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1Université Paris 13, L2TI
99, Av. J.B. Clément, 93430, Villetaneuse.

souidene, elbey@tsi.enst.fr

K. Abed-Meraim2, A. Beghdadi1

2ENST-Paris, TSI department,
46, rue Barrault, 75634, Paris Cedex 13, France.
abed@tsi.enst.fr, beghdadi@l2ti.univ-paris13.fr

ABSTRACT

This paper focuses on the blind image separation using their sparse
representation in an appropriate transform domain. A new separa-
tion method is proposed that proceeds in two steps: (i) an image pre-
treatment step to transform the original sources into sparse images
and to reduce the mixture matrix to an orthogonal transform (ii) and
a separation step that exploits the transformed image sparsity via an
`p-norm based contrast function. A simple and efficient natural gra-
dient technique is used for the optimization of the contrast function.
The resulting algorithm is shown to outperform existing techniques
in terms of separation quality and computational cost.

Index Terms— Separation, image restoration, sparse matrices.

1. INTRODUCTION

Blind source separation (BSS) is an important research field in sig-
nal and image processing. In particular, separating linear mixtures
of several ‘independent’ images has application in biomedical imag-
ing [1–3], in cosmology and multispectral imaging [4, 5], in polari-
metric imaging [6], etc.
Recently, an important research activity has been observed for solv-
ing the BSS problem using a sparse representation of the source
signals. Solution for the blind separation of image sources using
sparsity include the wavelet-transform domain method in [6] and the
method in [7] using projection onto sparse dictionaries.
In this work, we propose a new solution based on the transformed
image sparsity. The new BSS algorithm is shown to be more efficient
that other existing techniques in the literature and leads to improved
separation quality with lower computational cost.

2. NOTATIONS AND DATA MODEL

We assume that N images f1, · · · , fN each of size (mf , nf ) are
merged and M linear mixtures of these original images are observed.
The latter mixtures can be modeled by the following linear system:

g(m, n) = Af(m, n) + w(m, n) (1)

where, f(m, n) = [f1(m, n), · · · , fN (m, n)]T is a N × 1 im-
age source vector consisting of the stack of corresponding pixels
of source images, w(m, n) = [w1(m, n), · · · , wM (m, n)]T is the
M × 1 gaussian complex noise vector which affects each image
mixture pixel, A is the M × N full column rank mixing matrix
(i.e., M ≥ N ), g(m, n) = [g1(m, n), · · · , gM (m, n)]T is an
M × 1 vector of mixture image pixels and the superscript T de-
notes the transpose operator. The purpose of blind image separation
is to find a separating matrix, i.e. a N × M matrix B such that

bf(m, n) = Bg(m, n) is an estimate of original images. In prac-
tice, the separating matrix estimation is performed up to a permuta-
tion and a certain fixed scalar, i.e. B is a separating matrix iff:

BA = PΛ (2)

where P is a permutation matrix and Λ a non-singular diagonal ma-
trix that represent the inherent ambiguities of the BSS problem.

3. SEPARATION ALGORITHM

As shown in [6,7], exploiting the sparsity of some representations of
the original images afford us to achieve the BSS problem. Indeed,
the mixture destroys or ‘reduces’ the sparsity of the considered sig-
nals that is restored after source separation. Reversely, it is shown
in [6, 7] that restoring (maximizing) the sparsity leads to the desired
source separation. Based on this, we propose in the sequel a two-step
BSS solution consisting in a linear pre-treatment that transforms the
original sources into sparse signals followed by a BSS algorithm that
minimizes the `p norm of the transformed image mixtures using nat-
ural gradient technique.

3.1. Image pre-treatment

The algorithm proposed in this article is efficient for separating
sparse sources. For some signals, one can assume that the spatial
or temporal representation is naturally sparse, whereas for natural
scenes, this assumptions falls down. We propose to make the image
sparse by simply taking into account its Laplacian transform:

F = ∇f =
∂2f

∂x2
+

∂2f

∂y2
, (3)

or, in discrete form

F(m, n) = f(m + 1, n) + f(m− 1, n) + f(m, n + 1)

+f(m, n− 1)− 4f(m, n) .

Our motivation for choosing this transformation is two fold. First
the Laplacian transform is a sparse representation of the image since
it acts as an edge detector which provides a two-level image, the
edges and the homogeneous background. Second, the Laplacian is
a linear transformation. This latter property is ’critical’ since the
separation matrix estimated to separate the image mixtures is the
same to separate the mixture of Laplacian images:

G =
∂2Af

∂x2
+

∂2Af

∂y2
= AF (4)

where G is the Laplacian transform of the mixtures. In the litera-
ture, some other linear transformations were proposed in order to



make the image sparse, including the projection into a sparse dictio-
nary [7]. In Figure 1, the original cameraman image is displayed as
well as its Laplacian transform and their respective histograms that
clearly show the sparsity of the latter.
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Fig. 1. (a) Original image, (b) Laplacian transform, (c) Original
image histogram, (d) Sparse Laplacian transform histogram

In the pre-treatment phase, we also propose an optional whitening
step which aims to set the mixtures to the same energy level. Further-
more, this procedures reduces the number of parameters to be esti-
mated. More precisely, the whitening step is applied to the Laplacian
image mixtures before using our separation algorithm. The whiten-
ing is achieved by applying a N × M matrix Q to the Laplacian
image mixtures in such a way Cov(QG) = I in the noiseless case,
where Cov(·) stands for the covariance operator. As shown in [8],
Q can be computed as the inverse square root of the noiseless co-
variance matrix of the Laplacian image mixtures (see [8] for more
details). In the following, we apply our separation algorithm on the
whitened data:

Gw(m, n) = QG(m, n).

3.2. Sparsity-based BSS algorithm

In this section, we propose an iterative algorithm for the separation
of sparse signals, namely the ISBS for Iterative Sparse Blind Sepa-
ration algorithm. It is well known that Laplacian image transform
is characterized by its sparsity property in the spatial domain [1, 9].
This property can be measured by the `p norm where 0 ≤ p < 2.
More specifically, one can define the following sparsity based con-
trast function,

Gp(F) =

NX
i=1

[Jp(Fi)]
1
p (5)

where

Jp(Fi) =
1

mfnf

mfX
n=1

nfX
m=1

|Fi(m, n)|p . (6)

The algorithm finds a separating matrix B such as,

B = arg min
B

{Gp(B)} (7)

where
Gp(B) , Gp(H) (8)

and H(m, n) , BGw(m, n) represents the estimated image
sources Laplacian. The approach we choose to solve (7) is inspired
from [10]. It is a block technique based on the processing of mfnf

observed image pixels and consists in searching the minimum of the
sample version of (7). Solutions are obtained iteratively in the form:

B(k+1) = (I + ε(k))B(k) (9)

H(k+1)(m, n) = (I + ε(k))H(k)(m, n) . (10)

At iteration k, a matrix ε(k) is determined from a local linearization
of Gp(BGw). It is an approximate Newton technique with the ben-
efit that ε(k) can be very simply computed (no Hessian inversion)
under the additional assumption that B(k) is close to a separating
matrix. This procedure is illustrated in the following.
At the (k+1)th iteration, the proposed criterion (6) can be developed
as follows:

Jp(H(k+1)
i ) =

= 1
mf nf

mfX
m=1

nfX
n=1

˛̨
˛̨
˛H

(k)
i (m, n) +

NX
j=1

ε
(k)
ij H(k)

j (m, n)

˛̨
˛̨
˛

p

.

Under the assumption that B(k) is close to a separating matrix, we
have

|ε(k)
ij | ¿ 1

and thus, a first order approximation of Jp(H(k+1)
i ) is given by:

Jp(H(k+1)
i ) ≈ 1

mf nf

mfP
m=1

nfP
n=1

n
|H(k)

i (m, n)|p+

p
NP

j=1

ε
(k)
ij

“
|H(k)

i (m, n)|p−1sgn
“
H(k)

i (m, n)
”
H(k)

j (m, n)
”o

(11)
where sgn(·) represents the sign value operator. Using equation (11),
equation (5) can be rewritten in more compact form as:

Gp

“
B(k+1)

”
= Gp

“
B(k)

”
+ Tr

“
ε(k)R(k)T D(k)

”
(12)

where Tr(·) is the matrix trace operator, the ijth entry of matrix
R(k) is given by:

R(k)
ij =

1

mf nf

mfX

m=1

nfX

n=1

|H(k)
i (m, n)|p−1sgn

“
H(k)

i (m, n)
”
H(k)

j (m, n) .

and

D(k) =
h
diag

“
R(k)

11 , . . . ,R(k)
NN

”i 1
p
−1

. (13)

Using a gradient technique, ε(k) can be written as:

ε(k) = −µD(k)R(k) , (14)

where µ > 0 is the descent step. Replacing (14) into (12) leads to,

Gp

“
B(k+1)

”
= Gp

“
B(k)

”
− µ‖D(k)R(k)‖2 , (15)



so µ controls the decrement of the criterion. Now, to avoid the algo-
rithm’s convergence to the trivial solution B = 0, one normalizes
the outputs of the separating matrix to unit-power, i.e. ρ

(k+1)
Hi

,
E
“
|H(k+1)

i (m, n)|2
”

= 1, ∀ i. Using first order approximation,
this normalization leads to:

ε
(k)
ii =

1− ρ
(k)
Hi

2ρ
(k)
Hi

. (16)

The final estimated separation matrix B = B(K)Q is applied to
the image mixtures g to obtain an estimation of the original im-
ages. K denotes here the number of iterations that can be ei-
ther chosen a priori or given by a stopping criterion of the form
‖B(k+1) −B(k)‖ < δ where δ is a small threshold value.

4. PERFORMANCE EVALUATION

All simulations are carried on 256× 256 parrot and cameraman im-
ages. The number of observed mixtures is M = 2. The algorithms
are developed on MATLAB environment. Monte Carlo simulations
are carried over 200 random realizations of the additive gaussian
noise for variable Signal to Noise Ratios (SNR). In order to objec-
tively evaluate the performance of the proposed algorithm, we con-
sider two different criteria, the first one is the Interference to Signal
Ratio (ISR) criterion [8] defined as:

ISR ,
NX

i=1

NX

j 6=i

E
`|(BA)ij |2

´
ρj

E (|(BA)ii|2) ρi
(17)

where ρi = E(|fi(m, n)|2) is the ith source power. The second
one is an objective image quality measure inspired from the Hu-
man Visual System (HVS) properties and developed in [11]. It is
called PSNR − WAV for Peak Signal to Noise Ratio based on
Wavelet decomposition. The separation result of the proposed al-
gorithm is depicted on Fig. 2 where we represent the two origi-
nal images (f1, f2), the mixtures (g1, g2) and the recovered ones
( bf1, bf2) by the proposed algorithm in the noiseless case. In Fig. 3,
we compare the performance of the proposed algorithm to the Rela-
tive Newton algorithm developed by Zibulevsky et al. in [9] where
the case of sparse sources is considered. We plot the residual inter-
ference between separated images (ISR) versus the SNR. It is clearly
shown that our algorithm (ISBS) performs better in terms of ISR es-
pecially for low SNRs. We plot on Fig. 4 the objective distortion
measure between the original and separated images versus the SNR.
One can observe that, for each image, we reach the same conclusion
for the PSNR −WAV as for the ISR. In Fig. 5, we represent the
evolution of the ISR as a function of the iteration number. A fast
convergence rate is observed. Moreover, the complexity of the pro-
posed algorithm is equal to 2N2mfnf +O(N2) flops per iteration
whereas the complexity of the Relative Newton algorithm in [9] is
2N4 + N3mfnf + N6/6.

5. CONCLUSION

This article deals with a simple and efficient two-step algorithm of
blind image separation. The proposed method consists in a sparsifi-
cation of the natural observed mixtures followed by a blind separa-
tion of the original images. The sparsification is simply the Lapla-
cian transform and has a low computational cost. The separation is
performed using an iterative algorithm based on the minimizing of

(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a)-(b) original images, (c)-(d) M = 2 observed mixtures,
(e)-(f) restored images using ISBS algorithm.

the `p norm of the Laplacian image. The proposed technique outper-
forms existing solutions in terms of separation quality and computa-
tional cost.
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