Probing the Ultimate Plasmon Confinement Limits with a Van der Waals heterostructure - Archive ouverte HAL
Journal Articles Science Year : 2018

Probing the Ultimate Plasmon Confinement Limits with a Van der Waals heterostructure

David Alcaraz Iranzo
  • Function : Author
Sébastien Nanot
Connectez-vous pour contacter l'auteur
Itai Epstein
  • Function : Author
Cheng Peng
  • Function : Author
MIT
Dmitri K. Efetov
  • Function : Author
Mark B. Lundeberg
  • Function : Author
Romain Parret
Johann Osmond
  • Function : Author
Jin-Yong Hong
  • Function : Author
MIT
Jing Kong
  • Function : Author
MIT
Dirk R. Englund
  • Function : Author
MIT
Frank H. L. Koppens
  • Function : Correspondent author
  • PersonId : 1031253

Connectez-vous pour contacter l'auteur

Abstract

The ability to confine light into tiny spatial dimensions is important for applications such as microscopy, sensing and nanoscale lasers. While plasmons offer an appealing avenue to confine light, Landau damping in metals imposes a trade-off between optical field confinement and losses. We show that a graphene-insulator-metal heterostructure can overcome that trade-off, and demonstrate plasmon confinement down to the ultimate limit of the lengthscale of one atom. This is achieved by far-field excitation of plasmon modes squeezed into an atomically thin hexagonal boron nitride dielectric h-BN spacer between graphene and metal rods. A theoretical model which takes into account the non-local optical response of both graphene and metal is used to describe the results. These ultra-confined plasmonic modes, addressed with far-field light excitation, enables a route to new regimes of ultra-strong light-matter interactions.
Fichier principal
Vignette du fichier
1804.01061v1.pdf (3 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-01772009 , version 1 (22-10-2024)

Identifiers

Cite

David Alcaraz Iranzo, Sébastien Nanot, Eduardo J. C. Dias, Itai Epstein, Cheng Peng, et al.. Probing the Ultimate Plasmon Confinement Limits with a Van der Waals heterostructure. Science, 2018, 360 (6386), pp.291-295. ⟨10.1126/science.aar8438⟩. ⟨hal-01772009⟩
110 View
0 Download

Altmetric

Share

More