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ASYMPTOTICS IN SMALL TIME FOR THE DENSITY OF A
STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A STABLE
LEVY PROCESS

EMMANUELLE CLEMENT!Y*, ARNAUD GLOTER? AND HUONG NGUYEN?

Abstract. This work focuses on the asymptotic behavior of the density in small time of a stochastic
differential equation driven by a truncated a-stable process with index « € (0,2). We assume that
the process depends on a parameter 8 = (6, O’)T and we study the sensitivity of the density with
respect to this parameter. This extends the results of [E. Clément and A. Gloter, Local asymptotic
mixed normality property for discretely observed stochastic dierential equations driven by stable Lévy
processes. Stochastic Process. Appl. 125 (2015) 2316-2352.] which was restricted to the index a € (1, 2)
and considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus,
we obtain the representation of the density and its derivative as an expectation and a conditional
expectation. This permits to analyze the asymptotic behavior in small time of the density, using the
time rescaling property of the stable process.
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1. INTRODUCTION

We consider the following stochastic differential equation (SDE)
¢
X =z +/ b(XP 0)ds + oL, (1.1)
0

for ¢t € [0,1], where (L¢)¢ejo,1) is a truncated a-stable process with exponent 0 < a < 2 and our aim is to study
the asymptotic behavior, in small time, of the density of (Xf ), the solution of (1.1), as well as its derivative
with respect to the parameter 3 = (#,0)T. This problem plays an important role in asymptotic statistics based
on high frequency observations. Indeed, considering the estimation of 3 from the discrete time observations
(Xiﬁ/n)ogign, and denoting by p?/n(x, y) the transition density of the discrete time process, the estimation rate

of the parameter (§ strongly relies on the asymptotic behavior of the derivative Vﬁpf /n(x,y), as n goes to
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infinity. Based on the results established in the present paper, we derive, in [6], an asymptotic expansion of the
log-likelihood ratio and we prove the LAMN property for the parameter (3.

In the last decades, a large literature has been devoted to the existence and regularity of the density to
the solution (X;);, for ¢ > 0, of a general stochastic equation driven by pure jump Lévy processes. We can
mention the works of Bichteler et al. [2], Picard [14], Denis [8], Ishikawa—Kunita [10], Fournier—Printems [9] and
more recently the works of Debussche-Fournier 7] and Kulik [13], under Hélder continuity assumptions on the
coefficients of the equation and assuming that the equation is driven by an a-stable process.

In this paper, the main contributions are obtained by using the Malliavin calculus for jump processes devel-
oped by Bichteler et al. [2] and adapted to the particular case of equation (1.1) by Clément and Gloter [5].
Although it requires some strong derivability assumptions on the coefficients of the equation, it leads to some
explicit representation formulas for the density and its derivative (see also Ivanenko—Kulik [11]). Let us mention
that alternative representations for the density can be obtained by other methods, for example the method
proposed by Bouleau-Denis [3] based on Dirichlet forms or the parametrix method used by Kulik [13].

To study the asymptotic behavior of the transition density of Xtﬁ and its derivative, in small time, we establish
some representation formulas. This extends the results of Clément and Gloter [5] where only the derivative with
respect to the drift parameter 6 was considered, with the restriction o > 1. These representation formulas involve
some Malliavin weights whose expressions are given explicitly. This permits first to identify in the Malliavin
weights a main part and a negligible part in small time asymptotics and then to derive the asymptotics for
the density stated in Theorems 2.2 and 2.5. In contrast to [5], the exposition now involves the solution of the
ordinary differential equation defined by the deterministic part of (1.1). Moreover, the study of each terms
appearing in the Malliavin weights is complicated by the non integrability of the a-stable process as o < 1.

The present paper is organized as follows. Section 2 contains the main results (Thms. 2.2 and 2.5). Section 3
presents the methodology consisting first in a representation of the density by Malliavin calculus where the
Malliavin weights can be decomposed into a main part and a negligible part and then in the study of their
asymptotic behavior. We prove our main results in Sections 4 and 5. Finally, in Section A, we recall the
Malliavin integration by parts setting developed by [2] and used in [5], and give some representations of the
transition density, its derivative, as well as its logarithm derivative. We also explicit the iterated Malliavin
weights appearing in the expression of the derivative of the density.

2. ASYMPTOTICS FOR THE DENSITY AND ITS DERIVATIVE

We consider the process (Xtﬁ)te[o,l] solution to the stochastic equation (1.1) where (L;)¢cjo,1) is a pure jump
Lévy process defined on a filtered probability space (£2,G,(Gt)ieo,1],P), b is a real valued function and the
parameter 3 = (6,0)7 belongs to R x (0,00). We assume that the following assumptions are fulfilled.

H;: (a) The function b has bounded derivatives up to order five with respect to both variables.

(bi) The Lévy process (L¢)iefo,1] is given by Ly = fo Jio1y #{A(ds, dz) —D(ds, dz)} + fo Ji_1.1je #Ai(ds, dz) where
I is a Poisson random measure, with compensator v(dt,dz) = dt x F'(z)dz where F( ) is given on R* by
F(z) = ‘Z‘%HT(Z), a € (0,2). Moreover, we assume that 7 is a non negative smooth function equal to 1 on
[—1,1], vanishing on [—2,2]¢ such that O <7<1.

(bis) We assume that Vp > 1, [, r 7(u)du < 00, [ |~

T(u)
Under these assumptions, X/’ admits a smooth density for ¢ > 0 (see Sect. A), and we denote by p? (z,y) the
transition density of the Markov process (X/).
Throughout the paper, we will use the following notation. For a vector h € R%, h”T denotes the transpose of
h, and |h| denotes the euclidean norm. For a function f defined on R x R? depending on both variables (z, 3),
here 3 = (#,0)T € R x (0,4+00), we denote by f’ the derivative of f with respect to the variable x, by 9y f the
derivative of f with respect to the parameter 6, by O, f the derivative of f with respect to the parameter o,

and Vg f = (g"ji).

(u) p

T(u)du < 0.

T(U
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The regularity assumption H;(a) on the drift coefficient b is a sufficient condition to obtain the representa-
tions of the density and its derivative. This assumption could be weakened but our methodology is based on
the Malliavin calculus developed in [2] that requires strong regularity assumptions on the coefficients. From
Theorem 10-3 in [2], the computation of the Malliavin operators for a stochastic differential equation needs
coefficients with derivatives up to order three. As we iterate the Malliavin operators we need derivatives up to
order five (see Lem. A.6). Note that we relax the boundedness assumption on b assumed in [5].

Remark 2.1. The assumptions on the Lévy measure are restrictive and one may expect that our results hold
with a more general Lévy measure F(z) = |zl(#lﬂg(z), where ¢ satisfies (b;;) and ¢(0) = 1. However in our
approach the integrability assumptions for the tails of the Lévy process are crucial to ensure that our process
belongs to the Malliavin space. Moreover, the exact a-stable behavior of the Lévy measure around zero is also
largely used (see Lem. 3.1) to study the Malliavin weights asymptotics. The truncation function 7 ensures both
the integrability of |L:|P,Vp > 1, and the exact a-stable behavior around zero (7 = 1). It permits the careful
study of each Malliavin terms appearing in the representation formulas (3.12) and (5.1). All these terms are not
yet being in control without these restrictions on the Lévy measure.

Our aim is to study the asymptotic behavior of pi (x0,u)(the density of X i ) and its derivative with respect

to the parameter 8. To this end, we introduce the solution to the ordinary differential equation
0 1t
gZL’ o X0 —+ E / b (g:’e’xo, 0) dS te [0, 1} (21)
0

Heuristically, 1/a(Xlﬁ/ - g?emo) is close to on'/®L;,, and from assumption Hj(b;), the rescaled process
(n 1/‘1Lt/n)te[0 1) converges in distribution to an a-stable process (L{')ic[0,1] (see Sect. 3.1). Our first result

shows that the density of —( X 15 n e 0@ ) converges to the density of L{, as n goes to infinity.
In what follows, we denote by ¢, the density of L where (L$') is an a-stable process with Lévy measure
v(dz) = W%le;éodz.
With these notations, we can state our main results. In view of statistical applications, we need some unifor-
mity with respect to the parameter around the true value 8 = (6, o) and consequently we study the asymptotic

behavior of p'i* where (3,)n>1 = ((0n, an)T)nzl is a sequence converging to (.

Theorem 2.2. Let (¢;"%™) be the solution to the ordinary differential equation (2.1) and let (Bn)n>1 be a
sequence such that 3, ———> (. For all (xo,u) € R?,

1 On Bn UTy n—oo

1/(xp1 (an ni/o +§?76m$0) - (Poz( )7

2O s
2. Sup,cg sup,, nl/(,pl (20, T FmOnTo) < oo,
where @, is the density of LY.

If the solution to the ordinary equation (1.1) is not given explicitly, we can approximate it by a numerical
scheme. The previous convergence will be preserved if the order of the numerical scheme is sufficiently high.
This is explained in the next remark.

Remark 2.3. If we assume that the function b is of class C'** with respect to = (k > 0) and setting A(f) = bf’
(and A°(f) = f) such that f(¢/"?™,0) = f(c2?",0) + fo (Af)(smP0 @)ds, we obtain

1 t
G Ozo _ 4ot 7/ A°(b) (gsn’e’xo, 9) ds
0

0
:x0+ (A b IEO, / / n,9,10,9> dthtl
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(k.m0 Lo 6,

sn,0,x n,0,x

= St ° nk+1 / / / (A"D) Ctkﬂ 0 9) digyr -+~ diy,
o Jo 0

(k),n,0,z0 t(AOb)(gcg, t? (Ab)(;co, th (AR 1b) (o, (0),n,6,x0

9)+ +T9) for k> 1, and g T = xp.
nﬂ,ro g(k)ﬂlﬁwo
— St

=z + 9+

Assuming moreover that the function b hab bounded derivatives, we deduce that

with ¢,

S k+1

Then from the proof of Theorem 2.2, if n'/®/n*+1 goes to zero, we can replace g{“e”’“ by §1(k)’n’0"’10 in the
statement of the theorem and we obtain

n Uon k),n,0,,x n— oo . 1
nl/apq ( 1/a+§1( ) 0)—><pa(u), if k>E—1.

(0),m,0,,z0

In particular, if & > 1, the choice ¢; = 2 is convenient as established in [5].

Remark 2.4. The results of Theorem 2.2 have been obtained by Kulik [13], using the parametrix method.
The next result gives the asymptotic behavior of the derivatives of the density with respect to the parameters

0 and o.

n—oo

Theorem 2.5. Let (3,)n>1 be a sequence such that 3, —— (3. For all (xq,u) € R?,

n—oo

i) —Fs 0l (o, 2 + <) S —0pb(ao, 0) x @l (),

n UT n,0n,T0
1/ 80101 (580, ni/a +§ )

n—oo
-

—¢a (1) — upl(u),

i1) SUp,cg SUpP,

In . n,0p,x
2;1891)3” (x07 sf'/a +§ 0) ‘ < 00,
n o« n

2
o 3 n,0p,T
0,0 (0, B + 10
n

Sup,ecr SUpPy, < 00.

Considering the statistical experiment (R",8,,P3) corresponding to the observation of (Xiﬁ/n)lgigm

Theorems 2.2 and 2.5 permit to prove in [6] the L2-regularity property of the transition density pf In (z,y):

AR
)" (vt

1 1
nz"a 0
with rate r, = ( ) In this application, the sequence (3, = (0,,0,)7) is (B + r,h). The L2-

n—oo

dy 0,

0 n-z
regularity property (related to the L2-differentiability of 3 — (p )1/2) is the first step to obtain an asymptotic
Pﬂ+7n ;!

expansion of the log-likelihood ratio log (Xf/n,...,Xlﬁ) (see Thm. 2.1 in [6]) and to deduce the

Local Asymptotic Mixed Normality property (see Jeganathan [12]). We proved that the LAMN property

0 Ty

_ 1l 2 0o (u)? (pa(w)tupy (u)* X
T = 25 [, 0ob(XP,0)%ds [ o) du and Tps = % [ e du. As a consequtlence, we deduce that
the estimation rate for 6 is n?~# and that the estimation rate for o is the usual one n~2. Moreover, the best
asymptotic variance of any regular estimator of § (that converges in distribution with rate r,) is the inverse of

the information matrix 7.

T 0
holds (Cor. 2.4 in [6]) for the parameter § with rate 7, and information matrix Z = < M ) where
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The proofs of Theorems 2.2 and 2.5 are based on the representations of the density and its derivative obtained
by using Malliavin calculus and on the study of the asymptotic behavior of the Malliavin weights. This is given
in the next sections.

3. RESCALING AND REPRESENTATION OF THE DENSITY IN SMALL TIME

In this section, we give a representation of the density and identify in this representation the main terms and
the remainder terms. This decomposition is a key step for the convergence study and is mainly based on the
rescaling described in the next subsection.

3.1. Rescaling

We can observe that the process (nl/ “Ly/y) equals in law to a centered Lévy process with Lévy measure

Fo(z) = M%T () (3.1)

As mentioned previously, this clearly suggests that when n grows, the process (n'/*L, /n) converges to an a-
stable process. In the sequel, it will be convenient to construct a family of Lévy processes (L}),>1 with the
same law as (nl/ “Ly/n), on a common probability space where the limiting a-stable process exists as well, and
where the convergence holds true in a path-wise sense, as done in [5].

Let us consider u¢(d¢,dz,du) a Poisson measure on [0,00) x R* x [0,1] with compensating measure
ve(dt,dz,du) = dt‘zdﬁdu and we denote by p¢(dt,dz,du) = p®(dt,dz,du) — v¢(dt,dz, du) the compensated
Poisson random measure. This measure corresponds to the jump measure of an a-stable process, where each
jump is marked with an uniform variable on [0, 1].

We define the Poisson measures (™, for all n > 1, and u by setting :

VA C [0, OO) X R, M(n) (A) = / / / 1A(t7 2)1 < z Me(dta dz,du),
[0,00) JR J[0,1] {“J< )}

wl/a

VA C[0,00) xR, pu(A)= / // 14(t, 2)pf(dt, dz, du).
[0,00) /R J[0,1]

By simple computation, one can check that the compensator of the measure (™ (dt,dz) is v(™(dt,dz) =
dt x T(#)‘Zl‘iﬁ = dt x F,(z)dz and the compensator of u(dt,dz) is v(dt,dz) = dt x —4-. Moreover, we

[z]*
note (™ (dt,dz) = p((dt,dz) — v™(dt,dz) and fi(dt,dz) = p(dt,dz) — v(dt,dz) the compensated Poisson
random measures. Remark that since 7(z) = 1 for |z| < 1, the measures u(™ (dt,dz) and p(dt,dz) coincide on
the set {(t, 2)|t € [0,1], |2] < n'/*}.
Now we define the stochastic processes associated to these random measures,

¢ ¢
Ly :/ / zfi(ds, dz) —|—/ / zu(ds, dz), (3.2)
0 J[-1,1] 0 J[-1,1)°

¢ t
Ly :/ / 2™ (ds, dz) +/ / zu™ (ds, dz). (3.3)
0 [7n1/o¢7n1/o¢] 0 [7,”1/04’”1/&]‘3

By construction, the process (L$') is a centered a-stable process and the process (L}') is equal in law to the

process (nl/ “Lyi/n)tejo,1]; since they are based on random measures with the same compensator. Remark that
/e exactly coincide with the jumps of L® with size smaller than n'/®.
1/«

the jumps of L} with size smaller than n
On the other hand, the process L™ has no jump with a size greater than 2n
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Using that the measures p and p(™ coincide on the subsets of {(t,2);|z| < n'/®}, and the function

z 1 _ 1 : : 1/ Ha-
T(W)W = [z7i7= is symmetric on |z| <n'/*, we can rewrite:

t t t
L} :/ / zfi(ds, dz) —|—/ / zu(ds, dz) —|—/ / 2u™ (ds, dz). (3.4)
0 J[-1,1] 0 Ji<|z|<nl/e 0 Jnl/a<|z|<2nl/

The following simple lemma gives a connection between L™ and the stable process L.

Lemma 3.1. On the event A, = {p({(t,2)|[0 <t < 1,]z] > n'/*}) =0}, we have

p =p, L} =LY, (3.5)
and

P(4,) =1+0(1/n). (3.6)

Furthermore, let (fn)nen and f be measurable functions from £2 x [0,1] x R to R such that there exists C' with
P(C) =1 and Yw € C, Vs € [0,1],V|z| > 1 fn(w,s,2) — f(w,s,z). Then

1
n(w, s, 2)u™ (ds, dz) === ds, d .
/O/Z|>1f(wsz)u (ds,dz) //|>1 w, s, z)pu(ds, dz). (3.7)

ol M—o0
Moreover, we have sup,¢po q) L — L] — 0.

Proof. We know that the measures ,u(") and p coincide on the set {(s,2)[s € [0,1], 2| < n'/*}, and by
comparison of the representations (3.2) and (3.4), it is clear that equation (3.5) holds true on the event
that the supports of the random measure pu and u(™ do not intersect {(t,2)[0 <t < 1,|z| > n'/®}. On
the other hand, the support of u(™ is included in the support of p, and thus (3.5) is true on the event
= {,u ({ t,2)|0 <t<1,|z| > nl/”‘}) = 0}. The probability of the latter event is e~2/®" which converges
to 1 at rate 1/n as stated. Then we also get (3.6).
Let A = U2 A,, we get that P(A) = 1 since A4,, C A,y for each n € N and (3.6) holds. Thus, for all
we€ ANC,Ing(w) > 1,Yn > no(w), u™ = p and f,(w,s,2) — f(w,s,2)¥s € [0,1],V|z| > 1. Then we deduce

that
1
/ / frlw, s, z)p™(ds, dz) —= / / (w, 8, 2)u(ds, dz).
0 |z|>1 |z]>1
We also get sup,c(o 1) |Lf — L§'| == 0. O

3.2. Representation of the density in small time and first approximation

We introduce the process (7:’[3’960) - given by
telo,1

TR oy g/ R S L (R} (3.8)
0

where (L}') is defined by (3.4) and is such that 1/a (L}) equals in law to (L/y,). By construction, the process

(Xg)te[o’l] equals in law (Y?’ﬂ’zo)te[o 1j- Let g™ be the density of Y %% then the connection between the
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n,83,20

densities of X % and Y1 is given by

Py, (0, ) = g0 (2). (3.9)

Using the Malliavin calculus for jump processes recalled in Section A, we get a representation of the density
of X ’(13 involving some random variable Hen 5.2, (1) (Malliavin weight). Moreover, we obtain an asymptotic

expansmn of this weight that leads to the decomposmon of the density into a main part and a remainder part.
To state our next result we define (€7})sep0,1] by

1 s >N xg
€ = exp (n/ y (Yu"” ,0) du) (3.10)
0

and the function p™

2 if |z] <1
() = ¢(2) i1 < o] <2 (3.11)
227_(#) if |Z‘ > 27

where 7 is defined in assumption Hy (b;), and ¢ is a non negative function belonging to C* such that p™ belongs
to C*°. The function p" is an auxiliary function related the the Malliavin calculus developed in [2]. In our
setting, the above choice (not unique) is convenient (see Rem. 4.1).

Theorem 3.2. Under the assumption H;y, we have

pg(aro, u) = ¢ (u ( {HBIOZU}HY?,MO(U), (3.12)
with
1 [0 n n n n
Hﬁ,ﬁ,zo(l) = ;nl/ [ 51 )+H2@( )} + R (1) + RE 5(1) + Rj 5(1). (3.13)

The main terms HY ﬁ(l)ﬂ:\{gﬁ(l) are given by

1 /
rin ()%™ (2)(p™) (2)p ™) (ds, d2)
17;3(1) = fo fR ) = | > (3.14)
| er [fo Julen)2pn ()t (ds, d2)]
=R [ 1 n -1 n ! _ 1—4—704 n (n) ds.d
Hg,’ﬁ(l) — _f() f]R [ (z) P ( )} 1% ( S, Z)‘| \ (315)
i fo Jr (€2 (2)p(™ (ds, dz)
and the remainder terms satisfy for any compact subset Q@ C R x (0, 00)
C C C
Vp >2, Esup|R} L sup |R < —, sup |R% 5(1)] < —, 3.16
ﬁeQ| e < ﬁte 2o < — ﬁte s < — (3.16)

where C is some deterministic constant.
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Let us heuristically explain how this decomposition permits to establish the result of Theorem 2.2. Let (5,,)

n B,
Ve (v O _ 0nm0) converges almost surely to o L,

converges t0 l¢re>,). From Theorem 3.2, we deduce

be a sequence converging to 3. First, from Lemma 4.2, n
this permits to check that 1{ l/a( S Bn .0 gn,gn,zo)zanv}

u+ "0 s close to El{za>u) [ﬁ?)ﬁn(l) + 7:2375,”(1)] and it remains to study the limit

that (;T/Lapl (1‘0, i/
of the main terms.

We can see from the definition of p™ that p"(z) “——» p(z) where

2 if |z] <1
p(z) =< ((2) if1<z] <2 (3.17)
22 if |z| > 2.

Combining this with Lemma 3.1, it permits to establish the almost sure convergence of the main terms:

HY 5, (1) — My e (1), (3.18)
5 5, (1) 2= Hy 1o (1), (3.19)
where Hi o (1), Ho, 1o (1) are given by
Higa(1) = fo Je P(2) p(ds, dz)7 (3.20)
{fo pr p(ds dz)}
H27La(1) _ _fO f]R [ ' - HTap( )] (dS,dZ) (321)

fo fR u(ds,dz)

Moreover, the limit weight Hi re (1) + Ha o (1) can be interpreted as a Malliavin weight (see (4.30)) and we
have the following representation for the density of L

Pa(u) = Elpy o0y (LT)[Hi,20 (1) + Ha, 1o (1)].

This suggests that, as n goes to infinity, 1/apﬁl (20, % SR U T+

m0:70Y s close t0 @

This is rigorously established in the next section.

4. PROOF OF THEOREMS 3.2 AND 2.2

4.1. Proof of Theorem 3.2

The proof is based on the Malliavin calculus developed in Section A. We recall that ¢™®° is the density of
??’B’wo and that the connection between the densities of Xi and ?;l’ﬁ’m is given by pf/n(xo, r) = qvP% (1),
We use the framework of Sections A.1 and A.2, with g(z) = F,(z) = Iz‘ﬁT(ﬁ) and with the auxiliary
function p™ defined by (3.11) such that it satisfies all conditions of Section A.1. From the assumptions on 7, we
22 if 2< 2| < opl/e
0 if |z| >4nl/e.
Moreover, we recall that p"(z) “—=» p(z) where p is defined by (3.17). Note that from the definitions of p"
and p, we can easily see that p™(z) = p(z) if |z| < 2n'/®.

can easily deduce that 2°7(555) = {
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Remark 4.1. The choice of the auxiliary function p™ for |z| < 1 ensures that the non-degeneracy condition
(A.6) is satisfied. It will appear later that the choice of the auxiliary function p™ for |z| > 2 permits to obtain
Malliavin weights sufficiently integrable to compensate the lack of integrability of L{ (see Rem. 5.6 below).

The equation (3.8) (defining (Y i

given explicitly as

%)) is a particular case of (A.1) with the function a and the constant c

(4.1)

a(z,0) = %b(m,@), c=

nl/a’

Under the assumptions H;, we can apply the results of Theorem A.2 to ?;L’ﬁ’wo

is verified by the choice of p™(z) near zero (see (3.11)). Let us denote by U;"" = I'[Y7}
F[Y:”B’IO,UZL’B], then we obtain:

. The non-degeneracy assumption
ﬁ’wo’??ﬁ@o] and th,[i _

Pi (x0,u) = ¢ (u) = E (Hy?@ww}”y?ﬁ*wo (1)> ;
with

Wn,ﬁ LY n,B,To
Hn.s.ao (1) = L L (4.2)

@y

Applying the results of Theorem A.2 and solving the linear equations (A.8)—(A.10) (with @ and ¢ given by (4.1))
we get,

s — nm / / )™ (ds, dz), (4.3)

+2‘;—/ /0 1 /R ()™ [(p">’<z>+ TAOK <z)} i (ds, dz), (4.9)

O’3 €l 3 ! - / €7ll 3 11 /HB5%0 —
wpt = U [ [ @y @ asa + 285 e e et 1)

n

ecalling that F,(2) = —iw=7(=%=) (see , then 2202 = — +T/27"11/:)%if z| < 2n'/®. Based on
R 11 h F, |z\1 nz/ h an ; 1";@ ‘r((z//n /o)y nl/

these expressions and (4.2) we deduce, after some calculus, the decomposition (3.13), where the remainder terms
are given by,

Jy Ja(e) o —f’é:/:ff;’; u(ds, dz)
o€} Jo Jele2) =20 (2)u (ds, dz)
0° o v (V7 e 9) (U2 () s
n(U")?

: (4.7)
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) v (VIR 0) W) s

4.8
O 9

5,5(1) =

We can establish the following bounds for the remainder terms.
For RY 5(1), since (ey) is lower and upper bounded uniformly with respect to 3 (recall (3.10)), and since 7/(z) = 0
on [—1, 1] then for M a positive constant we have

1 7./( / 1/04)
Jo Jiz152 2 #:ua) p(™ (ds, dz)

fol le|>2 22u(m) (ds, dz)

(4.9)

sup [R5(1)] < M
BEQ

Assume that there exists a jump of the Lévy process L7 in [_in/a’_nl/a) U (nl/o‘,2n1/a], then we get
1 " N
Jo f|z|>2 22 (ds, dz) > n*. Thus,

2 |7 (z/nt/?)

1 n
Jo Jase 2 | Fihmiey | 1™ (ds, d2) //
fof\ 527 2,(n) (ds, dz) |z]>2 nl/a

Assume that there are no jumps in [—2n'/®, —n/®) U (n'/ 2n'/%], since 7(z/n'/*) = 1 if |z| < n'/®, then
7/(z/n"/*) = 0 and as a consequence, the right-hand side of (4.9) equals zero in this case.
In both cases, for any p > 1

o/ (2/nV/)

| | @ @)

T/(Z/nl/a)

1 2|7 /)| () : g
Jo Jias2 2 |y | # (ds, d2) - /1/ ( 2 )2 ' (z/nt/®) 1) (ds, dz) (4.11)
Jo 210 2200 (ds, d2) T \Jo e Mt/ fr(z/nl/) ’ .

Now from p(™)(ds,dz) = (™ (ds,dz) +v(™)(ds,dz), by convexity inequality, we have for C(p) a positive constant

2|[ ]G 1 <cwn[['[ ()
wl[] {; ﬁ

Using Kunita’s first inequality (see Thm. 4.4.23 in [1]) for p > 2, there exists a constant D(p) > 0 such that

E /0 1 /iM (nf/af :/((5//:11//:))‘ﬂ(n)(ds’dz)r < D(p) [ /0 1 /|Z|>2 (nf/a)4

' (z/nt @)
T(z/nt/*)

7' (z/nt/)
7(z/nl/®)
' (z/n'/®)
7(z/nt/)

™ (ds, dz)]

/

v™(ds, dz)] .(4.12)

7' (z/nM @) 2
7(z/nl/e)

p/2
0™ (ds, dz)]

! z N2 |7/ (z/nt )",
(p) VO /Z>2 (nl/a)Q T((z//nl/a)) ol )(ds,dz)]
_ D(p) Ul/z ( 1| (w) 2T(u)> dUdS] p/2
ne/2 | Jo Ji \ w3 | 7(u)
7' (u)

[ [ (el o]

()
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where we have used that v(™ (ds,dz) = ds‘z‘ﬁT(z/nl/“)dz and the change of variable u = —

o

Moreover, we have

1 1/a L S e P
/ / (o) rl o dsan| - / / (=) /N L ptfe)azds
0 Jzj>2 \nt/e) | 7(z/nt/e) [Jo Jizp2 A0t/ [ r(z/nt/e) | 2T+
r 1 p2 / P
-1 / / L7 duds]| (4.13)
LnJo Ji ut | 7(u)
Under the assumption H; (b;;), we deduce Esupgeq 71173(1)‘13 <C/n,Vp>2.

.8

Using that b has bounded derivatives and that supgeq supp<,<i % is bounded, the remainder terms
- 1

Ry 5(1), B3 5(1) satisfy the upper bound

3\@

n C
. sup Ry (D] <

sup [Rj 5(1)] <
BeQ

BeQ

)

where C' is some deterministic constant.

4.2. Proof of Theorem 2.2

We first prove that n'/® (?;L”B’IO — g{l’e’xo) is close to a stable Lévy process.

Lemma 4.2. Let (/%) be the solution to the ordinary differential equation (2.1), then

nl/a (?}"5”’“’ - cﬁ*""*“) noo b L, (4.14)

a.s.

for any sequence (3,) converging to 3, and this convergence is uniform with respect to xg.

Proof. Using (3.8) and the boundedness of &', we have for ¢ € [0, 1]

1:8n @
‘nl/a (Yt n,To gzlﬂn,zo) — oLy

1 ¢ a 1P n T n o
[ [b(Ys 0,) — b{si 0™, 0,)] ds + [ Ly — oL

/ Hb/H 1/(1 ( 1, Bn,T0 _ g;z,&n,zo) _ O'Lg :| ds

V|| oo
—&—M/ |LS|ds+ sup |o, L} — oLy,
" t€(0,1]

I /\

where |[0'[|o = sup, g |0'(z,0)|. Applying Gronwall’s Lemma, we get

3 Pn,T ,
nl/Ol (Yl B o _ gi’l79n7w0) _ O.L(IX

sup <C

Zo

1
%/0 |LS|ds + sup |on Ly — oL (4.15)

te[0,1]

where C is a positive constant.
From Lemma 3.1, we have sup,¢jo ) |Ly — L{| 2%, 0 and we deduce Supse(oq] lonly — oL 2%, 0. Since

t— LY is cadlag, we get fol |L%|ds < o0 a.s., then £ fo |L¢|ds 225 0 and we get the result of Lemma 4.2. [
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We now proceed to the proof of Theorem 2.2. From (3.9) and Theorem 3.2, we have the representation

On uo n,0n,x0\ __ On n,B,x n9n,:1:0 _ On
nl/apl ( 1/a+ 1 )*Wq 0( 1/a+ 1 )E< {y”5n£0> uan +§ Gnm} 1/a "ﬁnﬂo >
.16)

where %H??,Bn,mo(l) = ]"m(l) —&—HSﬂW( )+ -5 RY 5, (1) + =Ry 5, (1) + Ry, (1 ), with ng ( ),

ﬁgﬂn(l) given by (3.14), (3.15) and RY 5 (1), R% 5 (1), Ry 5 (1) satisfy the bounds (3.16).
Since V' is bounded and p"(z) > 0, we deduce the upper bounds

s, (0] < fo Jep" (") () (ds. dz) |- i)
[fo fR p(m(ds dz)}

~n . fo Jr [|pn/ 1+Oé,On( )} p(™ (ds, dz)

5,0 < C _ T e , (4.18)

for some constant C* > 0.

We now show that sup,, "}Tl?ﬁn(l)
the two following steps.

Step 1: We show that the right-hand side of (4.17) is bounded by a random variable independent of n and

belonging to N,>1L”. In fact, since the measures ;(™) and u coincide on the set {(s,z)|s € [0,1],]z] < n'/®},
and p"(z) = p(z) on the support of the Poisson measure u(™, we have

p

~ P
and sup,, |Hy 5 (1)

are integrable Vp > 1. The proof will be divided into

fo pr ( ) ")(ds dz) < fo f |z|<2 1p"(2)| p(2)p(ds, dz) folf \>22| z]? H (dS dz)

= 2 5 (4.19)
[fo fR (™) (ds dz)} (fo f\z\§2 p(z)p(ds,dz)) (fo f|2|>2 ZQM(")(ds,dz)>

We first consider the first term in the right-hand side of (4.19). Since p, p’ € Np>1LP(1),<2|2|717*dz), we get

o[ iomanas) | < s .

On the other hand, since p satisfies the non degeneracy assumption (A.6), fo f‘ <2 p(z)p(ds,dz)]~! belongs to
Np>1LP (see [5], Thm. 4, p.2323), we deduce that the first term of (4. 19) belongs to N,>1L*, moreover, it does

not depend on n .

Turning to the second term in the right-hand side of (4.19), since v(™ ({(t,2)[0 <t < 1,]z| > 2}) < 0o, we have

the following representation (see Chap. VI in [4])

/ / 2|22 ™ (ds, dz) 22|Z\3 a.s.,
|z|>2
// )(ds, dz) 222 a.s., (4.21)
| |>2
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where N = (N;)1>1>0 is a Poisson process with intensity \,, = le\>2 F,(2)dz < o0, and (Z;);>0 are i.i.d. random
variables independent of N with probability measure %:‘”dz. Thus,

1 n 1 1
Jo Jisp2 2P0 s dz) - 5 g z2 w2z

(folf\z\>2 ZQM(n)(ds,dz))2 (ZNl Z2)2 AN,

where we used Z2? > 0 and |Z;| > 2. We deduce that sup,,

~ P
'Hfﬁn(l)‘ is integrable Vp > 1.

N P
Step 2: We show that sup,, ‘Hg,ﬂn (1)’ is integrable.
Using the definitions of p™ (recall (3.11)), p (recall (3.17)) and p™ = p on the support of the Poisson measure

(n)

u'™ (see Sect. 3.2), we have
Jo i [l ()] + 5207 (2)| 1) (ds, az) o fas (1)1 + p(=) 17 ) wlds, d2) o
fo Je P (2)utm (ds, dz) - fo f |<2p Ju(ds, dz) .
a)|z|p™ (ds, dz
fo fz|>2 (34 a)|z[p'™ (ds, dz) (4.23)

fo f‘ |>22 p (ds, dz)

where we used fol f\z\§2 p(2)p(ds,dz) >0, fol f|2|>2 p™(2)pu™ (ds,dz) > 0, and the equality of u(™ and p on the

set {(s,2)]s € [0,1],]2] < n'/e}.

Proceeding as for the first term in the right-hand side of (4.19), we also get that the first term of (4.22) belongs
to ﬁpzle.

On the other hand, for the second term of (4.22) we have:

fo f p>2( (34 a)|z|u™ (ds, dz) fo f 2>l (3 + a)z2u™ (ds, dz)

< =3+a.
fO Jiz52 220 (ds, dz) fo Jiojs2 220 (ds, dz)

This completes the proof of Step 2.
We finally deduce (with additionally some uniformity with respect to )

Vp>1, E(sup

sup Hy 5(1)]) < 0. (4.24)

p
Hy (1) + sup |
n,B,zo

Recalling the almost sure convergences (3.18) and (3.19), we get from the dominated convergence theorem the
LP-convergences

Hip, (1) —— Hir=(1), Vp=>1. (4.25)

Hy 5, (1) * 25 Haa (1), Vp 21, (4.26)

where Hy, (1) and Ha 1o (1) are defined respectively by (3.20) and (3.21).
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On the other hand, Lemma 4.2 implies that nl/o‘(??’ﬁ"’xo — g{l’e"’wo) converges almost surely to o L. Then,
using P(L{ = u) = 0, we deduce the almost sure convergence

nl/o‘ ?nvﬁmfo N Cn,&,“a:o
1 1 n— o0

On a.s.

{Y” N Lju,00) Lju,00) (LT)- (4.27)

Applying the dominated convergence theorem, we get the latter convergence in LP, Vp > 1. This gives finally :

On
nl/a

Uoy n,0n,r — «
g (e ) 5 Elle) (L§) e (1), (4.28)

where Hpo (1) = H1,1o(1) + Ha 1o (1) and Hi, (1), Ha, (1) are given by (3.20), (3.21), respectively. Remark
that, we also get from (3.12), (3.13), (3.16) and (4.25), (4.26)

On  n Bnsxo ( Uy n70n7m0)
sup su s +g < 00. 4.29
SUpSUp 7 e TS (4.29)

To finish the proof of the convergence, it remains to show that
cpa(u) = E[l[u,oo)(L?)HL“(l)] (430)

Let us denote by ¢™(u) the density of the variable L}. We consider the situation where the drift function b = 0
and zo = 0 for which n'/*Y7" - = oL}. Then (4.28), (4.29) yield

" (u) == BlLjy,00) (L) HLe (1)] == ¢ (u), (4.31)
sup sup " (u) < 0. (4.32)
ueER n

Assume by contradiction that, for some u, we have ¥ (u) # pq(u). Since P(L{ = u) = 0, it can be seen that ¢
is continuous at the point u. Hence, one can find a continuous, compactly supported, function f such that

/ F@)b(x)dz £ / F(2)palz)dz. (4.33)

On the one hand we have, E[f(L})] = [ f(z =, — [ f(z)¥(z)dx where we have used the dominated
convergence theorem with (4 31) ( 2). On the other hand, we can erte

E[f(LT)] = E[f (L) Lo=roy] + EBIf (LY)1{Lr2rey]- (4.34)

n—oo

By Lemma 3.1, we have P(L} = LY) —— 1. We deduce that,

E[f(L})] "= E[f(L$)] / F(@)gala (4.35)

This last convergence result clearly contradicts (4.33) and we get (4.30).
Combining the preceding results with (4.28), we can get the results of Theorem 2.2.
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5. PROOF OF THEOREM 2.5

The proof is divided into three steps. We first give a representation of the derivative of the density and
explicit the iterated Malliavin weights based on the calculus given in Section A. We then study the convergence
of these weights and proceed to the proof of Theorem 2.5.

5.1. Representation of Vgp." and computation of the iterated Malliavin weights
We intensively use the results of Section A. From Theorem A.4, we have the representation

n, Gn,ro)

+¢

On, B,
vﬂpl (xov / + ? Io)zvﬁqnﬂ wo( 1/a

"B, T
=E 1{7;1/#77 70> wop +4T n,0n, LO}H?Y'ﬂ"'IO (va’ﬁn’wo (vﬁyl 0))] . (51)

nl/ca

Using (A.7), (A.14) and (A.18), (A.19), by some simple calculus, we get the explicit formula for the iterated
Malliavin weight

n,5,T0 69Y1 e 2 V1n’9 2H7},ﬁ,wo (1) 39Y1 e
Hywﬁro (H—nﬁro (VBYI )) = —n.B.zo Yn[}a‘o(l) - o T + Bz
0,Y 1" v U, o y1’
n,B n,3,x " n, "
Hyvlz,ﬁywo (1)W1 N 69Y1 0 M B Vi o L B
(UI”WG)Z 807?,&% (Uln,ﬁ)4 yme (U{L,ﬁ)g
a7y "\ aprs (8T e
10,20 n.By2 —n,8,T0 n ,6 n,o B’ (52)
a, Y | (U"7) 0, | (Uy "

Moreover the processes (8Y b "), and (8,Y) o %), are respectively solution to
10,20 I 1 18,0 BT 1t —1:B3:zo0
Y, == [ VY, L)Y ds+ — [ Opb(Y, ,0)ds, (5.3)
n Jo n Jo
7 Ly
807?,5,960 _ / b,(Yn B, aco7 g)agy;ﬁmcods + 1t . (5.4)
n Jo n /e

For the computations of V;"? = F(Yl’ﬁ o 397?’6’%) and V"7 = I'(Y, yore , O Yl’ﬁ’ ), using (A.15), (A.16)
we have

V0 = 2 (ep)? /01<es>2 (U2 [@oby (T2 0) 4 4" (727 000,707 ) as, (5:5)

1
V{L*’:%(e’f)? /01< D7 (@000, YU ) ds + (e / / (1) 72p" (2)u™) (ds, dz).  (5.6)
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Finally from ((A.20)—(A.23)) we compute explicitly DY mh F(??ﬁ’xo,L nﬂxﬂ) Ql’ﬁ (Y?’B’IU,W{L”B),
0 = P77 v and T = D(Y7°, V7). We get:

"2 1 n\2 1
D?’B: @/ ( ) 2b,,( n,@z()’e)LYZﬁ,moU:’ﬂdS_"_Q/ ( ) 2b//<4’nﬁzo Q)Wsnﬂds
n 0 2n 0
n 1
+(61) / (eg)—2b”’(?:’ﬁ’”°79)(U§’B)2ds
2n 0

S [ [ (0 e ) W s, 57)

S

7(et 4 ! —n,B3,z )4 ! NPT
Qe — (2) /(e ) (TR gy wrPU™Bds + (en) /(e’f)“‘b’”(Y 7 g)Utyds
0

n4/a / / 2) [((0")(2))" + P”(Z)(p")”(z)} 1™ (ds, dz), (5.8)

n\3 1 3 1
e = 3(? /( my=3y (T gyymoymnAs 4 () / (T gywrAds
0 nJo
n\3 1
+(6;) / () (7 9)89Ynﬁm0W7L5d8+(€n) / (1) (@ub)" (V™ 0) (U7 2ds
0
n)3 1 x —=n,B,z
AL [ ey @ g, s, (59)
0
n\3 1 n\3 1 n\3
Tf’“:g(z) /( =3y (7 9)anU"ﬁds+(€) /( my=3y (T )0, Y WA ds +(n)
0

! " "ﬁfo 0BT 1, ’ n
X/O( =3 (TP 0)9, 7 (UnF)2ds 3/a / / (0" (=)™ (ds, dz). (5.10)

From the above calculus and combining with (5.1) and (5.2) we have an explicit representation for the derivative
of the density with respect to parameter 3 that allows to analyze its asymptotic behavior in small time. To
obtain the results of Theorem 2.5, we will study the convergence of each term appearing in the decompostion

(5.2). This is based on the preceding explicit expressions that permit to identify some main terms and some
remainder terms.

In the sequel, we prove that all the terms involving the derivatives of b with respect to x are remainder terms.

5.2. Convergence of the iterated weights

In this section, we study the convergence of the iterated Malliavin weight H—n,ﬁn 20 (H?n,an,mo (V gﬁ 5"’%))

which is the cornerstone of the proof for the convergence of Vgp" 1 later. Flrstly, we state some technical lemmas
useful for our aim. The proofs of these lemmas are postponed to the end of the section.

We recall that (8,Y; o )¢ and (9,Y;" o %); are respectively solution to (5.3) and (5.4).

Lemma 5.1. We have for all compact subset @ C R x (0, 00)
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i) SUpgeg |697f’5 < €. where C is some deterministic constant.

i) ”‘”"“ 0, Vp>1.

Lemma 5.2. Let (5,,) be a sequence converging to 8 and Q be a compact subset of R x (0,00), the following
decompositions and estimates hold,

n—oo

. DyP nl/* 55 n n n
i) (U{LI,;})2 = 5 Hz 5(1) + RY 5(1) + Ry 5(1) + Rg 5(1).

n,B Ja
Wi oy = o His(D) + RE (1) + RE (1)

1 supse[o’l] |8U?ZYB’:EOW£:L’5| n—oo

i)

ZZZ) SUPgeq@ ;i/a+1 (U{"’G)z r 0, Vp>1.
The main terms ﬁg’ﬁ(l),ﬁzﬁ(l) are given by
1 fR<ez>—2pn<z> [<p">”<z> - (p">’<z>@ + () B2 ) (ds,dz)
H37,8(1) = 5 , (5.11)
D2 (o Jelen) 2ot (ds.dz)
1 n\— n Ye3 n n n
ok fR<el> 1 (2) [((7)(2))° + o (2)(p")"(2)| ) (s, az)
Hip(1) = , : (5.12)
)2 (fo faler)2pm(2)u(ds,d2))
where (€4)sejo,1) 15 given by (3.10). Moreover we have for p > land some deterministic constant C
H g, (1) " My e (1), Hig (1) 2225 Hapa (1), (5.13)
n—oo n—oo C
sup [RA (1] 27250, sup [RE(1)] 52 0. sup (R 5(1)] € (5.14)
n—oo C
sup R7 (1] — =0, Zggle sl < 7 (5.15)
where
By o (200" (2) = p(2)7 ()22 + (p(2))” U520 ) (s, dz)
Hs,e(1) = , (5.16)
(fo J p(2)p(ds dz))
Jo Jep(2) |(0/(2))" + p(2)p"(2) | u(ds, d2)
Hy (1) = 0 -R { } . (5.17)

(fo fR wu(ds dz))

Lemma 5.3. Let (3,,) be a sequence converging to B and @ be a compact subset of R x (0,00), the following
estimates hold:

n,0

SE)

i1) SUPgeq nQ/i_l (Unl,ﬁ)z
1
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iii) "1—’ =1 4Ry ,(1),
T’V‘L e 1 o~
w) 1/u W = ?Hg,ﬁ(l) + R?o,ﬁ(l) + RTﬁ,g(l) + R?2,5(1)7
where C' is some deterministic constant. The main term ﬁgﬁ(l) is given by

fo Jr(el) 720" ( (p")/( )u™) (ds, dz)

(5.18)
e (fo Jalen) 2o (2)ut (as, dz))

with (€y) given by (3.10). Moreover, (supgeq |R7 5(1)])9<i<12 converge to zero as n — oo in LP,Vp > 1 and
H&La(l), with

n—oo

Lr,vp=>1

5,6, (1)

Jo Jg ()0’ (), dz). (5.19)

(fo pr u(ds dz))

Lemma 5.4. Let (,) be a sequence converging to 3. For all p > 1, the following convergences hold uniformly
with respect to xg:

Hs, 1o (1)

ndpY (ﬁgn(n)q %, 9pb(o,0) (Hpe (1), Vg > 1, (5.20)
ndp Yy H, (TR, (1) 2725 Ggbleo, 0)Hun (DM 1o (1), (5.21)
nl/eg, e (ﬁgn(l))q 2% I8 (e (1), Va2 1, (5.22)
n! /9, YT (1)HY 5 (1) P2 LML (1)H, e (1), (5.23)

where H(1) = HY 5(1) + HE 5(1) with HE 5(1), HE 5(1) given by (3.14), (3.15); Hpe(1) = Ha,ze (1) + Ho o (1)
where H1, o (1), Ha, 1o (1) are defined by (3.20), (3.21).

Lemma 5.5. Let (83,) be a sequence converging to 3. For all p > 1 the following convergences hold uniformly
with respect to xg:

i) n0gY 1O 5 (1) S pb(wo, 0)Ha, e (1),

.. 3B in n—oo

i) ndgY ) $0H4B (1 )—>L 0pb(0, 0)Ha Lo (1),
—n,Bn,T n— 00

iii) n'/*0,Y ’ gﬂn(l) < L¢Hs3 12(1),

n—0o0

w) nt/*f, yl,ﬁmzo 75 (1) — LYHy pa (1),

where ﬁ§75(1)7ﬁ2ﬂ(1) are given by (5.11), (5.12), and Hsz (1), Ha (1), are defined by (5.16), (5.17).

The uniform convergence with respect to ¢ is not required in this paper but will be useful in [6].
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Remark 5.6. We observe that although L$* does not belong to L, the choice of the auxiliary function p permits
to prove that L§(Hpa(1))?, L¢Hs, 1o (1) and LY¥Hy, - (1) belong to LP,Vp > 1.

Based on the preceding lemmas, we can prove the following convergence result.

n—oo

Proposition 5.7. Let (8,)n>1 be a sequence such that 3,, —— 3 then for allp >1

2

On BT n— 00
nl/aH n,Bn,xQ (H?Tﬁmzo (aayl O)) —>LP H(Q), (524)
(T% " Bn,To n—00 (2)
i Hmsnien (o (907777 ) 22 0pb(ao, O)H (5.25)

where H® and Hf) are some random variables whose expressions do not depend on (3 and b.

Proof. From the equation (5.2), we have

2 »Bn s
#H?Tﬁn,wo (Hyn Bn,zo (80?; " TO))
2
hH?n,Bn.mo (H?n,ﬁn,mo (ao—Y’? ﬁn’xo ))

ni/a

7,8n,T0 7,00\ 2H—n. 5,20 (1 o2 77:PnTo
_ (nz/a r0Y1 )HY?BH,IO(l)2 - (n/ i >Y1 eoll) ("”Zla&yl )

N, 0n T n n,0n NBn,T
n17a aayl ’ nl/a Vvln 7 (Ul ) n[IT/La aoyl ’
n 2 X Mn
HY?,ﬁn,mg (1)W1”’B ng‘/’g_l agy’f B 5o (Wln,ﬁn )2 n27§—1 Vln’e" Wlnvﬂn
X . — = 2 —_—
(Un,ﬁn)z 757& 8UY;L,,3n,aco (U{Laﬁn)zl nZT/La Von (Un,ﬁn)s

1,0n,To n,8n O'i B o n,Bn 0n
. (nz/a r0pY )’ ) 2Dy <nz/3139Y1 ) @t (W; 1y ) — 1 (52

ot Jwpte T\ e vyt Jope T\ e ) Wity

We will prove the convergence of each term in the right-hand side of (5.26)
Term 1: Recall (3.13) and set Hj (1) =HT 5 (1) + Hy 5 (1), R (1) = R5 5 (1) + RE 5 (1). Remark that by

(3.16), we have ‘Rgn(l)’ < % where C is some deterministic constant. Moreover, we can rewrite the first term

as

677/1

n2/a 180}/? o H 1 2

7,6 0 o (1)
nwa Y1

—n,Bn,T

_ (nz/a 180Y1 ’

- M Bn,To
ﬁ(‘) Yl

ﬂﬁn ,Z0 ﬂﬁn L) —n,Bn,To
= g | HB Q) (T L HE ORE () T L HE ()
nl/”‘&,Yl’ Q%agyl’ ' 20,0,V

":Bn,To N 0n,To 1, Bn,T0
2 _9Y 2 _0Y 0pY ;
XR?,ﬂn(l) + <n2/ T inlﬁn . >R?7Bn(1)2 + <nz/ T inlgn . ) (Rgn(l))2 4 <n2/a T 97711@1 o )
e 0sY e 0sY 20,V
xRi g, (LR, (1), (5.27)

2

On

e ¢ ~
)[[iwnwaﬂﬂ+mmm+mmm+m@m}
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where R} 5 (1) is given by (4.6). We can deduce from (3.16), (4.25), (4.26), Lemma 5.4 and Lemma 5.1 that

02 —"1,0n,T0
2 a— 1a Y 2 n—oo a b ,0
( N )(Hyw,mu)) _noe < o (L“"”; )) (Hpa(1))%.

n,Bn,T0 LP Np>1
nl/aa Yl ,Vp2>

Term 2: From (3.13) and Lemma 5.3 part ¢) and part i), we can estimate the second term as

n 2H™, 5. 20 (1) O(=4=)
V 9 Y \Bn,zQ n2/a |:
| — = nOHE (1) +RY 5 (1) +Rp (1)}
(mmwﬁ> (U <UJW/H+;Dan o .

B < O(=)Hp, (1) + O(#=)R1 5, (1) + O(:3=)Rj, (1) )
“\.5 20,RY 5 (1) | 20,R} (1 " " 202RY 5 (DRE 5 (1) | 202RE (DRE, (1
27y (1) + 2R @ | 2005 g Ry, (1A, (1) + 22 R REL,() | 200 R5, (URE 5, ()
where C is some deterministic constant and O(— —5=) is a random variable bounded by —7&. From (3.16), (4.25),

(4.26) and Lemma 5.3, we also conclude that

2
n2(/7’(: . Vl’n,en 27_{??,67“10 (1) 00 0
o2
17a Vn On (Uln,ﬁn) L vp>1 \ 2Hpa (1)

nl/e

8 ~ ~
Term 3: From (3.13) and —5-— = HY g, (1) +R5 5 (1) where HY 5 (1) and Ry 5 (1) are given by (3.14)

(Un 6n)2 On
and (4.7), we have

2 —n,Bn, B
%aey?ﬁ o H??.ﬁn,zo (1)W1n
1/a Oy Y? o (Un’ﬁ")Q

1,0n,To l/a n
Y H (1) ni/e .
n2/a 1 1 n n n
= ( 9,7 e > l Uni +Rip, (1) +Rp,(1) { i, (1) + RE g, (1)

nl/a

N, Bn,T0 1, Bn,T0
nang -~ -~ —T2— (%Y ’ -~
= Hp, (DHY g, (1) + | " 5 e | HE, (DR s, (1

( 1/aa Yn,ﬁmxo) ﬁn< ) 1,,3n( ) ( Una Yl,,@m 0 ﬁn( ) 2,6"( )

1 Bn,T
+ (nQ/a 16«9Y1 ’
1, 8n,T0

9,Y"

1B, To
n n O-Z, aQY
Rlvﬁn (1)R27ﬁn (1) + nt ' 7”7571,7%0
—r on0sY

,Bn o 1 Bn,To
92 0pY ~ —2—=0pY
+ ( 7a=100 11 )Rgn(l)H?ﬁn(l) + (”/ or RE ()RS 5 (1).

" 0n,To —"1,Bn,To
O'na Yl —nl/a&,Yl "

>RMMWMN)

From (3.16), (4.25), (4.26), Lemmas 5.1 and 5.4, we also conclude that

7,0n,20 n,0Bn
nm AP Hgpn om0 (D)W oo (agb(x(h 0)Hi,r, (1) Hr, (1 ))
< gyt ) T e\ L, (0, (1)
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” »Bn l/a

Term 4: Using T = 15, (1) +RE 5 (1) again, we can rewrite

n, ﬁn)z o'n

—n,Bn,T n —n,Bn,T o 2
nzm A 0T (e nQ/a r e N Y L

7,08n,20 Un’ﬁn 4 - —n1,Bn,To o 1;671( ) + 27571( )
6 Y1 ( 1 ) ma Yl n

n,06n,T0 o2 N 0n,To
OpY -~ e 0pY
= (’19 i >(Hﬁmﬁﬂf+-<”/ o ><R3m<nf

1,Bn,T0 1,08n,%0
nl/aaoyl " nl/aa Yl "

2 "B, To

- agY -~

+ i/t —nlﬁ T >R35 (1)H’f6 (1)
( 200,0,Y 0

nl/a

From (3.16), (4.25), (4.26), Lemmas 5.4 and 5.1, we also conclude that

<27§159Y?’ﬁ"’r0> (W77)? s <3eb(xo,9)(H1,La(1))2>

9 ?711 Bn,To (U{Lﬁn)4 LP Vp>1 L‘l" (’HLLa(l))2

ni/a

Term 5: From Lemma 5.3 we can estimate the fifth term as

1
V’I’Le W’n,ﬁn O(W) <n1/0¢ /\
V) R Hy s, (1) + RS GQ
( nl% Vln On > (Uln,ﬁn)g <nl7a (Rgﬁn(l) + i) on 1,8n 2,6n
_< Ol )5, (1) + Ol )R 5, (1) )
nRe s, (VHY 5, (1) + 552 Re 5, (DR 5 (1) +H g (1) + ;552 R5 5, (1)

where C' is some deterministic constant. From (3.16), (4.25), Lemma 5.3, we also conclude that

) W (0
5% Vn ,On (U{Lﬁn)3 L? Vp>1 Hl,Lf’(l)

nl/o

Term 6: Using Lemma 5.2 we write the sixth term as

<n2/a 1 89}/? ﬂ"7x0> D?”Bn _ ( n69?711”6m$0 > 7:2” (1) + (nl/a 1 80?711 - zo)
vz | TrmBeg =\ ite 5 e | T8, B
Waayqu v (Ulnﬁ )? 9Yy 20,Y e

x ( 1, (1) +R5 5 (1) + Rg,ﬁn(l)) .

Applying Lemma 5.2, Lemma 5.5 and Lemma 5.1 we obtain that

<n2/a T 89}/? o 1’0) QD?ﬁn n—00 (896(960, 0)H3,L” (1)>

S aoyl,ﬁmzo (U{L)ﬂn)z LP,Vp>1 L%HB,LQ(D

where Hg (1) is defined in Lemma 5.2.
Term 7: From Lemma 5.2, we can rewrite the seventh term as
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1, Bn,T0 —N,Bn,x o2 T NBn,To
80Y Qn,ﬁn nd, Y P R AN v
n2/u 1 1 1 _ (FRAN] Hn (1)+ ni/e—1¢01 1 n (1)+Rn (1)

x n an THPn,T 4,0n —n s T 7,8n 8,0n .
( l/aa Ylﬁm 0 > (U] 7371)3 nt/ 9, Br,zo ¢ a B 0 ( B B )

Applying Lemmas 5.2, 5.5 and 5.1 we obtain that

(712‘/’(2'169}/?’6”’“) (O — <5eb($oa9)H4,La(1)>

n[;;"‘ agﬁ,ﬁn \To (Uln’ﬁ”)?’ LP,Vp>1 L¢Hy (1)

where Hy o (1) is defined in Lemma 5.2.
Term 8: From Lemma 5.3, we have

o n,6 o T72 »On

<nz/<;¥Z 1) ) 1 _ ( n2/a=T (i )2 )
o2 rmon "B .
vl 1 ()2 5,5()—#0 R105()+J Rnﬁ()—ka Ry 5, (1)

Using the results of Lemma 5.3, we easily deduce that

2
711272’71 T{Lﬂ" 1 n—oo O
2
g ) PP et \ M pe ()

where Hs (1) is defined in Lemma 5.3.
Finally from the above convergences, we can deduce the result of Proposition 5.7.

O
5.3. Proof of Theorem 2.5
We will first prove part ¢i) and then give a proof for part ).
1) Remark that from (5.24), (5.25)
0—2 " Bn,To
ilelﬁ SlrllpE [T ey 0 ’0}72/(1 1H7?,Bn,zg (HVT,Q,L,IO (0pY )| < o0
and
0-?], MBn,To
ilé%s%pE (Tpone0s sen y oons0y 1/aH no B w0 (Hvil,a,,,,zg (0,Y, )| < o0.
By representation (5.1) this leads to
0—721 B uo n,0,,x O-EL B Uo, n,05,,T
sup sup lﬂ@gp (zo, / +¢77"0)| < 0o and sup sup 1/a8p (2o, / +¢77m )] < o0.
u€R n [N« ueR n |7
i) From (5.1), (4.27) and Proposition 5.7, we easily deduce that
UTQL Bn uo n,0n,T0 n n,Bn,To 0n,ro\ M—00 o (2)
nl/a Gpl (1'07 / +a ) = 1/aa ( 1/a +< 1 ) - E[l[u,OO)(Ll )H ]7 (5'28)
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0727, UOy, n.0, x 0'721 n 2o, UOn n.0, .z n— oo a 2
gflaepin(mo’ nl/a ta) = n%*la‘gq - O(nl/a +o) Opb(o, 0) x E[l[uaoo)(Ll )Hg )]’
(5.29)

n

where H(?) and HEQ) are defined in Proposition 5.7.
To finish the proof of Theorem 2.5, it remains to show that E[1{,, ) (L?)Hf)] = —¢,,(u) and E[1}, o) (LYYHP)] =
— [¢a(u) + ups(uw)]. This is done in Lemma 5.8 below.

Lemma 5.8. We have

Ol (1) = —E[1}y,00) (L§)HP,
— [pa (1) + upa’ (1)] = ElLjy o0 (L§)HP),

where Pa 1S th@ denszty 01 L§ cmd H(Q) and 71’(2) are de?ined mn PT’OpOS?;tZ'O’fL 5.7.
1 1
—n,0,Zo

Proof. Let us consider the situation where b(x,0) = 6 and z¢ = 0. In that case, we have Y; = % + = LY

and thus the density of ﬁn'ﬂ’zo is related to the density of L} by the relation,

q”’ﬁ’xo(u) _ nl/a o (nl/a <u ~ 9)) -
o o n

Then,

2/a—1 1/«
() ===y (M (u-2)),
o o n
nl/o N nl/a "y g B (nl/a)2 B Q ( n)/ nl/a B Q
o2 7 o n o3 YR s \""n))
By a change of variables, we get

n.B.x uo 0 n2/a-1 n
o™ (nl/a + n> =——5—(¥") (v

8an757z0 (’U,) = -

wo 0 nl/a
aaqn,,@,zo <n1/a + n) I 5 [(pn(u) + U((p")/(u)] .

Hence, we can apply the results of part i) of Theorem 2.5 and (5.28), (5.29) in this specific setting. This yields

Vu, (") (u) 22 B[} a0 (LM, (5.30)
Vu,  [@"(u) +u(e™) (u)] === —E[1jy,00) (L§)HP), (5.31)
sup (™) (u)] < o0, (5.32)
sup " (u) + u(¢")' (u)| < oo. (5.33)

u,n

Let us denote X (u) = —E[l[u’oo)(Li")H?)] and assume by contradiction that X # ¢/ . Using the continuity of
u — X(u), there exists a smooth, compactly supported function f, such that [ X(u)f(u)du # [ ¢ (uw)f(uw)du.
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Now, on the one hand we have

[y @swan == [ ) s (534

where we have used the dominated convergence theorem, together with (5.30), (5.32).
On the other hand, we can write,

[ @swan=- [ o wau

= CE[f(L7)] 2 R[] (5.35)
—]@mwmwzfﬁwmm% (5.36)

where the convergence (5.35) is obtained in the same way as (4.35). Clearly (5.36) contradicts (5.34), and we
get El1jy,o0) (LML) = —l, ().

By the same method, let us denote Xl (u) = —E[l}y,00) (L§)HP)] and assume by contradiction that u +— X (u) is
different from u — [goa( )+ u(pa)'( )] Using the continuity of u — Xj(u), there exists a smooth, compactly
supported function f, such that [ X1 (u)f(u)du # [ [pa(u) + u(pa) (u )] f(u)du. Now, we have

/ (" (w) + u(e™) (w)] flu)du == /Xl (5.37)

where we have used the dominated convergence theorem, together with (5.31), (5.33).
On the other hand, letting g(u) = uf(u) and using the integration by parts formula, we can write,

j[[w”(U)%-u(w”)TU)]f(u)du
=/wwmww+/wwwam

=Euwm—/¢%wﬂww—vam Elg'(LD)] "= E[f(L¢)] - Elg'(L3)] (5.38)
=/@mvww—/%wwww=/%mvww+/%wmww, (5.39)

where the convergence (5.38) is obtained in the same way as (4.35). Clearly (5.39) contradicts (5.37), and the
lemma is proved. O

5.4. Proofs of the intermediate lemmas

In this subsection, we give the proofs of Lemmas 5.1-5.5 of Section 5.2.

Proof of Lemma 5.1: i) Since b has bounded derivatives, we obtain from (5.3)

C
sup |69Y1 7Ba$0| S

BeQ n’
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i1) From (5.4) and Gronwall’s Lemma, we get

—n xr C
sup sup &,Ysﬁ’ ’l < — 7= sup |L{|
BeQ s€[0,1] nt/e cion
C S _ C 1
§71/a sup // zi(du, dz) +m// |Z|u(”)(du,dz) (5.40)
n s€l0,1] |[Jo J|z|<1 n 0 Jlz[>1

We now counsider the first term of (5.40).
zfi(du, dz) 3

< 00,

Using Kunita’s first inequality (see Thm. 4.4.23 in [1]) Vp > 2, we have Esup,(o 1 ’fo o<1 ?

and the first term of (5.40) converges to zero in L” Vp > 1.
We now consider the second term of (5.40).
From p(™(ds,dz) = ™ (ds,dz) + v(™(ds,dz) then for Cs(p) a positive constant, we have

#E (/01/Z>1|ZN(")(du,dz)>p< meyze [ (//||>1|zlu("> (du dz> +E<//>1zlv(”) (du d2)> ]

Using again Kunita’s first inequality (see Thm. 4.4.23 in [1]), for p > 2, there exists a positive constant C5(p)
such that
] p

1

nP/QEl 0
p/2

< / / 220 (ds, dz) + /1/ |z|Po(™ (ds, dz)
f— /(l ) 3

np |z|>1 0 Jlz|>1

/2
// e 7(z/n'*)dzds —|— // T 7(z/n'*)dzds
”p/a 21>1 |Z| “ ”p/a i1 \Z| *
p/

|z|2™ (ds, dz)

z|>1

1/ 1/

203 2n 203 2n oo
< /e / / o / / za“ — dzds 0, (5.41)
where we used that 0 < 7 <1 and 7 = 0 on [—2, 2]°. Hence, we get that the second term of (5.40) also converges
to zero in LP,Vp > 1. This finishes the proof of 7). O

Proof of Lemma 5.2: Recall that D!’ and U™’ are given by (5.7) and (4.3). The part i) is proved by

n,B
decomposing (5;7)27 then we obtain that the main term is (5.11) and the remainder terms are
1
"(z/nt*) | (n
n o fo f| |>2 " (2)p" ( ).,-(Z/nua) ( )(ds,dz)
16(1) =

~2p
2
202n1/a(ep) ( L Lo (em)=2pn (2) ) (ds, dz))
' (z/nt > ' (z/nt > 2 n
S T e 2 (07 () [T(g/nl/a; } (T(g//nl/a;) J 005,02

' 202n1/(e (fo Je(€m)=2pm(2) ™ (ds, dz)>2

b
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02 fo (e 2 (V00 0) (2070 TOUm 4 W) ds

2nl+l/a (Uln’ﬁ)
D2 fy ()2 (VT 6) (U9
opl+l/a (U{uﬁ)

n[ﬁ

The part i7) is proved by decomposing 5, then we obtain that the main term is (5.12) and the remainder

()
terms are

D) o () (7 o)W U ds

7,5(1) = 3
nl+l/a (U{l,ﬁ)
e (1) = XD (@) (T ) PyPds,
' pl+l/a (U" 6)

We now study the convergence of the main terms.

From (3.10), the boundedness of & and Lemma 3.1, it is clear that H” 5 5, (1) converges almost surely to Hs o (1).
Moreover, using again the boundedness of ¥, the upper and lower bounds of (" ¥)sefo,1) and the fact that p"(z)
is a non negative function, we deduce the upper bound, for some constant C > 0,

fy Jie (b @) (0" ()] + 97 (2) |pn'<z>| “t“) +(p(2))* U2 ) (s, dz)

(e an a9

’ﬁ;}ﬁ(l)‘ < C (5.42)

Proceeding as in Step 1 in the proof of Theorem 2.2, we show that sup,,

~ P
Hg"ﬁn(l)‘ is integrable. Then

n—oo

applying the dominated convergence theorem, we get ﬁg‘ /Bn(l)

———— Hs o (1). In the same way we prove
L?vp>1
that H? 5 (1) ——2— Hy pa(1).
at Hj 5 (1) Dol L (1)

. . . . . ums . .
Turning to the remainder terms, since b has bounded derivatives and supg sup; E s bounded, we obtain
1

N0,
SUPsefo,1] LY s | SUDse(0,1] (WeF| C

7 R 4(1)] < —— ) 5.43
222' 6ol < 573 (5.43)

sup [R5 5(1)] < C sup
seq P 3e0 nit1/agl i1/ (U2

SUPse0,1] |W§LB|] c

sup |R% 5(1)] < C sup , sup|Rg (1) < ————. 5.44
up [R2 (1) e | SR IREOIS (5.44)

BeQ
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Moreover from (4.3)—(4.5), we get that

Supyepo1 L Y o w0| < 1 fo Jr [|Pn )+ H—\a "(2)| ut™(ds, dz)
sup <
BEQ nl+1/eym? n2ti/e nfo Sz P )(ds, dz)

' (z/nt > n
fo f\ |>2% W m )(ds dz)
n1+1/ozf Jiajs2 221 (ds, d2) ’

sup.epo. (W] _ ol 2 I o )|u<n (ds, dz) (5.15)

BEQ nl-*-l/o‘(U{l’B)2 n2+1l/a [fo pr )(ds dz)

From the results of Step 1, Step 2 in the proof of Theorem 2.2, and the control given in the proof of Theorem 3.2

B, 3
Y0 SUPse[o0,1] |Wsn[ |

n1+1/u(U1nﬂ)2

SUP,co,1] 1LY s

n1+1/aU1n B
and we deduce the convergence of supgeq [R5 5(1)] and supgeq [R7 5(1)]-
It remains to study the convergence of supgeq R 5(1)]-

for (4.11) we can deduce that SUPgeq and supgeq converge to zero in L”,Vp > 1

From the boundedness of (€');c[0,1], the definition of p" (see (3.11)), and since p(™ is a positive measure, we
have

[ 1 [ 2% |7 (z/nt/ e 4 ' (z/nt 7/ (20t 2\ ] n i
fO fz >2 ’I"Lll/o‘ % nf/o‘ T (z /nl/a ) + ‘r(z/nl/“) /”L( )(dS,dZ)
2] (z/ ) (z/ ) (z/ )
Slelg |RLs(1)| < C - - 5 = (5.46)
(Jo fion2 22 (ds,d2))
r 1 [ 3 ! /l/a 24 7! 1/ = 71/& 2\ T . T
fO f|2|>2 JLTl/D‘ T(zZ/:Lll/D‘) + nt/e T FZZ/nnl/D‘ : + T(ZZ/nll/D‘) M( L)(dS, dZ)
(z/ ) (z/ ) (z/ )
<C s 7 ? , (5.47)
nd/c

where we used [, 221" (ds, dz) > n?/, if there exists a jump of the Lévy process in [—2n'/® —nl/*) U
0 Jiz|>2

(n/®,2n/®]. If there are no jumps in [—2n'/*, —n/*) U (n¥/ 2n'/%], since 7(z/n'/*) = 1 if |z| < n'/*, we

have 7/(z/n'/®) = 0 and 7"(z/n'/*) = 0. Thus for M (p) a positive constant we have

7' (z/nt )
7(z/nt/*)

Ccr ! 1 z \3
Esup [R 5(1))" < - B (Ea)
P ROLE Y Y A I B (R
P

()" ([l () | g

7(z/nt/«)
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P
317/ (z/n ) |y
_np/a //|Z>2n1/a nl/a) 7(z/nl/®) p"(ds,dz)
p
4 T”(Z/nl/a)
E (") (ds,d
" / Jo i) |y 7 0
p

+E / ' / (=)' <TT'(<§//§;//:)>)2um(ds,dz)

Similarly to the proof of Theorem 3.2, we show that under assumption Hi(b;;), supgeq [RY 5(1)| converges to
zero as n — oo in L for all p > 1 and this completes the proof of ii).
The result of 4i7) follows from Lemma 5.1 i7) and the estimation (5.45). O

Proof of Lemma 5.3: i) From (5.5), the fact that b has bounded derivatives, supgsupg<s<; %Z is bounded,
(

the upper and lower bounds of (
i1) From (4.3), (5.9) we have

€1'))ief0,1], we deduce 7).

Tln.ﬂ fO 61 3b// 7/3 Zo e)vsn,eU;z,ﬁdS f() 61 89b ( n,B3,T0o

wio (up) n (U"ﬁ)Q nt (Up?)’

D Jo () (T 0000V W (@)° o () 0ot) (V) (U s

LOWMPds

S

na (UI"’B)2 na (U"’B)

()3 [H(em 3 (Y0 0)0,Y o " (UnP)2ds
2 n,B 2 '
nao (Ul’ )

We deduce, using Lemma 5.1 ¢) and Lemma 5.3 7) that

+

T"’a C Sup, WS"’B
sup + Oy su Pse(0,1] ‘ |

_ - , (5.48)
BeQ |, 2 -1 (UIL,L?)Q n% ﬁeQ na (UMP)2

n«

where C7,Cy are some deterministic constants. Now from the estimation (5.45), we easily deduce that

SUPse(0,1] (W
na (U2

*#%447) and 4v) From (4.3), (5.6), (5.10), an easy computation shows the decomposition of ¥ n =< ~ and

SUPgeq tends to zero as n — oo and then we get ii).

e
l/a Wa
where the leading term is (5.18) and the remainder terms are given by

P2 S ()7 (0 (70 000,V U ) ds
n 1 —
W= nU?

9
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)3 [ (e =3y (V0 g Vo UnBds

7110,,6’(1) 2 ’
nl-‘rl/a (U”vﬁ)
. () fo(en) =2 (Yo, 0)0, Yo" WP ds
11,5(1) = e ) ,
nl+l/a (Ul’ )
o 1) AP 000,V U
12,8\1) = :

nl+l/a (Uln,ﬁ)

n,B
Moreover, using that b has bounded derivatives and supg supg<s<; % is bounded, the remainder terms satisfy
- - 1
the upper bounds

C —n.0,z0 Cy suPseoq | Vel
sup |R§ 5(1)] < —sup sup |0,Y , sup [RYy s()| < ———sup |[———————/|,
Be0 | 9,8 ’ n 5eq sefo.1] ol s B0 ’ 10,8 | nl+l/a 5eQ U{L’B
n,8,To 8
Cy SUPselo,1 ‘a Y wg | Cs .0,
sup |Riy 5(1)| < ——577 sup selo.] - s sup Ry 5(1)] < ——= sup sup |9, Y °l,
BEQ n BeQ (Uln,ﬁ) BEQ n B€Q s€[0,1]

where C, Cy, Cy, C3 are deterministic constants.

We observe that from Lemmas 5.1 and 5.2 i), we can deduce immediately the convergences to zero in L, Vp > 1
of the remainder terms supgeq [Rg 5(1)],supseq |R§L1”3( )| and supgeq [R5 5(1)]-

For supgeq [R1y 5(1)], the proof follows from Lemma 5.1 ii), (5.6), (4.3), the boundedness of (€}, the fact that

n,B
b has bounded derivatives and supg sup, % is bounded.
1

The convergence of ﬁg 8. (1) is proved as the convergence of ﬁg 5, (1) in the proof of Lemma 3.3. This completes
the proof Lemma 5.3. O

Proof of Lemma 5.4: We first prove (5.20). From (5.3) we have (we omit the details)

sup \nﬁg??ﬂ"’wo — Ogb(xo, 0)] —>n_’°° 0.

Zo

From the expressions (3.14), (3.15), using sup,, sup,¢joqjl€s — 1| — 0 and Lemma 3.1, it can be seen that
sup [H% (1)7 — Hpa(1)9] 20, VgL (5.49)
o
We deduce that almost surely, one has the convergence
Vg > 1, sup D (ﬁgna))q — Bb(wo, 0) (Hra(1))?] 22 0. (5.50)

Using (4.24) and supg ,, EASS ﬁ " < € we can apply the dominated convergence theorem and see that the

convergence (5.50) holds in LP-norm for all p > 1.
For (5.21): the proof is similar to (5.20).
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For (5.22): using (5.4), Gronwall’s Lemma and Lemma 3.1, we can prove

Sup|n1/a80771’t75m10 _ L?| n— 00 07

To a.s

and from (5.49) we deduce

n— 00
—0

Vg > 1, i/, y o (ﬁgn(l))q — L% (Hpa (1))

Consequently, to prove the convergence in LP-norm, it remains to check

Vp,g>1, E sup

n,B3,z0

~N,0n,T0 - q|p
nt/e0, VT (H(1)) ‘ < oo. (5.51)

Using again (5.4) and Gronwall’s Lemma, we have

sup [n1/*9, Y1) < € sup |Ly),
0,3 te(0,1]

and (5.51) reduces to

p

Vp,q>1, E sup < 00. (5.52)

n,B3,z0

sup L7 (1))’

tefo,1]

Let us recall that LT = fg f\z\<1 zfu(ds,dz) + fot le|>1 21 (ds,dz). Then we have

/ / ii(ds,dz) / / | 2| ™ (ds, dz).
\ \<1 |z]>1

From this decomposition and since sup,¢(g 1] | fot f|2|<1 zfi(ds,dz)|P is integrable, for all p > 1, we see that (5.52)

sup |L}| < sup
t€[0,1] t€[0,1]

is a consequence of (4.24) and the following bound

1 P
Vp>1, E sup Hg(l)/ / |2)u(™ (ds, dz)| < oc. (5.53)
n,B3,z0 0 J|z|>1
To prove (5.53), we first remark from (4.17) that for C' a positive constant,
1 ( 1+704 n (n)
- ! M (ds,dz)  JoJe[lP"(2) p"(2) | p™ (ds, dz)
H,Z(l)// ) ds,a2)| < | [Jofa” (’Z)"“‘ (s, dz) | Jo o |
0 Iz [fo fRP )(ds dZ)} fo pr (2)pu™) (ds, dz)
Jo Jar"( ( )|u™ (ds, dz)

+C

x/l/ |z|p(ds, dz)
0 Jaz|z>1 [f f o7 (2) (™ (ds dz)}

1+a z s,dz)
D fR[p”': P (d§dz) (44 / / s | G
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Considering the first term in the right-hand side of (5.54), from the proofs of Step 1 and Step 2 in Theorem 2.2,
we deduce that it is bounded by a random variable independent of n, 5 and z¢ and belonging to N,>1L?.
We now consider the second term in the right-hand side of (5.54). From (3.11), we have

fo Je P (2 ™) (z) | (ds, dz) fo Iz ['pn/ |+ Ha P (2 )} (s, d2) / / 12|u™ (ds, dz)
z|pt™ (ds, dz
[fo pr M(” ds dz)} fo Je " N(n ds,dz) |z|>2
Jo S22 0 Gl n(5,02) o fca (W2 5 ) iR ) (s, ) s
1 2 (n)(d d |Z|.u L, Z)
(fO f|z|>2 ZQIu(")(d&dz)) fo f\ \>2Z ® ( S5 z |z1>2
1 1
2|23 (™ (ds, dz 34 a)|z|p™ (ds,dz)
Jo Jagsa 2P0 ) Jo Jiziz2 ( 2)\ I / / @) (5.55)
(fol Jiz1>2 ZQM(n)(d&dZ)) fo Jiz2 220 (ds, dz) |21>2
2
Using the Cauchy-Schwarz inequality fo Ji2j52 1" (dt, d2) fof\ 522 (") (ds, dz) (fof\ s 12l (dt, dz))

we get:

2|22 (™) (ds, dz) 2|22 (™) (ds, dz)
Jo Jse / / (ol (at,d2) < Jo S / / L at dz)
=1>2 | |>2

(f() f‘z‘>22; M(n) ds, dz (fo f 2|52 |Z‘u(7l) dt, dZ

-y (L L)
§2</0 /|z|>2,u(dt,dz)> (5.56)

N

and

3+oz)|z|u(") ds,dz)
foj‘ ‘>2 / / |z|p™ (dt,dz) < (34 «) / / w(dt, dz). (5.57)
fo f 2|52 2 )(ds,dz) |2]>2 | \>2

Combining (5.56), (5.57) with (5.55), it follows that the second term in the right-hand side of (5.54) is also
bounded by a random variable independent of n, 8 and zy and belonging to N,>1L”. Consequently, we get (5.53)
and this achieves the proof of (5.22).

For (5.23), the proof is similar to (5.22). O

Proof of Lemma 5.5: From (5.13), we prove i) and ii) proceeding as in the proof of (5.20), and #ii) and iv)
proceeding as in the proof of (5.22). O

APPENDIX A REPRESENTATION OF THE TRANSITION DENSITY VIA
MALLIAVIN CALCULUS

The aim of this section is to represent the density of a pure jump Lévy process as well as its derivative and its
logarithm derivative as an expectation, using the Malliavin calculus for jump processes developed by Bichteler
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et al. [2] and used by Clément and Gloter [5]. We are not exactly in the context of [2], where the compensator
of the Poisson measure is uniform on [0, 1] x E. In fact, in our context the compensator of the Poisson measure
is dt x g(z)dz, where g is the density of the Lévy measure and we need to adapt slightly the definitions of
Malliavin operators given in [2]. We recall here the appropriate integration by parts setting developed in [5] for
the reader convenience.

A.1 Integration by parts setting

We consider a filtered probability space (§2,G, (Gt)ie[o,1), P) endowed with a Poisson random measure y on
[0,1] x E, where E is an open subset of R, with compensator v on [0,1] x E and with compensated measure
i = p —v. We now consider the process (Ytﬁ)te[ogp the solution of

t t
Ytﬁ =Yo + / a(Yf’ 0)ds + CU/ / zu(ds, dz), (A1)
0 0 JE

where the parameter 3 = (0,0)7 belongs to R x (0,0), a is a real valued function and c is a constant.

This is the framework of Clément and Gloter [5] and our aim is to give some explicit representation formulas
for the density of Ylﬁ and its derivative with respect to .

We assume that the following assumptions are fulfilled.

H: (a) The function a has bounded derivatives up to order five with respect to both variables.

(b) The compensator of the Poisson random measure p is given by v(dt,dz) = dt x g(z)dz with g > 0 on E, C*
on E and such that

Vp > 2,/ |z|Pg(z)dz < oo.
E

We now recall the Malliavin operators L and I" and their basic properties (see Bichteler et al. [2], Chapter IV,
Section 8-9-10). For a test function f : [0,1] X E — R ( f is measurable (32 with respect to the second variable,
with bounded derivative, and f € N,>1L”(v)) we set u(f fo i w(dt,dz). We introduce an auxiliary
function p : E +— (0, 00) such that p admits a derivative and p,p and P belong to Np>1LP(g(2)dz). With these

notations, we define the Malliavin operator L, on a simple functional u( f), in the same way as in [5] by the
following equations :

Lp(f)) =

g/
FH (p’f’ +p=f"+ pf”) ;
g

where f’ and f” are the derivatives with respect to the second variable. For & = F(u(f1), .., u(fx)), with F of
class C?, we set
k k

2
L0 =Y S () e i) Z T (W) DAL

p acl@x]

These definitions permit to construct a linear operator L on a space D C Ny,>1L” with the same basic properties
as in equations. (i)—(iii), p.2322 from [5].
We associate to L, the symmetric bilinear operator I

[(®,0) = L(®W) — LY — U LD.
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Moreover, if f and h are two test functions, we have:

L(u(f), u(h) = p(pf'n').

These operators satisfy the following properties (see [2], Eq. (8-3))

LE(®) = F'(6)L + %F”(@)F(qﬁ, ®),
L(F(®),¥) = F/(®)(D,¥),
[(F(Dy,®s),0) = O, F(®y, D) (D1, ¥) + D, F(®1, Do) (Do, D). (A.2)

The operator L and the operator I' permit to establish the following integration by parts formula (see [2],
Props. 8-10, p.103).

Proposition A.1. For @ and ¥ in D, and f bounded with bounded derivatives up to order two, we have
Ef (®)WI(®,P) =Ef(P)(—20Ld — I'(,¥)).

Morover, if I'(®,®) is invertible and I'"*(®,®) € N,>1LP, we have

Ef' (@)@ = Ef (2)Ha(¥), (A.3)

with
He(W) = —20 1 (D, &) L& — (D, WP, D)) (A.4)
= 20U N}, ®) LD — ﬁr(@, v) + ﬁr(@,r@, ?)). (A.5)

A.2 Representation of the density of Ylﬁ and its derivative

The integration by parts setting of the preceding section permits to derive the existence of the density of Yf
given by (A.1), and gives a representation of this density as an expectation. From Bichteler et al. ([2], Sect. 10,
p.130) we know that V¢ > 0, the variable Y;”, the solution of (A.1), belongs to the domain of the operator L,
and we can compute LY, and I'(Y}?, Y}?) as in [5]. We recall the representation formula for the density of Y
(see [5]).

Theorem A.2. [Clément and Gloter [5]]: Let us denote by ¢° the density of Y*. We assume that H holds and
that the auxiliary function p satisfies:

liunig.}f niu ; 1{p(z)>1/ur9(2)dz = +o0. (A.6)
Then,
¢’ (u) = B(1iypsyHyp (1)),
with,
Hyp(1) = rf, ry, vP)) 9 Lyy _ wy _ 2LY15 (A7)

: ryy yP? riypyy)y @iy ol
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where the processes (LY}®) and (U]) = T(Y},Y}) are solutions of the linear equations:

Ly = /Ota'(yf 0)LY ds + - / (Y8, 0)U8ds +— / / < g/(z))u(ds,dz), (A.8)

uf = 2/ (Y5, 0) U’BdercQUZ/ / w(ds, dz). (A.9)
The process (W) = (Y, U) is the solution of the linear equation:

W :3/0t a’(Yf,H)Wfds+2/0 (VP 0)(UP)2ds + o / / u(ds,dz). (A.10)

In [5], the authors studied the derivative of ¢° with respect to the drift parameter 6 only. Here, we intend
to study the derivative of ¢® with respect to both parameters # and o. We first remark that (Yf )¢ admits
derivatives with respect to 6 and o (see [2], Thm. 5.24 p.51), denoted by (9yY;’); and (9,Y,"); respectively.
Moreover, (89Y?)s, (0,Y); are respectively the unique solutions of

t t
aeyﬁ:/ a’(Yf,e)agxgﬂder/ dpa(YLP,0)ds, (A.11)
0 0

t t
0,Y, = /O a' (YP,0)0,Y ds + ¢ /O /E zfi(ds, dz). (A.12)

By iterating the integration by parts formula, since Ylﬁ admits derivatives with respect to 8 and o, one can
prove, under the assumption H, the existence and the continuity in 8 of V¢® (see Thm. 4-21 in [2]), moreover,
we will represent it as an expectation in Theorem A.4. The next result extends the result of Theorem 5 in
[5], by giving an expression for the logarithm derivatives of the density w.r.t. (6,0) in terms of a conditional
expectation.

Theorem A.3. Under the assumptions of Theorem A.2,

90q”
V3q”? e (u)
Sy = ) =B (Hy (9a¥7) 1 =), (A.13)
9 qT(U)
where
o (M (007 P\ e (o w1 (T(¥aY)
Hy s (vﬁYl):: Q] =-2 L) ) - ] @
Hys (057 oY) Ul \d.Y| (Uf) U F(Yl,a,,yl)

LYl’g, Ulﬁ and Wlﬁ are given in Theorem A.2, the process (V) =T (Yt’gﬁthB) is the solution of

t t
Vi =2 / a (YP,0)Vids + / UP [(0pa) (YE,0) +a" (YE,0) 9pY] ds, (A.15)
0 0
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and the process (V7)) =T (Ytﬁ, 5‘0Ytﬁ> is the solution of

t ¢ ¢
Ve = 2/ a (YP,0)veds + / a" (YP,0)0,Y,UPds + 020/ / p(z)u(ds, dz). (A.16)
0 0 0o Je

s
Proof. Theorem A.3 is an extension of Theorem 5 in [5] where the main novelty is the expression for 8‘; a.

For the computation of the new term H, s ((%Yf ), we apply Theorem 10-3 in [2] to the stochastic differential
1
equation satisfied by the vector (Y, U, 8,Y;%)T, this gives the above expression for (V7). O

We end this subsection with an explicit representation of V,@qﬁ (u) which gives a computation of the iterated
Malliavin weight Hy5(Hys (VsYP)).
1 1

Theorem A.4. Under the assumptions of Theorem A.2,

= (W51 8 g (i (772 i
where

Hylﬂ (Hylﬁ (vﬁylﬁ)) = 72HYf’ (vﬁY1B) LY; + Hylﬁ (VﬁYf) Wia r (Ylﬁ’ Hylﬁ (89Y15)> 1

Z ) \remg (o)) 00

(A.18)

where 89Y15, &,Yf are respectively given by equations (A.11), (A.12) and Ulﬂ, Wlﬁ are computed in Theorem A.2,
HYﬁ(Vngﬁ) is given in Theorem A.3.
1

Proof. Let f be a smooth functions with compact support. Then,

Vi [£ ()] = [ auvse’ s,
On the other hand, using the integration by parts formula of the Malliavin calculus, we have
s 1 (1)) =5 1 () ]
5 1 () (50
[ () (i (90))]

where F' denotes a primitive function of f. If f converges to Dirac mass at some point u, from the estimates
above, we can deduce (A.17). Moreover, from (A.5) we also get (A.18). O

To complete the result of Theorem A.4, we give the expressions for I’ (Ylﬁ ,Hyla (39Y16 )) and
B 3
r(vf Hyo (977)):
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Lemma A.5. Under the assumptions of Theorem A.2,

r (Yfa HY{’ (895/1/(3)) V19 89Y1B 2Df ang Hylﬁ (1)Wig 89Yf Qf
HYF (1) - — g+

P (v (o))~ v o) o7 \oot) o o) ()’
70 1 1744 Wﬁ
_<T}>U{’+<Vi"> (Ufl)w (A.19)

where 8pY,8,Y{ are respectively given in (A.11), (A.12), UP, W/ are computed in Theorem A.2, V{ Ve
are computed in Theorem A.3, Hys(1) is given in (A.7) and Df =TI (Yf,LYf), QY =r (Yf,Wf), T! =

r (Yf , Vf’) and TY =T (Yf, Vf’).

Proof. From the basic properties of the operators L and I' (linearity and the chain rule property) stated in
Section A.1, we get that

[ B o B
Lyf o (v, o07)
F(Yf,HYlﬁ (&)Yf)) =T |V, —20,Y) Uﬁl + 0|V 00y | 4T Yf,—T :

1 (Uf) 1

[ 8 5 yB
Iv? W r(vy, o,y
r (Y0 Hyp (037)) = 1|0 =200 0|+ 1 Y000 =L | 41 Y{’,—( - ) :
i U s U
1 (Ul) 1
where
Lyf Lyf vy Lyf
r vy, -0,y =3 | = 2= 1 (v, 00 - P 1 (V0 ) 200 =1 (v 07)
Lyf AT L
— 2Ly 221 Py 9,y =L W
Uy Uy ?
1 1 Uy
s s v 09y
rlyf oy M| = ST (v 0077) + 11 (2w - 200 Wy r(vy.o?)
(w) ] () (v) (v)
_ wy an Y/ Q7 - 200y WY 5
[} 2 1 2 1 3 1-
Gy ()
s L (Yf’aeyf) _ T (Ylﬂ’F (yf,agyf)) r (yf’agyf) 6oy I W s
r|yy, o5 - 5 + () =5 WP

1 1 ) )
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Similarly, we have

LYy ] LYY ,0aYY Lyy

r|vf —20,vf =—2—Lvy- DY + 20,y =2 w.
vy | Uy Uy (Uf)

wh wh 9,Y, 20, Y W’

r Yl 7503/15' ! 2| = [31 2V1{T 2Q5 ; 31 1-
v)y | () () (v7)

I Yﬁ Y’B ] To o
r Yf,—i( ! "2" r) - ——L 4+ Vi SWY.
U U

1 1 (Ul)

Then, from (A.7) and the above estimates, we get the formula (A.19), after some calculus and the proof is
complete. ]

Lemma A.6. Under the assumptions of Theorem A.2, there are versions of the processes (Dtﬁ) =

(r(v2.039)). (@) = £ (@), ), = (1 (37.09)), ond 1, = (0 (37207)), ot

solutions of the linear equations:

t

t t t
Df_Q/ ’(Yﬂ 0) Dﬁds—&-/o a" (YF,0) LYfods—l—%/o a" (YF,0) Wfds+%/0 " (V2,0) (U8)” ds

t t t
Q; :4/ a' (Y2,0) Qfds+7/ a" (YF,0) Wfods+2/ " (VE,0) (UP) ds
0 0

o)L ) tas, ), (A.20)

+C4U4/ / )2+ p(2)p(2)"] u(ds, dz), (A.21)

t t t t
T =3 / a (YP,0)Tlds +3 / a" (YP,0) viUPds + / (9pa) (YF,0) WPds + / a" (YP,0) 0 WPds
0 0 0 0
t t
+ / (@pa)" (Y2, 0) (UP)? + / o (Y2,0) 0pY? (UP)? ds, (A.22)
0 0

t t t
17 =3 [ o (V0 Thds 43 [ o (VL0) VIUds + / o (0.0) 0, Y WEds
0 0

t
+ / a" (YP,0) 0,/ (Uﬁ ds + o / / p(ds,dz). (A.23)
0

Proof. The proof of Lemma A.6 is a direct consequence of Theorem 10-3 in [2]. Indeed, considering the stochastic

T
differential equation satisfied by the vector (Ytﬁ ,LYtﬁ , Utﬁ , Wf AN Vt",ﬁthﬁ , &,Yf ) and using Theorem 10-3
in [2], we prove that the processes (Df) = (F (Ytﬁ,LY;ﬁ>) , (Qf) =TI (Kﬁ,Wtﬁ) , (Tf)t = (F (Y;’B,Vte))
t t t
and (T7), = (F (Yf , V{’)) are solutions of linear equations, respectively, given by (A.20)—(A.23). O
t
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