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Abstract The aim of this study is to develop a new regularized Digital Image Cor-
relation (DIC) method for time dependent measurements. The correlation problem
is written as a minimization problem over the space-time domain in a general for-
mulation including 2D-DIC and Stereo DIC (SDIC). The unknown time-resolved
displacement field is found as a sum of products of space and time functions, sim-
ilarly to the Proper Generalized Decomposition in computational mechanics. It is
shown that the space fields are less sensitive to noise as time regularity acts as a
physical regularization of the space fields. The proposed method is illustrated by
vibration measurement under harmonic excitation in 2D-DIC and SDIC.

Keywords digital image correlation, proper generalized decomposition, vibra-
tions, dynamics

1 Introduction

Dynamic tests are often instrumented by accelerometers, strain gauges or laser
vibrometers because of their excellent measurement resolution. However, in a con-
text of validation and dialogue with simulations, these tools provide a relatively
small number of point data compared to the abundance of data resulting from fi-
nite element simulations. The number of accelerometers or strain gauges that can
be placed on a structure is very limited, on the one hand, because of the cost (in
terms of both the equipment itself andthe manpower for setting it up) and on the
other hand because of the mass loading and/or mass damping effects which may
significantly modify the dynamics of lightweight structures. Finally, the position
of these sensors must be carefully chosen to avoid mode shape nodes.

Although Scanning Laser Doppler Vibrometers (SLDV) are contactless (i.e. do
not add mass), they usually do not acquire all the measuring points simultaneously.
In addition requiring stationarity assumption (assuming no thermal effects, no
fatigue and no mode switching), this technical limitation reduces the number of
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Université de Toulouse, Institut Clément Ader (ICA); INSA-UT3-ISAE-Mines Albi-CNRS
E-mail: passieux@insa-toulouse.fr



2 J.-C. Passieux, R. Bouclier, J.N. Périé

measurement points available in practice as reasonable acquisition times need to
be preserved. It is worth noting that 3D SLDV combining three laser scan heads
can estimate complex mode shapes exhibiting three-dimensional displacements.
However, this technique remains relatively expensive and is sensitive to large rigid
body motion of the specimen[18]. For these reasons, SLDV is mostly used in 1D
to measure out-of-plane velocities.

Since the late 2000s, and thanks to the development of high-speed cameras,
the instrumentation of vibration tests based on Digital Image Correlation (DIC)
is becoming an increasingly credible technique, since (a) it is contact-less (no
modification of the dynamics of the structure being analysed), (b) it provides
several orders of magnitude more data points than can be obtained with lasers, (c)
it handles all the measurement points simultaneously, (d) it is robust with respect
to large displacements and to a large frequency range and (e) 3D displacement
fields can be measured when Stereo Digital Image Correlation (SDIC) is used.
The disadvantage is that the measurement resolution is, in general, not comparable
with that of the tools mentioned above [18,5,32]. Special attention must therefore
be paid to reducing measurement uncertainties when attempting to develop a new
DIC method in this context.

Specifically, the authors generally use SDIC with high-speed cameras to analyze
dynamic tests with a harmonic excitation [34,38,15], a shock [34,18] or a random
excitation [34,18,39,5,32]. From full field displacement measurements, different
mode shapes are extracted by using e.g. Fourier analysis and modal curve fitting
[34,32] or using lock-in amplifiers [15] in a post-processing phase. In [38], the
authors use an a posteriori sinusoidal fitting method to increase the accuracy of
the displacement measurement of fatigue crack growth tests.

The above literature on the use of DIC as a means of measurement in the
vibratory domain essentially consists of two steps that extract modal information
from images (raw data). First, a conventional DIC measurement is performed, then
the displacement fields (derived from the DIC software) are post-processed using a
modal identification procedure. The disadvantage of this two-step approach is that
the uncertainties of DIC measurements may propagate in the post-processing. In
the case of a harmonic excitation, we show that if the two steps are integrated,
i.e. if the harmonicity of the displacement field is directly exploited in the image
correlation algorithm, then the uncertainty can be greatly reduced, compared to
the approach of [38].

In addition, the extra projection steps necessary to compare a Finite Element
(FE) model and the data measured by a conventional DIC package (in the form of
a point cloud) are sources of further uncertainties. For instance, [39] proposes to
use shape features to bridge efficiently the large DIC data sets to the FE model.
Here, we propose to use a Finite Element based Digital Image Correlation (FE-
DIC) method. The recent developments in the field of FE-DIC [35,7] and the
even more recent advances in Finite Element Stereo DIC (FE-SDIC) [13,29,28,33]
allow a direct link with the simulation tools. It is thus possible to share the same
FE mesh during the calculation and the measurement, in the aim of (a) greatly
simplifying the bridge between simulation and experimentation, and (b) limiting
the uncertainties associated with reprojection.

In the field of time-dependent problems, Digital Image Correlation generally
uses camcorders or high speed digital cameras that can provide a series of im-
ages: one (pair of) image(s) for each time step according to the chosen acquisition
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framerate. This yields a large amount of data that is usually analysed incremen-
tally, in other words each image pair is analysed independently. Having a temporal
resolution much lower than the characteristic time of the observed mechanical phe-
nomena does not really improve measurement uncertainties, even if, at this scale,
the evolution of the displacements is smooth. In this paper we propose to prescribe
time-smoothness as a physical regularization technique in the space domain. This
technique should not be opposed to existing space regularization methods [20,30,
31,28,11,33], but should be rather seen as an additional tool, which can positively
complement more conventional remedies. More precisely, the method starts from
a space-time formulation of DIC [6,8]. Then the displacement is calculated as a
sum of products of separated space and time functions over the full time interval.
This can be seen as an extension of the Proper Generalized Decomposition (PGD)
method previously proposed in DIC [27] and Digital Volume Correlation (DVC)
[17] where the dimensions of space are separated in the same way. It is worth not-
ing that the proposed PGD-DIC method is not limited to global DIC and could
also be applied to sub-set based approaches. The method is particularized in this
paper to the case of linear vibrations where the time function is harmonic. The
method is presented in a general formalism that includes DIC and SDIC. Its abil-
ity to reduce noise sensitivity is illustrated on both 2D and Stereo DIC analysis
of vibration tests.

The main disadvantage of the approach is that it requires the implementation of
a particular DIC algorithm. However, it is shown that the space-time formulation is
non-intrusive, so, starting from a classic global DIC code, the extra implementation
effort is very small here.

Eventually, as initially proposed in [38,40], this method can still be used with
low speed equipments, which has the great advantage to lighten the effects of the
trade-off between frame rate and image definition.

2 Incremental approach

The analysis of a time series of images corresponding to an evolution problem is
generally performed by analysing each image pair independently. In this section,
particular care is taken to provide a global formalism that is suitable for both
standard Finite Element Digital Image Correlation (FE-DIC [35,7]) and the newly
developed Finite Element Stereo Digital Image Correlation (FE-SDIC [13,28,33]).

Let Ωs be a space domain, referred to as the Region Of Interest (ROI) and
defined such that Ωs ⊂ R2 is a plane surface in DIC and Ωs ⊂ R3 denotes,
in SDIC, the visible surface of a 3D specimen that is not necessarily planar. We
emphasize that, as opposed to classic formulations of DIC, where Ωs is a subset of
an image (see subset methods [21,37]), here, Ωs is a physical domain expressed in
the coordinate system of the specimen. This ROI is observed by nc digital cameras
producing an nc-uplet of space-time images Ic(y, t) defined for any point y ∈ R2

in the image coordinate system, for any time t and any camera c ∈ {1, ..., nc}.
Given Ωs and a time interval Ωt = [t0, tf ], the unknown displacement u(x, t) is
sought to verify the grey level conservation over the space-time domain Ωs × Ωt
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on each camera as follows:

Find u(x, t) such that rc(u(x, t),x, t) = 0,

∀x ∈ Ωs, ∀t ∈ Ωt, ∀c ∈ {1, ..., nc} (1)

where the space-time grey level residual is defined by

rc(u(x, t),x, t) = Ic(pc(x + u(x, t)), t)− Ic(pc(x), t0) (2)

Operator pc is the projective model of camera c that maps a point x of Ωs in the
specimen reference system to the corresponding 2D point y = pc(x) in the image
plane of Ic. These models depend on a set of intrinsic (focal length, distortions,
etc.) and extrinsic (position/orientation of the camera with respect to the speci-
men) parameters that must be identified in a calibration phase (see [16][36][29]).

Remark :

– When using a single front parallel camera (nc = 1) and a planar test, the
method turns into a generalization of the 2D-DIC method that has the ad-
vantage of accounting for distortions natively when using non-linear camera
models [29]. u denotes a two-component displacement field. It is also possible
to use a degraded pinhole model such as:

y = pc(x) =

(
Nf − k x2

x1

)
where Nf denotes the number of pixels of the image in the vertical direction
and the scale factor k is introduced as the number of pixels per unit length.
In this case, the method corresponds exactly to a classic FE-DIC approach,
except that u is directly expressed in the specimen units (e.g., millimetres) and
in the specimen’s system.

– SDIC allows the three components of the displacement in Ωs to be measured
when using a larger number of inclined cameras nc > 1. In this case, u denotes
a three-component displacement field [28].

The time domain is naturally discretized in the sense that space-time image
Ic(y, t) is, in practice, represented by a set of nt+1 static images Ick(y) = Ic(y, tk)
(including the reference image Ic0(y)). In a classic approach, each image is analysed
sequentially, namely, the displacement uk(x) = u(x, tk) at the kth time-step is
sought to match image Ick to reference image Ic0 . In the following, the dependence
on x of the displacement field uk will be omitted for clarity. Problem (1) becomes
in its incremental form:

Find uk such that: rck(uk,x) = 0,

∀x ∈ Ωs, ∀k ∈ {1, .., nt} ∀c ∈ {1, ..., nc} (3)

where rck(uk,x) = Ick(pc(x + uk))− Ic0(pc(x)) constitutes the grey level residual
map associated with the registration of images Ic0 and Ick using displacement field
uk.
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Problem (3) being ill-posed, it is classically written as a set of nt independent
least-square problems (one for each time step k) over the space domain only. Defin-
ing Hilbert space L2(Ωs) corresponding to [L2(Ωs)]

2 for 2D-DIC and [L2(Ωs)]
3

for SDIC, this yields,

u?k = arg min
uk∈L2(Ωs)

nc∑
c=1

∫
Ωs

(
rck(uk,x)

)2
dx (4)

These least square problems are non-linear. Assuming that Ick (and thus Ic0) are
differentiable ∀c and ∀k, a Gauss-Newton algorithm can be implemented for the
resolution [14]. At each time tk, we consider that we have a good approximation
of u?k denoted by uk. Only a correction δuk over this initialization is sought. The
linearization reads:

rck(uk + δuk,x) ≈ rck(uk,x) + δu>k Jc> ∇Ic (5)

where Jc = Jacx(pc)(x+uk) is the Jacobian of the camera projector (which admits
an analytical expression when using a parametric distortion model) and ∇Ic =
Grady(Ick)(pc(x+uk)) is the image gradient interpolated at pixel position pc(x+
uk). The approximation ∇Ic ≈ Grady(Ic0)(pc(x)), which is often used to avoid
multiple assembly of the left hand side operator in the context of small rotations
[23], is adopted in this work. Finally, the unknown displacement correction δuk
(and so the displacement uk) is sought in an approximation subspace:

δuk =
ns∑
i=1

qki ψi(x) (6)

ψi(x) is a set of ns well chosen basis functions and qki denote the corresponding de-
grees of freedom (dof) at time step k. In this paper, finite element shape functions
are used in order to benefit from a common formalism with numerical simulation
[35]. By introducing this approximation into the linearized minimization problem
and performing the differentiation, we finally obtain the following linear system to
be solved at each iteration of the Gauss-Newton algorithm and for each time step
k:

M qk = bk(uk) (7)

where qk is the dof vector and ∀(i, j) ∈ {1, .., ns}2:

[M]ij =
nc∑
c=1

∫
Ωs

ψi(x)>Jc>∇Ic∇Ic>Jcψj(x) dx (8)

[
bk(u)

]
i

= −
nc∑
c=1

∫
Ωs

ψi(x)>Jc>∇Ic rck(u,x) dx (9)

Because of the short variations of the image gradient, the quadrature of the above
integral is performed using a Riemann sum with respect to the pixel partition. A
dedicated quadrature rule was proposed in [29] and further enhanced in [28] for
multiple camera and/or non-linear camera models.
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3 The proposed space-time PGD-DIC formulation

As an alternative, the purpose of this work is to build a resolution scheme based
on the use of some variable separation techniques widely encountered in numerical
simulations [2,25,19,12,10,42]. The interest of extending such methods to DIC
has already been illustrated in previous works [27,17], where the dimensions of
space were separated in order to speedup computation time. In this work, the
idea is to separate space and time in the evolution problem of DIC (1). It will
be shown that prescribing smooth or physically sound time evolution, acts as a
regularization of the inverse problem of space-time full-field measurements. This
strategy is presented below.

The starting point uses a global formulation written as a least-square problem
over the space-time domain, as proposed by [6,8,24]. In order to do this, we intro-
duce the functional spaces T = L2 (Ωt) and L2

(
Ωt; L

2(Ωs)
)

= L2(Ωs) ⊗ T and
we look for the space-time solution as follows:

u?(x, t) = arg min
u∈L2(Ωt;L2(Ωs))

nc∑
c=1

∫
Ωt

∫
Ωs

(
rc(u(x, t),x, t)

)2
dx dt (10)

It should be noted that, because of the time discretization of images Ic(t), a
rectangle method is used in practice for the quadrature over the time domain. For
an arbitrary time dependent quantity, a, we perform the following computation to
integrate over time: ∫

Ωt

a(t) dt =
1

f

nt∑
k=1

a(tk)

where f is the acquisition frame rate.

3.1 Separated representation and time regularization

From formulation (10), the crucial point of the proposed strategy is to consider
a rank-m space-time separated approximation for the solution of the evolution
problem [19,27]:

u(x, t) =
m∑
n=1

vn(x) · λn(t) (11)

Here, both vn and λn are unknown a priori. Regarding the approximation of space
functions vn, a classical finite element discretization is adopted, the same as for
displacement uk in the incremental approach (see Eq. (6)):

vn(x) =
ns∑
i=1

qni ψi(x) (12)

The interest of form (11) is that a mechanically sound expression can be
adopted for the temporal evolution λn(t) of the space-time solution. The number
of images acquired during quasi static tests being large, the evolution of mechan-
ical fields can be fairly smooth relative to framerate. Thus smooth approximation
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subspaces of dimension nτ << nt can be chosen to describe the time evolution of
the displacement:

λn(t) =
nτ∑
j=1

pnj φj(t), (13)

where φnj (t) can denote either Finite Elements [6] or smoother approximations such
as B-splines in time, and pnj represents the corresponding parameters or degrees
of freedom. Thus, by reducing the number of unknowns in time with a constant
number of image data, the noise sensitivity should be reduced.

Without loss of generality, we will simply consider a rank one approximation
in the remainder of the paper, since, following [27,17], a rank m approximation
is obtained in a greedy manner from successive best rank-one approximations. In
addition, in the particular case of linear vibrations, a rank one approximation may
be sufficient. Hence, the space-time displacement is sought as:

u(x, t) = v(x) · λ(t) (14)

In the context of linear vibrations, we know that the time function λ is harmonic. A
more physically sound approximation can be used in this particular situation. This
approximation involves only two unknowns: the phase, φ, and the pulsation, ω, of
the harmonic signal. They can be brought together in one vector p = [ ω φ ]>.
In this paper, which investigates the case of linear vibrations as a first illustration,
it is proposed to look for a temporal representation in the following form:

λ(t,p) = sin(ω t+ φ) (15)

3.2 Fixed point resolution

By substituting form (14) into problem (10), the separated time-space DIC prob-
lem can be recast as:

(
v?, λ?

)
= arg min

(v,λ)∈L2(Ωs)⊗T

nc∑
c=1

∫
Ωt

∫
Ωs

(
rc(v(x) · λ(t),x, t)

)2
dx dt (16)

Because of the product of unknowns, the problem is solved with an alternating
direction fixed point strategy. Note that the algorithm proposed in the following is
based on developments regarding existing PGD methods in structural [25][19] and
experimental mechanics [27][17]. In order to do this, two mappings are defined:

1. S : T → L2(Ωs) is the application that maps a time function λ into a space
function v = S(λ). It is associated with the minimization of (16) with respect
to v(x) with λ(t) being fixed. This problem is referred to as the space problem.

2. T : L2(Ωs) → T is the application that maps a space function v into a time
function λ = T(v). It is associated with the minimization of (16) with respect
to λ(t) with v(x) being fixed. This problem is referred to as the time problem.

A (v, λ) pair verifies (16) if and only if v = S(λ) and λ = T(v). For the nth

iteration of the fixed point algorithm, we thus proceed as follows: starting from
an initial time function λ(0) ∈ T , we look for v(n) ∈ L2(Ωs) and λ(n) ∈ T such
that: v(n) = S(λ(n−1)) and λ(n) = T(v(n)). The resolutions associated with the
two mappings, S and T, are detailed below.
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3.2.1 Space correlation problem

First, the space problem corresponding to application S is formulated. It reads:

v? = arg min
v∈L2(Ωs)

nc∑
c=1

∫
Ωt

∫
Ωs

(
rc(v(x) · λ(t),x, t)

)2
dx dt, λ(t) considered fixed.

(17)
As for classic DIC, a Gauss-Newton algorithm is used for the minimization (17).
Since all the functions of time are known, the time integral of (17) can be com-
puted, and we are left with a modified static DIC problem. The linearization and
differentiation are similar to usual FE-DIC and SDIC. Starting from an initial
guess v0, the following linear system is obtained for the Gauss-Newton update:

Ms δq = bs(v
0,p), (18)

where the operators read:

Ms =
1

f
M

nt∑
k=1

λ2(tk) (19)

bs(v
0, λ) =

1

f

nt∑
k=1

λ(tk) bk(v0(x)λ(tk,p)) (20)

and where δq is a vector that groups together the degrees of freedom associated
with correction δv. Note that the operator Ms and right hand side bs can be
easily computed from the operator M and right hand sides bk of the incremental
approach, see Eqs. (8) and (9).

3.2.2 Time correlation problem

For application T, the unknown p is sought to estimate the temporal function
λ(t,p) (see Eq. (15)). The associated problem reads:

p? = arg min
p∈R2

nc∑
c=1

∫
Ωt

∫
Ωs

(
rc(v(x) · λ(t,p),x, t)

)2
dx dt, v(x) considered fixed.

(21)
Once again, a Gauss-Newton algorithm is performed for the resolution. Starting

from an initial guess p0, we search for a correction δp over this approximation.
The linearization and differentiation lead to the following linear system:

Mt δp = bt(v,p
0), (22)

where:

Mt = q>M q
nt∑
k=1

∇λ∇λ> (23)

bt(v,p
0) =

nt∑
k=1

∇λ q>bk(v(x)λ(tk,p
0)) (24)
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and where the gradient of the time function reads:

∇λ =

[
t cos(ω t+ φ)
cos(ω t+ φ)

]
Remark. If finite elements had been used for the discretization in time, this gradient
would have simply consisted of the time shape functions φj(t). Therefore, Mt

would have represented a temporal mass matrix (of unit density) multiplied by
the scalar q>M q. Once again, we emphasize that the new operators Mt and bt
are easily obtained from the incremental operators M and b . Therefore another
attractive feature of the proposed method is that the extra implementation effort,
starting from a classic global DIC code, is only slight. The method is non-intrusive
with respect to image manipulations and finite element routines. As mentionned
in the introduction, the proposed PGD-DIC method could well be applied to a
sub-set approach.

3.3 Initialization

As any Newton-like algorithm, a relevant initial approximation is required to en-
sure convergence. Frequency ω/(2π) is generally precisely known because of the
instrument providing the harmonic excitation (an accelerometer or a single point
laser vibrometer). In addition, the initial phase, φ, and mode shape, q, are es-
timated, in this work, from a first Fourier analysis of the image series using the
incremental approach.

3.4 Reference image

The set of reference images Ic0 is usually taken before shaking the structure. This
is required, at least in SDIC in order to perform the initial shape measurement.
Unfortunately, the initial configuration may not exactly correspond to the centre of
the harmonic mode (where λ = 0). There might be some rigid body translations
and rotations that must be accounted for. This is the case, for instance, when
the specimen is set on a shaking table. In this situation, an additional unknown
α representing the amplitude of the initial rigid body (six associated dofs) is
introduced. The solution is sought as a rank-2 PGD approximation:

u(x, t) = v(x) · λ(t) + R(x) α (25)

where R(x) constitutes a basis of rigid body modes.
Moreover, reference images can also be taken during the shaking. In this case,

the time evolution of the nodal displacement is the sum of a harmonic evolution
and a shift p, which constitutes an additional unknown.

λ(t,p) = sin(ω t+ φ) + p (26)

Finally, a block-diagram summarizing the different stages of the proposed strat-
egy is presented in Figure 1.
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Fig. 1 Scheme of the proposed method. After initialization, assembly and factorisation of the
operators, the method consists of an alternating fixed point minimization with respect to space
(first block) and time (second block). The minimisation with respect to space (respectively
time) is done iteratively (Gauss Newton), assuming time (resp. space) function is fixed.

4 Examples

4.1 2D DIC example

4.1.1 Experimental setup

As a first illustration of the proposed method, the eigenmodes of a clamped-free
beam are analysed using 2D-DIC. The experimental set-up is shown in Figure
(2). More precisely, the specimen was an aluminium beam of length 273 mm and
of rectangular section 20× 40 mm. The material parameters (Young’s modulus
E = 69 GPa, Poisson’s ratio ν = 0.29 and density ρ = 2698 kg.m−3) were taken
from the literature. The beam was clamped on a shaking table. A sine sweep was
performed initially to locate the eigenfrequencies approximately. Then a second
sweep was performed and the shaker was held in the first two previously identified
bending modes. One accelerometer was placed on the top of the beam and one on
the table to monitor the experiment. Since we are only interested in the in-plane
bending modes in this section, one single front parallel Photron Fastcam SA3 high
speed camera was used to take the images. The camera was positioned outside
the passively isolated foundations and also outside the soundproofing enclosure in
which the vibrating table is installed. This avoids vibro-acoustic disturbances in
the camera. The frame rate was 2000 Hz with an image definition of 1024×128
px. A black and white speckle was sprayed on the specimen in order to provide a
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Fig. 2 Experimental setup (left) for the 2D case with one front parallel camera (right).

random texture suitable for the DIC. Two sides were speckled to analyse bending
modes in both directions. Only one direction is analysed herein. One Dedolight
(400 W) spot was found to provide sufficient illumination.

Note that a fixed harmonic excitation was considered during the tests. The
analysed data set does not make it possible to estimate the damping. Damping
ratio evaluation is another problem to which such algorithms could be applied,
but this was not done in this study.

4.1.2 Incremental DIC analysis

To start with, a series of 86 images was analysed using the incermental approach
(see Section 2). Figure 3 (top) presents the maps of the measured displacements,
uk, of 9 equally spaced time steps, corresponding to 9 consecutive images. This
set of time steps corresponds to approximately to one period of vibration of the
first vibration mode. It can be observed that, when the beam moves on the left,
the displacement is noisy (displacement is amplified by a factor 30) for 2 of the 9
images. Note that this issue could have been avoided by using larger elements or
any other regularization technique [30,27,31,11] but it was allowed to persist as
it enabled the effect of noise on mode measurement, to be visualized. The 7 other
displacements were far less noisy. In addition, it can be clearly seen that this noise
in not harmonic at all. This is obvious and explains why prescribing harmonicity
should act as a physical regularization.

4.1.3 A posteriori mode measurement

In order to measure the mode shape, a first naive approach was to perform a
Least Square (LS) projection of these previously measured fields {uk} on a space-
time separated representation v(x) · λ(t). Actually, it was not a regularization of
the measurement, but rather an a posteriori filtering method. More precisely, it
consisted of solving the following problem, see [26]:(

v?, λ?
)

= arg min
(v,λ)∈L2(Ωs)⊗T

√∑
k

‖uk(x)− v(x) · λ(tk)‖22 (27)
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Fig. 3 (top) Incrementally measured displacements over one period ; (middle) LS-projection
of the incrementally measured displacements and reconstruction of displacements over one
period; (bottom) Proposed separated time-space modal measurement reconstructed over one
period. (amplification factor: 30)

This nonlinear Least-Square (LS) problem was solved using another fixed point
algorithm. The minimization with respect to the space function was straightfor-
ward; the minimization with respect to time function was still nonlinear and was
solved using a dedicated Gauss-Newton algorithm.

The resolution of this problem yielded a mode shape vLS along with the pa-
rameters of the sine function λLS . Figure 3 (middle) shows the reconstruction of
the product vLS · λLS over the same period. It can be clearly seen that the noise
is decreased when this least-square filtering technique is used. However, it can also
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be noticed that the noise is spread over the full period, which is due to the fact
that the noise is made harmonic. As such, the noise is actually reduced for the two
problematic time steps, but it is largely increased for the other seven time steps.

4.1.4 A priori mode measurement using PGD-DIC

As a remedy for the aforementioned issue, the proposed time-space separated DIC
approach is now applied to the same dataset using the same FE mesh. Conse-
quently, only the formulation on the space-time domain differs (see Section 3).
From the images, this method directly yields a pair of space vSep and time λSep

functions. The PGD algorithm is initialized with the noisy mode estimated with
the previous least-square approach.

Figure 3(bottom) presents the reconstruction of the space-time solution vSep ·
λSep over one period. The displacement is definitely less noisy over the whole time
interval. These results demonstrate that time-space tensor approximation acts as
a physical regularization technique in the space-time DIC minimization problem.

A plane stress finite element model of the specimen was built. The measured
and simulated eigen frequencies are compared to the closed form of an Euler
Bernoulli clamped-free beam in Table 1. Firstly, it can be seen that the mesh

ine accelerometer proposed FE-DIC FE model beam theory
ine 195.23 Hz 194.72 Hz 221.15 Hz 219.2 Hz

ine

Table 1 Comparison of measured and simulated eigenfrequencies

is sufficiently fine to be close to the beam theory. Secondly, it appears that the
frequency measured using the proposed method is in good agreement with the ac-
celerometer. It also seems that the FE and analytical frequencies overestimate the
actual vibration mode, certainly because of the use of approximate elastic param-
eters. This mismatch could be used to update the mechanical parameters using
a space-time integrated approach [20,24,22]. Finally, the simulated and measured
mode shapes were compared using a Modal Insurance Criterion (MAC) matrix.
Using a DIC method based on Finite Elements, the MAC matrix computation is
straightforward and the same mesh was used here for both the simulation and the
measurement. The MAC matrix could then be computed directly by taking the
scalar product between the experimental and simulated dof vectors. For instance,
the MAC matrix corresponding to the first two bending modes of the beam is
depicted in Figure 4. It exhibits a relatively good correlation between computed
and measured mode shapes.

4.2 SDIC example

4.2.1 Experimental setup

In this section, we apply the methodology to the more complex case of the SDIC
measurement of the out-of-plane bending mode of an accelerated fatigue specimen.
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Fig. 4 MAC matrix for the first two bending modes of the beam

The 170 ×90 × 2 mm stainless steel specimen (E = 197 GPA, ν = 0.3, ρ = 7990
kg.m−3) is clamped at the bottom (see Fig. 5(left)). The shape of the specimen
was designed to have a bending mode around 1 kHz which would exhibit pure
bending in a region of interest located at the top. The specimen was mounted on

Fig. 5 Experimental setup: dimensions of the fatigue specimen (left) for the stereo case; instru-
mentation with two high speed cameras, two Dedolights and one single point laser vibrometer
(right).

the same shaking table as previously. A pair of reference images were taken before
the experiment using two high speed digital cameras, see Figure 6. They were
taken as reference images for the space-time SDIC problem and were also used
to estimate the gap between the theoretical and actual shape, in order to correct
the shape of the SDIC mesh, following [4,28]. As shown in Figure 7, the observed
surface was almost flat. The estimated waviness did not exceed 30 microns, which
is consistent with the manufacturing specification for the specimen.
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Fig. 6 Projection of the finite element mesh vertices in the left and right reference images.

Fig. 7 Shape measurement: magnitude of the discrepancy between model and specimen (m).

After a first frequency sweep used to locate the mode of interest, the shaker
was held at the frequency of 1033 Hz. To do this, the test was monitored with a
single point laser accelerometer, see the retroreflective tape on Figure 5(left). Two
series of stereo images were taken by a pair of high-speed cameras. This double
image set was used to perform a stereo measurement of the vibration modes at a
framerate of 2000 Hz and at image definition of 1024×128 px.

In addition, a finite element model was built in ABAQUS[1] using shell 3 node
triangular elements. The modal analysis predicted an eigenmode at 1062 Hz. The
corresponding mode shape is depicted in Figure 8.

Fig. 8 Eigenmode at 1062 Hz computed using an ABAQUS shell model

4.2.2 Analysis using time-space PGD-DIC

The proposed space-time PGD-DIC method was then applied to the image sets.
The eigenfrequency estimated by the image analysis was 1033.71 Hz, which is
comparable to the laser measurement of 1033.7 Hz. The measured mode shape
was also in good agreement with the simulated mode, see Figure 9. The benefit
of the proposed space-time PGD approach over a more classic incremental DIC
can be seen by simply looking at the measured mode shapes. Figure 10 (left)
presents the displacement measurement using incremental DIC. The number of
unknowns equals the number of space unknowns multiplied by the number of
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Fig. 9 Comparison between the simulated (left) and identified (right) eigenmodes

Fig. 10 Comparison between the mode measured using the incremental formulation (left) and
the one measured using space-time PGD-DIC (right), which seems more regular.

time steps ns × nt. Conversely, with the proposed PGD approach, the number of
unknowns is drastically decreased to ns + nτ (nτ being the dimension of the time
approximation subspace), which enables the measurement to be regularized and
its uncertainty to be reduced, see Figure 10(right).

4.2.3 Toward the use of low speed equipment

Lastly, it is worth noting that such a space-time separated framework may help
to reduce the measurement uncertainties even further since it lightens the trade-
off between framerate and image definition. Similarly to [38,40], we show, in this
section, that by assuming a regular evolution in time, it becomes possible to sig-
nificantly reduce the acquisition framerate. This may offer the opportunity to use
non-specific devices like low speed asynchronous imaging [38,40]. The benefit of
this is that it substantially improves the definition of the images. The measurement
resolution (being closely related to image definition) is also improved.

As a first proof of concept, the method is applied to the same set of images, but,
this time, only 1 in every 20 images is considered, which simulates an acquisition
framerate of 100 Hz, see Figure 11. This time the eigenfrequency measured by

Fig. 11 Comparison of the evolution of the displacement of one point in the zone of interest
using the incremental approach (black +) and the space-time formulation (red)
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the laser is considered fixed, otherwise the solution would not be unique. This
assumption that the eigenfrequency is reliable is not a very restrictive one, since at
least one single point laser or accelerometer is required to monitor the experiment
while it is in progress. Again, with only 17 analysed images, the displacement map
is much less noisy when the space-time PGD is used as a space regularization
technique, as compared to the incremental approach, see Figure 12. Obviously

Fig. 12 Comparison between the measured mode using the incremental formulation (left) and
the one obtained using asynchronous PGD-DIC (right) which again apprears more regular.

such a method should reduce the measurement uncertainties even further because,
thanks to the reduction of the frame rate by a factor of 20, it will be possible to
acquire images of significantly higher definition.

5 Conclusion

A new method has been proposed for the measurement of displacement fields
during dynamic tests using FE-DIC, both in 2D and in Stereo. In such a situ-
ation, high speed cameras are classically used to provide an image series, where
each image pair is analysed independently. It was shown in the examples that the
noise obtained during such incremental DIC measurements is propagated in the
sinusoidal fitting used to estimate the mode shape, a posteriori [38]. This Finite
Element Model Updating (FEMU)-like two-step approach to identifying the vibra-
tion mode actually spreads and propagates noise instead of reducing it. To avoid
these issues, an integrated-like method is developed in this work. It starts from
a general writing of the space-time problems of DIC, DVC and SDIC which also
constitutes a novelty of this paper. Then, the key point is to search the space-time
displacement as a product of separate functions of space and time. Using this for-
mulation, we finally prescribe time regularity in the resolution of the DIC problem
over the full space-time domain, which also behaves as a mechanical regularization
in the space domain. Such a method has many advantages, including :
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1. It offers the possibility to use time regularity to improve space field uncertain-
ties.

2. It can alleviate the trade-off between framerate and image definition, since low
speed equipment can be used.

3. The additional implementation effort with respect to an existing global DIC
code is very small. The method only involves products and scalar products of
classic DIC operators with dof vectors or operators. There is no need to modify
the functions at the finite element level.

4. As was done in this simple case of linear vibrations for the rigid body modes,
it is possible to consider higher rank approximations for non-periodic evolu-
tions. For instance, more generic time basis functions could be used, such as
typical Lagrange polynomials or more recent B-spline functions. In this case,
the algorithm would be quite similar to the PGD-DIC method developed in
[27]. To estimate the separability of the space-time field (and therefore the
efficiency of the PGD approach), it is possible to compute the Singular Value
Decomposition (SVD) of a field derived from a classic DIC software.
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