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Abstract. In this paper we study the directions of periodicity of three-
dimensional subshifts of finite type (SFTs) and in particular their slopes.
A configuration of a subshift has a slope of periodicity if it is periodic
in exactly one direction, the slope being the angles of the periodicity
vector. In this paper, we prove that any Σ0

2 set may be realized as a a
set of slopes of an SFT.

A d-dimensional subshift of finite type (SFT for short) is a set of colorings
of Zd by a finite number of colors containing no pattern from a finite family of
forbidden patterns. Subshifts may be seen as discretizations of continuous dy-
namical systems: if X is a compact space and there are d commuting continuous
actions φ1, . . . , φd on X, one can partition X in a finite number of parts indexed
by an alphabet Σ. The orbit of a point x ∈ X maps to a coloring y of Zd where
y(v) corresponds to the partition where φv(x) lies.

In dimension 1, most problems on SFTs are easy in a computational sense,
since SFTs correspond to bi-infinite walks on finite automata. For instance, in
dimension 1, detecting whether an SFT is non-empty is decidable since it suffices
to detect if there exists a cycle in the corresponding automaton [13], which
corresponds to the existence of a periodic configuration.

In higher dimensions however, the situation becomes more involved, and
knowing whether an SFT is non-empty becomes undecidable [3,2]. The proof
uses two key results on SFTs: the existence of an aperiodic SFT and an encoding
of Turing machine’s space time diagrams. The fact that there exists aperiodic
SFTs is not straightforward, and the converse was first conjectured by Wang
[20]. Had this conjecture been true, it would have meant the decidability of
the emptiness problem for SFTs. Berger [3,2] proved however that there does
exist SFTs containing only aperiodic configurations. Subsequently, many other
aperiodic SFTs were constructed [18,12,16,17,8,4]. Note that the existence in
itself of aperiodic SFTs does not suffice to prove that the emptiness problem is
undecidable, one needs in addition to encode some computation in them, usually
in the form of Turing machines.

Periodicity has thus been central in the study of SFTs from the beginning, and
it has been proved very early that knowing whether an SFT is aperiodic is unde-
cidable [6]. In fact, sets of periods constitute a classical conjugacy/isomorphism



invariant for subshifts in any dimension. As such, they have been studied ex-
tensively and even characterized: algebraically in dimension 1, see [13] for more
details, and computationally in dimension 2. In fact it seems that computabil-
ity theory is the right tool to study dynamical aspects of higher dimensional
symbolic dynamical systems [7,14,1,5].

In dimensions d ≥ 2, one may investigate periodicity from different angles.
Denote Γx = {v ∈ Zd | x(z + v) = x(z),∀z ∈ Zd} the lattice of vectors of
periodicity of configuration x: Γx may be of any dimension below d and some
cases are particularly interesting:
– When it is of dimension 0, then x does not have any vector of periodicity

and is hence aperiodic.
– When it is of dimension d, then x is somehow finite, this case has been

studied and partly characterized in terms of complexity classes by Jeandel
and Vanier [10].

– When d = 1, then there exists some vector v such that Γx = vZ. In this case,
one may talk about the direction or slope of the configuration.

In this paper, we are interested in this last case. In [9], this case was studied
and characterized for 2-dimensional SFTs through the arithmetical hierarchy:

Theorem (Jeandel and Vanier). The sets of slopes of 2-dimensional SFTs are
exactly the Σ0

1 subsets of Q ∪ {∞}.

In the end of [9] it was conjectured that slopes of higher dimensional SFTs are
the Σ0

2 subsets of (Q∪{∞})d−1. This gap between dimension 2 and dimension 3
for decidability of periodicity questions is similar to the gap between dimension
1 and 2 for decidability of emptiness questions: the subset of periodic configura-
tions of a d-dimensional subshift along some periodicity vector may be seen as
a (d− 1)-dimensional subshift (see e.g. [9]), hence the jump in complexity. This
is the idea that led to the conjecture. However, in dimension higher than 2, the
construction of [9] cannot be reused.

In this article, we prove one direction of the aforementioned conjecture: we
show how to realize any Σ0

2 subset of (Q ∪ {∞})2 as a set of slopes of a 3D
subshift:

Theorem 1. Any Σ0
2 subset of (Q ∪ {∞})2 may be realized as the set of slopes

of some 3D SFT.

In order to do this, we introduce a new way to synchronize computations
between different dimensions, inspired partly by what is done by Durand, Ro-
mashchenko and Shen [5]. Note that our construction can be easily generalized
to realize any Σ0

2 subset of (Q ∪ {∞})d−1 as a set of slopes of a d-dimensional
subshift for d ≥ 3.

However, we did not manage to prove the other part of the conjecture, that
is the fact that the sets of slopes of d-dimensional SFTs are in Σ0

2 (for d ≥ 3).
The paper is organized as follows: in section 1 we recall the useful defini-

tions about subshifts and the arithmetical hierarchy, and in section 2 we prove
Theorem 1.



1 Definitions and properties

1.1 Subshifts and tilesets

We give here some standard definitions and facts about subshifts, one may con-
sult [13] for more details.

Let Σ be a finite alphabet, a configuration (or tiling) is a function c : Zd −→
Σ. A pattern is a function p : N −→ Σ, where N ⊆ Zd is a finite set, called the
support of p. A pattern p appears in another pattern p′ if there exists v ∈ Zd such
that ∀x ∈ N, p(x) = p′(x+ v). We write then p v p′. Informally, a configuration
(or tiling) is a coloring of Zd with elements of Σ. A subshift is a closed, shift-
invariant subset of ΣZd , the d-dimensional full shift. For a subshift X we will
sometimes note ΣX its alphabet. The full shift is a compact metric space when
equipped with the distance d(x, y) = 2−min{‖v‖∞ | v∈Zd,x(v)6=y(v)} with ‖v‖∞ =
maxi |vi|.

It is well known that subshifts may also be defined via collections of forbidden
patterns. Let F be a collection of forbidden patterns, the subset XF of ΣZd

defined by
XF =

{
x ∈ ΣZd

| ∀p ∈ F, p 6v x
}

is a subshift. Any subshift may be defined via an adequate collection of forbidden
patterns. A subshift of finite type (SFT) is a subshift which may be defined via
a finite collection of forbidden patterns. A configuration of a subshift is also
called a point of this subshift and is said to be valid with respect to the family
of forbidden patterns F . Remark that F being finite, we can define a subshift of
finite type either by a set of forbidden or authorized patterns.

Wang tiles are unit squares with colored edges which may not be flipped or
rotated, a tileset is a finite set of Wang tiles. Tiles of a tileset maybe placed
side by side on the Z2 plane only when the matching borders have the same
color, thus forming a tiling of the plane. The set of all tilings by some tileset is
an SFT, and conversely, any SFT may be converted into an isomorphic tileset.
From a computability point of view, both models are equivalent and we will use
both indiscriminately. In 3D, Wang tiles can be straightforwardly generalized to
Wang cubes.

A subshift is North-West-deterministic if, for any position, and for any
two colors placed above it and to its left, there exists at most one valid color at
this position. Likewise, we call a subshift West-deterministic if it is the case
with the colors to its left and top-left.

Fig. 1: NW-determinism. Fig. 2: W-determinism.



1.2 Periodicity and aperiodicity

The notion of periodicity being central in this paper, we will define it in this
section.

Definition 1 (Periodicity). A configuration c is periodic of period v if there
exists v ∈ Zd\{(0, 0)} such that ∀x ∈ Zd, c(x) = c(x+v). If c has no period, then
it is said to be aperiodic. A subshift is aperiodic if all its points are aperiodic.

From now on, we will focus on dimension 3 in this paper. As seen in the in-
troduction, the lattice of vectors of periodicity may be of any dimension between
0 and d and we are interested here in the case where it is 1-dimensional. In this
case we can define the slope periodicity:

Definition 2 (Slope of periodicity). Let c be a configuration periodic along
v = (p, q, r). We call slope of v the pair θ = (θ1, θ2) with θ1 = p

r and θ2 = p
q . If

all vectors of periodicity of c have slope θ, we say that θ is the slope of periodicity
or slope of c. We write Sl(X) = {θ | ∃x ∈ X, θ is the slope of x} the set of slopes
of X.

1.3 Arithmetical hierarchy

We give now some basic definitions used in computability theory and in partic-
ular about the arithmetical hierarchy. More details may be found in [19].

Usually the arithmetical hierarchy is seen as a classification of sets according
to their logical characterization. For our purpose we use an equivalent definition
in terms of computability classes and Turing machines with oracles:

– ∆0
0 = Σ0

0 = Π0
0 is the class of recursive (or computable) problems.

– Σ0
n is the class of recursively enumerable (RE) problems with an oracleΠ0

n−1.
– Π0

n the complementary of Σ0
n, or the class of co-recursively enumerable

(coRE) problems with an oracle Σ0
n−1.

– ∆0
n = Σ0

n ∩Π0
n is the class of recursive (R) problems with an oracle Π0

n−1.

In particular, Σ0
1 is the class of recursively enumerable problems and Π0

1 is
the class of co-recursively enumerable problems.

2 Proof of Theorem 1

Theorem 1. Let R ∈ Σ0
2 ∩P((Q∪ {∞})2), there exists a 3D SFT X such that

Sl(X) = R.

Proof. Let M be a Turing machine accepting R with an oracle O ∈ Π0
1 . One

can suppose that this machine takes as input 3 integers (p, q, r) ∈ N3 and that
its output depends only on θ1 = p

r and θ2 = p
q .

We only explain the case 0 < r < q < p, the others are symmetric or quite
similar and it suffices to take the disjoint union of the obtained SFTs to get the
full characterization.



Let us construct a 3D SFT XM that has a periodic configuration along θ if
and only if θ ∈ R. To do so, XM will be such that "good" configurations (i.e.
valid and 1-periodic) are formed of large cubes, shifted with an offset to allow
periodicity along some slope. Then we encode M inside all the cubes, and give
to it the slope as input. The machine halts (i.e the slope is in R) implies that the
cubes are of finite size. Which means that the configuration is 1-periodic only
when the slope actually corresponds to some element of R.

For that, we separate the construction in different layers, in order to make it
clearer. We define XM = B ×B′ ×B′′ × C ×W × P × S × TO × TM ×A, with
the following layers:

– B creates (yz) black planes, separated by an aperiodic tiling.
– B′ and B′′ create planes orthogonal to the ones of B, forming rectangular

parallelepipeds.
– C forces the parallelepipeds to become cubes.
– W forces the aperiodicity vector to appear between cubes, and writes the

input of the Turing machine in the cubes.
– P reduces the size of the input.
– S synchronizes the aperiodic backgrounds of the cubes.
– TM encodes the "Σ0

2 " Turing machine M in the cubes.
– TO encodes the Π0

1 oracle O that is used by M .
– A ensures the existence of configurations with a unique direction of period-

icity.

Aperiodic background We first need an aperiodic background in order to
ensure that there is no other directions of periodicity that the one we create
later on. We even make a 3D West-deterministic aperiodic background since
some layers will need that deterministic property to work. For that we cross
two 2D West-deterministic aperiodic backgrounds: the set of aperiodic cubes
are the sets of cubes of the form shown in Figure 3. We also impose that
all parallel planes are identical (Figure 4). The 2D aperiodic tiling is from
Kari [11], which is a NW-aperiodic tiling, and can be easily transformed into
a West-deterministic SFT. With such a superposition, one can easily show
that the resulting 3D tiling is aperiodic.

Layer B The first layer is made with two types of cubes: a white cube ( ),
which is a meta-cube that corresponds to any cube of the aperiodic back-
ground and a black cube ( ) which will serve to break the aperiodicity
brought by the white cubes. The rules of this layer are:
– In coordinates z + 1 and z − 1 of , only a can appear.
– In coordinates y + 1 and y − 1 of , only can appear.
– In coordinates x+ 1 and x− 1 of , only can appear.

With only this layer, the valid periodic configurations are thick aperiodic
(yz) planes separated by infinite black (yz) planes. At this stage, there may
be several aperiodic planes "inside" a period.

Layer B′ For every Wang cube of this layer, we impose that the cube at y + 1
is the same. so we can describe the layer B′ by a set of 2D Wang tiles in the
(xz) plane, duplicated on the y axis. The tiles are:



z
x

The first four can only be superimposed with black tiles of layer B and the
last two only with white ones.
With layers B and B′ the periodic configurations are formed of infinite planes
along (yz) linked by infinite (xy) strips infinite along y, see Figure 5.

Layer B′′ This layer is identical to B′ but tiles are duplicated along the z axis.
It creates portions of infinite planes along the z axis, also delimited by the
black planes the layer B.
With these three layers, periodic configurations are formed of parallelepipeds
delimited by black cubes and with portions of aperiodic background inside
them.

Layer C This layer forces the parallelepipeds to be cubes, by forcing rectangles
of (xz) to be squares, and same for rectangles of (xy).
Like the B layer this layer is created by duplicating 2D Wang tiles along y
axis for rectangles of (xz) and z axis for rectangles of (xy):

These tiles are superimposed once on the B′ tiles with rules on the (xz)
plane and on the B′′ tiles with rules on the (xy) plane. The superimpositions
allowed are the following:
– can only be on and .
– can only be on
– can only be on and only on
– , and can only be on white tiles

Figure 6 shows how this layer forces squares to appear.
Layer W This layer uses signals to synchronize the offsets of different cubes,

and to force cubes to have the same size. In order to visualize the different
offsets you can refer to Figure 7. The construction is done in several parts.
The first one forces the offsets along y (denoted by r) to be the same in each
cube. Here again, everything is duplicated along z. It creates signals (see
Figure 8), that have to correspond with the extension of the neighboring

x

z y

T1

T2

E

E

Fig. 3: T1, T2 are tiles of the 2D ape-
riodic tileset and form a Wang cube
of the 3D aperiodic tileset. The "E"
shows the east direction of the two
planes.

T1

T2
T1

T ′
2

Fig. 4: Duplication of parallel back-
grounds.



z

x

Fig. 5: Projection on the (xz) plane
of a valid configuration with layers
B and B′.

Fig. 6: Valid tiling with rules of layer
C.

cubes. This also writes the number r in unary in the border of each cube.
This number will be used by the Turing machine encoded later in the tiling.
The second part is identical to the first one, but on the (xz) plane and rotated
90◦. It forces the offset along z (denoted by q) to be the same everywhere.
Finally, the cubes are forced to be of same size. For that we add the two
signals shown on Figure 9, which have to link a corner to the extension of a
square. It has the effect to force each square (and hence each cube) to be of
same size as its neighbors.

x

z

y

r

q
p

Fig. 7: Names of the
offsets.

Fig. 8: Signals making
the offsets identical.

Fig. 9: Signals
making the
cubes of same
size.

Layer P This layer reduces the size of the input, in order to allow us to con-
struct valid configurations as large as we want for the same input (p′, q′, r′).
Starting from an unary input (p, q, r), this layer writes into cubes what the
input of the Turing machine will be: (p′, q′, r′), with (p, q, r) = 2k(p′, q′, r′),
and gcd(p′, q′, r′) not divisible by 2.
For that, we use a transducer to convert numbers in binary. Such a transducer
can be easily encoded into tilings (see for example [12] or [8]). Then it only
remains to remove the final 0’s they have in common, which can easily be
done through local rules.

Layer S Aperiodic backgrounds of different "slices" may be different ("slices"
are the thick planes in the (yz) plane). They must be synchronized in order



to ensure the existence of a periodic configuration along (p, q, r). To do this
synchronization in 2D, we use the following arrow tiles:

with the following rules:
– To the left of (layer B’) there is and bottom left neighbor of is

or a .
– Bottom left tile of a square is . On the right of there is only or .
– On the right, left and bottom of there is only or .
– The breaking lines can only have on them.

We obtain the tiling shown on Figure 10. If we impose that the background is
the same at the beginning and at the end of the arrow with gray background,
its West-periodicity ensures that it is repeated along the global periodicity
vector.

Fig. 10: Transmission of a 2D back-
ground.

front top 3D

Fig. 11: Rules for layer S
(transmission in 3D).

We now use this 2D construction to build the 3D transmission of the back-
ground in XM . We create two layers of 2D arrows. One in the (xy) plane,
that are repeated along z (front arrows) and the other in (xz) and repeated
along y (top arrow). We then create our real layer using these two 2D layers,
with 3D arrows:

The superimposition of two 2D arrows gives directly which 3D arrow is on
each tile (see Figure 11). Like in 2D we impose that the background is the
same at the beginning and at the end of the gray arrow. Thanks to the double
West-periodicity of the background, this ensures that the background has a
periodicity vector of (p, q, r) in valid configurations.

Layer TM This layer encodes the Turing machineM in the tiling. In our defini-
tion of the arithmetical hierarchy, the machine M being in Σ0

2 , it has access
to a Π0

1 oracle. This oracle will be represented by a tape RO filled with zeros
and ones, such that position i of RO is a 1 if and only if the oracle O accepts
i (i.e. the Turing machine of index i runs indefinitely). For the moment, we
will encode M with an additional read-only arbitrary tape, and the next
layer will ensure that the content of the tape is valid for O. This additional
tape is supposed to be infinite, but since M has to halt in the periodic con-
figurations, we can restrict the construction to a finite but arbitrarily large



portion of it. The tape is a line along axis y duplicated along axes x and z
(see Figure 12). We add the two rules:
1. Inside a cube, a number at position x is the same as the number at

position x− 1 and a number at position z must be equal to the number
at position z − 1.

2. The first line of the tape is transmitted through black cubes like the
aperiodic background.

The first rule duplicates the first line everywhere inside a cube, and the
second one ensures that the same RO tape is duplicated along the direction
of periodicity.
Then, we encode M in the (xz) plane using the usual encoding of Turing
machines in tilings. Let us say that the time is along the z axis and the work-
ing tape along x. In order to access the entire RO tape, we add the spacial
dimension y to the TM encoding: while doing a transition, the machine can
move its head along the y axis and read the value of the RO tape in it; rule
1 above prevents M to modify this extra tape.
Note that because O is a Π0

1 oracle, it can only ensure that the 1s of RO

are correct. M has to check that the 0s are correct. But checking the 0s, i.e.
checking if a TM halts in a computation does not add any complexity to
the problem, because we are only interested in the periodic configurations,
where M actually halts (and so do all its checks).

Layer TO This layer is the core of this proof, and it is where 3D actually comes
to play: in the thick aperiodic (yz) planes we will compute the Π0

1 oracle
by encoding an infinite computation that checks simultaneously all possible
inputs of MO, the Turing machine checking the Π0

1 oracle O (MO halts if
and only if there is a wrong 1 in the portion of RO written in all the cubes).
The key idea of this layer is the use of the previously constructed cubes as
macro-tiles in order to encode computations of MO. Each cube will thus
represent one tile and the thick aperiodic planes will contain, more sparsely,
another 2D tiling. See Figure 14 to see how the cubes store this macro-
tileset. For this macro-tileset, we may use a construction of Myers [15] which
modifies Robinson’s aperiodic tileset in order to synchronize the input tapes
on all of the partial computations. So each of our cubes contains/represents
one tile of Myer’s tileset, and the thick aperiodic planes thus also contain a
Myers tiling checking some input that for the moment is not synchronized
with the oracle written inside these cubes.
We now have a valid macro-tiling for the cubes if and only if the machine
MO never halts on RO.
The one remaining thing to do is to explain the RO tape that MO accesses
is synchronized with the RO which is stored inside the large cubes. We add
to the set of numbered tiles the same tiles, but in red, representing the head
of the MO Turing machine on the tape RO. We impose that there is only
one red number in every large cube (see Figure 13).
The red tile of a cube must be synchronized with the cell of the oracle RO

currently contained in the Myers tile. Every time a new partial computation
is started in the macro-tiles, the red tile must be placed at the beginning of



RO, whenever the macro-tile moves the head to the right/left, the red tile
must also be moved, if the red tile reaches the border of the cube, in which
case it reaches a special state of non-synchronization, since the beginning
has already been synchronized.
To do that, we must allow two new transitions. These new transitions do
not change the state of the working tape, thus we only move to the next
time along z. But in the new position, the red-marked cell in the large cube
must have changed. To do this, we again use signals between the bottom-
cube (previous state), the cell doing the transition and the upper-cube (next
state), see Figure 15.
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Fig. 12: Tape RO of the oracle in a
cube.
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Fig. 13: The red tiles on RO and the
transmission of its value.

Layer A This last layer forces the apparition of 1-periodic configurations. Using
two cubes ( and ), superimposed only with and borders of big cubes.
We impose that blue/red neighbors have the same color. It is easy to see
that the color is uniform inside a cube and spread to two opposite corners of
cubes. Thus all the cubes along (p, q, r) have the same color and there exists
at least one 1-periodic configuration.

Now we prove that this construction does what we claim, finishing the proof
of Theorem 1.

2.1 Every slope θ of XM is accepted by M .

Let θ = ( p
r ,

q
r ) be a slope, by construction every periodic configuration along

this slope is formed with cubes of the same size p, shifted with the same offset
(q, r). Every cube has the same content, which corresponds to an execution of
M . Cubes being of finite size, every execution is a halting execution of M . Let’s
take (p, q, r) = 2k(p′, q′, r′), with p′, q′, r′ odds. Thanks to the layer P, the input
of M is (p′, q′, r′), then M accepts ( p′

r′ ,
q′

r′ ) = ( p
r ,

q
r ) = θ.
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Fig. 14: Meta-tiles of large cubes,
with the adjacency rules repre-
sented by the arrows. Myers’ tiles
are placed in the darker cubes, in
the (yz) plane.
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Fig. 15: Moving the red cube when
the head of MO moves.

2.2 Accepting inputs of M are slopes of XM .

If M accepts the input (p, q, r), there exists a time t and a space a on the
working tape, b on the oracle tape, in which the machine M halts. Then, the
cube of size m = 2dlog tep ≥ a, b, t can contain the computation of M . The
configuration formed by cubes of size m and of offset (n, o) = 2dlog te(q, r) is of
slope ( m

o ,
n
o ) = ( p

r ,
q
r ).

3 Open Problems

The problem of deciding if all configurations of a 2D SFT are aperiodic is well-
known to be Π0

1 . Proving the other direction of the conjecture would require the
study of a very similar problem: deciding if there exists a periodic configuration
in a given SFT. Four our purpose, one needs to prove that the problem of the
existence of an aperiodic configuration is Π0

1 or Σ0
2 . However, we aren’t aware

of any study of this problem, not even a simpler bound like Π0
2 . Our quick look

at it suggests that this could be a very challenging problem to tackle. Yet, it
seems interesting by itself, as it would likely lead to a better understanding of
periodicity and aperiodicity in SFTs.
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