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ABSTRACT

This paper considers the blind separation of nonstationary sources
in the underdetermined convolutive mixture case. We introduce two
methods based on the sparsity assumption of the sources in the time-
frequency (TF) domain. The first one assumes that the sources are
disjoint in the TF domain; i.e. there is at most one source signal
present at a given point in the TF domain. In the second method, we
relax this assumption by allowing the sources to be TF-nondisjoint
to a certain extent. In particular, the number of sources present (ac-
tive) at a TF point should be strictly less than the number of sensors.
In that case, the separation can be achieved thanks to subspace pro-
jection which allows us to identify the active sources and to estimate
their corresponding time-frequency distribution (TFD) values.

Index Terms— Separation, deconvolution, time-frequency anal-
ysis, identification.

1. INTRODUCTION

The blind source separation of more sources than sensors (referred to
as UBSS for underdetermined blind source separation) is still a chal-
lenging problem especially in the convolutive mixtures case. In the
instantaneous mixture case, some methods exploiting the sparseness
of the sources in certain transform domain have been proposed for
UBSS [1–4]. These methods proceed ’roughly’ as follows: The mix-
tures are first transformed to an appropriate representation domain;
the transformed sources are then estimated using their sparseness,
and finally one recovers their time waveforms by source synthesis
(for more information, see the recent survey work [5]).
UBSS methods for nonstationary sources have been proposed, given
that these sources are sparse in the time-frequency (TF) domain [2,
3]. The main assumption used in these methods is that the sources
are TF-disjoint. In other words, there is at most one source present
at any point in the TF domain. This assumption is rather restrictive,
though the methods have also showed that they worked well under a
quasi sparseness condition, i.e. sources are TF-almost-disjoint.
In this paper we focus on the UBSS in convolutive mixture case and
target the relaxation of the TF-disjointness condition by allowing the
sources to be nondisjoint in the TF domain; that is, multiple sources
are possibly present at any point in the TF domain. This case has
been considered in [4] for the separation of instantaneous mixtures,
in [6] for the deconvolution of single-path channels with non-zero
delays and in [7] where binary TF-masking and ICA technique are
jointly used. The main contribution of this paper consists in two
new algorithms (TF-CUBSS for Time-frequency convolutive under-
determined blind source separation) for solving the UBSS in the TF
domain; the first one uses vector clustering while the other uses sub-
space projection.

2. PROBLEM FORMULATION

2.1. Data model

Let s1(t), . . . , sN (t) be the desired sources to be recovered from the
convolutive mixtures x1(t), . . . , xM (t) given by:

x(t) =

K∑

k=0

H(k)s(t− k) + w(t) (1)

where s(t) = [s1(t), . . . , sN (t)]T is the source vector, x(t) =

[x1(t), . . . , xM (t)]T is the mixture vector (with M < N ), w(t) is
the observation noise, and H(k) are M ×N matrices for k ∈ [0, K]
representing the impulse response coefficients of the channel that
satisfies:

Assumption 1 The channel is such that each column vector of

H(z)
def
=

K∑

k=0

H(k)z−k def
= [h1(z), . . . ,hN (z)]

is irreducible, i.e. the entries of hi(z) denoted hji(z), j = 1, . . . , M ,
have no common zeros ∀i. Moreover, any M column vectors of H(z)

form a polynomial matrix H̃(z) that it full rank over the unit-circle,
i.e. rank(H̃(f)) = M ∀f .

2.2. TF conditions on the sources

In order to deal with UBSS, one often seeks for a sparse representa-
tion of the sources [1]. In other words, if the sources can be sparsely
represented in some domain, then their separation can be carried out
in that domain by exploiting their sparseness.

2.2.1. TF-disjoint sources

Recently, there have been several UBSS methods, notably those in [2]
and [3], in which the TF domain has been chosen to be the underlay-
ing sparse domain. These two papers have based their solutions on
the assumption that the sources are disjoint in the TF domain. Math-
ematically, if Ω1 and Ω2 are the TF supports of two sources s1(t) and
s2(t) then the sources are said TF-disjoint if Ω1 ∩ Ω2 = ∅. How-
ever, this is a rather strict assumption. A more practical assumption
is that the sources are almost-disjoint in the TF domain [2], allowing
some small overlapping in the TF domain, for which the above two
methods also worked.



2.2.2. TF-nondisjoint sources

In this paper, we want to relax the TF-disjoint condition by allowing
the sources to be nondisjoint in the TF domain.
Therefore, we will allow the sources to be nondisjoint in the TF do-
main; that is, multiple sources are allowed to be present at any point
in the TF domain. However, instead of being inevitably nondisjoint,
we limit ourselves by making the following constraint:

Assumption 2 The number of active sources (i.e. sources that over-
lap) at any TF point is strictly less than the number of sensors.

In other words, for the configuration of M sensors, there exists at
most (M − 1) overlapping sources at any point in the TF domain.
For the special case when M = 2, Assumption 2 reduces to the
disjoint condition.

3. TF-CUBSS ALGORITHM

In order to solve the UBSS problem in the convolutive case, we pro-
pose to identify first the impulse response of the channels. This prob-
lem in overdetermined case is very difficult and becomes almost im-
possible in the underdetermined case without side information on the
considered sources. In this work and similarly to [8], we exploit the
sparseness property of the audio sources by assuming that from time
to time only one source is present. In other words, we consider the
following assumption:

Assumption 3 There exists, periodically, time intervals where only
one source is present in the mixture. This occurs for all source sig-
nals of the considered mixtures.

To detect these time intervals, we propose to use information criteria
based testing for the estimation of the number of sources present in
the signal (see Section 3.1 for more details).

3.1. Channel estimation

Based on assumption 3, we propose here to apply SIMO (Single In-
put Multiple Output) based techniques to blindly estimate the chan-
nel impulse response. Regarding the problem at hand, we have to
solve three different problems: first, we have to select time inter-
vals where only one source signal is effectively present; then, for
each selected time interval one should apply an appropriate blind
SIMO identification technique to estimate the channel parameters;
finally, the way we proceed, the same channel may be estimated sev-
eral times and hence one has to group together (cluster) the channel
estimates into N classes corresponding to the N source channels.

3.1.1. Source number estimation

Let define the spatio-temporal vector:

xd(t) = [xT (t), . . . ,xT (t−d+1)]T =

N∑

k=1

Hksk(t)+wd(t), (2)

where Hk are block-Sylvester matrices of size dM × (d + K),

sk(t)
def
= [sk(t), . . . , sk(t − K − d + 1)]T and d is a chosen pro-

cessing window size. Under the data model assumption and for large
window sizes (see [9] for more details), matrices Hk are full col-
umn rank. Hence, in the noiseless case, the rank of the data covari-
ance matrix R

def
= E[xd(t)xH

d (t)] is equal to min(p(d + K), dM)
where p is the number of sources present in the considered time in-
terval over which the covariance matrix is estimated. In particular,

for p = 1, one has the minimum rank value equal to (d + K).
Therefore, our approach consists in estimating the rank of the sam-
ple averaged covariance matrix R over several time slots (intervals)
and select those corresponding to the smallest rank value r = d+K.
The estimation of the rank value is done here by Akaike’s crite-
rion [9] according to:

r = arg min
k



−2 log




Md∏
i=k+1

λ
1/(Md−k)
i

1
Md−k

Md∑
i=k+1

λi




(Md−k)Ts

+ 2k(2Md− k)




,

(3)
where λ1 ≥ . . . ≥ λMd represent the eigenvalues of R and Ts is the
time slot size. Note that it is not necessary at this stage, to know ex-
actly the channel degree K as long as d > K (i.e. an over-estimation
of the channel degree is sufficient) in which case the presence of one
signal source is characterized by:

d < r < 2d .

3.1.2. Blind channel identification

To perform the blind channel identification, we have used in this
paper the Cross-Relation (CR) technique described in [10]. This
method is used on the time slots, where only one source signal is ac-
tive. The latter are selected using the previously described Akaike’s
criterion. Note that there exist an improved, but more expensive, ver-
sion of the CR method exploiting the quasi-sparse nature of acoustic
impulse response [11] which can be used as well at this stage.

3.1.3. Clustering of channel vector estimates

The first step of our channel estimation method consists in detect-
ing the time slots where only one single source signal is ’effectively’
present. However, the same source signal si may be present in sev-
eral time intervals leading to several estimates of the same channel
vector hi

def
== [h1i(0) . . . hMi(0) . . . h1i(K) . . . hMi(K)]T .

We end up, finally, with several estimates of each source channel that
we need to group together into N classes. This is done by clustering
the estimated vectors using k-means algorithm [12]. The ith channel
estimate is evaluated as the centroid of the ith class.

3.2. UBSS algorithm with TF-disjoint assumption

In this section, we propose a new cluster-based TF-CUBSS algo-
rithm using the STFT (Short Time Fourier Transform) for convolu-
tive mixture case. After transformation into the TF domain using the
STFT, the model in (1) becomes (in the noiseless case):

Sx(t, f) = H(f)Ss(t, f), (4)

where Sx(t, f) is the mixture STFT vector, Ss(t, f) is the source
STFT vector and H(f) = [h1(f) . . .hN (f)] is the channel Fourier
transform matrix. Under the assumption that all sources are disjoint
in the TF domain, (4) reduces to

Sx(t, f) = hi(f)Ssi(t, f), ∀(t, f) ∈ Ωi,∀i ∈ N , (5)

where N = {1, . . . , N}. Consequently, two TF points (t1, f1) and
(t2, f2) belonging to the same region Ωi (i.e. corresponding to the
source signal si) are ’associated’ with the same channel hi.
This latter observation is used next to cluster together the TF points



of a given source signal. More precisely the algorithm proceeds as
follows: First, we compute the STFT of the mixtures according to:

Sxi(t, f) =

∫ ∞

−∞
xi(τ)w(τ − t)e−j2πfτdτ, i = 1, . . . , M,

Sx(t, f) = [Sx1(t, f), . . . ,SxM (t, f)]T .

Then, we apply a noise thresholding procedure which mitigates the
noise effect but also reduces the computational cost as only the se-
lected TF points are further treated by our algorithm. In particular,
for each frequency-slice (t, fp) of the TFD representation, we apply
the following criterion for all the time points tk belonging to this
frequency-slice

If
‖Sx(tk, fp)‖

maxt {‖Sx(t, fp)‖} > ε, then keep (tk, fp), (7)

where ε is a small threshold (typically, ε = 0.01). Then, the set of
all selected points, Ω, is expressed by Ω =

⋃N
i=1 Ωi, where Ωi is the

TF support of source si. Note that, the effects of spreading the noise
energy while localizing the source energy in the time-frequency do-
main amounts to increasing the robustness of the proposed method
with respect to noise. Hence, by equation (7), we would keep only
time-frequency points where the signal energy is non-negligible, the
other time-frequency points are rejected, i.e. not further processed,
since considered to represent noise contribution only. Also, due to
the noise energy spreading, the contribution of the noise in the source
time-frequency points is relatively, negligible at least for moderate
and high SNRs. Finally,the clustering procedure can be done as fol-
lows: For each TF point, we obtain the spatial direction vectors by:

v(t, f) =
Sx(t, f)

‖Sx(t, f)‖ , (t, f) ∈ Ω, (8)

and force them, without loss of generality, to have the first entry real
and positive.These vectors are clustered into N classes {Ci | i ∈ N}
by minimizing the criterion:

v(t, f) ∈ Ci ⇐⇒ i = arg min
k

∥∥∥∥∥v(t, f)− ĥk(f)e−jθk

‖ĥk(f)‖

∥∥∥∥∥

2

(9)

where ĥk(f) is the Fourier Transform of the kth channel vector es-
timate and θk is the phase argument of ĥ1k(f) (this is to force the
first entry to be real positive as for v(t, f)).
The collection of all points, whose vectors belong to the class Ci,
form the TF support Ωi of source si. Therefore, we can estimate the
STFT of each source si by:

Ŝsi(t, f) =

{
ĥH

i (f)

‖ĥi(f)‖2 Sx(t, f), ∀ (t, f) ∈ Ωi,

0, otherwise,
(10)

since, from (5), we have

ĥH
i (f)

‖ĥi(f)‖2
Sx(t, f) =

ĥH
i (f)hi(f)

‖ĥi(f)‖2
Ssi (t, f) ≈ Ssi (t, f), ∀ (t, f) ∈ Ωi.

3.3. UBSS algorithm with TF-nondisjoint assumption

We have seen the cluster-based TF-CUBSS method, using the STFT.
This method relies on the assumption that the sources are TF-disjoint,
which led to the TF-transformed structure in (5). The latter is no
longer valid, when the sources are nondisjoint in the TF domain.

Under the TF-nondisjointness condition, stated in Assumption 2, we
propose in this section an alternative method using subspace projec-
tion. Recall that the first two steps of the cluster-based quadratic
TF-CUBSS algorithm do not rely on the assumption of TF-disjoint
sources. Therefore, we can reuse these steps to obtain the chan-
nel estimates and all the TF points of the sources, i.e. Ω. Under
the TF-nondisjointness condition, consider a TF point (t, f) ∈ Ω
at which there are J < M sources1 sα1(t), . . . , sαJ (t) present,
where α1, . . . , αJ ∈ N denote the indices of the active sources at
(t, f). Our goal is to identify the sources that are present at (t, f), i.e.
α1, . . . , αJ , and to estimate the STFT of each of these contributing
sources. We define the following:

s̃ = [sα1(t), . . . , sαJ (t)]T , (11a)

H̃α(f) = [hα1(f), . . . ,hαJ (f)]. (11b)

Then, (4) is reduced to the following

Sx(t, f) = H̃α(f)Ss̃(t, f). (12)

Let H̃β(f) = [hβ1(f), . . . ,hβJ (f)] and Qβ(f) be the orthogonal
projection matrix onto the noise subspace of H̃β(f) expressed by:

Qβ(f) = I− H̃β(f)
(
H̃H

β (f)H̃β(f)
)−1

H̃H
β (f). (13)

We have the following observation:
{

Qβ(f)hi(f) = 0, i ∈ {β1, . . . , βJ }
Qβ(f)hi(f) 6= 0, i ∈ N\{β1, . . . , βJ } . (14)

Consequently, as Sx(t, f) ∈ Range{H̃α(f)}, we have
{

Qβ(f)Sx(t, f) = 0, if {β1, . . . , βJ } = {α1, . . . , αJ }
Qβ(f)Sx(t, f) 6= 0, otherwise

.

(15)
Since H(f) has already been estimated by the method presented
in Section 3.1, then this observation gives us the criterion to detect
the indices α1, . . . , αJ and hence, the contributing sources at the
considered TF point (t, f). In practice, to take into account noise,
one detects the column vectors of H̃α(f) by minimizing:

{α1, . . . , αJ } = arg min
β1,...,βJ

{‖Qβ(f)Sx(t, f)‖} . (16)

Next, TFD values of the J sources at the considered TF point are
estimated by:

Ŝs̃(t, f) ≈ H̃#
α (f)Sx(t, f), (17)

where the superscript (·)# represents the Moore-Penrose’s pseudo-
inversion operator.
In the simulation, the optimization problem of (16) is solved using
exhaustive search. This is computationally tractable for small vector
array sizes but would be prohibitive if M is very large.

4. SIMULATION RESULTS

In the simulations, we have considered an array of M = 3 sen-
sors, that receives signals from N = 4 independent speech sources.
The filter coefficients are chosen randomly and the channel order

1To avoid the difficult problem of estimating the number of active sources
at each TF point, we have chosen in this paper to set J to a fixed value in the
range 1 < J < M .



is K = 6. The sample size is T = 8192 samples (correspond-
ing approximately to 1 second recording of speech signals sampled
at 8 KHz). The separation quality is measured by the normalized
mean squares estimation errors (NMSE) of the sources evaluated
over Nr = 200 Monte-Carlo runs and defined as:

NMSEi
def
=

1

Nr

Nr∑
r=1

min
α

(‖αŝi,r − si‖2
‖si‖2

)
(18)

NMSEi =
1

Nr

Nr∑
r=1

1−
(

ŝi,rs
H
i

‖ŝi,r‖‖si‖
)2

(19)

NMSE =
1

N

N∑
i=1

NMSEi . (20)

where si
def
= [si(0), . . . , si(T − 1)], ŝi,r ( defined similarly) repre-

sents the rth estimate of source si and α is a scalar factor that com-
pensates for the scale indeterminacy of the BSS problem. In Fig. 1,
we compare the separation performance obtained by the subspace-
based algorithm with J = 2 and the cluster-based algorithm. It is
observed that subspace-based algorithm provides much better sep-
aration results than those obtained by the cluster-based algorithm.
This is mainly due to the high occurrence of overlapping sources in
the TF domain for this type of signals so that the ’TF-disjointness’
assumption used by the TF-CUBSS algorithm is poorly satisfied.
The plot in Fig. 2 presents the separation performance of the sub-
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Fig. 1. Comparison between subspace-based and cluster-based TF-
CUBSS algorithms: normalized MSE (NMSE) versus SNR for 4
speech sources and 3 sensors.

space method when using the exact matrix H compared to that ob-
tained with the proposed estimate Ĥ. The observed performance
loss is due to the channel estimation error which is relatively high
for low SNRs and becomes negligible for high SNRs.

5. CONCLUSION

This paper introduces new methods for the UBSS of TF-disjoint
and TF-nondisjoint nonstationary sources in the convolutive mix-
ture case using their time-frequency representations. The first pro-
posed method has the advantage of simplicity while the second uses
a weaker assumption on the source ‘sparseness’, i.e. the sources are
not necessarily TF-disjoint, and proposes an explicit treatment of the
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Fig. 2. Comparison, for the subspace-based TF-CUBSS algorithm,
when the mixing channel H is known or unknown: NMSE of the
source estimates.

overlapping points using subspace projection, leading to significant
performance improvements.
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