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Abstract: Sudbury (Ontario, Canada) has a long mining history that has left the region with a 

distinctive legacy of environmental impacts. Several actions have been undertaken since the 1970s 

to rehabilitate this deteriorated environment, in both terrestrial and aquatic ecosystems. Despite a 

marked increase in environmental health, we show that the Junction Creek system remains under 

multiple stressors from present and past mining operations, and from urban-related pressures such 

as municipal wastewater treatment plants, golf courses and stormwater runoff. Water samples 

have elevated metal concentrations, with values reaching up to 1 mg·L−1 Ni, 40 μg·L−1 Zn, and 0.5 

μg·L−1 Cd. The responses of diatoms to stressors were observed at the assemblage level (metal 

tolerant species, nutrient-loving species), and at the individual level through the presence of 

teratologies (abnormal diatom frustules). The cumulative criterion unit (CCU) approach was used 

as a proxy for metal toxicity to aquatic life and suggested elevated potential for toxicity at certain 

sites. Diatom teratologies were significantly less frequent at sites with CCU values <1, suggesting 

“background” metal concentrations as compared to sites with higher CCU values. The highest 

percentages of teratologies were observed at sites presenting multiple types of environmental 

pressures. 

Keywords: biomonitoring; cumulative criterion units; diatoms; metals; mines; multi-stress; 

streams; nutrients; teratologies; urban stressors 

 

1. Introduction 

The region of Sudbury (400 km north of Toronto, Ontario, Canada) and its surroundings is 

well-known for its legacy of intense mining that resulted in vast ecological damage due to 

acidification and metal contamination. Among the seriously impacted aquatic ecosystems in close 

vicinity to the Sudbury mining activities is the Junction Creek system. This river and its tributaries 

were once the recipients of several untreated industrial and municipal effluents, as well as a sink for 

atmospheric deposition. The health of Junction Creek was impacted by the contamination and 

degradation in its watershed and showed highly impaired biological integrity [1]. Still nowadays, 

despite pollution control and rehabilitation actions having been undertaken, aquatic ecosystems in 

the region suggest slow recovery [2–6]. Mining activities are still present in the region, although 

under significantly more restrictive pollution control and regulation, and intensification of urban 

development represents a supplementary environmental threat.  

The Junction Creek system has been well studied in the past to assess its ecological degradation 

in response to mining activities, and its recovery following improved management of atmospheric 
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deposition and wastewaters. However, to our knowledge, most studies focused on water chemistry, 

invertebrates and fish, leaving a gap in information on biofilms. Composed of algae, fungi, bacteria 

and protozoans embedded in a polysaccharide matrix, biofilms are a complex aggregation of 

microorganisms and constitute the basis of most lotic ecosystem food webs. Biofilm integrity is, 

therefore, essential in keeping a healthy biological status at the ecosystem scale, as it is a key entry 

point for contaminants into the trophic chain. For example, biofilms accumulate metals that are then 

susceptible to reach higher organisms through their diet [7], causing multiple deleterious effects on 

reproduction, behavior, fatty acid composition, survival, etc. (e.g., [8,9]). Intracellular metal 

concentrations in biofilms are proportional to free metal concentrations in the water, offering an 

interesting proxy to estimate bioavailable metals in the water column [10,11]. Diatoms (unicellular 

algae), often the dominant constituent of stream biofilms, are sensitive to changes in water chemistry 

and respond quickly to environmental fluctuations by changes in the structure of their assemblages 

(e.g., increase in pollution-tolerant species) [12]. Due to their sensitivity to fluctuations in water 

quality, their ubiquity, ease of sampling, and low analytical costs, this algal group is widely used as 

indicators of biological integrity and numerous diatom-based indices have been developed for 

routine assessment of overall ecosystem health (e.g., [12–14]). Diatoms have also been used to 

specifically reflect metal contamination, and metal-tolerant species are promising indicators of 

contamination (see Morin et al. [15] and references therein). Moreover, deformities in diatom 

frustules (silica shells) are used as a biomarker in response to environmental perturbations such as 

contamination by metals and organic compounds (e.g., [16–18]). 

The purpose of this study was to combine chemical and biological monitoring for assessing 

health and ecological integrity of aquatic ecosystems in the Sudbury region, including Junction 

Creek and its tributaries, with focus on metal contamination. More specifically, the objectives of the 

study were (i) to evaluate overall stream biological integrity based on diatom assemblages, (ii) to 

assess changes in diatom assemblage composition with increasing metal contamination, and (iii) to 

investigate the presence of diatom deformities (teratologies) in response to metal contamination. The 

selected sites were also subjected to other environmental pressures such as nutrient loads that may 

act as additional stressors affecting the response of diatom assemblages, thus offering interesting 

conditions for multi-stress assessment. This particular study area is therefore an interesting example 

where environmental pressures such as urban activities may exacerbate stresses from past and 

present mining activities and thus affecting system recovery. This has been previously observed 

where a greater number of cumulative environmental stressors resulted in more significant impacts 

on diatom assemblages [19], although some antagonistically acting stressors have been evidenced 

(e.g., metals versus nutrients [20,21]). The present study provides groundwork for assessing stream 

biological integrity based on diatom descriptors, and brings valuable information to be used in 

further monitoring of the Junction Creek system recovery and health. Mining activities in Canada 

are expected to increase, especially in relatively pristine northern regions (e.g., the Quebec Plan 

Nord, the Ontario Ring of Fire, and the Northwest Territories Mining Initiative). Despite the fact that 

mining companies are subjected to comply with stricter environmental regulations under the 

Canadian Mining Act (operating since 1995) to ensure site rehabilitation after mine closure, 

ecosystems in proximity to mining operations are still at risk of physical, chemical and biological 

alteration. Monitoring past and present effects of mining on nearby ecosystems and assessing losses 

in ecological integrity and services offer strong support to further reduce emissions from industrial 

activities and to stimulate research on best management practices.  

2. Materials and Methods 

2.1. A Brief History of Mining Around Sudbury and the Resulting Ecological Damages 

Sudbury has a long mining history, with its first smelter having been built at Copper Cliff in 

1888. This region has one of the most productive nickel and copper mining operations in the world, 

with other metals such as zinc, cobalt, precious metals and platinum-group elements also currently 

mined and processed in the area. While mining companies are nowadays relatively more eco-aware, 
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environmental preoccupations were not on the agenda before the 1980s. Open-air roasting 

(processing step) occurred, releasing sulfur dioxide. Atmospheric emissions were estimated at over 

100 million of tons of SO2 and thousands of tons of metal particles [22,23]. Along with forest fires and 

clear-cut logging (large amounts of wood were necessary for roasting), this industrial process led to 

the destruction of nearly 20,000 ha of land and to about 80,000 ha of semi-barren landscape [23]. 

Outdoor roasting was common to the end of the 1920s when it was banned by the Ontario 

Government, following which three smelting plants were built (Copper Cliff, Coniston and 

Falconbridge). Smelter emissions in the Sudbury area were one of the world’s largest point sources 

of SO2 emissions during the 1960s, accompanied by thousands of tons of emitted metal particles [24]. 

Metal contamination has been documented since the 1960s in the Junction Creek area and its 

surroundings [1]. 

Technological development and legislative control have led to a 90% reduction in SO2 and 

particulate matter emissions between 1967 and the 1990s [23,25]. A stack rising 380 m above the 

Canadian Shield floor was built in 1972 (Inco Superstack), spreading smelting fumes to a much 

larger area. Several rehabilitation actions were taken, such as liming and grassing of the barren 

areas, and replanting millions of trees. Life was also slowly reintroduced to the surrounding lakes 

and streams, as algae, zooplankton, zoobenthos and fish showed signs of recovery [26]. Since the 

1970s, the health and integrity of the affected area markedly improved, and the region is now on a 

path to recovery. Colossal efforts were undertaken to rehabilitate and revive the area, with particular 

attention given to Junction Creek (e.g., abatement of mining and municipal untreated effluents, 

shoreline stabilization, tree-plantings) and have drastically improved the overall health of this 

region. However, anthropogenic inputs such as mining effluents, treated municipal wastewater, 

urban runoff, and air-born particles still pose a threat to the integrity of Junction Creek and nearby 

waterbodies. In addition, this system suffers from over 100 years of mining-related contamination 

now accumulated in sediments, as observed in the lakes along its course. For example, Kelly Lake 

(2.4 km2) is a water body well-known for its contamination in copper, nickel, palladium, iridium, 

and platinum [27]. In addition to being metal-contaminated, Kelly Lake sediments are loaded with 

phosphorus, as Junction Creek used to be a point-source of raw sewage effluents [27]. A large 

creosote plant, in operation from 1921 to 1960, also contributed to the contamination of Kelly Lake 

sediments by polycyclic aromatic hydrocarbons (PAH) as waste materials sometimes leaked into 

Junction Creek [27].  

About 7000 lakes were acid-damaged to the point of biological impairment by mining activities 

in the Sudbury area [28], and although many now show signs of recovery from acidification [24,29], 

metal contamination and other persistent ecological damages still impair their integrity. Biological 

recovery has been observed in fish, zooplankton, phytoplankton and zoobenthos, but remained at an 

early stage in many lakes lying in close proximity to Sudbury in studies conducted in the late 1990s 

and early 2000s (see review in Keller et al. [24], and references therein). On the other hand, analysis 

of long-term monitoring data (1988–2002) from 17 acidified lakes located about 200 km south-east of 

Sudbury suggests that benthic macroinvertebrate communities have recovered from acidification 

due to long-range transport of air pollutants [30]. Despite rehabilitation actions and improved 

physico-chemical properties, Junction Creek shows similar responses to what was observed in 

surrounding lakes where signs of biological perturbations are still present. For example, a study on 

macroinvertebrate assemblages from 2000 to 2008 suggests slow recovery in Junction Creek (Frood 

Branch) after diversion of acid mine drainage in 2000, when many large sensitive invertebrates were 

still lacking [2]. Although metal contamination has drastically been reduced in the region, Weber et 

al. (2008) also showed biological impacts with increasing metal concentrations (Cd, Cu, Rb, Se, and 

Sr) in fathead minnow and creek chub along a downstream gradient in Junction Creek.  

2.2. Study Area 

The study was conducted in streams and creeks of the Greater Sudbury area and its 

surroundings, characterized by Canadian Shield bedrock geology. This boreal region has a relatively 

flat topography, and a humid continental climate with long cold/snowy winters (six-months of snow 
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cover) and warm/hot summers. At the time of sampling (September 2016), air temperature was 

warm (~20 °C) and water levels in the watershed were low, as recommended for diatom sampling 

[31]. 

A total of 19 sites were selected for this study, with nine sites positioned along an 

upstream/downstream gradient in Junction Creek (sites JC1–JC9; Figure 1). The Junction Creek 

system, which is 54 km in length, is a tributary of the Vermilion River, itself discharging into the 

Spanish River (tributary of Lake Huron). This watercourse flows through the City of Greater 

Sudbury, has five main tributaries (Nolin Creek, Copper Cliff Creek, Frood Branch Creek, Maley 

Branch Creek and Garson Branch Creek), and encompasses several lakes. In addition to potential 

contamination from mining effluents and atmospheric deposition, Junction Creek and its tributaries 

also suffer from other anthropogenic activities such as discharge from the Sudbury municipal 

wastewater treatment facilities (entering Junction Creek 200 m below the Copper Cliff Creek 

confluence), urban runoff, and golf courses. JC1 is located in the upper portion of Junction Creek, in 

the Garson community (now part of the Greater Sudbury area) and receives water from Garson 

Branch Creek carrying treated effluents from Garson mine. Junction Creek then flows through 

Greater Sudbury (JC2 to JC6) and receives waters from tributaries along the way. A sampling site 

was positioned on Frood Branch Creek (FBC), which reaches Junction Creek between JC4 and after 

JC5. Frood Branch Creek has a history of important acid mine drainage from the Frood/Stobie (oldest 

mine complex in Sudbury) mine tailings, but diversion construction in 2000 and reclamation action 

taken at the site greatly improved water quality [32]. While mining activities ceased at Frood mine in 

2012, Stobie was still operating at the time of the present study (2016). Two sites were positioned on 

each branch of Nolin Creek (NC1 and NC2), and a third site was positioned where the branches 

merge (NC3) and discharge into Junction Creek between JC5 and JC6. The NC1 branch collects 

treated mining effluent from Nolin mine, while NC2 does not receive direct point-source effluents 

but may still be impacted by diffuse contamination. JC7 was sampled before Junction Creek enters 

Kelly Lake and is impacted by inflowing waters from Copper Cliff Creek (CCC) draining tailings 

and is receiving treated water effluents from Copper Cliff mine and smelter as well as effluents from 

a sewage treatment plant. A sampling site was positioned downstream of Kelly Lake outflow (JC8). 

The last site on the Junction Creek gradient (JC9) was positioned just after Mud Lake.  

A reference site was selected on Maley Branch Creek (MBC), which extends well north and 

reaches Junction Creek before JC3. This site does not experience direct mine effluents, although it is 

still at risk of atmospheric deposition from mining activities and nutrient input from urban 

development and a nearby golf course. A reference site was also sampled on Veuve River (VR), near 

Markstay (about 40 km from Sudbury). It should be noted that here, the term “reference” suggests 

that the sites are minimally affected by mining activities, but they may still be experiencing certain 

anthropogenic pressures. Three other sites were selected on Coniston Creek (CC1–CC3), a tributary 

of Whatapitei River. Although the Coniston smelter closed in 1972, the slag pile has been left largely 

un-remediated and may contribute to the contamination of nearby aquatic ecosystems [33]. In 

addition, one of the sources of the creek is a wetland near a mining property in Falconbridge (where 

large slag piles are still present [33]). These sites may also be influenced by past and present 

atmospheric depositions from the Sudbury area (about 10 km away). These last three sites were 

therefore selected as least-impacted sites, i.e., outside of intense Sudbury activities but still at risk of 

mining and urban contamination to a certain extent. 
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Figure 1. Sampling sites in the Greater Sudbury area, Ontario, Canada. The shaded zone (light gray) 

represents the city of Grand Sudbury. WWTP = wastewater treatment plant. 

2.3. Water and Biofilm Collection 

Sampling was carried-out within three consecutive dry days and avoiding rain events prior to 

sampling with the purpose of collecting biofilms and water samples under low flow conditions. 

Samples for water chemistry analyses were collected in triplicates, and inadvertent sample 

contamination due to handling was verified by on-site preparation of field blanks using ultra-pure 

water. Material used for samples destined for the analysis of cations and dissolved organic carbon 

(DOC) was previously soaked for 24 h in nitric acid 10% (v/v), and rinsed eight times with ultrapure 

water. Material used for samples for anion concentration analyses was previously rinsed eight times 

with ultra-pure water. Water collected for anions, cations, and dissolved organic carbon (DOC) was 

collected in 20 ml polypropylene Nalgene bottles using syringes and polysulfonate filters (0.45 μm; 

VWR International). Samples collected for cations analyses were acidified to 2.6% nitric acid (v/v) 

(trace metal grade; Fisher). Water collected for total phosphorus (TP) was acidified to 0.2% sulfuric 

acid (v/v). Biofilms were collected from the top surface of 5–10 rocks (composite samples) using a 

new toothbrush at each site. Water and biofilm samples were stored in the dark at 4°C until they 

were processed. Conductivity, temperature and pH were measured on-site with portable 

instruments (Sevengo SG3, Mettler Toledo; Denver Instrument UP-10). 

2.4. Water Chemistry and Diatom Assemblage Analyses 

Anions (F−, Cl−, SO42−, NO3−) were analysed by ion chromatography (Dionex AutoIon; System 

DX300), TP was analyzed by persulfate digestion and manual colorimetry (SM 4500-PB), and DOC 

was analyzed using a total organic carbon analyzer (TOC-500A; Shimadzu). Cations (Na+, Mg2+, Al3+, 

K+, Ca2+, Mn2+, Fe3+, Ni2+, Cu2+, Cd2+, Pb2+, Zn2+) were analyzed by inductively coupled plasma–atomic 

emission spectrometry (ICP-AES; Varian Vista AX CCD). Copper, cadmium, zinc and lead were also 

analyzed by inductively coupled plasma–mass spectrometry (ICP-MS; Thermo instrument model 

X7). Values lower than field blank values were excluded from subsequent analyses. Detection limits 

are presented in Table 1. 
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Table 1. Physico-chemical characteristics (mean ± SD when available), metal toxicity index (cumulative criterion unit (CCU)) and biological descriptors for the 19 

sampling sites. 

Sampling Sites MBC VR CC1 CC2 CC3 JC 1 JC 2 JC 3 JC 4 JC 5 JC 6 JC 7 JC 8 JC 9 FBC NC 1 NC 2 NC 3 CCC 

Temperature 

(°C) 13.6 14.3 14.4 16.0 16.7 16.6 14.4 13.4 13.2 14.0 14.9 17.8 16.9 15.5 15.6 13.4 12.1 15.6 17.7 

Conductivity 

(mS/cm) 0.501 0.0963 1.12 1.13 1.08 NA NA NA 1.33 NA 1.51 3.51 2.56 1.62 1.35 1.43 1.24 1.46 4.70 

pH 7.5 6.6 6.5 6.5 6.7 7.2 7.7 7.2 7.3 7.1 8.0 7.8 7.0 7.0 7.7 6.2 7.4 7.9 5.7 

Hardness 

(mg/L) 177 ± 0 37.6 ± 0.2 331 ± 2 338 ± 2 320 ± 1 1010 ± 13 602 ± 1 506 ± 1 430 ± 2 303 ± 1 256 ± 1 1018 ± 8 637 ± 2 536 ± 2 260 ± 0 336 ± 1 154 ± 1 218 ± 0 1620 ± 8 

DOC (mg/L) 5.34 ± 0.00 15.8 ± 0.3 

4.06 ± 

0.00 

4.04 ± 

0.07 

4.20 ± 

0.00 

1.68 ± 

0.03 

3.46 ± 

0.07 3.78 ± 0.00 

6.28 ± 

0.02 5.78 ± 0.07 

4.49 ± 

0.00 

2.21 ± 

0.00 

4.13 ± 

0.00 

3.54 ± 

0.00 

5.49 ± 

0.07 

1.84 ± 

0.04 

3.96 ± 

0.12 

5.26 ± 

0.00 

5.28 ± 

0.14 

Mg (mg/L)  14.3 ± 0.1 

3.30 ± 

0.01 12.5 ± 0.1 12.7 ± 0.1 12.4 ± 0.0 31.9 ± 0.1 23.4 ± 0.1 20.7 ± 0.0 18.9 ± 0.1 15.6 ± 0.0 14.2 ± 0.1 26.9 ± 0.2 20.2 ± 0.0 17.8 ± 0.1 26.5 ± 0.0 12.8 ± 0.0 13.4 ± 0.1 12.8 ± 0.0 39.3 ± 0.5 

Ca (mg/L) 47.3 ± 0.1 

9.64 ± 

0.06 112 ± 1 115 ± 1 108 ± 0 352 ± 6 202 ± 0 169 ± 0 141 ± 1 95.5 ± 0.5 79.0 ± 0.2 364 ± 3 222 ± 1 185 ± 1 60.4 ± 0.1 113 ± 0 39.4 ± 0.3 66.5 ± 0.0 584 ± 4 

SO4 (mg/L) 34.0 ± 0.0 

5.00 ± 

0.00 241 ± 2 245 ± 1 230 ± 1 942 ± 4 453 ± 3 363 ± 3 166 ± 1 194 ± 1 254 ± 2 1202 ± 33 701 ± 3 561 ± 3 194 ± 1 268 ± 4 137 ± 1 172 ± 2 1923 ± 7 

NO3 (mg/L) 0.94 ± 0.06 

0.78 ± 

0.00 

7.64 ± 

0.58 

6.24 ± 

0.58 5.0 ± 1.6 19.7 ± 0.3 

7.63 ± 

0.15 5.98 ± 0.06 

0.95 ± 

0.03 3.20 ± 0.00 

7.23 ± 

0.58 28.6 ± 2.1 20.6 ± 1.2 16.4 ± 0.4 

3.20 ± 

0.00 6.6 ± 1.2 3.7 ± 1.1 

5.30 ± 

0.58 

3.20 ± 

0.00 

TP (μg/L) 22.6 ± 0.4 29.9 ± 1.1 

9.00 ± 

0.20 

8.87 ± 

0.12 38.5 ± 0.4 12.7 ± 0.5 47.3 ± 0.4 46.1 ± 0.7 41.5 ± 1.3 29.1 ± 0.7 36.0 ± 0.8 48.1 ± 2.2 70.2 ± 3.0 137 ± 1 15.7 ± 0.3 11.5 ± 0.9 

9.63 ± 

0.06 16.9 ± 0.1 

6.57 ± 

0.15 

Al (μg/L) 13.1 ± 0.8 41 ± 16 19.6 ± 6.1 16.3 ± 3.8 14.6 ± 0.3 15.1 ± 1.7 14.0 ± 1.5 16.5 ± 0.1 16.1 ± 0.4 15.0 ± 1.0 18.1 ± 2.5 15.9 ± 1.2 15.5 ± 1.3 13.5 ± 1.4 10.9 ± 0.5 13.0 ± 3.1 14.2 ± 1.5 15.5 ± 0.5 17.9 ± 2.5 

Ni (μg/L) 18.1 ± 0.2 

7.22 ± 

0.22 25.1 ± 0.1 25.7 ± 0.0 197 ± 1 226 ± 1 199 ± 1 152 ± 0 113 ± 0 41.9 ± 0.4 89.6 ± 0.4 290 ± 1 211 ± 1 185 ± 0 788 ± 3 1037 ± 3 804 ± 6 689 ± 2 32.9 ± 1.0 

Cu (μg/L) 1.72 ± 0.05 

1.97 ± 

0.07 

2.47 ± 

0.04 

2.72 ± 

0.06 5.4 ± 2.1 

3.11 ± 

0.06 

2.09 ± 

0.02 2.33 ± 0.06 

3.48 ± 

0.04 2.62 ± 0.09 

7.40 ± 

0.24 

5.91 ± 

0.10 

4.32 ± 

0.11 

3.90 ± 

0.05 

5.72 ± 

0.17 10.2 ± 0.2 38.0 ± 2.7 19.3 ± 1.4 

5.96 ± 

0.18 

Zn (μg/L) NA 1.8 ± 3.0 NA NA 1.6 ± 2.7 3.3 ± 0.5 

7.43 ± 

0.03 6.2 ± 1.0 6.1 ± 2.0 1.5 ± 1.1 

5.06 ± 

0.49 

5.79 ± 

0.13 NA NA 

2.02 ± 

0.08 23.8 ± 0.2 23.2 ± 0.1 11.4 ± 0.6 

0.38 ± 

0.08 

Cd (μg/L) 

0.029 ± 

0.000 

0.006 ± 

0.001 

0.039 ± 

0.002 

0.038 ± 

0.002 

0.041 ± 

0.002 

0.101 ± 

0.001 

0.050 ± 

0.003 

0.045 ± 

0.003 

0.047 ± 

0.001 

0.016 ± 

0.001 

0.043 ± 

0.002 

0.161 ± 

0.001 

0.025 ± 

0.004 

0.021 ± 

0.001 

0.080 ± 

0.003 

0.298 ± 

0.002 

0.476 ± 

0.009 

0.278 ± 

0.008 

0.096 ± 

0.002 

Pb (μg/L) 

0.016 ± 

0.002 

0.20 ± 

0.06 

0.006 ± 

0.001 

0.005 ± 

0.000 

0.007 ± 

0.004 

0.155 ± 

0.002 

0.041 ± 

0.002 

0.042 ± 

0.003 

0.036 ± 

0.002 

0.012 ± 

0.003 

0.04 ± 

0.02 

0.038 ± 

0.001 

0.042 ± 

0.001 

0.011 ± 

0.002 

0.006 ± 

0.002 NA NA NA 

0.012 ± 

0.002 

CCU 0.7 (B) 2.6 (M) 0.6 (B) 0.6 (B) 1.8 (L) 0.7 (B) 0.9 (B) 0.8 (B) 1 (L) 0.7 (B) 2.1 (M) 1.1 (L) 1 (L) 1 (L) 5.3 (M) 6.7 (M) 19.9 (H) 9.4 (M) 0.4 (B) 

% teratologies 0.7 0.0 0.0 0.2 0.5 1.0 1.0 1.7 1.2 1.0 1.0 1.2 6.1 8.7 1.5 1.2 1.0 4.5 1.5 

IDEC 

score/Class  
24/C 42/C 64/B 62/B 31/C 83/A 6/D 14/D 1/D 26/C 27/C 36/C 6/D 21/C 85/A 100/A 100/A 78/A 43/C 

In bold: Exceed water quality criteria by a factor of 1.5× or more. B = baseline, L = Low, M=Moderate, and H=High refer to the toxicity category based on CCU values. Biological integrity 

classes related to IDEC scores; A = reference, B = good-moderate, C = moderate-poor, D = very poor. NA: not available. Detection limits: Cu = 0.009 μg/L; Zn = 0.03 μg/L; Cd = 0.005 μg/L; 
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Pb = 0.004 μg/L; Al = 0.4 μg/L; Mn = 0.17 μg/L; Fe = 0.9 μg/L; Na = 1.9 μg/L; Mg = 4.9 μg/L; K = 1.7 μg/L; Ni = 0.7 μg/L; Ca = 1.1 μg/L; SO4 = 0.022 mg/L; NO3 = 0.016 mg/L; Cl = 0.03 mg/L; 

F = 0.011 mg/L; DO = 0.05 mg/L; TP = 0.8 μg/L. MBC: Maley Branch Creek; VR: Veuve River; CC: Coniston Creek; JC: Junction Creek; FBC: Frood Branch Creek; NC: Nolin Creek; CCC: 

Copper Cliff Creek. 
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Lyophilized biofilms were digested to remove organic matter and to clean diatom frustules 

from cell content. Biofilm subsamples were placed in 800 μL of 100% (v/v) nitric acid for 48 h, and 

200 μL of hydrogen peroxide 30% (v/v) were added for another 48 h. Following complete digestion 

of organic material, samples were rinsed several times to remove nitric acid. Microscope slides were 

prepared for cleaned diatom observation using Naphrax ® as the mounting medium (refractive 

index: 1.74; Brunel microscopes Ltd., Wiltshire, UK). Diatom assemblages were observed under a 

Reichert-Jung Polyvar microscope equipped with differential interference contrast (magnification 

1250×). A minimum of 400 diatom valves were identified on each slide and diatom assemblages 

were expressed as relative abundances of the species assemblage. Taxonomic identification mainly 

followed Lavoie et al. [34]. Diatom frustule deformations were noted and classified as (i) irregular 

valve shape, (ii) irregular raphe, (iii) irregular striae, (iv) mixed [35].  

The Eastern Canadian Diatom Index (IDEC; Indice Diatomées de l’Est du Canada [12,36]) was 

used to evaluate general biological integrity of the sampling sites. The IDEC was specifically 

developed to estimate water quality in Quebec and Ontario streams in agricultural and urban areas, 

and mainly informs on trophic status (nutrients), salinity, pH and organic matter loads [12,36]. An 

IDEC value was calculated for each diatom assemblage using the IDEC-neutral, which is the 

recommended sub-index to use based on the characteristics of the studied watersheds (geology, 

surficial deposits [12,36,37]). IDEC scores range between 0 and 100, with low values indicating poor 

biological integrity. The IDEC provides an overall water quality evaluation, and was not developed 

for metal contamination assessment. The abundance of abnormal diatom valves (% teratologies) was 

used as a complementary proxy of diatom-specific response to metals, as well as the presence of 

diatom species known as tolerant to metal contamination. A canonical correspondence analysis 

(CCA) was performed using Canoco 4.5 [38] to explore the diatom assemblage-water chemistry 

relationships and to visualize site distribution. Only the taxa with an abundance of at least 1% in at 

least one sample were included in the CCA. Diatom data were square root transformed and rare taxa 

were down weighted prior to running the CCA. Indicator species analysis, an approach used to 

determine indicator species characterizing groups of sites (based on the species relative abundance 

and its relative frequency of occurrence in each group), was conducted with the method of Dufrêne 

and Legendre [39] using PC-ORD version 6 [40]. 

2.5. Toxicity Criteria and CCU Calculation  

Cumulative criterion unit (CCU) [41] was calculated at each site as the sum of the ratios 

between metal concentrations in a sample and their toxicity criterion values (CCU = Σi(mi/ci), mi = 

total recoverable metal concentration, ci = criterion value for the ith metal). The metals included in 

the CCU calculation were Al, Cu, Cd, Ni, Pb, and Zn. Toxicity criteria were based on the Canadian 

water quality guidelines for the protection of aquatic life established by the Canadian Council of 

Ministers of the Environment [42]. The criteria were adjusted for water hardness to account for the 

competitive effect of major cations like magnesium and calcium for binding sites on cell membranes, 

which reduces metal toxicity (e.g., [10,11]). Hardness was calculated at each site based on aqueous 

concentrations of Ca and Mg (in mg/L) using the equation: hardness (mg equivalent CaCO3/L) = 

([Ca] × 2.497) + ([Mg] × 4.118) following Standard method for the examination of water and 

wastewater 2340B—Hardness by calculation). Calculated hardness values and criteria for metal 

toxicity at each site are shown in Table 1. The criteria used in the present study differ from the US 

EPA guidelines [43]. However, the values are generally in the same order of magnitude and 

therefore comparable. Only the criterion for aluminum was based on the US EPA recent guidelines 

because it accounts for pH, DOC, and hardness [43], rather than pH only. Four categories of CCU 

were used following the thresholds proposed for biofilms [44], and later modified for diatoms [15]: 

geochemical background (B) = CCUs below 1.0; low metal category (L) = CCUs between 1.0 and 2.0; 

intermediate metal category (M) = CCUs between 2.0 and 7.0; high metal category (H) = CCUs above 7.0. 
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3. Results and Discussion 

3.1. General Water Chemistry  

Water chemistry data showed strong variability between sites for several parameters (Table 1). 

This is attributed mostly to anthropogenic activities, as the study area does not vary markedly in 

terms of geological characteristics or vegetation. Hardness values varied from 37.6 ± 0.2 mg CaCO3/L 

at VR to 1620 ± 8 mg CaCO3/L at CCC, where elevated values may in part reflect lime addition. For 

example, the sharp increase in hardness between JC6 and JC7 (256 ± 1 to 1018 ± 8 mg CaCO3/L) 

clearly illustrates the effect of lime addition coming from the Copper Cliff Creek input, and JC1 

hardness value of 1010 ± 13 mg CaCO3/L reflects mining activities from the Garson mine. Observed 

values for natural hardness in the region are around 50 mg/L, or below [45]. A comparable value was 

obtained at our site VR considered as a reference (relative to mining pressure). The hardness value of 

177 mg/L obtained at our other reference site (MBC) is comparable to the value of 122 mg/L observed 

by Davidson [46], but other studies reported lower values for this creek (23–59 mg CaCO3/L) [32,47]. 

The sites from Coniston Creek (CC1–CC3) have rather elevated hardness considering the fact that 

these sites do not receive direct lime-containing effluents from operating mines. However, large 

piles of tailings left on decommissioned sites in Falconbridge and Coniston may be leaching some 

contaminants, including Mg+ and Ca+, into Coniston Creek and other nearby aquatic ecosystems.  

Except for CCC and NC1 (with pH of 5.7 and 6.2, respectively), all sites had pH values above 

6.5, reaching up to 8 at JC6. TP concentrations were relatively elevated along the Junction Creek 

gradient starting at JC2, with a particularly high value at JC9 (137 ± 1 μg P/L). High levels of 

phosphorus in the lower Junction Creek sites suggest nutrient inputs from the Sudbury wastewater 

treatment plant effluents discharging a few kilometers upstream of Kelly Lake. In addition, 

untreated sewage is still occasionally bypassed during heavy rainfall events [48]. Site CC3 on 

Coniston Creek also showed relatively elevated phosphorus, probably due to its location 

downstream of the Coniston municipal sewage treatment plant and a golf course. Sites MBC and 

VR, although selected as reference relative to metal contamination, showed TP concentrations 

suggesting some nutrient inputs, which is not surprising considering that they are both influenced, 

to different extents, by urban activities. Specifically, the MBC sampling site is located in a dense 

residential development with a golf course immediately upstream. VR is in the small municipality of 

Markstay and there seems to be very minimal human activity in the upstream portion of the 

watershed except for two farmlands and a golf course. However, Markstay is on the list of water and 

wastewater projects that were approved under the Canada-Ontario Clean Water and Wastewater 

Fund agreement [49] for improving wastewater infrastructures (anticipated starting date set for 

some time in 2017), which suggests that sewage water may not have been managed properly at the 

time of sampling. Aside from the two sites considered as references and JC4, NO3 concentrations 

were elevated at all sites, especially along Junction Creek (at JC7 to JC9, as well as at JC1). These 

elevated values may result from actual and past blasting activities in the mining areas (ammonium 

nitrate-based explosives) and/or may come from municipal wastewater effluents as previously 

mentioned. Sulfate concentrations also fluctuated markedly between sites, with a low value of 5.0 ± 0 

mg/L at VR and a peak value of 1923 ± 7 mg/L at CCC. The highest SO4 values along the Junction 

Creek gradient were observed at JC1 and JC7, located downstream of tributaries receiving mining 

effluents (Garson Branch Creek and Copper Cliff Creek).  

3.2. Metal Concentrations and CCU 

The sites on Nolin Creek showed the highest concentrations for all metals except for Al. CCME 

water quality criteria were exceeded for Ni and Cu (Table 1, in bold). For example, Cu concentration 

at NC2 (38 ± 3 μg/L) was 11× higher than the CCME criterion. A press release in a local newspaper in 

the summer of 2015 reported the first sightings of fish in Nolin Creek since at least the early 1990s [50]. 

This is a sign that although metals are still present, the system is recovering. Nickel concentration 

(788 ± 3 μg/L) at FBC was more than 3× the criterion, while Cu did not exceed the CCME guideline at 

this site. Cu and Ni values in Frood Branch Creek were respectively 1170 μg/L and 4220 μg/L in 1999 
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[1], while values had drastically dropped by 2004 (respectively 54.3 and 224.8 μg/L) [32], following 

diversion work to stop mining from entering the watercourse. Interestingly, our values from 2016 

indicate that Ni increased compared to the reported value from 2004, while Cu markedly decreased 

(5.72 ± 0.17 μg/L). Although Cu concentration at the reference site VR was not elevated, the water 

quality criterion was exceeded by a factor of almost 2×, likely due to the low water hardness at this 

site. Cadmium concentration only exceeded the water quality criterion at site NC2.  

CCU values ranged between <1 and 20 (Table 1). The highest CCU values were obtained for the 

Nolin Creek sites (NC1-NC2-NC3) and Frood Branch Creek (FBC). CCUs along Junction Creek were 

relatively stable and low, with values generally <1, except at JC6 and JC7 where they were slightly 

>1. Interestingly, the VR reference site showed a CCU value of 2.5, which is mostly attributed to the 

low hardness value influencing the criterion for Cu, as previously mentioned. As a general trend, the 

sites that were selected as references or least-impacted relative to metal contamination (MBC, VR, 

CC1, CC2, CC3, and upper portion of Junction Creek) represented “background” concentrations, 

except for VR and CC3. Copper Cliff Creek also obtained a low CCU score, which is surprising 

considering the mining activities in close proximity. Nickel and copper generally exceeded the 

CCME water quality criteria and consequently contributed the most to the CCU values. 

3.3. Relationships between Environmental Factors and Biological Indicators 

3.3.1. Biotypology, IDEC Scores and Metal-Tolerant Taxa 

The relative abundances of the dominant diatom species (more than 5% in at least one sample) 

observed in each of the 19 assemblages are presented as Supplementary material. While some 

diatom taxa such as Achnanthidium minutissimum and Nitzschia palea aff. debilis were abundant at 

many sites, other taxa were restricted to only certain sites. Diatom-based monitoring using the IDEC 

revealed that several sites were severely impaired, with very low index values and poor biological 

status (Table 1). A CCA was performed including diatom and chemistry data, with IDEC scores, % 

teratologies and CCU as passive variables. Site distribution on the ordination suggests three main 

groups characterized by particular diatom assemblages and reflecting distinct environmental 

conditions. The taxa dominating in each group (labeled groups 1, 2 and 3) are presented on the CCA 

(Figure 2). In addition, significant indicator species for each group are presented in Table 2. The 

environmental variables included in the CCA (excluding the passive variables) explained 39% of the 

variance in diatom species distribution (first two axes). Group 1, on the left-hand panel, was 

characterized by sites receiving treated mining effluents, with elevated metal concentrations and 

higher CCU values. On the lower panel, sites identified as Group 2 are reference or least-disturbed 

sites, and correspond to background conditions of the area (in terms of metals). Finally Group 3 

(right-hand panel) discriminates the sites with the highest nutrient loads.  

Table 2. Significant indicator species for each of the three groups based on the method from Dufrêne 

and Legendre [39]. Indicator values range from 0 to 100 (excellent indicator). SD = standard 

deviation. 

Species Group on the CCA Indicator Value Mean SD p-Value 

Brachysira vitrea (BVIT) 1 96.4 54.3 14.70 0.002 

Navicula gregaria (NGRE) 2 75.0 41.0 15.77 0.05 

Nitzschia palea var. debilis (NPAD) 2 70.8 42.8 12.43 0.02 

Eolimna minima (EOMI) 3 70.1 44.9 12.25 0.043 

Eolimna subminuscula (ESBM) 3 99.9 25.5 14.35 0.004 

Nitzschia palea aff. debilis form 2 (NPAD2) 3 99.7 25.1 14.22 0.004 

Amphora veneta (AVEN) 3 99.7 29.0 14.57 0.003 

CCA: canonical correspondence analysis. 
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Figure 2. Canonical correspondence analysis showing diatom assemblage distribution in relation to 

environmental variables. IDEC scores, CCU values and % teratologies were added a posteriori, as 

passive variables. Brachysira vitrea (BVIT); Nitzschia palea (NPAL); Navicula veneta (NVEN); 

Achnanthidium minutissimum complex (ADMI); Encyonema silesiacum (ELSE); Rhoicosphenia abbreviata 

(RABB); Planothidium lanceolatum (PTLA); Navicula gregaria (NGRE); Hippodonta capitata (HCAP); 

Caloneis bacillum (CBAC); Navicula germainii (NGER); Encyonopsis microcephala (ENCM); Fragilaria 

capucina (FCAP); Nitzschia palea var. debilis (NPAD); Nitzschia palea aff. debilis form 2 (NPAD2); 

Amphora veneta (AVEN); Eolimna subminuscula (ESBM); Eolimna minima (EOMI); Gomphonema clavatum 

(GCLA). Group 1: sites receiving treated mining effluents, with elevated metal concentrations and 

higher CCU values. Group 2: reference or least-disturbed sites corresponding to background 

conditions of the area (in terms of metals). Group 3: sites with the highest nutrient loads. 

Group 1, including NC1, NC2, NC3, CCC and FBC, was dominated by A. minutissimum 

complex, Brachysira vitrea, Nitzschia microcephala, Nitzschia palea, Encyonema silesiacum, and Navicula 

veneta. Group 1 sites were characterized by elevated metal concentrations, and their 

above-mentioned dominant diatom taxa are often reported in metal-contaminated sites [11,15,51–

56]. While these assemblages suggest metal contamination, they are also positioned at the lower end 

of the nutrient enrichment gradient on the CCA (and clustered at the higher end of the IDEC 

gradient), which suggests excellent water quality in terms of nutrient and ion enrichment. FBC, NC1, 

NC2 and NC3 were categorized as reference status (class A). Indeed, while nitrates are relatively 

elevated, phosphorus at those sites is low, which partly explains the good biological integrity (high 

IDEC scores despite metal contamination) generally observed for the sites in group 1. One should be 

careful with the interpretation in this situation because the IDEC scores most likely reflect the strong 

dominance of A. minutissimum and B. vitrea, together making up for 60–90% of the assemblages at 

these sites. While these species are indeed good indicators of lower nutrient concentrations [57–59], 

they are also known to be tolerant of metal contamination (see above references). However, other 

dominant taxa in this group can tolerate higher nutrient levels (e.g., Nitzschia palea, Navicula veneta, 

Encyonema silesiacum) which explains lower IDEC scores at CCC.  

Group 2 diatom assemblages had many species in common, and IDEC scores obtained mainly 

reflect the marked differences in the relative abundance of the A. minutissimum complex that 

fluctuated between <10% and >60% between sites. This taxon was also very abundant in diatom 

assemblages from group 1. It must however be noted that group 2 was dominated by a long and 

narrow form of A. minutissimum, while group 1 was dominated by a small and round form of A. 

minutissimum. These two forms of A. minutissimum may be different varieties of the species within 
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the A. minutissimum complex, or morphological variants of the species as a response to 

environmental variables (e.g., [60]). The IDEC scores obtained for the group 2 sites varied from 6 

(class D) to 83 (class A), but assemblages generally indicated poor biological integrity (classes C and 

D). Indeed, except for the A. minutissimum and Fragilaria capucina complexes, most species 

characterizing group 2 are indicators of low biological status based on the database used to develop 

the IDEC. The lowest index values (biological integrity class D) were observed at sites JC2, JC3, and 

JC4. Sites JC5, JC6, JC7, CC3, MCB and VR fell into class “C”, also indicating degraded 

environments. The sites CC1, CC2 were categorized as slightly impaired, with an IDEC class B, 

while only JC1 in this group suggested reference status (class A). The IDEC informs on overall 

biological health, but mainly reflects eutrophication. It is, therefore, not surprising to observe low 

IDEC values at sites located downstream of small municipalities or in the Greater Sudbury area 

where nutrient levels are higher (IDEC scores correlated with TP; r = −0.6, p ≤ 0.05). Most species 

from group 2 are indicators of baseline or low metal concentrations (low CCU), as suggested by 

Morin et al. [15], although certain taxa from the A. minutissimum and F. capucina complexes were 

frequently observed in metal-contaminated conditions. However, the presence of metal-tolerant taxa 

does not necessarily suggest contamination, especially in the case of the two above-mentioned taxa, 

which are ubiquitous.  

Amphora veneta and Eolimna subminuscula dominated the assemblages at sites JC8 and JC9 

(group 3) and were rare or absent at other sites, which explains that these sites clustered apart from 

the other sites on the CCA. A. veneta was reported as an indicator of moderate to low biological 

status [57,58], which is in agreement with the higher phosphorus concentrations observed and poor 

ecological integrity (class C and D) based on IDEC scores. E. subminuscula is also reported as a 

nutrient-tolerant species [57,61,62]. The other taxa characterizing group 3, such as small species 

identified here as belonging to the Eolimna minima complex and Nitzschia palea aff. debilis form 2 are 

indicators of nutrient-rich environments as well [36,57,59]. Gomphonema clavatum (sensu Krammer 

and Lange-Bertalot [63]) was also abundant at site JC9 (8%), but this species is usually not typical of 

high nutrients concentrations [63]. The low IDEC values observed for group 3 sites reflect the 

presence of nutrient-tolerant taxa. Interestingly, the dominant taxa from group 3 have also been 

reported in water bodies affected by mining activities [10,15,54], and references therein], although 

metal concentrations at sites JC8 and JC9 were not particularly elevated, being designated as CCU 

class L.  

3.3.2. Diatom Teratologies as a Response to Stress 

Very low proportions of deformed valves were observed at the reference or least-disturbed sites 

(CC1, CC2, CC3, MBC, VR), with values ranging from 0 to 0.7% (Table 1). As suggested by Morin et 

al. [64] and Arini et al. [65], deformity frequencies between 0.5 and 1% are considered as naturally 

occurring. With abnormal valve frequencies of 1–1.2%, it is difficult to confirm a specific response to 

metal contamination at sites JC1, JC2, JC4, JC5, JC6, JC7, NC1, and NC2, as these values are close to 

the estimated natural background. JC3, FBC and CCC showed low frequencies of teratologies, with 

values around 1.5%. These values are more likely to reflect metal contamination, although this is 

risky to confirm without replicated analyses accounting for inter-sample variability. Sites JC8, JC9 

and NC3 revealed higher proportions of deformed diatom valves, with values reaching up to 8.7% at 

JC9. Deformities in such high numbers are very likely due to the presence of metals (or to 

unmeasured organic compounds or mixture of contaminants), and despite the absence of replication 

are expected to reflect a ‘’true’’ response of the diatom assemblages. It is difficult to explain the high 

deformity frequency observed at JC8 and JC9 as metal contamination does not seem severe (based 

on a single water sample collected). However, it is possible that multiple stressors exerted pressure 

on the assemblage, leading to an increased sensitivity of the diatom cells. Differentially-acting 

stressors may have cumulative (synergistic or additive) deleterious effects on the individuals: either 

stressor may target certain cellular functions (e.g., detoxification), while the other stressor would 

reduce another metabolic pathway involved in frustule formation, with the effect of reducing the 

overall capacity of the cell to cope with the combined stressors and produce normal cells [15]. For 
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example, the former creosote plant located along Junction Creek upstream of Kelly Lake 

contaminated the system with PAH. There is no data available on PAH concentrations for the 

present study, but Jaagumagi and Bédard [1] reported up to 4.54 μg/g in sediments in 1999 just 

above Kelly Lake. It is possible that diatom deformities at these particular sites are a response to 

organic contamination, as observed in other studies [66–68], or that metals and organic compounds 

have additive or synergistic effects leading to a stronger stress on diatoms. Sites JC8 and JC9 were 

also the sites showing the highest phosphorus concentrations, suggesting that eutrophication may 

act as an additional environmental stress as observed in a study combining metal and nutrient load 

effects on diatoms [19]. Another possible explanation for the high number of teratologies is the 

proneness of the present species to deformation as discussed in Lavoie et al. [17].  

No correlation was observed between the % teratologies and metal concentrations or CCU 

values, but there was a significant difference in deformation frequency between sites categorized as 

CCU class B compared with the sites categorized as CCU classes L, M and H together (t = 1.82; n = 19 

p = 0.048; Figure 3). This situation has been encountered in other studies (see discussion in Lavoie et 

al. [17]), where deformities were observed in higher proportions in contaminated sites compared to 

reference sites while a relationship between % teratologies and a gradient in metal contamination 

was lacking. The difficulty in directly relating % teratologies and abundance of metal-tolerant taxa 

with metal concentrations is due to multiple factors such as the variability in water chemistry, metal 

bioavailability, and species proneness to deformities [17]. Although correlations between % 

deformities and metal concentrations are sometimes unclear, the presence of teratologies is a red flag 

for environmental stress, suggesting that additional water quality measurements may be needed to 

highlight contamination from other sources and types than those initially analyzed. From a 

biomonitoring perspective, including the % deformities in a multi-metric index could broaden the 

range of anthropogenic impacts detected by current diatom indices and allow identification of the 

main pressures under multi-stress scenarios [69].  

       

Figure 3. Mean % teratologies (± SE) for sites with background metal contamination versus low, 

moderate and high toxicity based on CCU values (left panel). Examples of normal (left) and 

abnormal (right) specimens observed at JC 8 and JC 9, scale bar = 10 μm (right panel). 

As a general trend, abnormal valve shape was the most frequent type of teratology 

encountered, although striae/fibulae aberrations were common at JC4, NC1 and NC2, and abnormal 

sternum/raphe were often observed at JC6 and JC7. Lavoie et al. [17] discuss the possible interest in 

considering the type of deformation in monitoring, where the nature and timing of environmental 
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stressors may have an influence on the response. However, in this study, no trend or relationship 

was observed beyond the above-mentioned observation.  

4. Conclusions 

This study on water chemistry and diatom assemblages revealed that Junction Creek and its 

tributaries are under multiple stressors, both from present and past mining operations in the region, 

but also from urban development and related activities. Diatom assemblages reflected the contrasted 

environmental conditions in the area and the different types of pressures (metals and/or nutrients 

and/or salinity and/or PAH). As a general summary of water quality in the study area, it seems that 

the three Nolin Creek sites are the most contaminated by metals and are the main contributors to the 

metal loads in the lower portion of Junction Creek. As expected, these sites are dominated by 

metal-tolerant diatoms. Sites JC7-JC8-JC9 along the Junction Creek gradient seem to be the most 

nutrient-enriched based on phosphorus concentrations and on the presence of nutrient-loving taxa, 

reflecting past and present urban activities. The level of abnormal diatoms in the samples from sites 

JC8 and JC9 undoubtedly reflects a response to one or multiple stressors, and suggests that the lower 

portion of the watercourse needs to be further investigated.  

Considerable efforts have been deployed to rehabilitate the Junction Creek watershed and to 

decrease SO2 emissions and airborne particles, leading to marked improvements in the chemical, 

physical and biological integrity of the system and surrounding water bodies. However, despite an 

obvious increase in water quality, the Junction Creek system is still relatively impaired. The extent of 

recovery differs among organisms, and the confounding effects of multiple anthropogenic activities 

renders difficult the task of “measuring” the success of rehabilitation actions. As Junction Creek and 

the nearby aquatic ecosystems are slowly recovering from their past industry-related pressures, 

water managers must now deal with rapid urban and residential development and their associated 

problems. Climate change will also be an important variable to consider in future monitoring of 

aquatic ecosystems in Sudbury and its surroundings. According to information from the Greater 

Sudbury Climate Change Consortium [70], it is estimated that Ontario will warm an average of 2 to 5 

ºC within the next 75 to 100 years, with more frequent and severe extreme events such as floods and 

droughts. In the Greater Sudbury region, climate change is projected to result in an increase of 2 ℃ 

in summer and 1 ℃ in winter for the 2010–2039 period. These climate-related changes will certainly 

interact with environmental pressures and affect recovery processes and trajectories. Diatom-based 

monitoring is a reliable, sensitive and cost-effective approach for assessing aquatic ecosystem health; 

changes in diatom assemblage structure are quickly observed as a response to changing 

environmental conditions. As warming-induced effects on diatom communities were previously 

shown to interplay with metal stress [71], long term monitoring of the area’s recovery is 

recommended. The present study lays the foundation for future diatom-based monitoring in the 

region, and will serve as a point in time reference for assessing further recovery (or potential 

degradation as a result of climate change) of the Junction Creek system.  

Supplementary Materials: The following are available online at www.mdpi.com/2076-3298/5/2/30/s1, Table S1: 

Relative abundances of the dominant taxa (at least 5% in a least one sample) observed in the 19 samples.  

Acknowledgments: The authors would like to thank Louise-Emmanuelle Paris for her precious help during 

sampling. Emilie Saulnier-Talbot edited this manuscript and provided helpful suggestions. Financial support 

from the Fonds de recherche du Québec–Nature et technologies is gratefully acknowledged. C. Fortin is 

supported by the Canada Research Chair Program. 

Author Contributions: Each author made substantial contributions to this paper. Isabelle Lavoie was 

responsible for diatom analyses, interpretation of data and redaction of the paper. Claude Fortin and Vincent 

Laderriere designed the study. Vincent Laderriere conducted field sampling and chemical analyses. Soizic 

Morin and Claude Fortin assisted in the writing and revision of the paper and contributed to data 

interpretation. All authors approved the submitted version and version substantially edited by journal staff that 

involves the author’s contribution to the study, and agree to be personally accountable for the author’s own 

contributions and for ensuring that questions related to the accuracy or integrity of any part of the work, even 



Environments 2018, 5, 30 15 of 18 

ones in which the author was not personally involved, are appropriately investigated, resolved, and 

documented in the literature. 

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the 

design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in 

the decision to publish the results. 

References 

1. Jaagumagi, R.; Bédard, D. Junction Creek System (Sudbury) Environmental Monitoring Study, September 1999; 

Ontario Ministry of the Environment Northern Region, Sudbury District Office: Sudbury, ON, Canada, 

2002; p. 90. 

2. Gunn, J.; Sarrazin-Delay, C.; Wesolek, B.; Stasko, A.; Szkokan-Emilson, E. Delayed recovery of benthic 

macroinvertebrate communities in Junction Creek, Sudbury, Ontario, after the diversion of acid mine 

drainage. Hum. Ecol. Risk Assess. 2010, 16, 901–912. 

3. Weber, L.P.; Dubé, M.G.; Rickwood, C.J.; Driedger, K.; Portt, C.; Brereton, C.; Janz, D.M. Effects of multiple 

effluents on resident fish from Junction Creek, Sudbury, Ontario. Ecotoxicol. Environ. Saf. 2008, 70, 433–445. 

4. Keller, W.; Yan, N.D.; Somers, K.M.; Heneberry, J.H. Crustacean zooplankton communities in lakes 

recovering from acidification. Can. J. Fish. Aquat. Sci. 2002, 59, 726–735. 

5. Yan, N.D.; Girard, R.; Heneberry, J.H.; Keller, W.B.; Gunn, J.M.; Dillon, P.J. Recovery of copepod, but not 

cladoceran, zooplankton from severe and chronic effects of multiple stressors. Ecol. Lett. 2004, 7, 452–460. 

6. Yan, N.D.; Keller, W.; Somers, K.M.; Pawson, T.W.; Girard, R.E. Recovery of crustacean zooplankton 

communities from acid and metal contamination: Comparing manipulated and reference lakes. Can. J. 

Fish. Aquat. Sci. 1996, 53, 1301–1327. 

7. Scheibener, S.A.; Rivera, N.A.; Hesterberg, D.; Duckworth, O.W.; Buchwalter, D.B. Periphyton uptake and 

trophic transfer of coal fly-ash-derived trace elements. Environ. Toxicol. Chem. 2017, 36, 2991–2996. 

8. Fadhlaoui, M.; Pierron, F.; Couture, P. Temperature and metal exposure affect membrane fatty acid 

composition and transcription of desaturases and elongases in fathead minnow muscle and brain. 

Ecotoxicol. Environ. Saf. 2018, 148, 632–643. 

9. Scott, G.R.; Sloman, K.A. The effects of environmental pollutants on complex fish behaviour: Integrating 

behavioural and physiological indicators of toxicity. Aquat. Toxicol. 2004, 68, 369–392. 

10. Lavoie, I.; Lavoie, M.; Fortin, C. A mine of information: Benthic algal communities as biomonitors of metal 

contamination from abandoned tailings. Sci. Total Environ. 2012, 425, 231–241. 

11. Leguay, S.; Lavoie, I.; Levy, J.L.; Fortin, C. Using biofilms for monitoring metal contamination in lotic 

ecosystems: The protective effects of hardness and pH on metal bioaccumulation. Environ. Toxicol. Chem. 

2016, 35, 1489–1501. 

12. Lavoie, I.; Campeau, S.; Zugic-Drakulic, N.; Winter, J.G.; Fortin, C. Using diatoms to monitor stream 

biological integrity in Eastern Canada: An overview of 10 years of index development and ongoing 

challenges. Sci. Total Environ. 2014, 475, 187–200. 

13. Kelly, M.G.; Whitton, B.A. The Trophic Diatom Index: A new index for monitoring eutrophication in 

rivers. J. Appl. Phycol. 1995, 7, 433–444. 

14. Prygiel, J.; Coste, M.; Bukowska, J. Review of the major diatom-based techniques for the quality 

assessment of rivers—State of the art in Europe. In Use of Algae for Monitoring Rivers III; Prygiel, J., Whitton, 

B.A., Bukowska, J., Eds.; Agence de l’Eau Artois Picardie: Douai, France, 1999; pp. 224–238. 

15. Morin, S.; Cordonier, A.; Lavoie, I.; Arini, A.; Blanco, S.; Duong, T.T.; Tornés, E.; Bonet, B.; Corcoll, N.; 

Faggiano, L.; et al. Consistency in diatom response to metal-contaminated environments. In Handbook of 

Environmental Chemistry; Guasch, H., Ginebreda, A., Geiszinger, A., Eds.; Springer: Heidelberg, Germany, 

2012; Volume 19, pp. 117–146. 

16. Debenest, T.; Silvestre, J.; Coste, M.; Delmas, F.; Pinelli, E. Herbicide effects on freshwater benthic diatoms: 

Induction of nucleus alterations and silica cell wall abnormalities. Aquat. Toxicol. 2008, 88, 88–94. 

17. Lavoie, I.; Hamilton, P.B.; Morin, S.; Kim Tiam, S.; Kahlert, M.; Gonçalves, S.; Falasco, E.; Fortin, C.; 

Gontero, B.; Heudre, D.; et al. Diatom teratologies as biomarkers of contamination: Are all deformities 

ecologically meaningful? Ecol. Indic. 2017, 82, 539–550. 

18. Morin, S.; Corcoll, N.; Bonet, B.; Tlili, A.; Guasch, H. Diatom responses to zinc contamination along a 

Mediterranean river. Plant Ecol. Evol. 2014, 147, 325–332. 



Environments 2018, 5, 30 16 of 18 

19. Morin, S.; Bonet, B.; Corcoll, N.; Guasch, H.; Bottin, M.; Coste, M. Cumulative stressors trigger increased 

vulnerability of diatom communities to additional disturbances. Microb. Ecol. 2015, 70, 585–595. 

20. Guasch, H.; Navarro, E.; Serra, A.; Sabater, S. Phosphate limitation influences the sensitivity to copper in 

periphytic algae. Freshw. Biol. 2004, 49, 463–473. 

21. Tlili, A.; Bérard, A.; Roulier, J.-L.; Volat, B.; Montuelle, B. PO43− dependence of the tolerance of autotrophic 

and heterotrophic biofilm communities to copper and diuron. Aquat. Toxicol. 2010, 98, 165–177. 

22. Nriagu, J.O.; Wong, H.K.T.; Lawson, G.; Daniel, P. Saturation of ecosystems with toxic metals in Sudbury 

basin, Ontario, Canada. Sci. Total Environ. 1998, 223, 99–117. 

23. Gunn, J.; Keller, W.; Negusanti, J.; Potvin, R.; Beckett, P.; Winterhalder, K. Ecosystem recovery after 

emission reductions: Sudbury, Canada. Water Air Soil Pollut. 1995, 85, 1783–1788. 

24. Keller, W.; Yan, N.D.; Gunn, J.M.; Heneberry, J. Recovery of acidified lakes: Lessons from Sudbury, 

Ontario, Canada. In Acid Rain—Deposition to Recovery; Brimblecombe, P., Hara, H., Houle, D., Novak, M., 

Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 317–322. 

25. Potvin, R.R.; Negusanti, J.J. Declining industrial emissions, improving air quality, and reduced damage to 

vegetation. In Restoration and Recovery of an Industrial Region: Progress in Restoring the Smelter-Damaged 

Landscape near Sudbury, Canada; Gunn, J.M., Ed.; Springer: New York, NY, USA, 1995; pp. 51–65. 

26. Keller, W.; Gunn, J.M.; Yan, N.D. Evidence of biological recovery in acid-stressed lakes near Sudbury, 

Canada. Environ. Pollut. 1992, 78, 79–85. 

27. Pearson, D.A.B.; Gunn, J.M.; Keller, W. The past, present and future of Sudbury’s Lakes. In The Physical 

Environment of the City of Greater Sudbury; Rousell, D.H., Jansons, K.J., Eds.; Special volume 6, Ontario 

Geological Survey: Sudbury, ON, Canada, 2002; pp. 195–215. 

28. Neary, B.P.; Dillion, P.J.; Munro, J.R.; Clark, B.J. The Acidification of Ontario Lakes: An Assessment of Their 

Sensitivity and Current Status with Respect to Biological Damage; Technical Report; Ontario Ministry of 

Environment: Dorset, ON, Canada, 1990; p. 170. 

29. Keller, W. Limnology in northeastern Ontario: From acidification to multiple stressors. Can. J. Fish. Aquat. 

Sci. 2009, 66, 1189–1198. 

30. Lento, J.; Dillon, P.J.; Somers, K.M.; Reid, R.A. Changes in littoral benthic macroinvertebrate communities 

in relation to water chemistry in 17 Precambrian Shield lakes. Can. J. Fish. Aquat. Sci. 2008, 65, 906–918. 

31. Association Française de Normalisation (AFNOR). Water Quality—Sampling, Treatment and Analysis of 

Benthic Diatoms from Streams and Canals (Standard NF T90-354); AFNOR: La Plaine Saint-Denis, France, 

2016; p. 119. 

32. Lemieux, E.S.; Gunn, J.M.; Sheardown, J. Fish Community Assessment of Junction Creek 2004; Coop 

Freshwater Unit, Junction Creek Stewardship Committee: Sudbury, ON, Canada, 2004; p. 68. 

33. Souter, L.E.; Watmough, S.A. Geochemistry and toxicity of a large slag pile and its drainage complex in 

Sudbury, Ontario. Sci. Total Environ. 2017, 15, 461–470. 

34. Lavoie, I.; Hamilton, P.B.; Campeau, S.; Grenier, M.; Dillon, P.J. Guide d’Identification des Diatomées des 

Rivières de l’Est du Canada; Presses de l’Université du Québec: Quebec City, QC, Canada, 2008. 

35. Falasco, E.; Bona, F.; Badino, G.; Hoffmann, L.; Ector, L. Diatom teratological forms and environmental 

alterations: A review. Hydrobiologia 2009, 623, 1–35. 

36. Lavoie, I.; Campeau, S.; Grenier, M.; Dillon, P.J. A diatom-based index for the biological assessment of 

eastern Canadian rivers: An application of correspondence analysis (CA). Can. J. Fish. Aquat. Sci. 2006, 63, 

1793–1811. 

37. Grenier, M.; Campeau, S.; Lavoie, I.; Park, Y.S.; Lek, S. Diatom reference communities in Quebec (Canada) 

streams based on Kohonen self-organizing maps and multivariate analyses. Can. J. Fish. Aquat. Sci. 2006, 

63, 2087–2106. 

38. Ter Braak, C.J.F.; Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software 

for Canonical Community Ordination (Version 4.5); Biometris: Wageningen, The Netherlands, 2002. 

39. Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical 

approach. Ecol. Monogr. 1997, 67, 345–366. 

40. McCune, B.; Mefford, M.J. Multivariate Analysis of Ecological Data, Version 4.01; MJM Software: Gleneden 

Beach, OR, USA, 1999; p. 237. 

41. Clements, W.H.; Carlisle, D.M.; Lazorchak, J.M.; Johnson, P.C. Heavy metals structure benthic 

communities in Colorado mountain streams. Ecol. Appl. 2000, 10, 626–638. 



Environments 2018, 5, 30 17 of 18 

42. Canadian Council of Ministers of the Environment (CCME). Canadian Environmental Quality Guidelines; 

CCME: Winnipeg, MB, Canada, 1999. 

43. US EPA. Draft Aquatic Life Criteria for Aluminum in Freshwater. Available online: 

https://www.epa.gov/wqc/2017-draft-aquatic-life-criteria-aluminum-freshwater-documents (accessed on 

21 November 2017). 

44. Guasch, H.; Leira, M.; Montuelle, B.; Geiszinger, A.; Roulier, J.-L.; Tornés, E.; Serra, A. Use of multivariate 

analyses to investigate the contribution of metal pollution to diatom species composition: Search for the 

most appropriate cases and explanatory variables. Hydrobiologia 2009, 627, 143–158. 

45. Rozon-Ramilo, L.D.; Dubé, M.G.; Rickwood, C.J.; Niyogi, S. Examining the effects of metal mining 

mixtures on fathead minnow (Pimephales promelas) using field-based multi-trophic artificial streams. 

Ecotoxicol. Environ. Saf. 2011, 74, 1536–1547. 

46. Davidson, J. Applying the Reference Condition Approach to Monitor Invertebrates in Streams of the 

Sudbury Mining Area. Master’s Thesis, Laurentian University: Sudbury, ON, Canada, December 2002. 

47. Driedger, K.L.F. Effects of Metal Mine and Municipal Wastewater on Growth and Energy Stores in 

Juvenile Fishes. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, October 2009. 

48. Conservation Sudbury. Vermillion River Watershed. Surface Water Quality Report on Current Conditions; 

Conservation Sudbury: Sudbury, ON, Canada, 2017; p. 43. 

49. CWWF. Canada-Ontario Clean Water and Wastewater Fund. Available online: 

https://www.canada.ca/en/office-infrastructure/news/2017/05/backgrounder_canadaandontarioannounce 

fundingforcleanwaterandwast2.html?=undefined&wbdisable=true (accessed on 28 November 2017). 

50.  The Sudbury Star. Available online: http://www.thesudburystar.com/2015/08/05/fish-return-to- 

sudburys-nolin-creek (accessed on 12 November 2017). 

51. Cattaneo, A.; Couillard, Y.; Wunsam, S.; Courcelles, M. Diatom taxonomic and morphological changes as 

indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J. Paleolimnol. 2004, 32, 163–175. 

52. Cattaneo, A.; Couillard, Y.; Wunsam, S.; Fortin, C. Littoral diatoms as indicators of recent water and 

sediment contamination by metals in lakes. J. Environ. Monit. 2011, 13, 572–582. 

53. Duong, T.T.; Morin, S.; Herlory, O.; Feurtet-Mazel, A.; Coste, M.; Boudou, A. Seasonal effects of cadmium 

accumulation in periphytic diatom communities of freshwater biofilms. Aquat. Toxicol. 2008, 90, 19–28. 

54. Luís, A.T.; Teixeira, P.; Almeida, S.F.P.; Ector, L.; Matos, J.X.; Ferreira da Silva, E.A. Impact of acid mine 

drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the 

surrounding streams of Aljustrel mining area (Portugal). Water Air Soil Pollut. 2009, 200, 147–167. 

55. Martin, G.; Fernandez, M.D.L.R. Diatoms as indicators of water quality and ecological status: Sampling, 

analysis and some ecological remarks, Ecological Water Quality. In Water Treatment and Reuse; Voudouris, 

K.; Ed.; InTech: London, UK, 2012; pp. 183–204. 

56. Morin, S.; Vivas-Nogues, M.; Duong, T.T.; Boudou, A.; Coste, M.; Delmas, F. Dynamics of benthic diatom 

colonization in a cadmium/zinc-polluted river (Riou-Mort, France). Fundam. Appl. Limnol. Arch. Hydrobiol. 

2007, 168, 179–187. 

57. Coste, M.; Boutry, S.; Tison-Rosebery, J.; Delmas, F. Improvements of the Biological Diatom Index (BDI): 

Description and efficiency of the new version (BDI-2006). Ecol. Indic. 2009, 9, 621–650. 

58. Kelly, M.; Urbanic, G.; Acs, E.; Bennion, H.; Bertrin, V.; Burgess, A.; Denys, L.; Gottschalk, S.; Kahlert, M.; 

Karjalainen, S.; et al. Comparing aspirations: Intercalibration of ecological status concepts across European 

lakes for littoral diatoms. Hydrobiologia 2014, 734, 125–141. 

59. Van Dam, H.; Mertens, A.; Sinkeldam, J. A coded checklist and ecological indicator values of freshwater 

diatoms from The Netherlands. Neth. J. Aquat. Ecol. 1994, 28, 117–133. 

60. Trobajo Pujadas, R. Ecological Analysis of Periphytic Diatoms in Mediterranean Coastal Wetlands (Empordà 

Wetlands, NE Spain); Koeltz Scientific Books: Koenigstein, Germany, 2007; Volume 7. 

61. Della Bella, V.; Puccinelli, C.; Marcheggiani, S.; Mancini, L. Benthic diatom communities and their 

relationship to water chemistry in wetlands of central Italy. Int. J. Limnol. 2007, 43, 89–99. 

62. Rimet, F. Diatoms: An Ecoregional Indicator of Nutrients, Organic Matter and Micropollutants Pollution. 

Ph.D. Thesis, Université de Grenoble, France, 2012. 

63. Krammer, K.; Lange-Bertalot, H. Bacillariophyceae 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula 

(Lineolatae) und Gomphonema. G. Fischer Verlag.: Stuttgart, Germany, 1991; Volume Band 2/4. 

64. Morin, S.; Duong, T.T.; Dabrin, A.; Coynel, A.; Herlory, O.; Baudrimont, M.; Delmas, F.; Durrieu, G.; 

Schäfer, J.; Winterton, P.; et al. Long-term survey of heavy metal pollution, biofilm contamination and 



Environments 2018, 5, 30 18 of 18 

diatom community structure in the Riou-Mort watershed, South West France. Environ. Pollut. 2008, 151, 

532–542. 

65. Arini, A.; Feurtet-Mazel, A.; Maury-Brachet, R.; Pokrovsky, O.; Coste, M.; Delmas, F. Recovery potential of 

periphytic biofilms translocated in artificial streams after industrial contamination (Cd and Zn). 

Ecotoxicology 2012, 21, 1403–1414. 

66. Bayona, Y.; Roucaute, M.; Cailleaud, K.; Lagadic, L.; Bassères, A.; Caquet, T. Structural and biological trait 

responses of diatom assemblages to organic chemicals in outdoor flow-through mesocosms. Environ. 

Pollut. 2014, 192, 186–195. 

67. Lainé, M.; Morin, S.; Tison-Rosebery, J. A multicompartment approach—Diatoms, macrophytes, benthic 

macroinvertebrates and fish—To assess the impact of toxic industrial releases on a small French river. 

PLoS ONE 2014, 9, e102358. 

68. Rimet, F.; Ector, L.; Dohet, A.; Cauchie, H.M. Impacts of fluoranthene on diatom assemblages and frustule 

morphology in indoor microcosms. Vie et Milieu 2004, 54, 145–156. 

69. Larras, F.; Coulaud, R.; Gautreau, E.; Billoir, E.; Rosebery, J.; Usseglio-Polatera, P. Assessing 

anthropogenic pressures on streams: A random forest approach based on benthic diatom communities. 

Sci. Total Environ. 2017, 586, 1101–1112. 

70. Greater Sudbury Climate Change Consortium. Available online: http://www.sudburyclimateaction.ca/en/ 

(accessed on 19 October 2017). 

71. Morin, S.; Lambert, A.S.; Planes Rodriguez, E.; Dabrin, A.; Coquery, M.; Pesce, S. Changes in copper 

toxicity towards diatom communities with experimental warming. J. Hazard. Mater. 2017, 334, 223–232. 

© 2018 by the authors. Submitted for possible open access publication under the  

terms and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 


