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Abstract. Cellular Automata have been used since their introduction
as a discrete tool of modelization. In many of the physical processes one
may modelize thus (such as bootstrap percolation, forest fire or epidemic
propagation models, life without death, etc), each local change is irre-
versible. The class of freezing Cellular Automata (FCA) captures this
feature. In a freezing cellular automaton the states are ordered and the
cells can only decrease their state according to this “freezing-order”.

We investigate the dynamics of such systems through the questions of
simulation and universality in this class: is there a Freezing Cellular
Automaton (FCA) that is able to simulate any Freezing Cellular Au-
tomata, i.e. an intrinsically universal FCA? We show that the answer to
that question is sensitive to both the number of changes cells are allowed
to make, and geometric features of the space. In dimension 1, there is
no universal FCA. In dimension 2, if either the number of changes is at
least 2, or the neighborhood is Moore, then there are universal FCA.
On the other hand, there is no universal FCA with one change and Von
Neumann neighborhood. We also show that monotonicity of the local
rule with respect to the freezing-order (a common feature of bootstrap
percolation) is also an obstacle to universality.

1 Introduction

Cellular automata (CA for short) are discrete dynamical systems at the cross-
road of several reasearch fields and points of view (dynamical systems theory,
computer science, physical modeling, etc). In the pioneering works impulsed by
J. von Neumann and S. Ulam in the 50-60s, when cellular automata were for-
mally defined for the first time, two important themes were already present:
universality [16,13,19] and growth dynamics [20]. Since then, these themes have
received a considerable attention in the literature. Concerning universality, pro-
duction of examples [1,18] was accompanied by progresses on the formalization
and the theoretical analysis of the concept [17], in particular with the emer-
gence of intrinsic simulations and universality [4,5]. Growing dynamics in cel-
lular automata were also much studied, mostly through (classes of) examples
with different points of view [11,12,7,2]. More recently, substantial work have
been published on models of self-assembly tilings, most of which can be seen as



a particular non-deterministic 2D CA where structures grow from a seed. Inter-
estingly, the question of intrinsic universality was particularly studied in that
case [6,15].

A common feature of all these examples is that only a bounded number of
changes per cell can occur during the evolution. To our knowledge, the first time
that the class of CAs with that feature was considered as a whole is in [21] with
a point of view of language recognition. More recently the notion of freezing CA
was introduced in [10], which captures essentially the same idea with an explicit
order on states, and a systematic study of this class (dynamics, predictability,
complexity) was started. In particular it was established that the class is Turing
universal (even in dimension 1).

In this paper, we study intrinsic universality in freezing CA as a first step
to understand universality in growth dynamics in general. Our central result is
the construction of such intrinsically universal freezing CA: it shows that the
class of freezing CA is a natural computational model with maximally complex
elements which can be thought of as machines that can be ‘programmed’ to
produce any behavior of the class. Moreover, the universal CA that we construct
are surprisingly small (5 states, see Section 6.3) which is in strong contrast
with the complicated construction known to obtain intrinsic universality for
the classical self-assembly aTAM model [6]. Our contribution also lays in the
negative results we prove (Theorems 5, 6 and 7): interpreting them as necessary
conditions to achieve universality for freezing CA, we obtain a clear landscape
of the fundamental computational or dynamical features of this class.

The paper is organized as follows. In Section 2 we define the main concepts
(freezing CA, and intrinsic simulation) and prove that the use of context-free
simulation cannot lead to universality. Section 3 gives a general construction
scheme to obtain universal freezing CA giving three positive results in three
different settings depending on the dimension, the neighborhood and the maxi-
mum number of state changes per cell. In section 4, we show several obstacles to
the existence of universal freezing CA: dimension 1, 1 change per cell with von
Neumann neighborhood in 2D, and monotonicity.

2 Definitions

Definition 1. A cellular automaton F of dimension d and state set Q is a tuple
F = (d,Q,N, f), where d, its dimension is an integer, Q, its set of states is a
finite set, N ⊂ Zd is its finite neighborhood, and f : QN → Q is its local
function.

It induces a global function, which we also note F , acting on the set of con-

figurations QZ
d

as follows:

∀c ∈ QZ
d

, ∀z ∈ Z
d, F (c)z = f(c|z+N )

Let e1, . . . , ed be the canonical basis of Zd; VNd = {0, e1, . . . , ed} is the von
Neumann neighborhood. We also use the following neighborhoods in dimension



2: MN = {(0, 0), (±1, 0), (0,±1), (±1,±1), (∓1,±1)} is the Moore Neighborhood ;
LN = {(0, 0), (1, 0), (0, 1)} is the L-neighborhood.

In many cellular automata from the literature, there is a global bound on the
number of times a cell can change: they are bounded-change cellular automata.
This property is found in most of the Cellular Automata considered in bootsrap
percolation, as well as in other well-known examples such as ’Life without death’
[12] and various models of propagation phenomena like in [7]. We say that a CA
is k-change if any cell in any orbit changes at most k times of state.

Moreover, in all those examples, the bound is defined through an explicit
order on states. Such an automaton is a freezing cellular automaton; they were
introduced in [10]. This freezing-order on state can also be used to define inter-
esting subclasses (see Section 4).

Definition 2 (Freezing Cellular Automaton). A CA F is a ≺-freezing CA,
for some (partial) order ≺ on states, if F (c)z ≺ cz for any configuration c and
any cell z. A CA is freezing if it is ≺-freezing for some order.

Any freezing CA is k-change for some k (at most the depth of its freezing
order, but possibly less). For V ⊂ Zd, we note FCAV for the class of d-
dimensional freezing cellular automata with neighborhood V . Finally, we set
FCAd =

⋃

V ⊂Zd FCAV and omit d when context makes it clear.
Intrinsic universality is defined through a notion of simulation between CA.

Roughly speaking, F simulates G if there is an encoding of configurations of
G into configurations of F such that one step of G is simulated through this
encoding by a fixed number of steps of F .

Definition 3 (Simulation). Let T > 0, and B ⊆ Zd be a d-dimensional rect-
angular block, with size-vector b ∈ Zd. Let C ⊂ Zd be a finite set, with 0 ∈ C. Let
F = (d,Q,N, f) and G = (d,Q′, N ′, g) be two d-dimensional cellular automata.
F simulates G with slowdown T , block B and context C if there is a coding map

φ : QC
G → QB

F such that the global map φ̄ : QZ
d

G → QZ
d

F verifies:

– φ̄ is injective;

– ∀c ∈ QZ
d

G : φ̄(G(c)) = FT (φ̄(c)).

where φ̄ is defined by: for z ∈ Zd, r ∈ B, φ(c)bz+r = φ(c|z+C)r

When C = {0}, this definition corresponds with the classical notion of ’in-
jective simulation’, as in [4,5] and we call it context-free.

In the context of freezing CAs, context-free universality is prevented by the
irreversibility of any computation performed by a putative U combined with the
injectivity of the coding map, as witnessed by the following theorem.

Theorem 1 (No freezing context-free universality). Let d ∈ N, there is
no F ∈ FCAd which is context-free FCAVNd

-universal.

Context-sensitive simulation can get us over this hurdle as we show below; it
is akin to the notion of conjugacy in symbolic dynamics [14].



3 Constructing Intrinsically Universal FCA

We give a number of constructions for intrinsically universal freezing cellular au-
tomata. All of these exhibit the same running theme: if there is a means of cross-
ing information asynchronously, then universality can be reached. This insight
yields three constructions which are concrete implementations under various
technical constraints of a common abstract construction. The abstract construc-
tion can be described by: the structure of macro-cells, the mechanism to trigger
state change in each macro-cell, and the wiring between neighboring macro-cells
to ensure communication. At this abstract level we assume that there is a mean
to cross wires without interference. Another aspect of wiring is the necessity to
put delays on some wires in order to keep synchronicity of information: it is a
standard aspect of circuit encoding in CAs [1,17], which we won’t address in
detail here but which can be dealt with by having wires make zigzag to adjust
their length as desired. The freezing condition imposes strong restrictions on the
way we can code, transport and process information. We focus below on where
our construction differs from the classical approach in general CAs.

Wires are Fuses. It is not possible to implement classical wires where bits
of information travel freely without violating the freezing condition. In all of our
constructions wires are actually fuses that can be used only once and they are
usually implemented with two states: 1 stays stable without presence of neigh-
boring 0s and 0 propagates over neighboring 1s. With that behavior our wires
can be trees connecting various positions in such a way that a 0 appearing at any
position is broadcasted to the whole tree. A finite wire can either be uniformly
in state b ∈ {0, 1} in which case all leaves ’agree’ on the bit of information trans-
ported by it, or not uniform in which case information is incoherent between
leaves. As it will become clear later, our constructions will use wires between
adjacent blocks (or macro-cells) in the simulator CA and our encodings require
that those wires are in a coherent state (uniformly b ∈ {0, 1}): it is precisely in
this aspect that we use the power of context sensitive simulations, because the
content of a block (or macro-cell) cannot be fixed independently of its neighbors
in that case.
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(a) Context-free simulation, C = {0}.
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(b) Context-sensitive simulation with
context C = VN2.

Fig. 1: Coding of states into blocks for the two modes of simulation



State Codification. In each macro-cell we must code in some way a (pos-
sibly very big) state that can change a (possibly very big) number of times: a
classical binary encoding would violate the freezing condition so we actually use a
unary coding. Given a finite set S and a quasi order (Q,�), let q0 � . . . � q|Q|−1

be a linearization of �, and let ι(qi) = i. Then let Qu = 1∗0+ ∩ {0, 1}|Q|,
and φ ∈ Q → Qu : q 7→ 1ι(q)0|Q|−ι(q). Note that for any i < |Q| we have
q � q′ ⇔ φ(q)i ≤ φ(q′)i (where ≤ is the lexicographic order). Since φ is a bijec-
tion, for any cellular automaton F with state set Q, φ̄ ◦ F ◦ φ̄−1 is a cellular
automaton isomorphic to F , with state set Qu, which we call the unary repre-
sentation of F . If F is �-freezing, then its unary representation is ≤-freezing.
We will use this unary encoding everywhere in the structure of our macro-cells:
each state of a simulated CA F will be represented by a collection of wires rep-
resenting the bits of an element of Qu defined above. This encoding is coherent
with the freezing property of the simulated CA because the fact that states can
only decrease corresponds to the fact that the number of wires uniformly equal
to 0 increases.

Neighborhood Matchers. The fundamental basic block of our construc-
tion is a circuit that detects a fixed pattern in the neighborhood and outputs a
bit of information saying: “given this particular neighborhood pattern w, the new
state of the macro-cell must be smaller than l”. Our unary encoding is adapted
for this because the predicate “smaller than l” for a state translates into a con-
dition on a single bit of an element of Qu, that is to say a single wire in our
concrete representation of states. Without loss of generality we assume that F =
(Z2, Qu, f,N) is a FCA with state in unary representation. Take L = |Qu|, and
m = |N |. For l ∈ Qu, let {w

l
1, ..., w

l
Kl
} =

⋃

s′≤l f
−1(s′) = {n ∈ (Qu)

N |f(n) ≤ l}.

Take, for some state l, wl
k = (q1, ..., qm) ∈

⋃

s′≤l f
−1(s′) a fixed neighborhood

with output smaller than l; each state qi is in {0, 1}
L, so wl

k is a binary word in
{0, 1}mL. Given l and k, the logic gate diagram of Figure 2a, the Neighborhood
Matcher, called Bl

k, outputs 0 if and only if in the input in the wires is exactly
wl

k or the output cable was already in state 0. The i-th wire joins the i-th letter
in w with either the ∃ gate on the left if the i-th letter of wl

k is 1 or the ∀ gate on
the right if the i-th letter of wl

k is 0. Gate ∃ triggers a 0 on wire x if at least on of
its incoming wire is 0, while gate ∀ triggers a 0 on wire y if all incoming wires are
0. Note that both behaviors are compatible with the freezing conditions since
the set of wires in state 0 can only grow during evolution. The gate α at the top
triggers a 0 on the output wire if wire y is in state 0 and wire x is in state 1 (see
Figure 2a). It is also a freezing gate, meaning that once it has triggered a 0 it
will never change its state again, even if the wire x turns to state 0. Moreover
this gate also turns into “trigger” state as soon as the output wire is 0.

Local Function Computation. Now we can compute the local function of
F through a macro-cell CF , receiving the states x = (xn)n∈N of the neighbor-
hood as input, and yielding the next state f(x) as output. For this we will divide
the space into rows ρl for l ∈ Qu, and some number of columns. Intuitively, the
role of row ρl is to maintain the information “the current state of the macro-cell
is less than l”. For a given l ∈ Qu, ρl contains all block Bl

k for k ∈ {1, . . . ,Kl}.
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(a) Neighborhood matcher Bl

k. No-
tations 0(w) and 1(w) stand for
the set of all indexes i s.t. wi = 0
and wi = 1 respectively. This block
triggers a 0 on the output wire ex-
actly when the input is wl

k.
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(b) Construction of a macro-cell. Single line
represent wires transporting one bit and
double lines represent multi-bit wires (rep-
resenting a state).

Fig. 2: Recognizing one neighborhood (left), and wiring these neighborhood
matchers into a macro-cell which computes the local function of F (right).

The inputs are distributed to each block, and the outputs of all blocks in ρl are
connected together by a broadcast wire. Thus, the final output in ρl is 0 as soon
as one block K l

k triggers, i.e. as soon as f(x) ≤ l, see Figure 2b. Notice that once
a neighborhood matcher Bl

k in row l has output 0, the output of the macro-cell
it belongs to must be less than l for ever: indeed, at the time when the Bl

k was
triggered to output 0 the output value of the Macro-Cell must be less than l by
definition of Bl

k, after that time the output is always less than l thanks to the
freezing condition on the CA being simulated. Concatenating rows in the right
order, we obtain as output of the gate the correct state codification f(x) for any
state of the neighborhood x received as input.

Information exchanging. Given these basic blocks, one needs to embed
one macro-cell per simulated cell on the simulator CA, and wire the inputs and
outputs of neighboring macro-cells, as in Figure 3. The wiring between macro-
cells depends on the neighborhood of the simulated CA. In order to clarify the
presentation we will always assume that the simulated CA has a von Neumann
neighborhood which is enough to achieve universality thanks to the following
lemma.

Lemma 1. For any dimension d and any F ∈ FCAd there is G ∈ FCAd with
von Neumann neighborhood that simulates F .

The von Neumann wiring between macro-cells in dimension 2 is shown on
Figure 3. It is straightforward to generalize it to any dimension. Technically,



thanks to Lemma 1, all the encoding map φ we use later have a von Neumann
neighborhood context (C in Definition 3).

C
P
U

C
P
U

C
P
U

CF

Fig. 3: The dashed block in the middle is a macro cell, as in figure 2b. The fat
arrows exchange the state of each macro-cell with its neighbors.

Context-sensitive encoding. Given a configuration c of the simulated CA,
the encoding is defined as follows. All wires of the construction are in a coherent
state (same state along the wire). Each macro-cell holds a state of the configura-
tion c represented in unary by the rows ρl described above. Wires incoming from
neighboring macro-cells hold the information about neighboring states (hence the
context-free encoding) which is transmitted to each block Bl

k. Inside each of this
blocks the inputs arrive at gates “∃” and “∀” and these gates have eventually
triggered a 0 on wires x and y. However, gate “α” has not yet triggered to pre-
serve the property that the main wire of row ρl is coherent and represents the
information on the current state of the macro-cell. Starting from that well en-
coded configuration, a simulation cycle begins by the possible triggering of “α”
gates. After some time a well encoded configuration is reached again because
changes coming from triggerings of α gates are broadcasted on each row, and,
in each block Bl

k, the content up to the α gate is determined by the inputs.
We can now state three variants of the construction which differ essentially

in the way crossing of information is implemented.

Theorem 2. ∃U ∈ FCAVN2
with 5 states which is 2-change and FCA2-universal.

Theorem 3. ∃U ∈ FCAVN3
with 2 states which is 1-change and FCA3-universal.

Theorem 4. ∃U ∈ FCAMN2
with 4 states which is 1-change and FCA2-universal.

4 Obstacles to FCA-Universality

The one-dimensional case. Although one-dimensional freezing CA can be
computationally universal [10], they cannot be FCA1-universal. This is a major



difference with CA in general. The intuition behind this limitation is the follow-
ing: in any given 1D freezing CA, there is a bound on the number of times a
zone of consecutive cells can be crossed by a signal; and above this bound, the
zone becomes a blocking word preventing any information flow between left and
right halves around it.

Theorem 5 (Dimension 1). There is no F ∈ FCA1 which is FCAVN1
-

universal, even with context-sensitive simulation.

2D von Neumann 1-change FCA: information crossing. We will show
that there is no freezing universal FCA which is 1-change and has the von
Neumann neighborhood. This result is to be contrasted with the case of self-
assembly tiling where an intrinsically universal system exists [6] (although with
an unavoidably more technical definition of simulation). The intuition is that the
propagation of state changes in such FCA produces 4-connected paths that can
not be crossed in the future of the evolution because only 1 state change per cell
is possible. As shown in the construction of Theorem 2, two changes per cell are
enough to get rid of this limitation, even with the von Neumann neighborhood.

We will show that no 1-change von Neumann FCA can simulate the following
2-change FCA (Z2, QF ,LN, f), with QF = {0,←, ↓,←↓} and where f is defined
by

f(0, ↓, 0) =↓ f(0, 0,←) =← f(0, ∗,←↓) =← f(↓, ∗,←) =←↓

and f(a, ∗, ∗) = a else, where ∗ stands for any state and the arguments of f
correspond to neighborhood LN in the following order: center, north, east.

Theorem 6. There is no automaton in FCAVN2
which is 1-change and able to

simulate F . Therefore there is no automaton in FCAVN2
which is 1-change and

FCAVN2
-universal.

Monotone FCA: synchronous vs. asynchronous information. As for
classical real function, we can consider the property ofmonotonicity in CA: given
two configurations, one smaller that the other, their images by the CA compare
in the same order. We are particularly interested in the case where the order on
configurations is given by the order on states of a freezing CA. Several examples
of such monotone FCAs were studied in literature. In particular, a simple model
called bootstrap percolation was proposed by Chalupa in 1979 [3] to understand
the properties in some magnetic materials. This model and several variants were
studied from the point of view of percolation theory [11,2], but also from the
point of view of complexity of prediction [9].

Definition 4. A ≺-freezing CA F of dimension d with alphabet Q is monotone

if it satisfies: ∀c, c′ ∈ QZ
d

: c ≺ c′ ⇒ F (c) ≺ F (c′), where ≺ is naturally extended
to configurations by c ≺ c′ ⇔ ∀z ∈ Zd : cz ≺ c′z.

The intuitive limitation of monotone freezing CAs is that they must always
produce a smaller state when two signals arrive simultaneously at some cell com-
pared to when one of the two signals arrives before the other. We now exhibit a



freezing non monotone CA F that does precisely the opposite (non-simultaneous
arrival produces a smaller state). Next theorem shows that F cannot be simu-
lated by any freezing monotone CA. F is defined by (Z2, {0, s1, s2, w,△}, LN, f)
with f given by:

– f





w

si

0



 = si

– f





w

0

si



 = si

– f





s1

s2

0



 = s2

– f





s1

s2

w



 = s2

– f





△

s1

s1



 = s1

– f





△

s1

w



 = s2.

and unspecified transitions let the state unchanged. F is ≺-freezing for the
following order on states: s2 ≺ s1 ≺ 0, ∆,w. Essentially F is a FCA sending the
signals s1 and s2 towards south or west along the wires materialized by state w.
s2 can also move on wires made of s1. ∆ plays the role of a non-monotone local
gate: when two signals arrive simultaneously, a s1-signal is sent to the south,
but when only one signal arrives, a s2-signal is sent to the south. F cannot
be simulated by any monotone FCA, hence no monotone FCA can be FCA-
universal.

Theorem 7. For any d ≥ 1, there is no freezing monotone CA of dimension d
which is FCAVNd

-universal.

5 Perspectives

Here are some questions or research directions that we think are worth being
considered:

– do CA with a bounded number of change per cell also exhibit intrinsic uni-
versality?

– what about intrinsic universality for non-deterministic or asynchronous freez-
ing CA as a generalization of aTAM models?

– what are the limit sets of FCA?
– what can be said about FCA from an ergodic theory point of view (this

includes questions from percolation theory)?
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In J. Kari, I. Törmä, and M. Szabados, editors, Exploratory Papers of Cellular
Automata and Discrete Complex Systems (AUTOMATA 2015), pages 65–73, 2015.

11. J. Gravner and D. Griffeath. Cellular automaton growth on z2: Theorems, exam-
ples, and problems. Advances in Applied Mathematics, 21(2):241 – 304, 1998.

12. D. Griffeath and C. Moore. Life without death is P-complete. Complex Systems,
10, 1996.

13. J. H. Holland. A universal computer capable of executing an arbitrary number of
subprograms simultaneously. In A. W. Bukrs, editor, Essays on Cellular Automata,
pages 264–276. U. of Illinois Press, 1970.

14. D. A. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding.
Cambridge U. Press, New York, NY, USA, 1995.

15. P.-E. Meunier, M. J. Patitz, S. M. Summers, G. Theyssier, A. Winslow, and
D. Woods. Intrinsic universality in tile self-assembly requires cooperation. In
SODA 2014 Proceedings, pages 752–771, 2014.

16. J. Von Neumann. Theory of Self-Reproducing Automata. U. of Illinois Press, 1966.
17. N. Ollinger. Universalities in cellular automata. In Handbook of Natural Comput-

ing, pages 189–229. Springer, 2012.
18. N. Ollinger and G. Richard. Four states are enough! Theor. Comput. Sci., 412(1-

2):22–32, 2011.
19. J. W. Thatcher. Universality in the von neumman cellular model. In A. W. Bukrs,

editor, Essays on Cellular Automata, pages 132–186. U. of Illinois Press, 1970.
20. S. M. Ulam. On some mathematical problems connected with patterns of growth

of figures. In A. W. Bukrs, editor, Essays on Cellular Automata, pages 219–231.
U. of Illinois Press, 1970.

21. R. Vollmar. On cellular automata with a finite number of state changes. In
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6 Appendices

6.1 Proof of Theorem 1

Proof. Let d ≥ 1 be any fixed dimension. By contradiction suppose that such an
universal Fu with alphabet Qu exists and consider for any n > 0 the CA Fn with
states Qn = {−1, . . . ,−n} and von Neumann neighborhood with the following
rule: a cell in state q changes to state r if r < q and all its neighbors are in
state r, otherwise it stays in state q. Fn is <-freezing. By hypothesis Fu must
simulate each Fn because they are all freezing CA by definition. For each n let
Bn be the block size in the injection φn : Qn → QBn

u given by simulation of Fn

by Fu (it is a context free simulation so the context C is a singleton). Since Qn is
unbounded then Bn is unbounded, so we can choose n such that Bn has at least
one side which is at least two times the radius ru of the neighborhood of Fu.
Without loss of generality we suppose that the left to right side of Bn is long.
Consider the configuration x of Fu made by a block φn(−1) at position 0 ∈ Z

d

surrounded by blocks φn(−2). Since Fu on x simulates Fn on the configuration
x′ made of a −1 surrounded by −2, the block at position 0 in x must become
φn(−2) after some time and in particular it must change: let t0 be the first time
such that F t0

u (x) does not contain the block φn(−1) at position 0, and consider
any position i ∈ Bn such that F t0

u (x)i 6= xi. Note that for any k 6∈ Bn and any
time t we have F t

u(x)k = xk because cells in state −2 don’t change during the
evolution of x′ under Fn so the corresponding blocks in the evolution of x under
Fu don’t change either: indeed, if such a block becomes different from φn(−2) at
some time it will never become again φn(−2) (by the freezing condition on Fu

and by injectivity of φn) thus contradicting the simulation of Fn by Fu through
the coding φn. Therefore it holds that F t0−1

u (x) = x and necessarily t0 = 1 so
that Fu(x)i 6= xi. However, since Fu(x)i depends only on the xi+z for ‖z‖∞ ≤ ru
and since mn ≥ 2ru, it is always possible to construct a pair of configurations y
of Fu and y′ of Fn satisfying the following conditions:

1. y = φ(y′) (i.e. y is a valid encoding of y′);

2. y′
0
= −1 and Fu(x)i = Fu(y)i;

3. any position in y′ is in state −1 or −2 and has both state −1 and state −2
in its von Neumann neighborhood.

Concretely, using symmetries we can suppose without loss of generality that i

belong to the left part of the block it belongs to. Then one can choose y′j = x′
j for

j ∈ {(−1, 0), (−1,−1), (−1, 1), (0, 0), (0,−1), (0, 1)} and complete it in a greedy
way to satisfy condition 3. Such a choice guaranties that Fu(x)i = Fu(y)i because
for any z with ‖z‖∞ ≤ ru we have xi+z = yi+z (by the assumption that i belongs
to the left part of its block and the fact the Bn is long enough from left to right).
y′ is a fixed point of Fn (by condition 3) so y must be a fixed point of Fu (by the
freezing condition on Fu and the injectivity of φn): this contradicts condition 2
which implies Fu(y)i 6= yi.



6.2 Proof of Lemma 1

Proof. Consider a FCA F with state set Q, freezing order ≺, neighborhood
N = {n1, . . . ,nk} ⊆ Zd and local transition map δ : QN → Q. For a suitable
choice of m and for each i (1 ≤ i ≤ k) consider a von Neumann connected path
Pi = (pi,1, . . . ,pi,m) of length m linking ni to 0: pi,1 = ni and pi,m = 0 and
∆i,j = pi,j − pi,j+1 ∈ VNd for 1 ≤ j < m. Now define a FCA G with von Neu-
mann neighborhood and state set made of mk + 1 copies of Q, denoted by pro-
jections π0, π1,1, . . . , πk,m from Qmk+1 → Q, and with the following behavior at
each step:

– π0(G(c)z) = δ
(

π1,m(cz), . . . , πk,m(cz)
)

if δ
(

π1,m(cz), . . . , πk,m(cz)
)

≺ π0(cz)
and π0(cz) otherwise,

– πi,j+1(G(c)z) = πi,j(cz+∆i,j
) if πi,j(cz+∆i,j

) ≺ πi,j+1(cz) and πi,j+1(cz) oth-
erwise, for 1 ≤ j < m and 1 ≤ i ≤ k,

– πi,1(G(c)z) = π0(cz) if π0(cz) ≺ πi,1(cz) and πi,1(cz) otherwise, for 1 ≤ i ≤ k.

Intuitively, G realizes in parallel the propagation of neighboring Q-states along
paths of the form z + Pi from any cell z and the application of the local tran-
sition δ in each cell using the Q-components corresponding to the end of each
propagation path Pi. Let’s show that G is a freezing CA that simulates F .
First, it is clear that G is freezing because in any transition, any component
of the state can only decrease according to ≺. Now consider the encoding map

φ : QZ
d

→
(

Qkm+1
)Z

d

defined by:

– π0(φ(c)z) = πi,1(φ(c)z) = cz for 1 ≤ i ≤ k,
– πi,j+1(φ(c)z) = πi,j(φ(c)z+∆i,j

) for 1 ≤ j < m and 1 ≤ i ≤ k.

A configuration φ(c) is such that the Q-value is constant along Pi paths so
only the π0 components can change when applying G and we necessarily have
π0(G(φ(c))z) = F (c)z for 1 ≤ i ≤ k, because F is freezing for the order ≺ and
πi,m(φ(c)z) = cz+ni

by the second item above and the definition of paths Pi.
Then, in G(φ(c)), only the πi,1 components can change and it holds that

πi,1(G
2(φ(c))z) = π0(G(φ(c))z) = F (c)z

for 1 ≤ i ≤ k. Similarly it is straightforward to check that after m+ 1 steps the
two item of the definition of φ are again verified and we have:Gm+1(φ(c)) = φ(F (c)).
This shows that G simulates F and the lemma follows.

6.3 Proof sketch of Theorem 2

We can make a direct implementation of the abstract construction as a universal
FCA is U = {Z2, {�,�,�, ↔ , l , α , α , ∃ , ∃ , ∀ , ∀ }, V N, fu}. This is a 2-
change FCA with freezing order:

�,�, α , ∃ , ∀ ≥ ↔ , l ≥ �, α , ∃ , ∀ .

It implements all elements of Section 3 and the states have the following meaning:



– � is the quiescent background,
– � is a wire waiting for a signal,
– � is a signal,
– ↔ (resp. l ) an intermediate states to manage a crossing when a first signal

already passed horizontally (resp. vertically),
– α (resp. ∃ and ∀ ) is the α (resp. ∃ and ∀) gate waiting the conditions to

trigger,
– α (resp. ∃ and ∀ ) is the α (resp. ∃ and ∀) gate once it has triggered.

All wires described by the abstract construction are made by drawing trees of
degree at most 3 of VN-connected cells in state �. The case of � with 4 neighbors
in state � is reserved to manage crossings. Also gates ∃ and ∀ have unbounded
fan-in in the abstract construction. Here we simulate unbounded fan-in by fan-in
2 (which is possible because the semantics of these gates is associative). More
precisely, all gates ( α , ∃ and ∀ ) receive there first (resp. second) input from
their left (resp. right) neighbor and send their output to the top.

The local rule is given by the following set of transitions, any cell which is in
a local context not appearing in this list stays unchanged:

Normal wires: if � ∈ {n, e, s, w}

–
n

w � e
s
7→ � if � ∈ {n, e, s, w}

–
n

w � e
s
7→ � if ↔ ∈ {e, w} or l ∈ {n, s}

Crossings: if {n, e, s, w} ⊆ {�,�}

–
n

w � e
s
7→ ↔ if � ∈ {e, w} and � 6∈ {n, s}

–
n

w � e
s
7→ l if � 6∈ {e, w} and � ∈ {n, s}

–
n

w � e
s
7→ � if � ∈ {e, w} and � ∈ {n, s}

–
n

w ↔ e
s
7→ � if � ∈ {n, s}

–
n

w l e
s
7→ � if � ∈ {e, w}

Gates triggering: if {e, w} ⊆ {�,�}

–
n

� α �

s
7→ α ,



–
n

w ∃ e
s
7→ ∃ if � ∈ {e, w},

–
n

� ∀ �

s
7→ ∀

Gates output:

–
n

w � e
s
7→ � if s ∈ { α , ∃ , ∀ }

It appears that the south state in the gate triggering transitions above is not
used. Moreover no transition involves the background state� and the behavior of
l is similar to that of gate output transitions. This allows us to reduce the state

set to {�,�,�, ↔ , l } and to code all triggered gates by l and (untriggered)

gates α (resp. ∃ and ∀ ) by a � state having at south a � (resp. ↔ and l ).
More precisely, we keep all transitions for normal wires and crossings and add
the following ones which replace the gates triggering: if {n, e, w} ⊆ {�,�}

–
n

� � �

�

7→ l ,

–
n

w � e
↔

7→ l if � ∈ {e, w},

–
n

� � �

l

7→ l .

The gates output transitions are already realized by the behavior of l on
normal wires. Finally, it is important to note that the crossing transition that
transforms a l into � will not interfere here because it applies only when

all states surrounding l belongs to {�,�} and in the 3 transitions above to

simulate gates, the l state generated will have a state among {�, ↔ , l } as
south neighbor. We conclude that 5 states are enough to achieve universality
with von Neumann neighborhood in 2D.

6.4 Proof sketch of Theorem 3

The abstract construction works exactly the same way in 3D, the only difference
being that there are more neighbors in the 3D version of von Neumann neigh-
borhood. Moreover, the 2D CA constructed in Section 6.3 can be used almost
as is to obtain a 3D FCA-universal example. Indeed, all the logic circuitry of
macro cell can be done in a planar way and the third dimension matters only in
the wiring between 3D macro-cells.



Fig. 4: Crossing signal in 3-D.

To do so, it is sufficient to add the 3-dimensional equivalent of the normal
wires transition of Section 6.3. Moreover, we can build a 3D FCA-universal
CA which is only 1-change. This is possible by substituting all the crossings
mechanics used in Section 6.3 for the crossing given in the Figure 4. Note that
crossing transitions are the only place where the intermediate states ↔ and l

can disappear. Therefore, when removing those transitions, we get a 1-change
FCA with freezing order:

�,� ≥ ↔ , l ,�.

At this point states ↔ and l are totally unrelated to crossings and are just used
to code the behavior in the gates triggering transitions and the propagation of a
� at triggered gate outputs. However a cell in 3D has 6 von Neumann neighbors,
therefore there is room to code all the different behaviors using less states.

In fact 2 states are enough and FCA-universality is achieved by the 3D von
Neumann FCA on {0, 1} given by:

– a 1 surrounded by exactly two 0s becomes 0;
– 0s stay unchanged.

The 2D version of this FCA was studied in [8] were it was shown that it can im-
plement all necessary synchronous logical gates. By using such planar construc-
tions in the 3D version and using the third dimension to implement asynchronous
crossings as above, we can realize the abstract construction of Section 3.

6.5 Proof sketch of Theorem 4

We build an intrinsically universal FCA UM with Moore Neighborhood.

UM = CA(Z2, {�,�,�, l , ↔ },MN, fM}) .

The local function fM is an extension of the CA defined in Section 6.3, adding
rules using the Moore neighborhood to build a crossing as follows:

– fM

(

�

�

�

)

= �

– fM

(

�

�

�

)

= �

– fM

(

�

�

�

)

= �

– fM

(

�

�

�

)

= �

– fM

(

�

�

�

)

= �

– fM

(

�

�

�

)

= � ,



and the rotations and reflexions of these transitions, where match both
� and � , and

fM







α a β
e c b
γ d δ






= fu







a
c

d

e b






if

α a β
e c b
γ d δ

is not in the previous cases

where fu is the 5-states CA defined in Section 6.3 without the crossings transi-
tion. It is therefore a 1-change CA with freezing order �,� ≥ �, ↔ , l .

With this local function the realization of crossings is given by Figure 5.

In 1 In 2

Out 1 Out 2

In 1 In 2

Out 1 Out 2

Fig. 5: Crossing signal in Moore neighborhood. If the cell in In 1 (2) is in state
�, then after five iterations the cell in Out 2 (1) change to state � (as seen on
the right).

As in previous constructions there is room for optimization of the number of
states. For instance, one can remove the ↔ state used in fu to encode a type
of gate. Instead we can use the space allowed by the Moore neighborhood to
encode the gate by using different patterns of � and l in the bottom row of
the neighborhood. This give a FCA-universal example with only 4 states.

A natural candidate with only 2 states in this setting is “life without death”.
It is quite possible that it is FCA-universal. However the circuitry built in [12] to
show the P-completeness of this CA cannot be used directly here, in particular
it does not yield an implementation of asynchronous crossing. We leave the
question of FCA-universality of “life without death” open.

6.6 Proof of Theorem 5

Proof. Suppose that Fu is a freezing 1D CA with radius r and alphabet Qu that
can simulate any freezing 1D CA. There is a constant M ≤ |Qu|

r such that the
global state of a group of r consecutive cells of Fu cannot change more than
M times. Consider now the CA F with states QM = {0, . . . ,M + 1} defined
by: F (c)i = min(ci, ci+1) for any configuration c and any i ∈ Z. F is a freezing
CA for the natural order on integers so by hypothesis Fu simulates F using



(context-sensitive) encoding map φ : QZ

M → QZ

u defined from a local map φ as
in Definition 3. If a configuration c of F is such that

ci =











q if − k ≤ i ≤ k

≥ q if i < k

< q if i > k

for k larger than the radius of map φ, then there is t such that φ(c)[0,r−1] 6= F t
u(φ(c))[0,r−1]:

indeed if F t
u(φ(c))[0,r−1] stays constant with t, then, considering the configu-

ration d such that ci = di for i ≤ k and di = q for i > k, we also have that
F t
u(φ(d))[0,r−1] is constant (because F t(d)i is constant for any i ≥ −k and k

is larger than the radius of φ). Moreover φ(d)i = φ(c)i for i < r, therefore we
should have F t

u(φ(c))i = F t
u(φ(d))i for all i < r and all t which would contradict

the simulation of F by Fu since F t(c)i and F t(d)i differ for some t and i < 0.
Consider the following configuration of F :

d = ∞(M + 1) ·Mk1(M − 1)k23k3 · · · 1kM 0∞

where the leftmost occurrence of stateM is at position i = k0 for a choice of large
enough k0, . . . , kM . By the reasoning above, we must have that

(

F t
u(φ(d))[0,r−1]

)

t

must change M + 1 times but this contradicts the definition of M .

6.7 Proof of Theorem 6

Given a FCA F with von Neumann neighborhood, we call changing path from
z to z′ between configurations c and F t(c) a path z1, . . . , zn such that:

– z1 = z,
– zn = z′,
– zi+1 ∈ zi +VN2, ∀i = 1, . . . , n,
– czi 6= F t(c)zi , ∀i = 1, . . . , n.

We also say that a position z is stable in a configuration c if F (c)z = cz and
unstable if it is not stable.

Lemma 2 (Changing path lemma). Let z be a position in some configuration
c and let t ≥ 1 be such that F t(c)z 6= cz, then there exists an unstable position z′

in c and a changing path of length at most t from z to z′ between configurations
c and F t(c).

Proof. Consider the first time t′ such that F t′(c)z 6= cz. If t
′ = 1 we are done

because in this case z itself is unstable in c. Otherwise, z is stable in c and
therefore one of its neighbors must have changed before time t′. Therefore we
can apply inductively the lemma on this neighbor with a time t < t′ ≤ t to get a
changing path of length at most t− 1 from an unstable position to this neighbor,
which we complete into a changing path of length at most t from an unstable
position to z.



Proof (Proof of Theorem 6). Suppose by contradiction that such a 1-change FCA
U = (Z2, Q, V N, fs) exists. Let φ : QC

F → QB be the encoding map ensuring the
simulation of F by U in T steps:

φ(F (c)) = UT (φ(c))

with φ(c)z depending exactly on cells ⌊z/b⌋+ C of c, where b ∈ Z2 is the size-
vector of B. The injectivity of φ, the simulation and Lemma 2 ensure that there
is a finite set E ⊆ Z2 (depending on C, b and T ) such that for any configuration

c ∈ QZ
2

F :

– if some position z is unstable in c then some position z′ ∈ bz + E is unstable
in φ(c);

– if all positions in z + C are stable in c then all positions in bz +B are stable
in φ(c).

Let us consider configuration cn ∈ QZ
2

F for any n ≥ 0 defined by:

cn(z) =











↓ if z = (0, n),

← if z = (n2, 0),

0 else.

By definition of F , for any t, F t(cn) contains exactly two unstable positions:
(0, n− t) and (n2 − t, 0) (↓ propagates downward, ← propagates to the left
eventually crossing a ↓ and everything else stays unchanged). Using the ob-
servations above and Lemma 2 we deduce that for any large enough n there
exist a changing path Pn = (z1, . . . , zm) of length Ω(n) from z1 ∈ b · (0, n) + E
to zn ∈ b · (0,−n) + E between configurations φ(cn) and U2nT (φ(cn)). Moreover,
choosing n large enough, each position of the path Pn is at distance at most K
from the vertical axis where K is a constant given by the simulation that do not
depend on n: indeed changes between cn and F 2n(cn) occur on the vertical axis
or at distance at least n2 − 2n from it. Then, for a suitable choice of a t0 ∈ o(n)
we have that:

– there is an unstable position z = (x, y) in U (n2−t0)T (φ(cn)) with y > K and
at distance o(n) from the center (0, 0), while all other unstable positions are
at distance Ω(n) from the center;

– there is a position z′ = (x′, y′) with y′ < K and at distance o(n) from the

center such that U (n2+t0)T (φ(cn))z′ 6= φ(cn)z′ .



−K K

Pn

|P ′

n| ∈ o(n)

Ω(n)

Fig. 6: Changing paths Pn and P ′
n that must cross each other.

Using Lemma 2 again, we deduce the existence of a changing path P ′
n of

length o(n) from z to z′ between configurationsU (n2−t0)T (φ(cn)) and U (n2+t0)T (φ(cn)).
Given the respective length and endpoints of Pn and P ′

n (see Figure 6), they must
necessarily cross each other: this is a contradiction because all positions of Pn

have already made a change under the action of U after time 2nT , so none of
them can change later since U is 1-change.

6.8 Proof of Theorem 7

The key to understand the limitations of monotone FCAs is to establish that
some configurations is ’above’ another one for the freezing order, and then use
the fact that this relation is preserved under iterations. The next lemma gives a
tool to obtain such relations in the context of a simulation between FCAs.

Given a CA F and a finite set E ⊆ Zd, we say that a configuration y is E-
locally reachable from a configuration x if for any i ∈ Zd there are configurations
xi and yi with:

– xi
|i+E

= x|i+E ;

– yi|i+E = y|i+E ;

– F t(xi) = yi for some t ≥ 0.

Lemma 3 (Local reachability lemma). Let G be a ≺-freezing CA that (con-
text sensitively) simulates a CA F , both of dimension d. Then there exists a
finite set E ⊆ Zd such that, if a configuration y is E-locally reachable by F from
a configuration x, then φ(y) ≺ φ(x) where φ is the encoding map given by the
simulation as in Definition 3.

Proof. Using the notations of definition 3, there exists some finite set E ⊆ Z
d

such that for any x, y ∈ Qd
F and any i ∈ Zd it holds:

x|i+E = y|i+E ⇒ φ(x)|bi+B = φ(y)|bi+B.



Suppose now that y is E-locally reachable from x by F . We have in particular
φ(yi) ≺ φ(xi) because G is ≺-freezing and the simulation ensures that φ(yi) is
in the orbit of of φ(xi) under G because yi is in the orbit of xi under F . From
the E-locality condition and the remark above we deduce:

∀j ∈ B : φ(y)bi+j ≺ φ(x)bi+j

and since the relation holds for any i we finally have: φ(y) ≺ φ(x).

If F is a freezing CA and c is any configuration then the limit lim
t→∞

F t(c)

always exist (in the Cantor topology), is always a fix point, and will be denoted
F∞(c) [10].

Proof (Proof of Theorem 7). The case of dimension 1 is already handled by
Theorem 5. We do the proof for d = 2 using F defined above. It is straightforward
to extend the argument to higher dimensions. Suppose by contradiction that
there is a monotone ≺-freezing G that can simulate F and let E be the set given
by Lemma 3 for this simulation. Let us define xn, x∞ and yn, y∞ as follows (see
Figure 7):

s1

w

w

w

△

w

w

w

w w w s1

s1

s1

s1

s1

s1

s1

s1

s1

s1 s1 s1 s1
F∞

(a) Configuration yn with n = K = 3.

s1

w

w

w

△

w

w

w

w w w w

s1

s1

s1

s1

s2

s2

s2

s2

w w w w
F∞

(b) Configuration y∞ with K = 3.

Fig. 7: Configurations yn and y∞ and the limit fixed point reached under F .

xn(i) =











s2 if i = (0, b) with b > −n

s1 if i = (0, b) with b ≤ −n

0 else.

yn(i) =







































s1 if i = (0, b) with b > K

w if i = (0, b) with b ≤ K and b 6= 0

△ if i = (0, 0)

s1 if i = (a, 0) with a > n

w if i = (a, 0) with a ≤ n and a > 0

0 else.



where K is a large enough constant (compared to E) and x∞ (resp. y∞) is
the limit of xn (resp. yn) when n goes to ∞. Choosing n = K large enough
(compared to E) it is straightforward to check that x∞ (resp. yn) is E-locally
reachable from xn (resp. y∞). From Lemma 3, we deduce that φ(x∞) ≺ φ(xn)
and φ(yn) ≺ φ(y∞) where φ is the encoding map involved in the simulation of
F by G. Thus we also have G∞

(

φ(yn)
)

≺ G∞
(

φ(y∞)
)

(by monotonicity of G),

which is equivalent to φ(F∞(yn)) ≺ φ(F∞(y∞)) by the simulation. Denoting by
P the half-plane of all positions (a, b) with b < −n, we have F∞(y∞)|P = x∞

|P and

F∞(yn)|P = xn
|P . This translates by the simulation into φ(F∞(y∞))|P ′ = φ(x∞)|P ′

and φ(F∞(yn))|P ′ = φ(xn)|P ′ where P ′ is some half-plane contained in P (de-
pending on parameters of the simulation). We reached a contradiction because
the left-hand terms and the right-hand terms of this pair of equality compare
differently with respect to ≺ as established above, and they cannot be all equal
because φ(xn) is distinct from φ(x∞) over P ′ by injectivity of φ.
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