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Abstract 

Coated technical textiles are widely used for several industrial applications. Most of these 

coated fabrics are made with a polyester fabric and a PolyVinyl Chloride (PVC) coating but in 

order to reduce the environmental impact, the producers are willing to substitute PVC by 

thermoplastic polyurethane (TPU). However, a technological lock of the calendering of TPU 

on polyester fabric is the ability to get a good adhesion of the coating on the fabric. Producers 

could increase the temperatures of extrusion of the coating but TPU have a short range of 

extrusion temperatures making it difficult to extrude. One solution is to make a blend with 

another polymer which has a higher extrusion temperature range. In the present work, the 

studies of the addition of Low Density PolyEthylene (LDPE) and Linear Low Density 

PolyEthylene grafted Maleic Anhydride ( LLDPE-g-Ma) in polyurethane coating on the 

tensile strength of the sheet and on the peel strength with a polyester fabric have been studied 

as well as the influence of the extrusion temperature. SEM observations, FTIR spectrums and 

viscosity measurements have been performed to understand the behavior of the different 

blends. Results show that extrusion temperature and penetration depth of the coating in the 

fabric have a positive influence on the peel strength.   
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1.Introduction 

Coated technical textiles are widely used for several applications like sails, big tops, 

paragliders or inflatable boats and the demand is still on the rise. These very light technical 

textiles are usually manufactured with a polyester fabric and a PolyVinyl Chloride (PVC) 

matrix. However, environmental constraints force the manufacturers to find a substitute 

material for the PVC which is harmful and difficult to recycle (1). Thermoplastic 

PolyUrethane (TPU) is a good substitute material for the PVC. Depending on its formulation 

and the components, TPU can have good properties (2) such as UV resistance (3) (4), 

abrasion resistance (5), solvent resistance (6), tensile strength (7) or high elongation (8). 

These properties make TPU an attractive material for coated textiles (9) or for leather like 

products (10). These TPU coated textiles are used for inflatable boats, flexible tanks or more 

technical applications like Lighter-Than-Air systems for high altitude applications (11). 

Despite all these good properties, there is still a technological lock. Some industrials report 

that they are recalcitrant to use polyurethane sheets for coated textile because of very low peel 

strength of the sheet on the polyester fabric after calendering. To the best of our knowledge, 

industrials are more willing to use other processes like knife-over-roll coating or air-knife 

coating. These two methods are especially used for tightly fabrics where a low thickness of 

polyurethane is required like waterproof garments or materials for small inflatable boats (12) 

(13). But if a more important thickness is needed, these methods are quite difficult to use and 

manufacturers do not have any other choice than using calender coating or rotary-screen 

coating which are also cheaper than the others (12). To use both mentioned processes, they 

have to make special surface treatments on the fabrics.  Six theories have been proposed to 

explain the different mechanism of adhesion: mechanical interlocking (14), wetting (15), 

diffusion (16), electrostatic (17), chemical (18) and weak boundary layer (19). All these 

theories show that the adhesion between two materials is linked with the interface as outlined 

by Mittal (20). Further studies explain that the quality of adhesion between the fabric and the 



matrix is a key parameter to obtain good mechanical performance of the composite (21). As a 

consequence, several treatments have been developed to enhance the quality of the interface. 

Previous researches used different treatments for the fabric such as atmospheric air or corona 

plasma treatments to modify the surface energy of the fabric and increase the adhesion of the 

coating. For example, Leroux et al. showed that the adhesion of a silicon resin on a polyester 

fabric after atmospheric air plasma treatment has been multiplied by two (22). There are 

numerous other papers that deal with plasma treatment and their influence on the 

hydrophilicity increase of the treated fabric (23) (24) (25) (26) (27) (28) (29).  However 

Novak et al. showed that the shelf-life of these treatments for a polypropylene material with 

polyvinyl acetate was only about 50 days due to the loose of the surface oxidation (30). Other 

research used corona treatments (31) (32) (33) or chemical treatments (34) (35) to increase the 

wettability of the fabrics.  

One possibility is to increase the extrusion temperature in order to modify the viscosity and 

the surface energy. The problem is that TPU has a short range of extrusion temperatures and 

an increase of only 5°C can generate a drop in the viscosity of the polymer making it 

impossible to calender on a fabric. Hence we propose to make a blend with Low Density 

Polyethylene (LDPE) and Linear Low Density PolyEthylene grafted Maleic Anhydride 

(LLDPE-g-Ma). The aim of this blend is to extrude the sheet at higher temperatures in order 

to get a better adhesion with a polyester fabric.  

Because of their high difference of polarities and their high interfacial tension, Polyurethane 

and Polyethylene are two immiscible materials. However, previous researches explain that it 

is possible to have a compatibility if the PE is grafted with maleic anhydride (36) (37) or 

secondary amine (37). These compatibilizers are capable to stay at the interface and 

entangling with both sides. The final material is then prepared by calendering the sheet of 

TPU/LDPE blend on a polyester fabric. According to the literature, there is no previous 

research about the influence of this blend on the plastic sheet adhesion on a polyester fabric. 



However we can notice that Jie Song et al. show that the adhesion of a polyurethane paint was 

greater on a polyolefin/TPU blend substrate than on a simple PO substrate (38).  

This paper proposes a new solution to enhance the adhesion of the sheet on the fabric. It 

suggests a modification of the plastic sheet that is extruded before being calendered. Thanks 

to an experimental design, the influences of extrusion temperature as well as the influence of 

LDPE and PE-g-Ma percentage in the blend on the peel strength and the mechanical 

performance of the film is analyzed. The value of the adhesion of the sheet on the fabric is the 

main proof of the influence of the blend. The sheet viscosity, the miscibility of the LDPE and 

PE-g-Ma in the TPU, the penetration depth of the coating in the yarns of the fabrics and the 

FTIR analysis are used to analyze and explain the results of the adhesion. 

 

2. Materials and Methods 

2.1 Materials Characterization 

2.1.1 The coating 

As presented previously, several blends have been realized with Low Density Polyethylene 

(LDPE), Thermoplastic PolyUrethane (TPU) and Linear Low Density Polyethylene Grafted 

Maleic Anhydride (LLDPE-g-Ma).  References and properties of LDPE, LLDPE-g-Ma and 

TPU are gathered in Table I and Table II. 

Table I: Main properties of LDPE (Low Density Polyethylene) and LLDPE-g-Ma 

(Linear Low Density Polyethylene grafted maleic anhydride). 

 LDPE LD 171 BA LLDPE-g-Ma   

 OREVAC OE825 

Manufacturer EXXON MOBILE® OREVAC® by 

ARKEMA 

Density 0.929g/cm
3
 0.913g/cm

3
 

Melt Index (190°C/2.16kg) 0.55g/10min 3g/10min 

Peak Melting Temperature 114°C 118°C 

Additives no Maleic anhydride 

 

 

Table II: Main properties of TPU. 



 IROGRAN A 90 P 5055 DP 

Manufacturer HUNTSMAN® 

Isocyanate Aromatic 

Alcohol Polyether 

Density 0.7g/cm
3
 

Melt Index (190°C/10kg) 42g/10min 

Peak Melting Temperature 113°C 

Additives no 

Recommended injection temperature 190°C-200°C 
 

2.1.2 The fabric 

The coating has been calendered on the polyester fabric described in Table III. 

Table III: Main properties of the fabric. 

Composition Polyester 

Weaving Plain 

Additives on the surface No 

Number of yarns per cm : weft 18 

Number of yarns per cm: warp 18 

Thickness (µm) 170 

Fabric weight (g/m
2
) 105 

Number of filaments per yarn 48 

Filament diameter (µm) 23 

Yarn count (g/km) 28 

Mechanical properties: weft (daN/5cm) 155 

Mechanical properties: warp (daN/5cm) 155 
 

This fabric (Figure 1) has been woven without the use of any additives like sizings on the 

surface of the yarns to avoid a decrease of the wetting capacity (39). 

 

 

Figure 1: Modelization with a TexGen© software of the plain fabric used in the study. 

2.2 Experiments Methods 

2.2.1 Experimental design 



2.2.1.1 Introduction to experimental designs 

An experimental design has been used to minimize the number of experiments. In a first part, 

the experiments have been conducted with only Temperature and LDPE amount parameters. 

Then the blends giving the best compromise between adhesion and mechanical 

characterization have been adapted by adding of LLDPE-g-Ma. 

2.2.1.2 Central Composite Design (CCD) 

To define the optimum settings of these two factors level which can significantly influence 

the adhesion and mechanical characterization, a Central Composite Design (CCD) was 

applied in the experimental domain presented in Table IV (40) (41) (42). 

Table IV: Composite design. 

Variable Factor Unit Center Step of 

variation 

XT Temperature °C 192,50 12,38 

XPE PE amount wt% 50,00 35,36 

 

Actually, the most popular response surface method based on a rotatable central composite 

design with five levels and two factors was applied to investigate the influence of process 

factors on multiple responses including: adhesion (Y1) and mechanical characterization (Y2). 

In CCD designs, all process variables are studied in five levels (-a, -1, 0, +1, +a); each of 

these values is a code for an original variable value. Coding the variable levels is a simple 

linear transformation of the original measurement scale so that the highest value of the 

original variable becomes (+1) and the lowest value becomes (-1). The average of these two 

values is assigned to (0) while the values of -a and +a are applied to find the minimum and 

the maximum values. The a values depend on the number of variables studied (2 in our case) 

and for two, three, and four variables, they are 1.41, 1.68, and 2.00, respectively. All design 

descriptions are in terms of coded values of the variables. The independent variables for this 

study and their related levels and codes are shown in Table V.  



Table V: Original and coded values of the independent variables of the extraction 

process. 

Independent 

variables 

Symbols Coded values 

 -1.41 -1 0 1 1.41 

Original values 

Temperature (°C) T 175 180 192.5 205 210 

PE amount (%) PE 0 16.67 50 85.36 100 

 

CCD’s are designed to estimate the coefficients of a quadratic model. To get the best response 

surface, rotatable CCDs are commonly applied. Rotatability implies that the variation in the 

response prediction will be constant at a given distance from the center of the design. The 

design matrix for a rotatable CCD for 2 variables (each one evaluated at 5 levels), involves 9 

design points or experiments with adding of 3 additional experiments called check points 

(runs nos. 10 to 12) in order to subsequently check the validity of the fitted models. After 

performing 12 different experiments, a quadratic model was fitted to the response data using 

Nemrodw 2015 software. The whole table data (Table VI) is presented in the part Results. The 

complete quadratic model for k variables contains (k + 1)(k + 2)/2 parameters and is given by:  

                           
 

                                   (1) 

where the notation    is the coefficient of linear terms Xi,     is the coefficient of quadratic 

terms   
 , and     is the coefficient of interaction terms     . Each variable in the model has a 

coefficient. Numerical magnitude of the standardized model coefficients reveal their 

importance in the obtained model and the modeled response, accordingly (among 

standardized coefficients the larger values are more effective). Furthermore, negative 

coefficients represent inverse effect of the corresponding factor on the modeled response. In 

addition to a quadratic model, the model can also be displayed in three dimensions plots. The 

CCD outputs include contour and 3D response surface plots, which visualize the results of the 

experiment and enable the researcher to visually examine the relationships between the 

variables in the plot and the response.   



 

A statistical test of the model fit is made by comparing the variance due to the lack of fit to 

the pure error variance using the F-test. The fitted model is considered adequate if the 

variance due to the lack of fit is not significantly different from the pure error variance (43) 

(44) (45). The adequacy of the model is further tested using three check points (43). 

The search for experimental conditions which optimize the five responses simultaneously 

requires the use of the desirability function approach. The method consists in transforming the 

measured property of each response to a dimensionless desirability scale di defined as a partial 

desirability function. This makes possible the combination of the results obtained for 

properties measured on different scales. The scale of the desirability function ranges between 

d =0, for a completely undesirable response, and d =1, if the response is at the target value. 

Once the function di is defined for each of the responses of interest, an overall objective 

function (D), representing the global desirability function is calculated by determining the 

geometric mean of the individual desirabilities. Therefore, the function D over the 

experimental domain is calculated using Eq. (2) as follows (43) (45) (46): 

 

                                                                      (2) 

 

Taking into account all requirements for all responses, we can, thus, choose the conditions on 

the design variables that maximize D. 

One can see that a high value of D is obtained only if all individual desirabilities di are high. 

The values of D computed from the observed responses allow us to locate optimal region. 

2.2.2 Blend preparation 

The LDPE/TPU blends have been prepared in two steps. First the pellets of TPU and LDPE 

(and/or LLDPE-g-Ma) have been well mixed in a container and then extrusion film 

experiments have been carried out using a single screw extruder with a Maddock mixer 

following.  

2.2.3 Extrusion – calendering process 



Extrusion has been performed with a laboratory-scale extruder Polylab system composed of a 

HAAKE RheoDrive4 motor coupled with a HAAKE Rheomex 19/25 OS single screw 

extruder with a Maddock mixer.  

The system was piloted by PolySoft OS software to set and control temperature zones and 

screw speed. The extruder unit was equipped with a fish-tail designed die of 100mm wide and 

450µm thick to process the molten polymer into a film. The extruder was connected to the air 

network which provides ambient temperature air to cool the hopper zone. The calendering 

was performed on only one face of the fabric using a 3-roll laboratory calender from 

THERMO SCIENTIFIC according to Figure 2. The rolls were 200mm wide and were cooled 

with a HAAKE Phoenix II P1 thermostat (THERMO SCIENTIFIC) with oil and regulation 

pump speed.   

 

Figure 2: Scheme of the calendering process. 

 

The Table VI collects all the process parameters for the extrusion-calendering.  

Table VI: Process parameters. 

Parameters Value 

Die gap 450µm 

Die temperature [174°C; 209°C] (+/-1°C) (see Erreur ! 

Source du renvoi introuvable.) 

Extrusion speed 60 rpm 

Calendering speed 6 rpm 

Temperature of the thermoregulated rolls 40°C 

Distance between the die and the rolls 20mm 

 



In the purpose to have the ability to test the mechanical performance of the films that were 

calendered on the fabric, the same films were prepared with the same parameters but without 

fabric. 

All prepared films parameters were summarized in Table VII. The experiments from 13 to 15 

included grafted maleic anhydride. These experiments have been made according to the 

results from the experimental design (see Results). 

The films produced had a thickness of 200µm corresponding to the gap between the 

compressive heating rolls of the 3-roll laboratory calender. This is the lower thickness that it 

was possible to obtain with the calender. This thickness has been chosen to get the lighter 

material as possible. 

Table VII: Composition and extrusion temperatures of the different blends. 

Sample 

number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                           

Hopper zone 211 180 202 196 202 196 216 187 180 170 180 196 180 196 196 

Zone 1 211 180 202 196 202 196 216 187 180 172 180 196 180 196 196 

Zone 2 206 175 197 191 197 191 211 182 175 174 175 191 175 191 191 

Die 199 174 196 190 196 190 210 181 174 175 174 190 174 190 190 

% TPU 83.4 81 81 77.5 85 71 77.5 83.4 85 100 0 0 0 71 71 

% LDPE 16.6 19 19 22.5 15 29 22.5 16.6 15 0 100 100 0 0 26 

% PE-g-Ma 0 0 0 0 0 0 0 0 0 0 0 0 100 29 3 

 

The different heating zones of the extruder are presented in the Figure 3 (47). 

 

Figure 3: Scheme of the extruder and temperature zones (47). 

2.2.4 Analysis of the Peel strength  

Hopper 
Zone Zone 1 Zone 2 Die 



The peel strength of the coating sheet on the fabric has been determined by a peel test carried 

out on a Zwick Z010 according to the standard NF EN ISO 2411. Samples were cut from the 

middle of the coated fabrics to avoid edge effects. The coating was first separated from the 

fabric using a tweezer and a cutting blade. The 50 mm width coating sheet and the fabric were 

clamped separately on the machine with a distance of 50 mm between grips (Figure 4). A 

crosshead speed of 100 mm/min and a 0.5 kN cell was chosen. During the test the force was 

recorded as a function of displacement thanks to TestXpert® II software (Zwick). Reported 

data are the average of five samples.  

 

Figure 4: Scheme of the peel strength test according to standard NF EN ISO 2411 

2.2.5 Analysis of the mechanical properties of the sheet 

Tensile strength of blends sheets has been measured during a tensile test on a Zwick Z010 

with a crosshead speed of 500 mm/min and a 0.5 kN cell. Strip-shaped samples were prepared 

with a cutting press. The length and width of samples is 40 mm and 10 mm respectively and 

the thickness is measured for each samples. The distance between grips is set at 40 mm to 

avoid slippage in the grips.  

During the test, the force has been recorded as a function of the displacement thanks to 

TestXpert® II software (Zwick). Reported data are the average of 10 samples. The tensile 

strength was obtained by dividing the force applied at the breaking by the initial section of the 

sample.  



2.2.6 Analysis of the shear viscosity of the blend 

The dynamical rheological measurements have been performed on disks using a strain 

controlled rheometer ARES (TA Instrument) equipped with a 25 mm parallel plates geometry 

in continuous shear mode at the same temperatures than those used for the different 

calendering tests. According to prior experiments consisting in determining the linear 

viscoelastic domain for which the behavior of the polymer does not depend of the strain, the 

frequency sweep at strain was kept at ε=3% and the pulsation ω was in the range of 0.1 to 100 

rad/s. Nitrogen was used to decrease the ageing of blends. Disk samples of 1.8 mm thick and 

25mm wide were prepared by injection. The gap was set at 1.5mm. The result is the average 

value of three samples.  

2.2.7 Analysis of the coated textile sections and of the blends morphology 

The section of the coated textile has been analyzed with a Scanning Electron Microscope 

using the detection of backscattered electrons and a magnification of x500.  

The penetration of the coating on the fabric has been measured as following. Red arrows in 

Figure 5 indicate the depth of coating penetration:  

 

Figure 5: Measurement method of the coating penetration on the fabric. 

 



The analysis of the compatibility between TPU and PE was realized by the observation of the 

presence of PE particles in TPU with the same Scanning Electron Microscope using the 

detection of backscattered electrons and a magnification off x1000. The morphology gave 

information about the compatibility between these two materials. 

2.2.8 Analysis of the chemical composition 

Infrared measurements at room temperature were performed on a Perkin–Elmer Spectrum 

One FT-IR (Fourier Transformed Infrared) Spectrometer with 32 scans and a resolution of 

2 cm
−1

 in the absorption mode to determine the chemical composition of the different blends. 

 

3. Results 

3.1 Peel Strength of TPU/LDPE blends 

According to Table VIII, peel strengths of neat TPU do not exceed 7N/50mm. For the blends 

given in the Table VIII, an increase between 200% can be highlighted for experiment number 

9 (15% of LDPE and extrusion temperature 174°C) and 430% for experiments 4 and 6 

(respectively 23% and 29% of LDPE and extrusion temperature 190°C). However neat LDPE 

(at both 174°C and 175°C) also exhibit a very low peel strength which means that the increase 

of the peel strength of the blends is not only due to the LDPE.  

Table VIII: Peel strength of neat TPU, neat LDPE and TPU/LDPE blends. 

Sample number 1 2 3 4 5 6 7 8 9 10 11 12 

LDPE ratio 16.6 19 19 22.5 15 29 22.5 16.6 15 0 100 100 

Die temperature 

(°C) 

199 174 196 190 196 190 210 181 174 175 174 190 

Peel strength 

(N/50mm) 

22.3 13 27.4 30 29.1 30  21.2 17 13 7 1.8 4.5 

Standard 

deviation  

2.14 0.53 2.8 1.61 2.62 2.06 2.7 0.3 0.78 0.31 0.22 0.46 

 



For a same amount of LDPE, an increase of the extrusion temperature seems to increase the 

peel strength. For example, for a same amount of 19%wt of LDPE (samples 2 and 3) but 

different extrusion temperatures (respectively 174°C and 196°C), the peel strength is doubled 

(13.02N/50mm and 27.43N/50mm respectively). The same trend is observed with samples 1 

and 8, while the opposite trend is observed with samples 4 and 7. This can be explained by the 

very high die temperature employed for sample 7 that may cause a degradation of the blend. 

This is further correlated to an important decrease of the tensile strength. 

Conversely and for a same extrusion temperature the amount of LDPE seems to have slight 

influence on the peel strength. For example, experiments 2 and 9 have been both performed at 

174°C with respectively 19%wt and 15%wt of LDPE but the peel strengths are nearly the 

same (respectively 13.02N/50mm and 13N/50mm). This observation is also true for 

experiments 4 and 6 and experiments 3 and 5.  

3.2 Tensile strength of TPU/LDPE blends 

Tensile strengths of the different blends are displayed in Table IX. Tensile strengths of neat 

TPU at 175°C is about 23 MPa while the tensile strength of neat LDPE depends of the 

process temperature (24.6MPa and 42.6 MPa for extrusion temperatures of, respectively, 

174°C and 190°C. The difference can be due to the partial fusion of LDPE pellets at a 

temperature of 174°C while the fusion is complete at 190°C). Excepted for experiment 9, the 

tensile strength of all blends is lower than the tensile strength of neat TPU and neat LDPE 

which means that there is an incompatibility between TPU and LDPE (36) (37). For an 

extrusion temperature of 210°C, the film seems to be degraded. The corresponding tensile 

strength is only 11.6 MPa while it is more than 14 MPa for all other blends. It is important to 

note that the tensile strength of TPU/LDPE blends seems to depend on temperature. Indeed, 

except for experiment 3, an increase of the extrusion temperature leads to a decrease of the 

tensile strength. 



Table IX: Tensile strength of neat TPU, neat LDPE and TPU/LDPE blends. 

Sample number 1 2 3 4 5 6 7 8 9 10 11 12 

Amount of  

LDPE (%) 

16.6 19 19 22.5 15 29 22.5 16.6 15 0 100 100 

Die temperature 

(°C) 

199 174 196 190 196 190 210 181 174 175 174 190 

Tensile strength 

(MPa) 

14.3 22.5 17.9 13.9 17.8 18.6 11.6 18.7 25.5 23.1 24.6 42.6 

Standard 

deviation 

0.82 0.99 0.7 0.77 1.1 0.85 0.92 1.04 1.48 2.01 1.69 0.74 

 

3.3 Analysis of Experimental design optimization 

Table X shows 12 different experimental runs of CCD and the corresponding response data. 

3.3.1 Model equations 

Results of experiments of the CCD design are used to estimate the model coefficients 

(without using the check points). The fitted models expressed in coded variables are 

represented by Eqs. (3)– (4): 

- Interfacial adhesion (Y1):  

                                         
         

      (3) 

- Tensile strength (Y2):  

                                           
         

    (4) 

Table X: CDD design matrix along with the experimental responses. 

No X1 : 

Temperature 

(°C) 

Polyethylene amount 

(%) 

Response Y1(interfacial 

adhesion) (N/50 mm) 

Response Y2 

(tensile strength) (MPa) 

1 199 16.0 22.31 14.28 

2 174 19.0 13.02 22.46 

3 196 19.0 27.43 17.90 

4 190 23.0 30.00 13.87 

5 196 15.0 29.07 17.75 

6 190 29.0 30.00 18.62 

7 210 22.5 21.19 11.65 

8 181 16.6 17.00 19.00 

9 174 15.0 13.00 26.00 

10 175 0.0 7.00 23.00 

11 174 100.0 1.83 24.58 

12 190 100.0 4.53 42.64 

 

3.3.2 Statistical analysis and validation of the models 



The analysis of variance for the fitted models showed that in all cases, the regression sum of 

squares was statistically significant (their p-value is less than 0.05) and the lack of fit is not 

significant (43) (46). Table XI illustrates the ANOVA corresponding to two responses namely 

interfacial adhesion (   ) and tensile strength (   ). In addition, Table XII shows the check 

point results used to validate the accuracy of the models. 

Table XI: Analysis of the responses of the CCD design. 

Source of 

variation 

Sum of 

squares 

df Mean 

square 

Ratio Significance       

(p-value) 

(1) Interfacial adhesion 

R2=0.958 & adj R2=0.924 

Regression 1.09.103 5 2.19.102 27.59 0.0453*** 

Residuals 4.76.101 6 7.94.100   

Total 1.14.103 11    

 

(2) Tensile strength 

R2=0.932 & adj R2=0.875 

Regression 6.76.102 5 1.35.102 16.39 0.193** 

Residuals 4.95.101 6 8.24.100   

Total 7.25.102 11    

 
*significant at the level 95%; **significant at the level 99%; ***significant at the level 99.9%; (NS): non-significant at the 

level 95%. 

 

Table XII: Numerical results for check points. 

 

 

 

 

 

The measured values were very close to those calculated using the model equations. Indeed, 

the differences between calculated and measured responses were not statistically significant 

when using the t-test as shown in Table XII (equivalent Student values in function of both the 

response). It could be concluded that the second order models were adequate to describe the 

two response surfaces and could be used as prediction equations in the studied domain. 

  

Ru

n 
Yexp Ycalc Yexp – Ycalc dU t-test 

(1) Interfacial adhesion 

10 7.00 5.81 1.19 0.80 0.942 

11 1.83 1.54 0.29 0.99 1.008 

12 4.53 4.91 -0.38 0.98 -1.029 

      

(2) Tensile strength 

10 23.00 24.99 -1.99 0.80 -1.557 

11 24.58 24.99 0.41 0.99 -1.435 

12 42.64 42.11 0.53 0.98 1.407 



3.3.3 Interpretation of the response surface models 

Following the validation of the model, the isoresponse curves were drawn for each response 

by plotting the response variation against both the factors. (Temperature in °C vs PE amount 

in wt %). If zones of interest boundaries are set (according to the targets: adhesion and tensile 

strength), these curves are very useful. Below are discussed the results corresponding to the 

two studied responses: 

 Interfacial adhesion (      The examination of interfacial adhesion of TPU/LDPE 

mixture isoresponse curves (Figure 6) shows that the high values of T and PE give a 

negative effect on the response. The maximal interfacial adhesion 29.48 N/50 mm) is 

reached at a PE ratio in the range 38-39% and a mixture temperature of 192.5°C. 

 Tensile strength (      The isoresponse curves in Figure 6 show that the tensile strength 

of the blends is almost the same for temperatures lower than 200°C and a PE amount 

of 50%. Actually, the range of     is between 19 and 22 N. Beyond this value, tensile 

strength sharply increases to reach 42N. In addition, the temperature has not an 

important effect on the response in the studied domain in contrast to the PE amount. 

 

 
  

Figure 6: (a– b): Isoresponse curves in the plane: (a) Interfacial adhesion (Y1) and (b) 

Tensile strength (Y2). 

The examination of all the results obtained by means of the isoresponse curves, allows us to 

deduce that it is not obvious how one can find experimental conditions that can optimize both 

a b 



the responses simultaneously. The desirability functions allow to reach a compromise which 

can better satisfy conflicting objectives. 

3.3.4 Optimization 

The partial desirabilities of the two responses established based on the study of the behavior 

of some TPU/LDPE mixtures are shown in Figure 7. A target is fixed at 28 N / 50 mm and 25 

MPa for the interfacial adhesion and tensile strength responses respectively. After calculation 

by the NEMRODW 2015 software, a three-dimensional plot of the global desirability 

function D can be represented as shown in Figure 8. We can note the rather flat area 

corresponding to the optimal conditions (D=0.84).  

 
Figure 7: Individual desirability function of the responses (d1: Interfacial adhesion 

(N/50mm) and d2: Tensile strength (MPa)). 

 

To choose the best coordinates of the acceptable compromise, we take into account the 

economic and process aspects of the mixture preparation. Thus, the acceptable compromise is 

selected at the point: XT=190°C and XPE=29% giving an interfacial adhesion of 28N/50mm 

and a tensile strength which reaches a value of 24 MPa. The choice has been made in the 

purpose of promoting the flexibility and the fuel resistance properties of the material. The 

LDPE has poor fuel resistance properties so it is necessary to have a material with a major 

part of TPU.  



 
Figure 8: Response surface of the global desirability function. 

 

Thanks to the experimental design, we have chosen the composition and the extrusion 

temperature to have the highest value of peel strength but also a high value of tensile strength 

(>22MPa). However the value of tensile strength of the blend for the chosen extrusion 

temperature was still lower than that of the 2 components due to the incompatibility of TPU 

and LDPE (38). For the next part of our study, we added 3 other compositions with maleic 

anhydride which is a compatibiliser for these blends (37). The LLDPE-g-Ma was not used in 

the first part of the study because of the important price of it compared to the price of LDPE. 

The blend 13 was composed of 71%wt TPU and 29%wt of LLDPE-g-Ma. We substituted the 

LDPE by LLDPE-g-Ma to check its influence on the peel strength. The blend 14 was 

composed of 71%wt of TPU, 26%wt of LDPE and 3%wt of LLDPE-g-Ma. The purpose of 

this blend was to get a blend similar to the best one determined before with the addition of 3% 

of Ma to increase the tensile strength. Then the experiment 15 was the neat LLDPE-g-Ma 

which was a reference like experiments 10, 11 and 12.  

The peel strength and tensile strength of experiments 13, 14 and 15 are summarized in the 

Table XIII. 

Table XIII: Peel strength and tensile strength of experiments 13, 14 and 15 

Sample number 13 14 15 



Amount of  

LDPE (%) 
0 26 0 

Amount of LLDPE-g-Ma 29 3 100 

Die temperature (°C) 190 190 175 

Peel strength (N/50mm) 16.5 30.7 4.8 

Standard deviation 1.87 3.09 0.7 

Tensile Strength (MPa) 31.5 26.51 27.12 

Standard deviation 1.26 0.3 1.35 

 

3.4 Analysis of the compatibility TPU/LDPE, TPU/LLDPe-g-Ma and 

TPU/LDPE/LLDPE-g-Ma  

The analysis of the film surface of the blends shows three different morphologies: nodular, 

co-continuous and continuous (Figure 9). For all the LDPE/TPU blends (experiments 1 to 9), 

the morphology is nodular (Figure 9.A) which is a proof of the immiscibility of the LDPE in 

TPU. Also the smooth interface between the 2 components indicates that there is a poor 

interfacial adhesion. A co-continuous morphology was observed for LDPE/LLDPE-g-

Ma/TPU (experiment 14) (Figure 9.B) and almost continuous for LLDPE-g-Ma/TPU blend 

(experiment 13) (Figure 9.C) which means that there is a better miscibility between TPU and 

LLDPE-g-Ma. As said previously in the introduction, the g-Ma is a compatibiliser for LDPE 

and TPU so these results are in agreement with the literature (36). On the pictures it is clear 

that the polymer is oriented in one direction. This is due to the process and especially to the 

rolls of the calendering unit. 



      

 

Figure 9: SEM pictures of the film morphologies for: A: nodular (experiment 5), B :co-

continuous (experiment 14), C: continous (experiment 13).    

3.5 Analysis of the chemical composition 

FTIR Spectrum of neat LDPE and neat LLDPE-g-Ma are very similar (Figure 10). The Ma 

group can be seen around 1700 cm
-1

 and 1800 cm
-1

 (Figure 11) as explained on previous 

research for PP-g-Ma (48) (49) and EPDM (50). Figure 12 shows the FTIR spectrum of 

experiment 2 and 6. Although the peel strength is very different (sample 6 displayed a peel 

strength almost 3 times higher than sample 2), the 2 spectrum are similar. No difference was 

observed on the FTIR spectrums of the blends 1 to 9. The FTIR spectrums of experiment 6, 

13 and 14 are presented in Figure 12 and 13 and the same conclusion can be made. The 

percentage of Ma in the blends 13 and 14 is so weak that it is almost not visible on the FTIR 

experiment except for the peak around 1730cm
-1

 as it can be seen on the Figure 13. The large 

A B

B 

C

B 



peak around 1700 cm
-1

 is a peak from TPU corresponding to the urethane group (C=O) (51) 

and cannot been attributed to Ma. 

In conclusion to these analyses, no significant difference on the FTIR spectrum has been 

observed between all the blends. It means that there is no new-bonds creation by mixing TPU 

and LLDPE or LLDPE-g-Ma so the noted better adhesion is not due to a chemical link 

between the fabric and the coating. 

 

Figure 10: FTIR spectrum of neat LDPE and neat LLDPE-g-Ma. 

 

Figure 11: FTIR spectrum (1650-1900cm
-1

) of neat LDPE and neat LLDPE-g-Ma. 

 

 

 



 

Figure 12: FTIR spectrum of experiment 2, 6, 13 and 14. 

 

Figure 13: FTIR spectrum (1650-1900cm-1) of neat TPU and experiment 6, 13 and 14. 

3.6 Analysis of the shear viscosity of the blend 

The viscosity of the sheet is important because the ability of the polymer to penetrate inside 

the yarn depends of this viscosity. The shear viscosity given in the Table XIV is the viscosity 

of the different blends at the corresponding extrusion temperatures for a shear rate between 10 

s
-1

 and 100 s
-1

. These shear rates are those corresponding to the calendering process according 

to the literature (52) (53) (54).   

Table XIV: Shear rate viscosities of neat TPU, neat LDPE, neat LLDPE-g-Ma and of the 

different blends at the corresponding processing temperatures and for a shear rate 

between 10s
-1

 and 100s
-1

. 

Sample 

number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 



Amount of  

LDPE (%) 

16.6 19 19 22.5 15 29 22.5 16.6 15 0 100 100 0 26 0 

Amount of 

LLDPE-g-Ma 

(%) 

0 0 0 0 0 0 0 0 0 0 0 0 29 3 100 

Die 

temperature 

(°C) 

199 174 196 190 196 190 210 181 174 175 174 190 190 190 175 

Shear rate 

viscosity (Pa.s) 

10s
-1

 – 100s
-1

 

110    
- 

93 

481 
- 

284 

119 
 - 

 96 

222 
- 

166 

112 
- 

99 

421 
- 

267 

47 
- 

43 

447 
- 

276 

487 
- 

335 

237 
- 

188 

3800 
- 

960 

2900 
- 

700 

445 
- 

248 

884 
- 

485 

2980 
- 

1300 

 

At the same die temperature, the viscosity of neat LDPE and neat LLDPE-g-Ma is 7 times 

higher than the viscosity of neat TPU. Although the viscosity of LLDPE-g-Ma is lower than 

LDPE ones, the blend of LLDPE-g-Ma/LDPE/TPU (experiment 14) has a viscosity twice 

higher than that of experiment 6 for a same temperature of process. This must be linked with 

the miscibility of the different materials and it should be compared with the mechanical 

performance and the morphology of the blends. For the same LDPE/TPU blends, the higher 

the process temperature is, the lower is the viscosity. For example for an amount of 22.5%wt 

of LDPE and a shear rate of 10s
-1

, the viscosity is about 421 Pa.s for a temperature of 190°C 

and 47 Pa.s for a temperature of 210°C.     

3.7 Analysis of the coated textile sections 

The analysis of the coated textile section gives important information about the depth of 

penetration of the polymer between the filaments of the yarns that compose the fabric. The 

Table XV gives the depth of penetration for each experiment. The coating has a better 

penetration when extruded at high temperature especially if the temperature is higher than 

190°C. It could be due to a difference of surface energy or viscosity. However it is important 

to notice that the diameter of a filament is 23 µm so the coating never penetrates inside the 

fabric but always keeps on the surface (Figure 14).       



       

Figure 14: sections of the coated textile: A: experiment 11 and B: experiment 7.  

Table XV: Penetration depth of the coating for each blend in the fabric. 

Sample 

number 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Amount of  

LDPE (%) 

16.6 19 19 22.5 15 29 22.5 16.6 15 0 100 100 0 26 0 

Amount of 

LLDPE-g-Ma 

(%) 

0 0 0 0 0 0 0 0 0 0 0 0 29 3 100 

Die 

temperature 

(°C) 

199 174 196 190 196 190 210 181 174 175 174 190 190 190 175 

Penetration 

depth (µm) 

13 6 11 10 9 7 14 8 7 2 5 6 8 6 2 

 

4. Discussion 

4.1 Analysis of the peel strength increase 

According to the literature, the coating peel strength on a substrate is directly related to the six 

adhesion theories mentioned in introduction. However for this case, the theories of the weak 

boundary layer, electrostatic and diffusion cannot be used to explain the results.  

FTIR shows that no new chemical bonds have been created in any of the different blends. 

Indeed, despite the large difference of peel strength, all the FTIR spectrums are identical. It 

A 
B

B 



means that the peel strength difference is not due to the creation of a new chemical bond 

between the fabric and the coating.  

Regarding the theories of wetting and mechanical interlocking, the observations of the coating 

penetration depth in the fabric give good information. As expected, the lower is the viscosity, 

the better is the penetration. According to the results, peel strength seemed to increase when 

coating penetration was higher than 7µm For example, on sample 7, the penetration is about 

14µm and the peel strength is 21.2 N/50mm while penetration is only 2µm for sample 10 and 

the corresponding peel strength 1.8 N/50mm. But this trend could not be generalized; in fact 

sample 6 displayed a 30 N/50 mm peel strength with a penetration depth of only 7µm. The 

conclusion is that the coating penetration depth in the fabric, and the related viscosity, has a 

strong influence on the peel strength but is not the only parameter involved.  

Actually, the temperature seems to have a strong impact on the peel strength. The temperature 

dependence of surface energy has been shown by previous papers (55) (56) (57).This 

modification of surface energy could lead to a better affinity between the fabric and the 

coating. As said previously, for a same amount of LDPE an increase of the extrusion 

temperature leads to an increase of the peel strength until a maximum value for a temperature 

of 190°C. For higher temperatures (experiment 1, 3, 5 and 7), the peel strength decreases as a 

consequence of the polymer degradation, which could be observed by the decrease of the 

tensile strength.   

The low significance value obtained with the experimental design means that there is a good 

correlation between the model and the experiments. The experimental design also allows us to 

determine the best coating composition and the best extrusion temperature to get the highest 

possible value of peel strength and a good value of tensile strength. 

4.2 Maleic anhydride influence analysis 



As observed previously, the complete substitution of LDPE by LLDPE-g-Ma has a negative 

impact on the peel strength, but a substitution of only 3%wt of LDPE by LLDPE-g-Ma did 

not degrade this property while it increases its tensile strength.  The LLDPE-g-Ma is needed 

to get good peel strength and also good tensile properties. 

Actually, the addition of maleic anhydride in the blend created a modification of the initial 

nodular morphology to a co-continuous morphology for blends with 3%wt of Ma and to 

almost continuous morphology for blends with 29%wt of Ma. This is in perfect accordance 

with the literature (36) (37) (38).  Other tests like tear strength or measurements of interfacial 

tensions using the Palierne’s model have been performed on the blends. The results will be 

published soon in another paper. The interfacial decreases significantly with the addition of 

maleic anhydride. This is a proof of the compatibilisation of the blend. One interesting point 

is the difference of viscosity between experiment 6, 13 and 14 which have the same amount of 

LDPE or LLDPE-g-Ma. At the same temperature, LLDPE-g-Ma has a lower viscosity than 

LDPE. But also for a same temperature, the viscosity of the blend 14 made of 26%wt of 

LDPE and 3%wt of LLDPE-g-Ma is 2 times higher than the viscosity of the blend 6 made 

with 29%wt of LDPE and blend 13 with 29%wt of LLDPE-g-Ma. This increase of viscosity 

means that there is a good compatibility between LDPE and LLDPE-g-Ma. The complete 

substitution of LDPE by LLDPE-g-Ma seems to not have any impact on the viscosity of the 

blend at 190°C as it was found by comparing experiment 6 and 13. 

 

5. Conclusion 

In the present paper, the impact on peel strength of the addition of low density polyethylene 

and linear low density polyethylene to a thermoplastic polyurethane sheet calendered on a 

polyester fabric has been studied. This study has been divided into two parts.  

In the first part, the study has shown that the addition of LDPE in the TPU coating has no 

direct impact on the peel strength while the die temperature has a strong influence. It has been 



shown that an increase of the extrusion temperature leads to an increase of the peel strength. 

However it is important to note that the best peel strength is obtained for an extrusion 

temperature of 190°C which is not the highest temperature. This must be due to a degradation 

of the film at higher temperature as shown by analyzing the tensile strength. The increase of 

the peel strength can be attributed to several phenomena among which the penetration of the 

coating in the fabric which creates a mechanical interlocking, and the extrusion temperature 

which create a different surface energy of the coating resulting in a better affinity with the 

fabric. This theory will have to be proved for our study in a future work by using a pendant 

drop experiment as previously realized by Kwok et al (58). 

In a second part, the influence of maleic anhydride as a compatibiliser between TPU and 

LDPE has been studied with the addition of LLDPE-g-Ma. It has been shown that the 

substitution of LDPE by LLDPE-g-Ma has a negative impact on the peel strength but hugely 

increases the tensile strength. However the substitution of only 3%wt of LDPE (among 

29%wt) by LLDPE-g-Ma has no impact on the peel strength but still increases the tensile 

strength. 

In future work, this experimental investigation will be continued firstly with a study of the 

extruded coating sheet surface energy depending on the die temperature. The effect of the 

temperature on the surface energy will be helpful to confirm the theory proposed in our 

conclusion to explain the better adhesion. Also it will be important to focus on the other kind 

of bonds among polymers and interfaces to explain the better adhesion. 
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