Abdeldjalil Aissa 
  
El Bey 
email: elbey@tsi.enst.fr
  
Hicham Bousbia-Salah 
  
Karim Abed-Meraim 
  
Yves Grenier 
email: grenier@tsi.enst.fr
  
Yves Grenier Audio 
  
A Aïssa-El-Bey 
  
AUDIO SOURCE SEPARATION USING SPARSITY

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

This paper deals with blind source separation (BSS). The blind context means that neither the sources nor the mixing matrix are known. The goal of BSS is to recover the sources up to scaling and permutation by, only, using the mixtures. Blind source separation (BSS) has applications in several areas, such as communication, speech / audio processing, and biomedical engineering [START_REF] Cichocki | Adaptive Blind Signal and Image Processing[END_REF]. A fundamental and necessary assumption of BSS is that the sources are statistically independent and thus are often separated using higher-order statistical information [START_REF] Cardoso | Blind signal separation: statistical principles[END_REF]. If some information about the sources is available at hand, such as temporal coherency [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF], source nonstationarity [START_REF] Belouchrani | Blind source separation based on time-frequency signal representations[END_REF], or source cyclostationarity [START_REF] Abed-Meraim | Blind source separation using second order cyclostationary statistics[END_REF], then one can remain in the secondorder statistical scenario. In the case of non-stationary signals (including audio signals), certain solutions using time-frequency analysis of the observations exist [START_REF] Yilmaz | Blind separation of speech mixtures via time-frequency masking[END_REF]. Other solutions use the statistical independence of the sources assuming a local stationarity to solve the BSS problem [START_REF] Pham | Blind separation of instantaneous mixtures of non stationary sources[END_REF]. This is a strong assumption that is not always verified [START_REF] Smith | An analysis of the limitations of blind signal separation application with speech[END_REF]. To avoid this problem, we propose a new approach that handles the general linear instantaneous model (possibly noisy) by using the sparsity assumption of the sources in the time domain. The use of sparsity to handle this model, has arisen in several papers in the area of source separation [START_REF] Cichocki | Adaptive Blind Signal and Image Processing[END_REF][START_REF] Zibulevsky | Sparse source separation with relative Newton method[END_REF]. We first present a sparsity contrast function for BSS. Then, in order to achieve BSS, we optimize the considered contrast function using an iterative algorithm based on the gradient technique.

In the following section, we discuss the data model that formulates our problem. Next, we detail the different steps of the proposed algorithm. In Section 4, some simulations are undertaken to validate our algorithm and to show the usefulness of the proposed method.

DATA MODEL

Assume that N audio signals impinge on an array of M ≥ N sensors. The measured array output is a weighted superposition of the signals, corrupted by additive noise, i.e.

x(t) = As(t) + w(t) t = 0, . . . , T -1 (1) 
where

s(t) = [s 1 (t), • • • , s N (t)] T is the N × 1 sparse source vector, w(t) = [w 1 (t), • • • , w M (t)]
T is the M × 1 gaussian complex noise vector, A is the M × N full column rank mixing matrix (i.e., M ≥ N ), and the superscript T denotes the transpose operator. The purpose of blind source separation is to find a separating matrix, i.e. a N × M matrix such that s(t) = Bx(t) is an estimate of the source signals.

Before proceeding, note that complete blind identification of separating matrix B (or the equivalently mixing matrix A) is impossible in this context, because the exchange of a fixed scalar between the source signal and the corresponding column of A leaves the observations unaffected. Also note that the numbering of the signals is immaterial. It follows that the best that can be done is to determine B up to a permutation and scalar shifts of its columns, i.e., B is a separating matrix iff:

Bx(t) = PΛs(t) (2) 
where P is a permutation matrix and Λ a non-singular diagonal matrix.

ITERATIVE SPARSE ALGORITHM

In this section, we propose an iterative algorithm for the separation of sparse audio signals ISBS for Iterative Sparse Blind Separation. As well known, audio signals are characterized by their sparsity property in the time domain [START_REF] Cichocki | Adaptive Blind Signal and Image Processing[END_REF][START_REF] Zibulevsky | Sparse source separation with relative Newton method[END_REF] which is measured by their p norm where 0 ≤ p ≤ 1. This norm represents how the "energy" is concentrated on a small number of coefficients. Based on this, one can define the following sparsity contrast function,

G p (s) = 1 N N i=1 [J p (s i )] 1 p (3) 
where

J p (s i ) = 1 T T -1 t=0 |s i (t)| p (4) 
The algorithm finds a separating matrix B such as,

B = arg min B {G p (B)} (5) 
where

G p (B) def = G p (z) (6) 
and z(t) = Bx(t) represents the estimated sources. The approach we choose to solve ( 5) is inspired from [START_REF] Pham | Blind separation of mixture of independent sources through a quasi-maximum likelihood approach[END_REF].

It is a block technique based on the processing of T received samples and consists in searching the minimum of the sample version of [START_REF] Abed-Meraim | Blind source separation using second order cyclostationary statistics[END_REF]. Solutions are obtained iteratively in the form:

B (k+1) = (I + (k) )B (k) (7) z (k+1) (t) = (I + (k) )z (k) (t) (8) 
where I denotes the identity matrix. At iteration k, a matrix (k) is determined from a local linearization of G p (Bx(t)). It is an approximate Newton technique with the benefit that (k) can be very simply computed (no Hessian inversion) under the additional assumption that B (k) is close to a separating matrix. This procedure is illustrated in the following steps: At the (k + 1) th iteration, the proposed criterion (4) can be developed as follows:

J p (z (k+1) i ) = 1 T T -1 t=0 z (k) i (t) + N j=1 (k) ij z (k) j (t) p = 1 T T -1 t=0 |z (k) i (t)| p 1 + N j=1 (k) ij z (k) j (t) z (k) i (t) p
Under the assumption that B (k) is close to a separating matrix, we have

| (k) ij | 1
and thus, a first order approximation of J p (z

(k+1) i
) is given by:

J p (z (k+1) i ) ≈ 1 T T -1 t=0 |z (k) i (t)| p 1 + p N j=1 e( (k) ij ) e z (k) j (t) z (k) i (t) -m( (k) ij ) m z (k) j (t) z (k) i (t) (9) 
Table 1: Iterative Sparse Blind Separation (ISBS) algorithm 1. Initialize B (1) randomly (z (1) (t) = B (1) x(t)).

For

k = 1, • • • , K, compute R (k) by (12).
3. Update the separation matrix B (k+1) by (15). 4. Update the source estimate (16). thus,

J p (z (k+1) i ) ≈ 1 T T -1 t=0 |z (k) i (t)| p + p N j=1 e( (k) ij ) e |z (k) i (t)| p-1 e -φ (k) i (t) z (k) j (t) -m( (k) ij ) m |z (k) i (t)| p-1 e -φ (k) i (t) z (k) j (t) (10 
) where e(x) and m(x) denote the real and imaginary parts of x and φ

(k) i (t) is the argument of the complex num- ber z (k) i (t).
Using equation (3), minimization of the above criterion [START_REF] Pham | Blind separation of mixture of independent sources through a quasi-maximum likelihood approach[END_REF] is similar to minimization of G p (z (k+1) ). Equation ( 3) can be rewritten in more compact form as:

G p I + (k) = G p (I) + e T r (k) R (k)H (11) 
where (•) denotes the conjugate of (•) and the ij th entry of matrix R (k) is given by: R

(k) ij = 1 T T -1 t=0 |z (k) i (t)| p-1 e -φ (k) i (t) z (k) j (t) (12) 
and T r is the matrix trace operator. Using a gradient technique, (k) can be written as:

(k) = -µR (k) (13) 
where µ > 0 is the gradient step. Replacing (13) into (11) leads to,

G p I + (k) = G p (I) -µ R (k) 2 (14) 
So µ controls the decrement of the criterion. Hence, at the (k + 1) th iteration, we have

B (k+1) = (I -µR (k) )B (k) (15) z (k+1) = (I -µR (k) )z (k) ( 16 
)
This algorithm is summarized in Table 1.

SIMULATION RESULTS

We present here some numerical simulations to evaluate the performance of our algorithm. We consider an array of M = 5 sensors with half wavelength spacing receiving two audio signals in the presence of stationary complex temporally white noise of covariance σ 2 I (σ 2 being the noise power). 10000 samples are used with a sampling frequency of 8Khz. The sources arrive from the directions θ 1 = 30 and θ 2 = 45 degree.

In order to evaluate the performance, the separation quality is measured using two different criteria, the first one is the mean rejection level criterion [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF] defined as:

Iperf def = p =q E |(BA) pq | 2 ρ q E (|(BA) pp | 2 ) ρ p ( 17 
)
where

ρ i = E(|s i (t)| 2 )
is the i th source power evaluated here as

1 T T -1 t=0 |s i (t)| 2 .
The second is the normalized mean square error (NMSE) of the sources defined as:

N M SE i def = 1 N r Nr r=1 min α α s i,r -s i 2 s i 2 (18) N M SE i = 1 N r Nr r=1 1 - s i,r s H i s i,r s i 2 (19) N M SE = 1 N N i=1 N M SE i . ( 20 
)
where s i def = [s i (0), . . . , s i (T -1)] and s i,r is defined similarly and represents the r th estimate of source s i , α is a scalar factor that compensate for the scale indeterminacy of the BSS problem and N r is the number of Monte-Carlo runs. Both criteria are estimated over N r = 200 runs. Figure 1 represents the two original sources (s 1 (t), s 2 (t)) and the recovered ones (z 1 (t), z 2 (t)) by the proposed algorithm in a noiseless case. In Figure 2, the mean rejection level is plotted versus the SNR for the proposed algorithm and the algorithm SOBI [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF] which is considered as one of the most performing in separating audio sources. We used SOBI with 6 correlation matrices of respective delays τ = 1, . . . , 6. It is clearly shown that our algorithm (ISBS) performs better in terms of the mean rejection level especially for high SNR. One can observe in Figure 3, that we reach the same conclusion for the N M SE. Figure 4 compares the mean rejection level for ISBS and SOBI when the number of sensors increases. For 2 sensors, both algorithms perform equally. When the number of sensors is greater, ISBS has a much lower mean rejection level than SOBI. Figure 5 shows the mean rejection level against the sample size for ISBS and SOBI. When the sample size is small, SOBI outperforms the proposed algorithm ISBS. Whereas, ISBS has a much lower mean rejection level when the sample size is larger. It can be explained by the size of the samples: if it increases, the signals present more sparsity, which gives an advantage to ISBS.

DISCUSSION

The proposed algorithm outperforms in terms of mean rejection level and N M SE other algorithms that deal with separation from instantaneous mixtures using source independency. It is mostly dedicated to sparse sources in the time domain. Among its other advantages, the algorithm ISBS shows a low computational complexity and thus can be easily implemented. Furthermore, its flexibility allows us to extend the method the adaptive case. Nevertheless, the proposed algorithm presents a relative weakness due to the well known disadvantages of the use of gradient techniques such as, the choice of the step gradient µ that the speed convergence depends on and the problem of local minima.

CONCLUSION

This paper presents a blind source separation method for sparse sources in the time domain. A sparse contrast func- tion is introduced and an iterative algorithm based on gradient technique is proposed to minimize it and perform BSS. Numerical simulations have been performed to evidence the usefulness of the method. They showed good performance in terms of mean rejection level and N M SE compared to other separation technics (SOBI).
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 12 Figure 1: Blind source separation example for 2 audio sources and 5 sensors: up the two original source signals and bottom the two estimated sources by our algorithm.
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 3 Figure 3: NMSE versus the SNR for 2 audio sources and 5 sensors: comparaison between SOBI and the proposed algorithm.
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 4 Figure 4: Mean Rejection Level versus the number of sensors M for 2 audio sources for SNR= 10dB and 30dB.
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 5 Figure 5: Mean Rejection Level versus the sample size T for 2 audio sources for SNR=30dB.