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Abstract It is well known that in high cycle fatigue (HCF), macroscopically, 
structures undergo elastic shakedown and the stress level commonly determines the 
lifetime. In this domain, the fatigue phenomena is due to local plasticity at the grain 
scale. Therefore, some multiscale HCF multiaxial fatigue criteria were proposed, 
among them the well-known Dang Van criterion. This criterion supposes that in a 
polycrystal, some misoriented grains can undergo plastic shakedown which con-

ducts to crack initiation. The objective of this work is to validate this assumption by 
conducting numerical simulations on polycrystalline aggregates. As it is necessary 
to estimate the stabilized state in each grain of the polycrystal, classical incremen-

tal simulations are not the best way as it will be highly time-consuming because of 
the size of the aggregate. In the recent years, Pommier proposed a method called 
Direct Cyclic Algorithm to obtain the stabilized response of a structure under cyclic 
periodic loading, which it is shown to be more efficient compared to an incremen-tal 
analysis in such situation. However, errors can be obtained in certain case with 
respect to the incremental solution. In this work, a Crystal Plasticity FEM model, 
based on dislocation densities, was used. As a first step, an aggregate of 20 grains of 
AISI 316L stainless steel under strain controlled cyclic loading was studied. Pre-

cise comparisons were conducted with incremental analysis and the results show 
that DCA seems to be an efficient solution in order to estimate the shakedown state 
of polycrystalline aggregates.
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1 Introduction

The fatigue of metals under cyclic loadings is the consequence of crack initiation

and growth until the complete failure of the concerned structure. The design of

metal components requires physically based crack initiation criteria compatible with

structural computation, performed for example by Finite Element Method. In this

aim many theoretical developments were done in the last decades and this con-

ducted to different fatigue criteria. High cycle fatigue (HCF) criteria are generally

stress tensor based while low cycle fatigue (LCF) ones are often defined from strain

variables [22]. However, if elementary mechanisms have been extensively studied,

the complete understanding of transition from cyclic plasticity to strain localization

and crack initiation is still an open problem.

A common approach in LCF and HCF and an improvement of such criteria can

be researched by taking into account the crystalline microstructure and not only the

macroscopic behaviour. In fact, metallic materials are made of an aggregate of grains

more or less well-oriented, with respect to the loading axis. Under mechanical load-

ing, this leads to heterogeneous deformation at the microstructure scale [10, 19]. In

polycrystals with random crystallographic orientations, inhomogeneous stress and

plastic strain fields are established because of orientation, grain shape and size, and

geometrical effects. In LCF, bulk plastic deformation takes place, but this is by no

means homogeneous. It is expected, therefore, that localized regions of preferential

slip develop, leading to similarly localized regions of crack initiation. In HCF, the

material undergoes elastic deformation at the macroscopic level, and it is only in

small areas that plastic deformation occurs. For the case of a polycrystalline metal

subjected to HCF with uniform macroscopic stress, the localized regions deform-

ing plastically are generated again by the inhomogeneity of the stress resulting from

crystallographic orientation, grain shape, etc. Even in HCF, as very localized plastic

straining develops, hardening can occur, leading to a redistribution of stress and a

further localization of plasticity. In other words, this is shakedown occurring, and it

is the basis of the Dang Van criterion for crack initiation [3]. Dang Van argues that

local plastic flow is essential for crack initiation and that, if shakedown occurs at the

grain level, the material would have an infinite fatigue life.

Since many years, experimental tests and numerical simulations on

polycrystalline aggregates are made in order to understand and model such mech-

anisms. Finite element models, incorporating crystal plasticity [8], were developed

in order to study the evolution of mechanical quantities in the microstructure, the

variables which rule the heterogeneous behaviour, for example the role of grain ori-

entation with respect to the loading axis and misorientation with its neighbours

in causing load shedding and stress localizations, and for trying to find a link

between macroscopic and microscopic behaviour. Numerical simulations can be

conducted on real microstructures, built by using an EBSD technique in order to

obtain informations on grain boundaries and orientations, or on fictive microstruc-

tures, based on a random distribution of crystallographic orientations and grain

sizes [16]. The simulations are then made by using a FE code, after the introduction
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of the crystal plasticity models and the definition of boundary conditions and load-

ings. The classical incremental method (Newton-Raphson) is the standard technique

to solve this kind of nonlinear analysis. Due to the size of the aggregates and the

nonlinear character of the differential equations, such computations are very time-

consuming. Under cyclic loadings these simulations are quite not possible due to

the necessary high number of cycles before obtaining the stabilized response of the

aggregates. A method called Direct Cycle Analysis (DCA) has been recently imple-

mented in the commercial software ABAQUS [15] and it is today commonly used

to obtain the stabilized cycle for LCF design.

The aim of this work is to test the performances and the accuracy of the DCA

in the evaluation of the steady state of policrystalline aggregates under cyclic load-

ing. As a first step, an aggregate of 20 grains of AISI 316L stainless steel under

strain controlled cyclic loading is studied. A Crystal Plasticity FEM model based

on dislocation densities, already implemented in a User-subroutine for ABAQUS/

Standard [20], is considered. The fictive microstructure and the finite element mesh

are generated by NEPER, a software based on Voronoi tessellation [16]. This work

starts with an introduction to the behaviour of metals under cyclic loads. The crys-

tal plasticity model is then described together with how to obtain the geometrical

model of a microstructure. The DCA is briefly recalled and it is tested in the case of

crystal plasticity. Precise comparisons are conducted with an incremental analysis in

order to validate the DCA as an efficient and accurate tool for the evaluation of the

shakedown state of polycrystalline aggregates.

2 Steady State and Fatigue Criteria

Among different methods of fatigue design of metal structures, a decoupled approach

can be used. It plans to perform a thermomechanical analysis without taking into

account the damage and then appropriate fatigue criteria allow to link the mechan-

ical parameters of the stabilized state to the lifetime of the structure. A structure

whose material obeys Drucker’s postulate, will reach, after some cycles of loading,

a steady cycle in which the stresses and the strain rates gradually stabilize and remain

unaltered on passing to the next cycle. There are three different categories of steady

stress cycles:

∙ Ratcheting (or incremental collapse), where non-vanishing plastic strain rates 𝜀̇p

and a non-vanishing plastic strain ratchet 𝛥𝜀p ≠ 0 occurs at various parts of V.

This happens for sufficiently high load amplitudes and is a dangerous long-term

response as the plastic strains grow bigger from cycle to cycle leading to large

displacements so that the structure becomes unserviceable or the ultimate strain

of the material is reached.

∙ Alternating plasticity (or plastic shakedown), in which non-vanishing plastic strain

rates 𝜀̇p exist but there is no increment of plastic strains, i.e. 𝛥𝜀p = 0. This also
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occurs for high load amplitudes and this type of long-term response leads to low

cycle fatigue, which reduces the working life of a structure or of a component.

∙ Shakedown (or elastic shakedown), where plastic strain rate 𝜀̇p vanish over the

whole body. In this case further plastic straining stops when the steady cycle is

reached and the structure subsequently responds, to further cycling, purely elas-

tically. This long-term response occurs for relative low load amplitudes and is a

favourable situation provided the plastic deformation that has been produced at

the transient phase is sufficiently small. In this case the structure or a structural

component can have infinite fatigue life, i.e. there is no failure even after many

cycles, or finite life due to high cycle fatigue.

In the case of elastic shakedown the structure, suddenly or after some cycles,

has an elastic response. Even if the stress is less than yield stress failure can occurs

because of HCF. The HCF design is based on the stress control and the stress is

computed by considering the metal as homogeneous, without taking into account

stress concentration due to the material heterogeneity. Some metals, if the stress

level is low, show an infinite life, i.e. fatigue does not occur even if the number of

cycles is very high. When the structure undergoes plastic shakedown, fatigue occurs

after a lower number of cycle and the LCF design is usually strain controlled. Both

criteria are purely phenomenological, relying directly on the interpretation of exper-

imental results at the macroscopic scale. An example of fatigue criterion that takes

into account the difference between the macroscopic and the mesoscopic mechanical

fields is the Dang Van criterion for infinite life.

2.1 Dang Van Criterion

One of the fatigue models including grain level phenomena in a macroscopic fatigue

criterion is the Dang Van–Papadopulos criterion based on the following assumption:

∙ In the LCF regime, physical observations at both macroscopic and mesoscopic

scale show extensive plastic strains. Moreover homogenisation theory shows that

strains and stresses at the two scales tend to be closer to each other with increasing

plastic strain. This can be translated into saying that the higher the applied load,

the more similar mesoscopic and macroscopic scales will behave.

∙ In the HCF regime, two fatigue domains corresponding to finite and infinite life-

time can be considered. Physical observations at the macroscopic scale show that

structures are macroscopically in an elastic shakedown state. At the mesoscopic

scale of the grains, it is now commonly accepted that elastic shakedown occurs

only in the case of infinite lifetime. If lifetime is finite, some grains will be ori-

ented such that they can not reach an elastic shakedown state, but will experience

a plastic shakedown or ratcheting state leading to failure after a finite number of

cycles. The stress concentration due to this mesoscopic failure marks the initiation

of a macroscopic crack associated with failure on the macroscopic scale.
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Focusing on the case of HCF, one can imagine a case where only one

misoriented grain is subject to plastic slip. Then a simple homogenisation scheme

of a plastic inclusion in an elastic matrix can be used to derive closed-form relations

between mesoscopic and macroscopic fields. Examples of possible homogenisation

assumptions are:

∙ Lin–Taylor strain equality: 𝜀 = E, that is the hypothesis of the initial Dang Van–

Papadopoulos fatigue criterion;

∙ Sachs stress equality 𝜎 = 𝛴;

where 𝜀 and 𝜎 are strain and stress at grain level, E and 𝛴 are strain and stress at

macroscopic level.

If, in all the cases, the same elastic behaviour at the mesoscopic and the macro-

scopic scale is assumed, the relation between mesoscopic and macroscopic fields can

be written in the general form:

𝜎 = 𝛴 − C∗𝜀p = 𝛴 + 𝜌∗ (1)

where 𝜌∗ should be interpreted as mesoscopic residual stress field. The particular

case of each homogenisation model is obtained depending on the form of C∗:

∙ Lin–Taylor’s model: C∗ = C

∙ Sachs’s model C∗ = 0;

As we will see better in the next chapter the plastic deformation is the conse-

quence of atomic slip in preferential directions on particular atomic planes (slip sys-

tems). However under the assumption that the grain orientations statistically cover

all directions [14], and so even the slip systems, according to Dan Vang fatigue cri-

terion infinite life occurs if

max
t
(𝜏T (t) + a𝜎H(t)) < b (2)

where 𝜏T is the Tresca norm of mesoscopic shear, 𝜎H = 1∕3 tr(𝜎) is the hydrostatic

mesoscopic stress, a and b are material parameters.

The homogenisation assumptions seen previously cannot represent at the best

the reality. Numerical simulations on polycrystalline aggregates can be the way to

improve the link between mesoscopic and macroscopic quantities.

3 The Crystal Plasticity Model

3.1 Single Crystal Plasticity

In crystal plasticity theory, plastic deformation is modelled by using the slip sys-

tem activity concept. It is a physically based plasticity theory that represents the

deformation of a metal at the microscale. It is important to note that, in this theory,
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the continuum framework is kept even if at such scale the physics is not continuous

anymore. Dislocations are assumed to move across the crystal lattice along specific

crystallographic planes and directions. When the material is subjected to loading,

the local resolved shear stress occurs on a slip plane and along a slip direction and

its magnitude controls the movement, the creation and the annihilation of disloca-

tions. Consequently the material is locally loaded on specific directions while the

volume remains constant. Moreover the crystal lattice could deform elastically while

the resolved shear stress has not reached its critical level. Two laws are necessary to

describe the single crystal plasticity:

∙ the flow rule, that describes, for intragranular variable, the slip initiation for each

system;

∙ the hardening rule, that describes the hardening which occurs on each system after

successive loadings.

The crystal plasticity model described in the following is that already imple-

mented as a User-subroutine for ABAQUS/Standard [20].

3.1.1 Flow Rule

The Resolved Shear Stress vector 𝜏s is the projection of the local stress tensor

expressed in the global reference system on every possible slip system s. The Schmid

law takes the following general form [17]:

𝜏s = 𝜎 ∶ Ds (3)

Ds =
1

2
(bs ⊗ ns + ns ⊗ bs) (4)

where 𝜎 is the local stress tensor, ns is the slip plane normal, bs is the the slip direc-

tion and Ds is the Schmid matrix, that is the symmetric part of the Schmid tensor

Ls = bs ⊗ ns and we denote here Ws its antisymmetric part. One can easily find that,

in the case of a single crystal submitted to a uniaxial loading, the Schmid matrix Ds is

reduced to a simple composition of crystallographic orientations cos𝜓cos𝜆, where 𝜆

is the slip direction angle related to the load direction and 𝜓 is the slip plane normal

angle. According to the Schmid law, a single crystal leaves the elasticity and shear

occurs when the Resolved Shear Stress on a slip system s reaches its threshold value,

the Critical Resolved Shear Stress (CRSS), noted 𝜏s
c
. It could basically be written as

{
𝛾̇s = 0, 𝜏s < 𝜏s

c

𝛾̇s > 0, 𝜏s ≥ 𝜏s
c

(5)

with 𝛾̇s the slip rate associated to system s. The flow rule introduces a rate depen-

dent formulation. Classically one use a viscoplastic formulation more convenient for

numerical simulation [9], that consists in a power law:
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𝛾̇s = 𝛾̇0

|||||
𝜏s

𝜏s
c

|||||

n

sign (𝜏s) (6)

where 𝛾̇0 is a reference value of the slip rate and n is the strain rate sensibility parame-

ter. The rate dependent approach in fact avoids to deal with discontinuous conditions

because all slip systems are allowed to be active but only some systems have non-

negligible slips (when n ≫ 1, 𝛾̇s ≅ 0 unless 𝜏s ≅ 𝜏s
c
).

3.1.2 Hardening Rule

When sliding occurs on a specific system, it interacts with different obstacles:

additive elements, precipitates, dislocations “forest”, etc. The increasing of dis-

location density and these interactions lead to a local material resistance which

results in critical shear stress increasing. In some cases an annihilation process could

occurs leading to a decrease of dislocation density storage rate. One experimentally

observes that there is a critical distance between dislocation systems with opposite

sign leading to their annihilation. This process could conduct to a saturation process

of hardening and also softening process. A physical based hardening rule has to take

into account these basic mechanisms of dislocations generation and annihilation. It

can take the following general expression proposed by [11]:

𝜏s
c
=
∑

u

Hsu|𝛾̇s| (7)

where the Hsu terms are the components of the hardening matrix. This matrix

takes into account the slip on the considered system also on the others. Diagonal

terms Hss, called self-hardening, account for the hardening on slip system s due to

its own slip activity. Remaining terms, called latent-hardening, account for the hard-

ening on slip system s due to the slip activity on the whole set of other systems u.

The form of the hardening matrix depends on the considered physical mechanisms.

To account for more physics Eq. 7 should be based on dislocation density. Basi-

cally, the total dislocation density could be divided in two parts: statistically stored

dislocations 𝜌s
s
, which trap each others in a random way and/or are required for com-

patible deformation of various part of the crystal, and geometrically stored disloca-

tions 𝜌s
g
, which are required when gradient of plastic shear exists. For simplicity’s

sake in this model it’s implicitly assumed that only 𝜌s
s

influences the work hardening.

No geometrically stored dislocations are therefore considered. The form of the slip

resistance classically used was introduced in [5]:

𝜏s
c
= 𝜏0 + 𝜇b

√∑

u

dsu𝜌u (8)

where 𝜏0 is an initial value of Critical Resolved Shear Stress, 𝜇 is the shear mod-

ulus, b the magnitude of the Burgers vector, dsu the interaction coefficient between
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the slip systems s and u and 𝜌u represents the local density of the statistically stored

dislocations on the slip system u. In the case of FCC structure the hardening interac-

tion matrix is a 12× 12 matrix composed by only 4 independent coefficients due to

crystal symmetries. The identification of these coefficients is still complicated and

is classically done by Discrete Dislocation Dynamics simulations. In practice one

uses here a simple form of the matrix depending on only two parameters: dp for the

self-hardening (s = u) and df for the latent-hardening (s ≠ u).

The hardening rule needs to be completed by a flow rule for dislocation density on

each slip system s, function of slip rate 𝛾̇s. The description of dislocation generation

was firstly figured out by Frank and Read [6]. It takes generally the following form:

𝜌̇s =
1

b

(∑
u (a

su𝜌u)

L
− 2yc𝜌

s

)
||𝛾̇

s|| (9)

in which the term
∑

u (a
su𝜌u)

Lb
accounts for dislocation creation and the term 2yc𝜌

s

accounts for dislocation annihilation.

The material parameter 2yc associated to annihilation is related to the critical

annihilation distance, which is here taken constant. The parameter L is the mean free

path of the mobile dislocations in system s, also assumed to be constant in this study.

Finally asu accounts for the geometrical interaction between dislocation densities.

Assuming that collinear, coplanar and orthogonal crystal interactions have the same

impact on mean free paths allows to reduce the number of ai unknown to only four

independent coefficients as shown in Table 1. Note that the Eq. 9 implies that there

exists a saturation of dislocation production which depends on the deformation path,

and more precisely on the dislocation quantity accumulated on the whole set of slip

systems. Note also that dislocation production rate 𝜌̇s depends on the absolute value

Table 1 Dislocation density interaction matrix of FCC material

A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6

A2 a1 a3 a3 a3 a5 a5 a3 a5 a6 a3 a6 a5

A3 a1 a3 a5 a3 a6 a5 a3 a5 a6 a3 a5

A6 a1 a5 a6 a3 a6 a5 a3 a5 a5 a3

B2 a1 a3 a3 a3 a6 a5 a3 a5 a6

B4 a1 a3 a6 a3 a5 a5 a3 a5

B5 a1 a5 a5 a3 a6 a5 a3

C1 a1 a3 a3 a3 a5 a5

C3 a1 a3 a5 a3 a6

C5 Sym a1 a5 a6 a3

D1 a1 a3 a3

D4 a1 a3

D6 a1
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of slip rate 𝛾̇s and this hardening is therefore isotropic. Nevertheless, as each slip

direction has its own dislocation and yield evolution, the yield surface in spatial

domain evolves from an initial sphere of radius 𝜏0 to a more complex form (Fig. 1).

3.2 Microstructure Geometry

Numerical simulation can be computed on two different kind of polycrystalline

aggregates:

∙ real microstructure, built by E.S.B.D. analysis which provides information on

grain boundaries and crystallographic orientation

∙ fictive microstructure, based on a random distribution of crystallographic orien-

tations and grain sizes.

3.2.1 Fictive Microstructures

Several authors have proposed analytical and numerical methods to construct

random polycrystalline morphologies. These methods can be rooted in the basic

principles of phase transformations (leading in some cases to Voronoi tessellations),

physically-driven simulations of annealing or recrystallization, or algorithms that

attempt to directly reproduce statistical data coming from experimental character-

izations. Among randomly generated morphologies, Voronoi tessellations have the

advantages of being defined analytically and having straight triple lines and flat grain

Fig. 1 Hardening evolution with dislocation density
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boundaries. Still, Voronoi tessellations show important variabilities in grain size and

shape which are representative of real polycrystalline morphologies [16].

Mathematically a Voronoi tessellation of a n-D space is a collection of n-D entities

that fills the space with no overlaps and no gaps. These entities are polyhedra and are

formally defined as zones of influence of a particular set of points, corresponding to

their centres. Being given a spatial domain D ∈ Rn, a set of points Gi(xi) within D

and a norm d(∙, ∙), a Voronoi polyhedron Ci is associated to every point Gi as follows:

Ci =
{

P(x) ∈ D|d(P,Gi) ≤ d(P,Gj) ∀j ≠ i
}

(10)

There are different available software which provide a Voronoi tesselation of

2-D and 3-D domains, like for example NEPER [16], which provides the polycrys-

tal morphology, described by sets of points, lines, surfaces and volumes, and the

free meshing of the morphology. It uses an Euclidean distance like norm and the

set of points Gi is taken randomly distributed. By construction, a Voronoi polyhe-

dron is convex; hence in 3-D the intersection of two Voronoi polyhedra is a plane,

called “tessellation face”, the intersection of three Voronoi polyhedra is a straight

line, called “tessellation edge”, and the intersection of four Voronoi polyhedra is a

point, called “tessellation vertex”. From a physical point of view, the generation of

Voronoi tessellations corresponds to a process of solidification or recrystallization

where all grains nucleate at the same time and grow isotropically at the same rate.

Voronoi tessellations qualitatively reproduce some important properties of real poly-

crystalline morphologies, like the distribution of grain size and the number of first

neighbours.

4 Review of the DCA

The classical approach in FE codes to obtain the stabilized response of an elastic-

plastic structure subjected to cyclic loading is to apply the periodic loading cycles

repetitively to the unstressed structure until a stabilized state is obtained. At each

instant in time it typically involves using Newton’s method to solve the nonlinear

equilibrium equations. To avoid the considerable numerical expense associated with

such a transient analysis, a DCA has been suggested in [15] and has been recently

implemented in the commercial software ABAQUS. It is based on the following

assumption:

∙ quasi-static analysis, i.e. without taking into account dynamic effect

∙ geometrically linear behavior

∙ use of Fourier series to describe the stabilized state

∙ direct research of the stabilized cyclic response of the structure iteratively using

the Modified Newton’s method with the elastic stiffness matrix
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4.1 Description of the Algorithm

In a quasi-static analysis with cyclic periodic loads the nonlinear equilibrium equa-

tions can be written as:

R(t) = F(t) − I(t) = 0 (11)

where F(t) is the discretized form of a cyclic load that has the characteristic F(t +

T) = F(t) at all times t during a load cycle with period T , I(t) represents the internal

force vector generated by the stress, and R(t) is the residual vector. We are looking

for a displacement function that describes the stabilized response of the structure,

i.e. a displacement function u(t) that at all times t during a load cycle with period T

has the characteristic u(t) = u(t + T). Since the periodicity of the solution, the best

choice for this purpose seems to be a truncated Fourier series:

u(t) = u0 +

N∑

k=1

[
us

k
sin k𝜔t + uc

k
cos k𝜔t

]
(12)

where n stands for the number of terms in the Fourier series;𝜔 = 2𝜋∕T is the angular

frequency; and u0, us
k

and uc
k

are unknown displacement coefficients.

We also expand the residual vector in a truncated Fourier series in the same form

as the displacement solution:

R(t) = R0 +

N∑

k=1

[
Rs

k
sin k𝜔t + Rc

k
cos k𝜔t

]
(13)

where each residual vector coefficient R0, Rs
k

and Rc
k

in the Fourier series corre-

sponds to a displacement coefficient. At each instant in time in the cycle the residual

vector R(t) is obtained by using standard element-by-element calculations and pro-

vides the Fourier coefficients:

R0 =
2

T ∫
T

0

R(t)dt

Rs
k
=
2

T ∫
T

0

R(t) sin (k𝜔t)dt

Rc
k
=
2

T ∫
T

0

R(t) cos (k𝜔t)dt

(14)

For the computing of the residual Fourier terms we need to evaluate the residual vec-

tor at some time points obtained by a discretization of time period in time increments.

ABAQUS uses a trapezoidal rule, which assumes a linear variation of the residual

over a time increment, to integrate the residual coefficients. For accurate integration

the number of time points must be larger than the number of Fourier coefficients

(which is equal to 2n + 1, where n represents the number of Fourier terms).
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The unknown displacement coefficients can now be computed iteratively by using

the Modified Newton method. Starting from their approximations obtained after an

iteration (i), the coefficient after an iteration (i + 1) are:

u
(i+1)

0
= u

(i)

0
+ c

(i+1)

0

u
s(i+1)

k
= u

s(i)

k
+ c

s(i+1)

k

u
c(i+1)

k
= u

c(i)

k
+ c

c(i+1)

k

(15)

where the corrections to the coefficients of the displacement solution are found by

solving the following linear systems:

Kc
(i+1)

0
= R

(i)

0

Kc
s(i+1)

k
= R

s(i)

k

Kc
c(i+1)

k
= R

c(i)

k

(16)

with K the initial elastic stiffness matrix. The updated displacement coefficients are

used in the next iteration to obtain displacements at each instant in time. This process

is repeated until convergence is obtained. Each pass through the complete load cycle

can therefore be thought of as a single iteration of the solution to the nonlinear

problem [1]. Since the use of the Modified Newton iterative scheme, the DCA cannot

be utilized in the presence of strong nonlinearities, such as geometric nonlinearities

and contact.

During the iterative solution process, the DCA imposes periodic conditions by

using the state obtained at the end of the previous iteration as the starting state for

the current iteration, i.e. si+1
t=0

= si
t=T

, where s is a solution variable such as plastic

strain.

5 Numerical Simulations on a Polycrystal

5.1 Geometric Model and Material

In this section we analyse a polycrystal composed by 20 grains. The specimen is a

square cuboid in which two dimensions are ten times the other one. The microstruc-

ture, the crystal orientations and the mesh are generated by NEPER. The geometrical

model and the boundary conditions are shown in Fig. 2. The model is composed by

2094 tetrahedral elements C3D4 and 636 nodes. The material used in the simulation

is the AISI 316L austenitic stainless steel, a material used for many structural appli-

cations. It is a polycrystalline aggregates with FCC structure and its crystal plasticity

parameters are available in literature and are reported below. The definition of elastic

fourth rank stiffness tensor C for a FCC crystal need only 3 parameters, due to the
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Fig. 2 Geometrical model

and boundary condition of

the polycrystal

cubic symmetry, which for 316 L are shown in Table 2, where a = 2C44∕(C11 − C22)

is the coefficient of anisotropy (a = 1 for isotropic material). The flow rule con-

sists in a power low defined by 2 parameters reported in Table 3: the reference value

of the slip rate 𝛾̇0 and the strain rate sensitivity parameter. Eleven parameters are

required to define the hardening behaviour of an FCC crystal and are summarized in

Tables 4 and 5.

Table 2 Elastic parameters of CPFEM for 316L [13]

C11 (MPa) C12 (MPa) C44 (MPa) a

248000 142000 71000 1.34

Table 3 Flow parameters of

CPFEM for 316L [2, 21]
𝛾̇0 (s

−1) n

3.4 × 10−6 10
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Table 4 Hardening parameters of CPFEM for 316L [4, 7]

tau0 (MPa) b (mm) yc L (mm−2) 𝜌0 dp df

35 3.2 × 10−7 3.2 × 10−6 33 10−3 0.06 0.004

Table 5 Dislocation density

interaction parameters of

CPFEM for 316L [12]

a1 a3 a5 a6

0.12 0.07 0.14 0.12

5.2 Monotonic Tensile Test

A strain controlled monotonic tensile test with a constant strain rate of 0.005 s−1 is

realized. The simulation is first performed without taking into account the geometric

nonlinearities, i.e. the rotation of crystal axis during the deformation.

Figure 3 shows the heterogeneous mechanical average behaviour of the different

grains in loading direction. At 2.5% of average strain the heterogeneity on strain is

about 1% and about 144 MPa on stress. We can see on the average strain vs stress

curve that, at 2.5% of average strain, the stress is 263 MPa and is consistent with

experimental and other numerical results [18]. The behaviour obtained is qualita-

tively acceptable although the number of grains is very low and the microstructure

Fig. 3 Monotonic test, stress-strain curve in load direction for each grain
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is fictive. The influence of the mesh on the results is not tested. The same test is per-

formed with both models, geometrically linear and nonlinear, up to 5% of average

strain in order to quantify the error of neglecting the rotation of crystal axis during

the deformation. In Fig. 4 we can see that, even at 5% of average strain, the error

on the strain is certainly negligible, while the error on the average strain and on the

maximum stress becomes to be of few percent. However in fatigue design the values

of strain reached are usually much lower that 5% and so the neglecting of geomet-

ric nonlinearities are surely acceptable. After this observation we can safely use the

Direct Cyclic Algorithm on polycrystalline aggregates. In fact it cannot be used for

geometrically nonlinear analysis since it uses the modified Newton-Raphson method

to solve the equilibrium equations.

5.3 Cyclic Test

A strain controlled cyclic symmetric tensile-compression test up to 0.25% with a

constant strain rate of 0.0025 s−1 is now performed on the same aggregate and the

results are discussed. Figures 5 and 6 show the average behaviour and the behaviour

Fig. 4 Error of neglecting geometric nonlinearities on maximum stress, maximun strain and aver-

age stress in load direction
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Fig. 5 Stress-strain curve in load direction for the misoriented grain: direct cyclic and incremental

(cycle 1, 20, 100, 200, 600 and 1000) solution

of the misoriented grain. We can see that the steady cycle is reached by an incre-

mental analysis about 600 cycles. The DCA requires with 19 terms, the maximum

number of Fourier terms, 682 iterations to converge. We can also see that the results

obtained by DCA and Incremental analysis are roughly equivalent by looking at the

two stress-strain curves.

Figure 7 shows that the strain field obtained with the two method has practically

the same form and the same values. Looking at Fig. 8 we can see that even with

only 5 Fourier terms and practically the same number of iterations we can obtained a

solution very close to the incremental one. In fact, if we exclude the decomposition of

the stiffness matrix and the evaluation of the residual vector in each time increment,

which are the same in both analysis, we can link the remaining computational time

to the number linear systems required to achieve the convergence:

∙ 19 F.T. ⇒ 682 iterations × (2× 19+1) F.C. = 26598 L.S.

∙ 5 F.T. ⇒ 682 iterations × (2× 5+1) F.C. = 7480 L.S.

In this case the number of linear systems with 5 Fourier terms is 3.5 times lower

than the number required with 19. The error is quantify in Tables 6 and 7 for the mis-

oriented grain and for the average behaviour for different number of terms. Looking

to these results we can make some consideration:
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Fig. 6 Stress-strain average curve in load direction: direct cyclic and incremental (cycle 1, 20, 100,

200, 600 and 1000) solution

∙ the DCA solution seems to converge to the solution with more Fourier terms;

∙ at convergence, the DCA solution is not coincident with the incremental one and

then a lower number of Fourier terms can provide better results.

In Fig. 9 it is shown the behaviour of two different grains with respect to the aver-

age behaviour. The load transfer between groups of grains of different orientation

occurs due to plastic deformation governed by crystal slip. In this respect the grain 7

and 8 in this polycrystalline aggregates are representative of the extremes of behav-

iour, grain 7 being the strongest orientation, and grain 8 being the softest and the most

compliant. It is interesting to note that grain 7 undergoes practically elastic shake-

down, while the response of grain 8 exhibits a significant hysteresis area. This is

indicative of inelastic deformation by crystal slip, which leads to energy dissipation.

It is interesting to interpret this result within the framework of energy-related criteria

of fatigue crack initiation. For example, Dang Van postulates that infinite life may

be expected, but only if after a certain initial period grain level shakedown occurs,

the cyclic deformation becomes purely elastic, and no energy dissipation takes place.

The result shown in Fig. 9 indicates that the situation is different between grains even

within the same macroscopic sampling volume. Some grains, e.g. grain 8, satisfy the

initiation criterion, while others, e.g. grain 7, must be expected to have infinite fatigue

life (Table 8).
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(a) Incremental

(b) Direct Cyclic

Fig. 7 Strain field in load direction at 0.25% of average axial strain at steady cycle
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Fig. 8 Comparison of the stress-strain curve in load direction of the misoriented grain and the

average behaviour obtained by DCA with 19 and 5 Fourier terms

Table 6 Direct cyclic error for the misoriented grain

Analysis 𝛥E err (%) 𝛥S (MPa) err (%) Energy

(MPa)

err (%)

D.C. 5 F.T. 0.0060 −4.8 599 0.3 1.710 1.5

D.C. 9 F.T. 0.0062 −1.7 602 0.9 1.753 4.0

D.C. 14 F.T. 0.0063 −0.2 605 1.4 1.754 4.1

D.C. 19 F.T. 0.0064 1.3 597 0.0 1.734 2.9

Incremental 0.0063 597 1.685

Table 7 Direct cyclic error for the average behaviour

Analysis 𝛥E err (%) 𝛥S (MPa) err (%) Energy

(MPa)

err (%)

D.C. 5 F.T. 0.0046 −6.2 625 −2.4 0.743 −2.0

D.C. 9 F.T. 0.0048 −3.2 639 −0.2 0.761 0.4

D.C. 14 F.T. 0.0049 −1.6 640 0.0 0.761 0.4

D.C. 19 F.T. 0.0050 0.0 642 0.2 0.753 −0.6

Incremental 0.0050 640 0.758

19



Fig. 9 Comparison of the stress-strain curve in load direction of different grains with respect to

the average one

Table 8 Comparison of the behaviour of different grains with respect to the average one

Variable Average Grain 7 Grain 8

𝛥E 0.0050 0.0043 0.0064

𝛥S 642 784 597

Energy 0.75 0.19 1.73

6 Conclusions

Fatigue criteria based on stress and strain control are commonly used to link the

steady response to the number of cycles that provides failure. In HCF the struc-

ture undergoes elastic shakedown and the life time is commonly determined by the

macroscopic stress level. In LCF the structure undergoes alternating plasticity and

the lifetime is estimated with the difference of strain of the steady cycles. However, a

metal is a polycrystalline aggregate made of many grains with different orientations

of the crystals. A heterogeneous response is expected due to the anisotropy of each

crystal with regard to the elastic and, much more, the plastic behaviour. An improve-

ment of fatigue criteria could be made by considering the behaviour of metals at

the microstructure scale. To understand and to model such heterogeneity Crystal
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Plasticity theory was used in the last years to build Crystal Plasticity FEM models.

In this work a model based on dislocation density and large deformation was con-

sidered. The numerical model was already implemented as a UMAT for ABAQUS

standard. We have seen that this model allows to achieve a first approximation of the

heterogeneity of an aggregate of 20 grains of AISI 316L stainless steel under strain

controlled monotonic and cyclic loading. The aggregate was built with the software

NEPER that provides a random distribution of grain size and orientations and at first

the analysis was performed incrementally with a full Newton method. This approach

is quite expensive in the case of cyclic loading, since the application of many loading

cycles may be required before the stabilized response is obtained, about 600 cycles

for our aggregate.

Recently, Pommier proposed a method called Direct Cyclic Algorithm to obtain

the stabilized response of a structure under cyclic periodically loading, which it is

shown to be more efficient of an incremental analysis, much more increasing the size

of the problem and the number of cycles required to obtain the steady cycle, but with

a small error with respect to the incremental solution. The same cyclic analysis of the

aggregate was performed by DCA, with the same time increment of the incremental

analysis and the maximum number of Fourier terms allowed, that provides the steady

cycle in 682 iterations. The convenience of this kind of analysis in terms of time is

clear because the number of linear systems to be solved for a single cycle with the

incremental method is surely higher that the number of linear system required for a

single iteration of DCA. Moreover the full Newton method needs to assemble and

decompose the stiffness matrix many times during a cycle, operation that dominates

the entire computational effort, while the DCA uses always the elastic matrix. Each

pass through the complete load cycle with DCA can therefore be thought of as few

iterations of incremental method. In the simulation performed in this work, the DCA

is about four time faster than the Incremental method. The DCA solution is close to

the incremental solution but it is not exactly coincident. The error with the maximum

number of Fourier terms on the strain difference, stress difference and energy of

steady cycle is, however, a few percent for the softest grain and negligible for the

average behaviour. The DCA is not able to deal with geometric non-linearities, but

the error of neglecting the rotation of crystal axis during the deformation has tested

and it was shown to be acceptable. We have also seen that a further reduction of the

computational cost can be achieved by using a lower number of Fourier terms with

a slightly larger error.

This result can be surely used in a future work where the model will take into

account the real morphology, number and orientations of grains, using EBSD analy-

sis of specimens used in experimental investigations. Since the size of this aggre-

gates, the DCA is maybe the only possible way to compute numerical simulations,

allowing a real comparison between mechanical fields at grain scale and to study the

interaction between the local constitutive law of the single crystal and the macro-

scopic behaviour of the specimen, for example with respect to crack initiation and

fatigue life. These informations could lead to the definition of new fatigue criteria.
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