of biomedical signals (EEG or ECG), multi-
spectral astronomical imaging, geophysical data processing,
and so forth [2].

This problem has been intensively studied in the litera-
ture and many effective solutions have been proposed so far
[1–3]. Nevertheless, the literature intended for the underde-
termined case where the number of sources is larger than the
number of sensors (observations) is relatively limited, and
achieving the BSS in that context is one of the challenging
problems in this field. Existing methods for the underdeter-
mined BSS (UBSS) include the matching pursuit methods
in [4, 5], the separation methods for finite alphabet sources
in [6, 7], the probabilistic-based (using maximum a poste-

riori criterion) methods in [8–10], and the sparsity-based
techniques in [11, 12]. In the case of nonstationary signals
(including the audio signals), certain solutions using time-
frequency analysis of the observations exist for the underde-
termined case [13–15]. In this paper, we propose an alter-
native approach named MD-UBSS (for modal decomposi-
tion UBSS) using modal decomposition of the received sig-
nals [16, 17]. More precisely, we propose to decompose a
supposed locally periodic signal which is not necessarily har-
monic in the Fourier sense into its various modes. The au-
dio signals, and more particularly the musical signals, can
be modeled by a sum of damped sinusoids [18, 19], and
hence are well suited for our separation approach. We pro-
pose here to exploit this last property for the separation of
audio sources by means of modal decomposition. Although
we consider here an audio application, the proposed method
can be used for any other application where the source sig-
nals can be represented by a sum of sinusoidal components.
This includes in particular the separation of NMR (nuclear
magnetic resonance) signals in [20, 21] and the rotating ma-
chine signals in [22]. To start, we consider first the case of
instantaneous mixtures, then we treat the more challeng-
ing problem of convolutive mixtures in the underdetermined
case.
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Figure 1: Time-frequency representation of a three-modal-compo-
nent signal (using short-time Fourier transform).

Note that this modal representation of the sources is a
particular case of signal sparsity often used to separate the
sources in the underdetermined case [23]. Indeed, a signal
given by a sum of sinusoids (or damped sinusoids) occupies
only a small region in the time-frequency (TF) domain, that
is, its TF representation is sparse. This is illustrated by Fig-
ure 1 where we represent the time-frequency distribution of
a three-modal-component signal.

The paper is organized as follows. Section 2 formulates
the UBSS problem and introduces the assumptions necessary
for the separation of audio sources using modal decomposi-
tion. Section 3 proposes two MD-UBSS algorithms for in-
stantaneous mixture case while Section 4 introduces a modi-
fied version of MD-UBSS that relaxes the quasiorthogonality
assumption of the source modal components. In Section 5,
we extend our MD-UBSS algorithm to the convolutive mix-
ture case. Some discussions on the proposed methods are
given in Section 6. The performance of the above methods
is numerically evaluated in Section 7. The last section is for
the conclusion and final remarks.

2. PROBLEM FORMULATION IN THE
INSTANTANEOUSMIXTURE CASE

The blind source separation model assumes the existence of
N independent signals s1(t), . . . , sN (t) and M observations
x1(t), . . . , xM(t) that represent the mixtures. These mixtures
are supposed to be linear and instantaneous, that is,

xi(t) =
N∑

j=1
ai j s j(t), i = 1, . . . ,M. (1)

This can be represented compactly by the mixing equation

x(t) = As(t), (2)

where s(t)
def= [s1(t), . . . , sN (t)]T is an N × 1 column vector

collecting the real-valued source signals, vector x(t), simi-

larly, collects theM observed signals, and theM ×N mixing

matrix A
def= [a1, . . . , aN ] with ai = [a1i, . . . , aMi]T contains

the mixture coefficients.
Now, if N > M, that is, there are more sources than

sensors, we are in the underdetermined case, and BSS be-
comes UBSS (U stands for underdetermined). By underde-
terminacy, we cannot, from the set of equations in (2), alge-
braically obtain a unique solution, because this system con-
tains more variables (sources) than equations (sensors). In
this case, A is no longer left invertible, because it has more
columns than rows. Consequently, due to the underdeter-
mined representation, the above system of (2) cannot be
solved completely even with the full knowledge of A, un-
less we have some specific knowledge about the underlying
sources.

Next, we will make some assumptions about the data
model in (2), necessary for our method to achieve the UBSS.

Assumption 1. The column vectors of A are pairwise linearly
independent.

That is, for any index pair i �= j ∈ N , where N =
{1, . . . ,N}, vectors ai and a j are linearly independent. This
assumption is necessary because if otherwise, we have a2 =
αa1 for example, then the input/output relation (2) can be
reduced to

x(t) = [
a1, a3, . . . , aN

][
s1(t) + αs2(t), s3(t), . . . , sN (t)

]T
,
(3)

and hence the separation of s1(t) and s2(t) is inherently im-
possible. This assumption is used later (in the clustering step)
to separate the source modal components using their spatial
directions given by the column vectors of A.

It is known that BSS is only possible up to some scaling
and permutation [3]. We take the advantage of these indeter-
minacies to further make the following assumption without
loss of generality.

Assumption 2. The column vectors of A are of unit norm.

That is, ‖ai‖ = 1 for all i ∈ N , where the norm hereafter
is given in the Frobenius sense.

As mentioned previously, solving the UBSS problem re-
quires strong a priori assumptions on the source signals. In
our case, signal sparsity is considered in terms of modal rep-
resentation of the input signals as stated by the fundamental
assumption below.

Assumption 3. The source signals are sum of modal compo-
nents.

Indeed, we assume here that each source signal si(t) is a

sum of li modal components c
j
i (t), j = 1, . . . , li, that is,

si(t) =
li∑

j=1
c
j
i (t), t = 0, . . . ,T − 1, (4)

where c
j
i (t) are damped sinusoids or (quasi)harmonic sig-

nals, and T is the sample size.



Abdeldjalil Aı̈ssa-El-Bey et al. 3

Standard BSS techniques are based on the source inde-
pendence assumption. In the UBSS case, the source inde-
pendence is often replaced by the disjointness of the sources.
This means that there exists a transform domain where the
source representation has disjoint or quasidisjoint supports.
The quasidisjointness assumption of the sources translates in
our case into the quasiorthogonality of the modal compo-
nents.

Assumption 4. The sources are quasiorthogonal, in the sense
that

〈
c
j
i | c j

′
i′
〉

∥∥c ji
∥∥∥∥c j

′
i′
∥∥ ≈ 0, for (i, j) �= (i′, j′), (5)

where

〈
c
j
i | c j

′
i′
〉 def=

T−1∑

t=0
c
j
i (t)c

j′
i′ (t),

∥∥c ji
∥∥2 = 〈

c
j
i | c ji

〉
.

(6)

In the case of sinusoidal signals, the quasiorthogonality of
the modal components is nothing else than the Fourier qua-
siorthogonality of two sinusoidal components with distinct
frequencies. This can be observed in the frequency domain
through the disjointness of their supports. This property is
also preserved by filtering, which does not affect the fre-
quency support, and hence the quasiorthogonality assump-
tion of the signals (this is used later when considering the
convolutive case).

3. MD-UBSS ALGORITHM

Based on the previous model, we propose an approach in two
steps consisting of the following.

(i) An analysis step

In this step, one applies an algorithm of modal decompo-
sition to each sensor output in order to extract all the har-
monic components from them. We compare for this modal
components extraction two decomposition algorithms that
are the EMD (empirical mode decomposition) algorithm in-
troduced in [16, 17] and a parametric algorithm which esti-
mates the parameters of the modal components modeled as
damped sinusoids.

(ii) A synthesis step

In this step, we group together the modal components corre-
sponding to the same source in order to reconstitute the orig-
inal signal. This is done by observing that all modal compo-
nents of a given source signal “live” in the same spatial direc-
tion. Therefore, the proposed clustering method is based on
the component’s spatial direction evaluated by correlation of
the extracted (component) signal with the observed antenna
signal.

(1) Extraction of all harmonic components from each sensor

by applying modal decomposition.

(2) Spatial direction estimation by (14) and vector clustering

by k-means algorithm [24].

(3) Source estimation by grouping together the modal com-

ponents corresponding to the same spatial direction.

(4) Source grouping and source selection by (18).

Algorithm 1: MD-UBSS algorithm in instantaneous mixture case
using modal decomposition.

Note that, by this method, each sensor output leads to an
estimate of the source signals. Therefore, we end up with M
estimates for each source signal. As the quality of source sig-
nal extraction depends strongly on the mixture coefficients,
we propose a blind source selection procedure to choose the
“best” of the M estimates. This algorithm is summarized in
Algorithm 1.

3.1. Modal component estimation

3.1.1. Signal analysis using EMD

A new nonlinear technique, referred to as empirical mode de-
composition (EMD), has recently been introduced by Huang
et al. for representing nonstationary signals as sum of zero-
mean AM-FM components [16]. The starting point of the
EMD is to consider oscillations in signals at a very local level.
Given a signal z(t), the EMD algorithm can be summarized
as follows [17]:

(1) identify all extrema of z(t). This is done by the algo-
rithm in [25];

(2) interpolate between minima (resp., maxima), ending
up with some envelope emin(t) (resp., emax(t)). Several
interpolation techniques can be used. In our simula-
tion, we have used a spline interpolation as in [25];

(3) compute the meanm(t) = (emin(t) + emax(t))/2;
(4) extract the detail d(t) = z(t)−m(t);
(5) iterate on the residual1 m(t) until m(t) = 0 (in prac-

tice, we stop the algorithm when ‖m(t)‖ ≤ ε, where ε
is a given threshold value).

By applying the EMD algorithm to the ith mixture signal xi
which is written as xi(t) =

∑N
j=1ai j s j(t) =

∑N
j=1

∑l j
k=1ai jc

k
j (t),

one obtains estimates ĉkj (t) of components ckj (t) (up to the
scalar constant ai j).

3.1.2. Parametric signal analysis

In this section, we present an alternative solution for signal
analysis. For that, we represent the source signal as sum of

1 Indeed, the mean signalm(t) is also the residual signal after extracting the
detail component d(t), that is,m(t) = z(t)− d(t).
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damped sinusoids:

si(t) = �e

{ li∑

j=1
α
j
i

(
z
j
i

)t
}
, (7)

corresponding to

c
j
i (t) = �e

{
α
j
i

(
z
j
i

)t
}
, (8)

where α
j
i = β

j
i e

θ
j
i represents the complex amplitude and

z
j
i =ed

j
i +jω

j
i is the jth pole of the source si, where d

j
i is the neg-

ative damping factor and ω
j
i is the angular frequency. �e(·)

represents the real part of a complex entity. We denote by Ltot
the total number ofmodal components, that is, Ltot =

∑N
i=1 li.

For the extraction of the modal components, we pro-
pose to use the ESPRIT (estimation of signal parameters
via rotational invariance technique) algorithm that estimates
the poles of the signals by exploiting the row-shifting in-
variance property of the D × (T − D) data Hankel matrix

[H(xk)]n1n2
def= xk(n1+n2),D being a window parameter cho-

sen in the range T/3 ≤ D ≤ 2T/3.
More precisely, we use Kung’s algorithm given in [26]

that can be summarized in the following steps:
(1) form the data Hankel matrixH(xk);
(2) estimate the 2Ltot-dimensional signal subspace

U(Ltot) = [u1, . . . ,u2Ltot ] of H(xk) by means of the SVD of
H(xk) (u1, . . . ,u2Ltot are the principal left singular eigenvec-
tors ofH(xk));

(3) solve (in the least-squares sense) the shift invariance
equation

U(Ltot)
↓ Ψ = U(Ltot)

↑ ⇐⇒ Ψ = U(Ltot)#
↓ U(Ltot)

↑ , (9)

where Ψ = ΦΔΦ−1, Φ being a nonsingular 2Ltot × 2Ltot ma-
trix, andΔ = diag(z11, z

1∗
1 , . . . , zl11 , z

l1∗
1 , . . . , zlNN , z

lN∗
N ). (·)∗ rep-

resents the complex conjugation, (·)# denotes the pseudoin-
version operation, and arrows ↓ and ↑ denote, respectively,
the last and the first row-deleting operator;

(4) estimate the poles as the eigenvalues of matrix Ψ;
(5) estimate the complex amplitudes by solving the least-

squares fitting criterion

min
αk
‖xk − Zαk‖2 ⇐⇒ αk = Z#xk, (10)

where xk = [xk(0), . . . , xk(T − 1)]T is the observation vector,
Z is a Vandermonde matrix constructed from the estimated
poles, that is,

Z = [
z11, z

1∗
1 , . . . , zl11 , z

l1∗
1 , . . . , zlNN , z

lN∗
N

]
, (11)

with z
j
i = [1, z

j
i , (z

j
i )

2, . . . , (z
j
i )

T−1]T , and αk is the vector of
complex amplitudes, that is,

αk = 1
2

[
ak1α

1
1, ak1α

1∗
1 , . . . , ak1α

l1∗
1 , . . . , akNα

lN∗
N

]T
. (12)

ai

aj

Figure 2: Data clustering illustration, where we represent the dif-

ferent estimates â
j
i and their centroids.

3.2. Clustering and source estimation

3.2.1. Signal synthesis using vector clustering

For the synthesis of the source signals, one observes that
thanks to the quasiorthogonality assumption, one has

〈
x | c ji

〉
∥∥c ji

∥∥2
def= 1

∥∥c ji
∥∥2

⎡
⎢⎢⎢⎣

〈
x1 | c ji

〉

...
〈
xM | c ji

〉

⎤
⎥⎥⎥⎦ ≈ ai, (13)

where ai represents the ith column vector of A. We can, then,
associate each component ĉkj to a spatial direction (vector
column of A) that is estimated by

âkj =
〈
x | ĉkj

〉

∥∥ĉkj
∥∥2 . (14)

Vector âkj would be equal approximately to ai (up to a

scalar constant) if ĉkj is an estimate of a modal component
of source i. Hence, two components of a same source signal
are associated to colinear spatial direction of to the same col-
umn vector of A. Therefore, we propose to gather these com-
ponents by clustering their directional vectors into N classes
(see Figure 2). For that, we compute first the normalized vec-
tors

akj =
âkj e

−jψk
j

∥∥âkj
∥∥ , (15)

where ψk
j is the phase argument of the first entry of âkj (this is

to force the first entry to be real positive). Then, these vectors
are clustered by k-means algorithm [24] that can be summa-
rized in the following steps.

(1) Place N points into the space represented by the vec-
tors that are being clustered. These points represent
initial group centroids. One popular way to start is to
randomly chooseN vectors among the set of vectors to
be clustered.

(2) Assign each vector akj to the group (cluster) that has the
closest centroid, that is, if y1, . . . , yN are the centroids
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of theN clusters, one assigns the vector akj to the cluster
i0 that satisfies

i0 = argmin
i

∥∥akj − yi
∥∥. (16)

(3) When all vectors have been assigned, recalculate the
positions of the N centroids in the following way: for
each cluster, the new centroid’s vector is calculated as
the mean value of the cluster’s vectors.

(4) Repeat steps 2 and 3 until the centroids no longer
move. This produces a separation of the vectors into
N groups. In practice, in order to increase the conver-
gence rate, one can also use a threshold value and stop
the algorithm when the difference between the new
and old centroid values is smaller than this threshold
for all N clusters.

Finally, one will be able to rebuild the initial sources up to
a constant by adding the various components within a same
class, that is,

ŝi(t) =
∑

Ci

ĉ
j
i (t), (17)

where Ci represents the ith cluster.

3.2.2. Source grouping and selection

Let us notice that by applying the approach described
previously (analysis plus synthesis) to all antenna outputs
x1(t), . . . , xM(t), we obtain M estimates of each source sig-
nal. The estimation quality of a given source signal varies
significantly from one sensor to another. Indeed, it depends
strongly on the matrix coefficients and, in particular, on the
signal-to-interference ratio (SIR) of the desired source. Con-
sequently, we propose a blind selection method to choose a
“good” estimate among theM we have for each source signal.
For that, we need first to pair the source estimates together.
This is done by associating each source signal extracted from
the first sensor to the (M − 1) signals extracted from the
(M − 1) other sensors that are maximally correlated with it.
The correlation factor of two signals s1 and s2 is evaluated by
|〈s1 | s2〉|/‖s1‖‖s2‖.

Once the source grouping is achieved, we propose to se-
lect the source estimate of maximal energy, that is,

ŝi(t) = argmax
ŝ
j
i (t)

{
E
j
i =

T−1∑

t=0

∣∣ŝ ji (t)
∣∣2, j = 1, . . . ,M

}
, (18)

where E
j
i represents the energy of the ith source extracted

from the jth sensor ŝ
j
i (t). One can consider other methods of

selection (based, e.g., on the dispersion around the centroid)
or instead, a diversity combining technique for the different
source estimates. However, the source estimates are very dis-
similarly in quality, and hence we have observed in our simu-
lations that the energy-based selection, even though not op-
timal, provides the best results in terms of source estimation
error.

3.3. Case of commonmodal components

We consider here the case where a given component ckj (t) as-

sociated with the pole zkj can be shared by several sources.
This is the case, for example, for certain musical signals such
as those treated in [27]. To simplify, we suppose that a com-
ponent belongs to at most two sources. Thus, let us sup-
pose that the sinusoidal component (zkj )

t is present in the
sources s j1 (t) and s j2 (t) with the amplitudes αj1 and αj2 , re-
spectively (i.e., onemodal component of source s j1 (resp., s j2 )
is �e(αj1 (z

k
j )

t) (resp., �e(αj2 (z
k
j )

t))). It follows that the spa-
tial direction associated with this component is a linear com-
bination of the column vectors a j1 and a j2 . More precisely, we
have

âkj =
1

∥∥zkj
∥∥2

⎡
⎢⎢⎢⎣

xT1 z
k
j

...
xTMz

k
j

⎤
⎥⎥⎥⎦ ≈ αj1a j1 + αj2a j2 . (19)

It is now a question of finding the indices j1 and j2 of the
two sources associated with this component, as well as the
amplitudes αj1 and αj2 . With this intention, one proposes an
approach based on subspace projection. Let us assume that
M > 2 and that matrix A is known and satisfies the condition
that any triplet of its column vectors is linearly independent.
Consequently, we have

P⊥
Ã
âkj = 0, (20)

if and only if Ã = [a j1 a j2 ], Ã being a matrix formed by a
pair of column vectors of A and P⊥

Ã
represents the matrix of

orthogonal projection on the orthogonal range space of Ã,
that is,

P⊥
Ã
= I− Ã

(
ÃH Ã

)−1
ÃH , (21)

where I is the identity matrix and (·)H denotes the transpose
conjugate. In practice, by taking into account the noise, one
detects the columns j1 and j2 by minimizing

(
j1, j2

) = argmin
(l,m)

{∥∥P⊥
Ã
âkj
∥∥ | Ã =

[
al am

]}
. (22)

Once Ã found, one estimates the weightings αj1 and αj2 by
[
αj1

αj2

]
= Ã#âkj . (23)

In this paper, we treated all the components as being asso-
ciated to two source signals. If ever a component is present
only in one source, one of the two coefficients estimated in
(23) should be zero or close to zero.

In what precedes, the mixing matrix A is supposed to be
known. This means that it has to be estimated before apply-
ing a subspace projection. This is performed here by clus-
tering all the spatial direction vectors in (14) as for the pre-
vious MD-UBSS algorithm. Then, the ith column vector of
A is estimated as the centroid of Ci assuming implicitly that
most modal components belong mainly to one source sig-
nal. This is confirmed by our simulation experiment shown
in Figure 11.
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4. MODIFIEDMD-UBSS ALGORITHM

We propose here to improve the previous algorithm with
respect to the computational cost and the estimation accu-
racy when Assumption 4 is poorly satisfied.2 First, in order
to avoid repeated estimation of modal components for each
sensor output, we use all the observed data to estimate (only
once) the poles of the source signals. Hence, we apply the ES-
PRIT technique on the averaged data covariance matrixH(x)
define by

H(x) =
M∑

i=1
H
(
xi
)
H
(
xi
)H

(24)

and we apply steps 1 to 4 of Kung’s algorithm described

in Section 3.1.2 to obtain all the poles z
j
i , i = 1, . . . ,N ,

j = 1, . . . , li. In this way, we reduce significantly the compu-
tational cost and avoid the problem of “best source estimate”
selection of the previous algorithm.

Now, to relax Assumption 4, we can rewrite the data
model as

Γz(t) = x(t), (25)

where Γ
def= [γ11, γ

1
1, . . . , γ

lN
N , γ

lN
N ], γ

j
i = β

j
i e
jφj

i b
j
i and γ

j
i =

β
j
i e
−jφj

i b
j
i , where b

j
i is a unit norm vector representing the

spatial direction of the ith component (i.e., b
j
i = ak if the

component (z
j
i )

t belongs to the kth source signal) and z(t)
def=

[(z11)
t, (z1∗1 )t, . . . , (zlNN )

t, (zlN∗N )t]T .
The estimation of Γ using the least-squares fitting crite-

rion leads to

min
Γ
‖X− ΓZ‖2 ⇐⇒ Γ = XZ#, (26)

where X = [x(0), . . . , x(T−1)] andZ = [z(0), . . . , z(T−1)].
After estimating Γ, we estimate the phase of each pole as

φ
j
i =

arg
(
γ
jH
i γ

j
i

)

2
. (27)

The spatial direction of each modal component is estimated
by

â
j
i = γ

j
i e
−jφj

i + γ
j
i e
jφj

i = 2β
j
i b

j
i . (28)

Finally, we group together these components by clustering

the vectors â
j
i into N classes. After clustering, we obtain N

classes withN unit-norm centroids â1, . . . , âN corresponding
to the estimates of the column vectors of the mixing matrix

A. If the pole z
j
i belongs to the kth class, then according to

(28), its amplitude can be estimated by

β
j
i =

âTk â
j
i

2
. (29)

2 This is the case when the modal components are closely spaced or for
modal components with strong damping factors.

One will be able to rebuild the initial sources up to a constant
by adding the various modal components within a same class
Ck as follows:

ŝk(t) = �e

{
∑

Ck

β
j
i e
jφj

i
(
z
j
i

)t
}
. (30)

Note that one can also assign each component to two (or
more) source signals as in Section 3.3 by using (20)–(23).

5. GENERALIZATION TO THE CONVOLUTIVE CASE

The instantaneous mixture model is, unfortunately, not valid
in real-life applications where multipath propagation with
large channel delay spread occurs, in which case convolutive
mixtures are considered.

Blind separation of convolutive mixtures and multi-
channel deconvolution has received wide attention in vari-
ous fields such as biomedical signal analysis and processing
(EEG, MEG, ECG), speech enhancement, geophysical data
processing, and data mining [2].

In particular, acoustic applications are considered in sit-
uations where signals, from several microphones in a sound
field produced by several speakers (the so-called cocktail-
party problem) or from several acoustic transducers in an
underwater sound field produced by engine noises of several
ships (sonar problem), need to be processed.

In this case, the signal can be modeled by the following
equation:

x(t) =
K∑

k=0
H(k)s(t − k) +w(t), (31)

where H(k) are M × N matrices for k ∈ [0,K] represent-
ing the impulse response coefficients of the channel. We con-
sider in this paper the underdetermined case (M < N). The
sources are assumed, as in the instantaneous mixture case,
to be decomposable in a sum of damped sinusoids satisfy-
ing approximately the quasiorthogonality Assumption 4. The
channel satisfies the following diversity assumption.

Assumption 5. The channel is such that each column vector
of

H(z)
def=

K∑

k=0
H(k)z−k def= [

h1(z), . . . ,hN (z)
]

(32)

is irreducible, that is, the entries of hi(z) denoted by hi j(z),
j = 1, . . . ,M, have no common zero for all i. Moreover, any
two column vectors of H(z) form an irreducible polynomial
matrix H̃(z), that is, rank (H̃(z)) = 2 for all z.

Knowing that the convolution preserves the different
modes of the signal, we can exploit this property to estimate
the different modal components of the source signals us-
ing the ESPRIT method considered previously in the instan-
taneous mixture case. However, using the quasiorthogonal-
ity assumption, the correlation of a given modal component
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Figure 3: Time representation of 4 audio sources: this representa-
tion illustrates the audio signal sparsity (i.e., there exist time inter-
vals where only one source is present).

corresponding to a pole z
j
i of source si with the observed sig-

nal x(t) leads to an estimate of vector hi(z
j
i ). Therefore, two

components of respective poles z
j
i and zki of the same source

signal si will produce spatial directions hi(z
j
i ) and hi(zki ) that

are not colinear. Consequently, the clustering method used
for the instantaneous mixture case cannot be applied in this
context of convolutive mixtures.

In order to solve this problem, it is necessary to iden-
tify first the impulse response of the channels. This problem
in overdetermined case is very difficult and becomes almost
impossible in the underdetermined case without side infor-
mation on the considered sources. In this work and simi-
lar to [28], we exploit the sparseness property of the audio
sources by assuming that from time to time, only one source
is present. In other words, we consider the following assump-
tion.

Assumption 6. There exist, periodically, time intervals where
only one source is present in the mixture. This occurs for all
source signals of the considered mixtures (see Figure 3).

To detect these time intervals, we propose to use infor-
mation criterion tests for the estimation of the number of
sources present in the signal (see Section 5.1 for more de-
tails). An alternative solution would be to use the “frame se-
lection” technique in [29] that exploits the structure of the
spectral density function of the observations. The algorithm
in convolutive mixture case is summarized in Algorithm 2.

5.1. Channel estimation

Based on Assumption 6, we propose here to apply SIMO-
(single-input-multiple-output-) based techniques to blindly
estimate the channel impulse response. Regarding the prob-

(1) Channel estimation; AIC criterion [30] to detect the

number of sources and application of blind identification

algorithm [31, 32] to estimate the channel impulse

response.

(2) Extraction of all harmonic components from each sensor

by applying parametric estimation algorithm (ESPRIT

technique).

(3) Spatial direction estimation by (44).

(4) Source estimation by grouping together, using (45), the

modal components corresponding to the same source

(channel).

(5) Source grouping and source selection by (18).

Algorithm 2:MD-UBSS algorithm in convolutive mixture case us-
ing modal decomposition.

lem at hand, we have to solve 3 different problems: first, we
have to select time intervals where only one source signal is
effectively present; then, for each selected time interval one
should apply an appropriate blind SIMO identification tech-
nique to estimate the channel parameters; finally, in the way
we proceed, the same channel may be estimated several times
and hence one has to group together (cluster) the channel es-
timates into N classes corresponding to the N source chan-
nels.

5.1.1. Source number estimation

Let define the spatiotemporal vector

xd(t) =
[
xT(t), . . . , xT(t − d + 1)

]T =
N∑

k=1
Hksk(t) +wd(t),

(33)

where Hk are block-Sylvester matrices of size dM × (d + K)

and sk(t)
def= [sk(t), . . . , sk(t−K − d + 1)]T . d is a chosen pro-

cessing window size. Under the no-common zeros assump-
tion and for large window sizes (see [30] for more details),
matricesHk are full column rank.

Hence, in the noiseless case, the rank of the data co-

variance matrix R
def= E[xd(t)xHd (t)] is equal to min(p(d +

K),dM), where p is the number of sources present in the
considered time interval over which the covariance matrix
is estimated. In particular, for p = 1, one has the minimum
rank value equal to (d + K).

Therefore, our approach consists in estimating the rank
of the sample averaged covariance matrix R over several time
slots (intervals) and selecting those corresponding to the
smallest rank value r = d + K .

In the case where p sources are active (present) in the
considered time slot, the rank would be r = p(d + K), and
hence p can be estimated by the closest integer value to r/(d+
K).



8 EURASIP Journal on Audio, Speech, and Music Processing

1 2 3

Estimated number of sources

0

20

40

60

80

100

120

140

N
u
m
be
r
of

ti
m
e
in
te
rv
al
s

Figure 4: Histogram representing the number of time intervals for
each estimated number of sources for 4 audio sources and 3 sensors
in convolutive mixture case.

The estimation of the rank value is done here by Akaike’s
information criterion (AIC) [30] according to

r = argmin
k

[
− 2 log

( ∏Md
i=k+1 λ

1/(Md−k)
i(

1/(Md − k)
)∑Md

i=k+1 λi

)(Md−k)Ts

+ 2k(2Md − k)

]
,

(34)

where λ1 ≥ · · · ≥ λMd represent the eigenvalues of R and
Ts is the time slot size. Note that it is not necessary at this
stage to know exactly the channel degree K as long as d > K
(i.e., an overestimation of the channel degree is sufficient) in
which case the presence of one source signal is characterized
by

d < r < 2d. (35)

Figure 4 illustrates the effectiveness of the proposed method
where a recording of 6 seconds of M = 3 convolutive mix-
tures ofN = 4 sources is considered. The sampling frequency
is 8 KHz and the time slot size is Ts = 200 samples. The fil-
ter coefficients are chosen randomly and the channel order
is K = 6. One can observe that the case p = 1 (one source
signal) occurs approximatively 10% of the time in the con-
sidered context.

5.1.2. Blind channel identification

To perform the blind channel identification, we have used
in this paper the cross-relation (CR) technique described in
[31, 32]. Consider a time interval where we have only the
source si present. In this case, we can consider a SIMO system

ofM outputs given by

x(t) =
K∑

k=0
hi(k)si(t − k) +w(t), (36)

where hi(k) = [hi1(k) · · ·hiM(k)]T , k = 0, . . . ,K . From (36),
the noise-free outputs xj(k), 1 ≤ j ≤M, are given by

xj(k) = hi j(k)∗ si(k), 1 ≤ j ≤M, (37)

where “∗” denotes the convolution. Using commutativity of
convolution, it follows that

hil(k)∗ xj(k) = hi j(k)∗ xl(k), 1 ≤ j < l ≤M. (38)

This is a linear equation satisfied by every pair of channels. It
was shown that reciprocally the previousM(M − 1)/2 cross-
relations characterize uniquely the channel parameters. We
have the following theorem [31].

Theorem 1. Under the no-common zeros assumption, the set
of cross-relations (in the noise free case):

xl(k)∗ h′j(k)− xj(k)∗ h′l (k) = 0, 1 ≤ l < j ≤M,
(39)

where h′(z) = [h′1(z) · · ·h′M(z)]T is anM×1 polynomial vec-
tor of degree K , is satisfied if and only if h′(z) = αhi(z) for a
given scalar constant α.

By collecting all possible pairs of M channels, one can
easily establish a set of linear equations. In matrix form, this
set of equations can be expressed as

XMhi = 0, (40)

where hi
def= [hi1(0) · · ·hi1(K), . . . ,hiM(0) · · ·hiM(K)]T and

XM is defined by

X2 =
[
X(2),−X(1)

]
,

Xn =

⎡
⎢⎢⎢⎢⎣

Xn−1 0
X(n) 0 −X(1)

. . .
...

0 X(n) −X(n−1)

⎤
⎥⎥⎥⎥⎦
,

(41)

with n = 3, . . . ,M, and

X(n) =

⎡
⎢⎢⎣

xn(K) · · · xn(0)
...

...
xn(T − 1) · · · xn(T − K − 1)

⎤
⎥⎥⎦ . (42)

In the presence of noise, (40) can be naturally solved in the
least-squares (LS) sense according to

ĥi = arg min
‖h‖=1

hHXH
MXMh, (43)

which solution is given by the least eigenvector of matrix
XH

MXM .
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Remark 1. We have presented here a basic version of the CR
method. In [33], an improved version of the method (in-
troduced in the adaptive scheme) is proposed exploiting the
quasisparse nature of acoustic impulse responses.

5.1.3. Clustering of channel vector estimates

The first step of our channel estimation method consists in
detecting the time slots where only one single source signal is
“effectively” present. However, the same source signal si may
be present in several time intervals (see Figures 3 and 4) lead-
ing to several estimates of the same channel vector hi.

We end up, finally, with several estimates of each source
channel that we need to group together intoN classes. This is
done by clustering the estimated vectors using k-means algo-
rithm. The ith channel estimate is evaluated as the centroid
of the ith class.

5.2. Component grouping and source estimation

For the synthesis of the source signals, one observes that the
quasiorthogonality assumption leads to

ĥ
j
i =

〈
x | ĉ ji

〉
∥∥ĉ ji

∥∥2 ∝ hi
(
z
j
i

)
, (44)

where z
j
i = ed

j
i +jω

j
i is the pole of the component ĉ

j
i , that is,

ĉ
j
i (t) = �e{αj

i (z
j
i )

t}. Therefore, we propose to gather these
components by minimizing the criterion3:

ĉ
j
i ∈ Ci ⇐⇒ i = argmin

l

(
min
α

∥∥ĥ j
i − αhl

(
z
j
i

)∥∥2
)
, (45)

i = argmin
l

{
∥∥ĥ j

i

∥∥2 −
∣∣hHl

(
z
j
i

)
ĥ
j
i

∣∣2
∥∥hl

(
z
j
i

)∥∥2

}
, (46)

where hl is the lth column of H estimated in Section 5.1 and
hl(zkj ) is computed by

hl
(
z
j
i

) =
K∑

k=0
hl(k)

(
z
j
i

)−k
. (47)

One will be able to rebuild the initial sources up to a constant
by adding the various components within a same class using
(17).

Similar to the instantaneous mixture case, one modal
component can be assigned to two or more source signals,
which relaxes the quasiorthogonality assumption and im-
proves the estimation accuracy at moderate and high SNRs
(see Figure 9).

3 We minimize over the scalar α because of the inherent indeterminacy of
the blind channel identification, that is, hi(z) is estimated up to a scalar
constant as shown by Theorem 1.

6. DISCUSSION

We provide here some comments to get more insight onto
the proposed separation method.

(i) Overdetermined case

In that case, one is able to separate the sources by left inver-
sion of matrix A (or matrix H in the convolutive case). The
latter can be estimated from the centroids of the N clusters
(i.e., the centroid of the ith cluster represents the estimate of
the ith column of A).

(ii) Estimation of the number of sources

This is a difficult and challenging task in the underdeter-
mined case. Few approaches exist based onmultidimensional
tensor decomposition [34] or based on the clustering with
joint estimation of the number of classes [24]. However,
these methods are very sensitive to noise, to the source am-
plitude dynamic, and to the conditioning of matrix A. In this
paper, we assumed that the number of sources is known (or
correctly estimated).

(iii) Number of modal components

In the parametric approach, we have to choose the number
of modal components Ltot needed to well-approximate the
audio signal. Indeed, small values of Ltot lead to poor signal
representation while large values of Ltot increase the compu-
tational cost. In fact, Ltot depends on the “signal complexity,”
and in general musical signals require less components (for
a good modeling) than speech signals [35]. In Section 7, we
illustrate the effect of the value of Ltot on the separation qual-
ity.

(iv) Hybrid separation approach

It is most probable that the separation quality can be further
improved using signal analysis in conjunction with spatial fil-
tering or interference cancelation as in [28]. Indeed, it has
been observed that the separation quality depends strongly
on the mixture coefficients. Spatial filtering can be used to
improve the SIR for a desired source signal, and consequently
its extraction quality. This will be the focus of a future work.

(v) SIMO versus MIMO channel estimation

We have opted here to estimate the channels using SIMO
techniques. However, it is also possible to estimate the chan-
nels using overdetermined blind MIMO techniques by con-
sidering the time slots where the number of sources is smaller
than (M−1) instead of using only those where the number of
“effective” sources is one. The advantage of doing so would
be the use of a larger number of time slots (see Figure 4).
The drawback resides in the fact that blind identification of
MIMO systems is more difficult compared to the SIMO case
and leads in particular to higher estimation error (see Fig-
ure 12 for a comparative performance evaluation).
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Figure 5: Blind source separation example for 4 audio sources and 3 sensors in instantaneous mixture case: the upper line represents the
original source signals, the second line represents the source estimation by pseudoinversion of mixing matrix A assumed exactly known and
the bottom one represents estimates of sources by our algorithm using EMD.

(vi) Noiseless case

In the noiseless case (with perfectmodelization of the sources
as sums of damped sinusoids), the estimation of the modal
components using ESPRIT would be perfect. This would lead
to perfect (exact) estimation of the mixing matrix column
vectors using least-squares filtering, and hence perfect clus-
tering and source restoration.

7. SIMULATION RESULTS

We present here some simulation results to illustrate the per-
formance of our blind separation algorithms. For that, we
consider first an instantaneous mixture with a uniform linear
array ofM = 3 sensors receiving the signals from N = 4 au-
dio sources (except for the third experiment where N varies
in the range [2 · · · 6]). The angle of arrivals (AOAs) of the
sources is chosen randomly.4 In the convolutive mixture case,
the filter coefficients are chosen randomly and the channel
order is K = 6. The sample size is set to T = 10000 samples
(the signals are sampled at a rate of 8 KHz). The observed
signals are corrupted by an additive white noise of covari-
ance σ2I (σ2 being the noise power). The separation quality
is measured by the normalized mean-squares estimation er-
rors (NMSEs) of the sources evaluated over Nr = 100 Monte
Carlo runs. The plots represent the averaged NMSE over the

4 This is used here just for the simulation to generate the mixture matrix
A. We do not consider a parametric model using sources AOAs in our
separation algorithm.

N sources:

NMSEi
def= 1

Nr

Nr∑

r=1
min
α

(∥∥αŝi,r − si
∥∥2

∥∥si
∥∥2

)
,

NMSEi = 1
Nr

Nr∑

r=1
1−

(
ŝi,rsTi∥∥ŝi,r
∥∥∥∥si

∥∥

)2

,

NMSE = 1
N

N∑

i=1
NMSEi,

(48)

where si
def= [si(0), . . . , si(T − 1)], ŝi,r (defined similarly) is the

rth estimate of source si, and α is a scalar factor that compen-
sates for the scale indeterminacy of the BSS problem.

In Figure 5, we present a simulation example with N = 4
audio sources. The upper line represents the original source
signals, the second line represents the source estimation by
pseudoinversion of mixing matrixA assumed exactly known,
and the bottom one represents estimates of the sources by
our algorithm.

In Figure 6, we compare the separation performance ob-
tained by our algorithm using EMD and the parametric tech-
nique with L = 30 modal components per source signal
(Ltot = NL). As a reference, we plot also the NMSE ob-
tained by pseudoinversion of matrix A [36] (assumed ex-
actly known). It is observed that both EMD and parametric-
based separation provide better results than those obtained
by pseudoinversion of the exact mixing matrix.

The plots in Figure 7 illustrate the effect of the number of
components L chosen tomodel the audio signal. Too small or
too large values of L degrade the performance of the method.
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Figure 6: NMSE versus SNR for 4 audio sources and 3 sensors in
instantaneous mixture case: comparison of the performance of our
algorithm (EMD and ESPRIT) with those given by the pseudoin-
version of mixing matrix A (assumed exactly known).

10 15 20 25 30 35 40

Number of components

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

N
M
SE

(d
B
)

Parametric SNR = 30 dB
Parametric SNR = 10 dB

Figure 7: NMSE versus L for 4 audio sources and 3 sensors in in-
stantaneous mixture case: comparison of the performance of our
algorithm (ESPRIT) for L varying in the range [10, . . . , 40] with
SNR = 10dB and SNR = 30dB.

In other words, there exists an optimal choice of L that de-
pends on the signal type.

In Figure 8, we compare the separation performance loss
that we have when the number of sources increases from 2
to 6 in the noiseless case. For N = 2 and N = 3 (overde-
termined case), we estimate the sources by left inversion of
the estimate of matrix A. In the underdetermined case, the
EMD and parametric-based algorithms present similar per-
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Figure 8: NMSE versus N for 3 sensors in instantaneous mixture
case: comparison of the performance of our algorithm (EMD and
ESPRIT) for N ∈ [2, . . . , 6].
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Figure 9: NMSE versus SNR for 4 audio sources and 3 sensors in
instantaneous mixture case: comparison of the performance of our
algorithm (EMD) and the same algorithm with subspace projec-
tion.

formance. However, the latter method is better in the overde-
termined case.

In Figure 9, we compare the performance of our algo-
rithm using ESPRIT with and without subspace projection.
One can observe that using the subspace projection leads
to a performance gain at moderate and high SNRs. At low
SNRs, the performance is slightly degraded due to the noise
effect. Indeed, when a given component belongs “effectively”
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Figure 10: NMSE versus SNR for 4 audio sources and 3 sensors:
comparison of the performance of MD-UBSS algorithms with and
without quasiorthogonality assumption.

to only one source signal, (23) would provide a nonzero am-
plitude coefficient for the second source due to noise effect
which explains the observed degradation.

In Figure 10, we compare the separation performance ob-
tained by our MD-UBSS algorithm and the modified MD-
UBSS algorithm. We observe a performance gain in favor of
the modified MD-UBSS mainly due to the fact that it does
not rely on the quasiorthogonality assumption. This plot
also highlights the problem of “best source estimate” selec-
tion related to the MD-UBSS as we observe a performance
loss between the results given by the proposed energy-based
selection procedure and the optimal5 one using the exact
source signals.

Figure 11 illustrates the estimation performance of the
mixing matrix A using proposed clustering method. The ob-
served good estimation performance translates the fact that
most modal components belong “effectively” to one single
source signal.

In Figure 12, we present the performance of channel
identification obtained by using SIMO identification algo-
rithm (in this case, we choose only the time intervals where
only one source is present using AIC criterion) with SIMO
andMIMO identification algorithms (in this case, we choose
the time intervals where we are in the overdetermined case;
i.e., where p = 1 or p = 2). It is observed that SIMO-based
identification provides better results than those obtained by
SIMO and MIMO identification algorithms.

5 Clearly, the optimal selection procedure is introduced here just for per-
formance comparison and not as an alternative selection method since it
relies on the exact source signals that are unavailable in our context.
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Figure 11: Mixing matrix estimation: NMSE versus SNR for 4
speech sources and 3 sensors in instantaneous mixture case.
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Figure 12: NMSE versus SNR for 4 audio sources and 3 sensors in
convolutive mixture case: comparison of the performance of identi-
fication algorithm using only SIMO system and the algorithm using
SIMO and MIMO systems.

The plots in Figure 13 present the separation perfor-
mance in convolutive mixture case when using the exact
channel impulse responseH compared to that obtained with
an approximate channel Ĥ = H + δH, where the entries of
δH are i.i.d. Gaussian distributed. This is done for different
values of channel normalized mean-squares error (CNMSE)
defined by

CNMSE = 10 log
‖H− Ĥ‖2
‖H‖2 . (49)



Abdeldjalil Aı̈ssa-El-Bey et al. 13

0 5 10 15 20 25 30 35 40

SNR (dB)

−8

−7.5
−7

−6.5
−6

−5.5
−5

−4.5
−4

−3.5
N
M
SE

(d
B
)

UBSS algorithm with CNMSE = −15 dB
UBSS algorithm with CNMSE = −20 dB
UBSS algorithm with knownH

Figure 13: NMSE versus SNR for 4 audio sources and 3 sensors in
convolutive mixture case: comparison, for the MD-UBSS algorithm
in convolutive mixture case, when the channel responseH is known
or disturbed by Gaussian noise for different values of CNMSE.
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Figure 14: NMSE versus SNR for 4 audio sources and 3 sensors in
convolutive mixture case: comparison, for the MD-UBSS algorithm
in convolutive mixture case, when the channel responseH is known
or estimated using the CR technique.

Clearly, the separation quality depends strongly on the qual-
ity of channel estimation.

In Figure 14, we present the separation performance
when using the exact channel response H compared to that
obtained with the proposed estimate Ĥ using SIMO ap-
proach. For SNRs larger than 20 dB, the channel estimation
is good enough for the proposed method to achieve almost

the same performance as if the channel is exactly known.
Surprisingly, at SNR = 20dB, the channel estimate NMSE
is approximately equal to −18 dB (see Figure 12), an error
level corresponding to a nonnegligible degradation shown in
Figure 13. This seemingly contradiction comes from the fact
that in the experiment of Figure 13, the channel is disturbed
“artificially” using spatially white Gaussian noise, while the
real channel estimation error is spatially colored (see, e.g.,
[37] where explicit expression of the asymptotic channel co-
variance error is given) which seems to be favorable to our
separation method.

8. CONCLUSION

This paper introduces a new blind separation method for
audio-type sources using modal decomposition. The pro-
posed method can separate more sources than sensors and
provides, in that case, a better separation quality than the
one obtained by pseudoinversion of themixturematrix (even
if the latter is known exactly) in the instantaneous mixture
case. The separation method proceeds in two steps: an anal-
ysis step where all modal components are estimated followed
by a synthesis step to group (cluster) together the modal
components and reconstruct the source signals. For the sig-
nal analysis step, two algorithms are used and compared
based, respectively, on the EMD and on the ESPRIT tech-
niques. A modified MD-UBSS as well as a subspace projec-
tion approach are also proposed to relax the “quasiorthog-
onality” assumption and allow the source signals to share
common modal components, respectively. This approach
leads to a performance improvement of the separation qual-
ity. For the convolutive mixture case, we propose to use again
modal decomposition based on ESPRIT technique, but the
signal synthesis is more complex and requires the prior iden-
tification of the channel impulse response, which is done
here using the sparsity of the audio sources.

ACKNOWLEDGMENT

Part of this work has been published in conferences [38, 39].

REFERENCES

[1] A. K. Nandi, Ed., Blind Estimation Using Higher-Order Statis-
tics, Kluwer Academic, Boston, Mass, USA, 1999.

[2] A. Cichocki and S. Amari, Adaptive Blind Signal and Image
Processing, John Wiley & Sons, Chichester, UK, 2003.

[3] J.-F. Cardoso, “Blind signal separation: statistical principles,”
Proceedings of the IEEE, vol. 86, no. 10, pp. 2009–2025, 1998.

[4] P. Sugden and N. Canagarajah, “Underdetermined noisy blind
separation using dual matching pursuits,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’04), vol. 5, pp. 557–560, Montreal, Que,
Canada, May 2004.

[5] P. Sugden and N. Canagarajah, “Underdetermined blind sep-
aration using learned basis function sets,” Electronics Letters,
vol. 39, no. 1, pp. 158–160, 2003.

[6] P. Comon, “Blind identification and source separation in 2×3
under-determined mixtures,” IEEE Transactions on Signal Pro-
cessing, vol. 52, no. 1, pp. 11–22, 2004.



14 EURASIP Journal on Audio, Speech, and Music Processing

[7] A. Belouchrani and J. F. Cardoso, “A maximum likelihood
source separation for discrete sources,” in Proceedings of the 7th
European Signal Processing Conference (EUSIPCO ’94), vol. 2,
pp. 768–771, Scotland, UK, September 1994.

[8] J. M. Peterson and S. Kadambe, “A probabilistic approach
for blind source separation of underdetermined convolutive
mixtures,” in Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP ’03), vol. 6, pp.
581–584, Hong Kong, April 2003.

[9] S. Y. Low, S. Nordholm, and R. Togneri, “Convolutive blind
signal separation with post-processing,” IEEE Transactions on
Speech and Audio Processing, vol. 12, no. 5, pp. 539–548, 2004.

[10] L. C. Khor, W. L. Woo, and S. S. Dlay, “Non-sparse approach
to underdetermined blind signal estimation,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’05), vol. 5, pp. 309–312, Philadelphia, Pa,
USA, March 2005.

[11] P. Georgiev, F. Theis, and A. Cichocki, “Sparse component
analysis and blind source separation of underdetermined mix-
tures,” IEEE Transactions on Neural Networks, vol. 16, no. 4, pp.
992–996, 2005.

[12] I. Takigawa, M. Kudo, and J. Toyama, “Performance analysis
of minimum �1-norm solutions for underdetermined source
separation,” IEEE Transactions on Signal Processing, vol. 52,
no. 3, pp. 582–591, 2004.

[13] N. Linh-Trung, A. Belouchrani, K. Abed-Meraim, and B.
Boashash, “Separating more sources than sensors using time-
frequency distributions,” EURASIP Journal on Applied Signal
Processing, vol. 2005, no. 17, pp. 2828–2847, 2005.
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