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A FAMILY OF RANDOM SUP-MEASURES

WITH LONG-RANGE DEPENDENCE

OLIVIER DURIEU AND YIZAO WANG

Abstract. A family of self-similar and translation-invariant random sup-measures with

long-range dependence are investigated. They are shown to arise as the limit of the
empirical random sup-measure of a stationary heavy-tailed process, inspired by an in-

finite urn scheme, where same values are repeated at several random locations. The

random sup-measure reflects the long-range dependence nature of the original process,
and in particular characterizes how locations of extremes appear as long-range clusters

represented by random closed sets. A limit theorem for the corresponding point-process

convergence is established.

1. Introduction

There is a recently renewed interest in limit theorems for extreme values of stationary
processes in the presence of long-range dependence [1, 26, 30]. Let {Xn}n∈N be a stationary
process. In extreme value theory, it is by now a classical problem to investigate the limit
of the partial maxima {maxi=1,...,bntcXi}t∈[0,1] as a process of t ∈ [0, 1], after appropriate
normalization, as n→∞. It is further understood that such functional limit theorems are
better illustrated in terms of convergence of point processes, in particular in the case when
the dependence of the extremes of {Xn}n∈N is weak. For a simple and yet representative
example, take {Xn}n∈N to be i.i.d. heavy-tailed random variables such that P(X1 > x) ∼
x−α as x→∞ with tail index α ∈ (0,∞). It is well known that

(1.1)

n∑
i=1

δ(Xi/n1/α,i/n) ⇒
∞∑
`=1

δ
(Γ
−1/α
` ,U`)

,

where {(Γ`, U`)}`∈N is a measurable enumeration of points from a Poisson point process
on R+ × [0, 1] with intensity dxdu. Such a point-process convergence provides a detailed
description of the asymptotic behavior of extremes, by which we mean broadly the top
order statistics instead of the largest one alone: the top order statistics normalized by n1/α

converge weakly to Γ
−1/α
1 ,Γ

−1/α
2 , . . . , and their locations are asymptotically independent

and uniformly distributed over [0, 1] [21]. Such a picture is representative for the general
situation where {Xn}n∈N have weak dependence. Classical references now include [6, 20, 28],
among others.

The recent advances along this line, however, focus on the case when the stationary pro-
cess {Xn}n∈N has long-range dependence in the literature. The long-range dependence here,
roughly speaking, means that with the same marginal law, the normalization of maxima is
of a different order from n1/α so that a non-degenerate limit arises [29, 30]. In the seminal
work of O’Brien et al. [24], summarizing a series of developments in the 80s, it has been
pointed out that all possible non-degenerate limits of extremes of a stationary sequence can
be fit into the framework of convergence of random sup-measures. The framework could be
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2 OLIVIER DURIEU AND YIZAO WANG

viewed as a counterpart of the Lamperti’s theorem [18] for extremes, in the sense that the
limit random sup-measures are necessarily shift-invariant and self-similar. This framework
of course includes the case (1.1), and the corresponding limit random sup-measure on [0, 1]
can be represented as

(1.2) Mα(·) = sup
`∈N

1

Γ
1/α
`

1{U`∈ · },

or more generally as a random sup-measure on R in the same notation with {(Γ`, U`)}`∈N
a Poisson point process on R+ × R with intensity dxdu. In this case, furthermore, the
limit random sup-measure is independently scattered (a.k.a. completely random) and α-
Fréchet, that is, its values over disjoint sets are independent and for every bounded open
set A, Mα(A) is α-Fréchet distributed with P(Mα(A) ≤ x) = exp(−Leb(A)x−α), x >
0. Independently scattered random sup-measures are fundamental in stochastic extremal
integral representations of max-stable processes [33]. In general, the random sup-measure
arising from a stationary sequence may not be independently scattered, or even Fréchet [31].

However, within the general framework of convergence of random sup-measures, to the
best of our knowledge it is only very recently that other concrete non-trivial examples have
been completely worked out. In a series of papers [17, 25, 31], the extremes of a well known
challenging example of heavy-tailed stationary processes with long-range dependence have
been completely characterized in terms of limit theorems for random sup-measures. For this
example, the limit random sup-measure obtained by Lacaux and Samorodnitsky [17] takes
the form

(1.3) M(·) = sup
`∈N

1

Γ
1/α
`

1{R`∩ · 6=∅},

where {Γ`}`∈N are as before, {R`}`∈N are i.i.d. random closed sets of [0, 1], each consisting
of a randomly shifted β-stable regenerative set (a stable regenerative set is the closure
of a stable subordinator; see Remark 6.2 below for a complete description), and the two
sequences are independent. We refer to this family of random sup-measures as stable-
regenerative random sup-measures in this paper. (More precisely,M arises in limit theorems
for a discrete model with parameters α > 0, β ∈ (0, 1/2], and it can be naturally extended
to all β ∈ (0, 1); for the original problem with β ∈ (1/2, 1), a more complicated random
sup-measure that is not Fréchet arises in the limit [31].)

One could draw a comparison between (1.2) and (1.3) by viewing each uniform random
variable Ui in (1.2) as a random closed set consisting of a singleton point. From this point
of view, for the stable-regenerative random sup-measures, the random closed sets {R`}`∈N
represent the limit law of positions of extremes, and in this case they reveal a much more
intriguing structure: for example, each R`, as randomly shifted β-stable regenerative set,
is uncountably infinite and with Hausdorff dimension β almost surely. They reflect the
picture that each top order statistic shows up at infinitely many different locations, even
unbounded ifM is viewed as a random sup-measure on R, in a sharp contrast to the situation
of independently scattered random sup-measure (1.2) where each top order statistic occurs
at a unique random location.

We refer to the phenomena that each top order statistic may show up at multiple and
possibly infinitely many locations by long-range clustering. Clustering of extremes have been
studied before, but in most examples clusters are local in the sense that, roughly speaking,
each top order statistic is replaced by a cluster consisting of several correlated values at
the same time point, due to certain local dependence structure of the original model (see
e.g. [13, 20]).

In this paper, by examining another model of heavy-tailed stationary processes, we prove
the convergence of empirical random sup-measures to a family of random sup-measures,
exhibiting long-range clustering. We refer to this family as the Karlin random sup-measures,
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denoted byMα,β with α > 0, β ∈ (0, 1). These random sup-measures are also in the form of
(1.3): now each random closed set R` consists of a random number of independent uniform
random variables, and hence its complexity is between the independently scattered random
sup-measures (1.2) and stable-regenerative random sup-measures [17]. In the literature, the
Karlin random sup-measures have been considered recently by Molchanov and Strokorb [23],
from the aspect of extremal capacity functionals.

The Karlin random sup-measures arise in our investigation on the so-called heavy-tailed
Karlin model, a variation of an infinite urn scheme investigated by Karlin [16]. The model
is a stationary heavy-tailed process where each top order statistic shows up at possibly mul-
tiple locations. It has been known to have long-range dependence, and functional central
limit theorems for related partial sums have been recently investigated in [9, 10]. Here,
for the extremes, we establish a limit theorem (Theorem 4.1) of point-process convergence
encoding the values and corresponding locations of the stationary process as in (1.1), with
now locations represented by random closed sets. In particular, the joint convergence de-
scribes the long-range clustering of the corresponding order statistics of the Karlin model,
and as an immediate consequence the convergence of the empirical random sup-measure to
the Karlin random sup-measure in the form of (1.3) follows (Theorem 4.2).

Another way to distinguish the Karlin random sup-measures from independently scat-
tered and stable-regenerative random sup-measures is by noticing that they all have different
ergodic properties. This can be understood by comparing the ergodic properties of the in-
duced max-increment processes of each class. Each max-increment process of a max-stable
random sup-measure is a stationary max-stable process. Ergodic properties of stationary
max-stable processes have been recently investigated in the literature [8, 14, 15, 32]. In
particular, it is known that the max-increment processes of independently scattered random
sup-measures are mixing, those of stable-regenerative random sup-measures are ergodic but
not mixing, and here we show that those of Karlin random sup-measures are not ergodic.

We also notice that the Karlin random sup-measures and stable-regenerative random
sup-measures both have the same extremal process as a time-changed standard α-Fréchet
extremal process, and this holds in a much greater generality. It is well known that the ex-
tremal process contains much less information than the corresponding random sup-measure.
Here we elaborate the relation of the two and show in particular that for all self-similar
Choquet random sup-measures (defined in Section 2), the associated extremal processes are
time-changed standard extremal processes (Proposition A.1 in the appendix).

The paper is organized as follow. A general class of random sup-measures, the so-called
Choquet random sup-measures, is presented in Section 2. In Section 3, we introduce the
Karlin random sup-measures. In Section 4, we introduce the heavy-tailed Karlin model,
and state our main results. The proofs are provided in Section 5. In Section 6 we discuss
related types of random sup-measures having the same extremal process. The appendix is
devoted to a general result concerning the relation between Choquet random sup-measures
and their extremal processes. Some related background on random closed sets and random
sup-measures are provided below.

Preliminary background. We start with spaces of closed sets. Our main reference is
[22]. We shall consider the space of all closed subsets of a given metric space E, denoted
by F(E), with only E = [0, 1], R or R+ := [0,∞) in this paper. The space F ≡ F(E) is
equipped with the Fell topology. That is, letting G ≡ G(E) and K ≡ K(E) denote the open
and compact subsets of F , respectively, the topology generated by the base of sets

FG := {F ∈ F : F ∩G 6= ∅} , G ∈ G

and

FK := {K ∈ K : F ∩K = ∅} , K ∈ K.
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The Fell topology is also known as the hit-and-miss topology. With our choice of E (and
more generally when it is locally compact and Hausdorff second countable), the Fell topology
on F(E) is metrizable. Hence we define random closed sets as random elements in a metric
space [3]. The law of a random closed set R is uniquely determined by

ϕ(K) := P(R ∩K 6= ∅), K ∈ K(E),

where K(E) is the collection of all compact subsets of E, and ϕ is known as the capacity
functional of R. Let {Rn}n∈N and R be a collection of random closed sets in F . A practical
sufficient condition for the weak convergence Rn ⇒ R in F(E) as n→∞ is that

lim
n→∞

P(Rn ∩A 6= ∅) = P(R ∩A 6= ∅),

for all A ⊂ E which is a finite union of bounded open intervals such that P(R ∩ A 6= ∅) =
P(R ∩A 6= ∅) where A is the closure set of A [22, Corollary 1.6.9].

Next, we review basics on sup-measures on a metric space E. Our main references are
[24, 34]. A sup-measure m on E is defined as a set function from G ≡ G(E) to R+ (in general
the sup-measure could take negative values, but not in the framework of this paper), and
it can be uniquely extended to a set function from all subsets of E to R+. We start by
recalling the definition of a sup-measure on G. A set function m : G → R+ is a sup-measure,
if m(∅) = 0 and

m

(⋃
α

Gα

)
= sup

α
m(Gα)

for all arbitrary collection of {Gα}α ⊂ G. Let SM(E) denote the space of sup-measures from
G → R+. The canonical extension of m : G → R+ to a sup-measure on all subsets of E is
given by

m(A) := inf
G∈G,A⊂G

m(G) for all A ⊂ E,A 6= ∅.

The sup-vague topology on SM(E) is defined such that for {mn}n∈N and m elements of
SM(E), mn → m as n→∞ if the following two conditions hold

lim sup
n→∞

mn(K) ≤ m(K), for all K ∈ K(E),

lim inf
n→∞

mn(G) ≥ m(G), for all G ∈ G(E).

This choice of topology makes SM(E) compact and metrizable. We then define random
sup-measures again as random elements in a metric space. In particular, M : Ω → SM(E)
is a random sup-measure, if and only if M(A) is a R+-valued random variable for all open
bounded intervals A or all compact intervals A, with rational end points. Examples of
particular importance for us include scaled indicator random sup-measures in the form of

ζ1{R∩ · 6=∅},

where ζ is a positive random variable and R a random closed set, the two not necessarily
independent, and the maximum of a finite number of such scaled-indicators. A practical
sufficient condition for weak convergence in SM(E) is the following. Let {Mn}n∈N and M
be random sup-measures on E. We have Mn ⇒M in SM(E), if

(Mn(A1), . . . ,Mn(Ad))⇒ (M(A1), . . . ,M(Ad)),

for all bounded open intervals A1, . . . , Ad of E such that M(Ai) = M(Ai) with probability
one [24, Theorem 3.2].

Of particular importance among random sup-measures are Fréchet (max-stable) random
sup-measures, which are random sup-measures with Fréchet finite-dimensional distributions.
Recall that a random variable Z has an α-Fréchet distribution if P(Z ≤ z) = exp(−σz−α),
z > 0, for some constants σ > 0, α > 0. A random vector (Z1, . . . , Zd) has an α-Fréchet
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distribution if all its max-linear combinations maxi=1,...,d aiZi, for a1, . . . , ad > 0, have α-
Fréchet distributions. Now, a random sup-measure is α-Fréchet if its joint law on finite sets
is α-Fréchet. Equivalently, an α-Fréchet random sup-measure on E can be viewed as a set-
indexed α-Fréchet max-stable process {M(A)}A⊂E , that is, a stochastic process of which
every finite-dimensional distribution is α-Fréchet. Fréchet random variables and Fréchet
processes are fundamental objects in extreme value theory, as they arise in limit theorems
for extremes of heavy-tailed models [5, 14, 28].

2. Choquet random sup-measures

A special family of Fréchet random sup-measures is the so-called Choquet random sup-
measures, recently introduced by Molchanov and Strokorb [23]. It is known that every
α-Fréchet random sup-measure M has the expression

(2.1) P(M(K) ≤ z) = exp

(
−θ(K)

zα

)
, K ∈ K(E),

where θ(K) is referred to as the extremal coefficient functional of M . In general, different
Fréchet random sup-measures may have the same extremal coefficient functional. Given an
extremal coefficient functional θ, the so-called Choquet random sup-measure was introduced
and investigated in [23], in the form of

(2.2) M(·) d
= sup

`∈N

1

Γ
1/α
`

1{R`∩ · 6=∅}.

Here {(Γ`, R`)}`∈N is a measurable enumeration of points from a Poisson point process on
(0,∞) × F(E) with intensity dxdν, where ν is a locally finite measure on F(E) uniquely
determined by

ν(FK) ≡ ν({F ∈ F(E) : F ∩K 6= ∅}) = θ(K), K ∈ K(E).

The so-definedM in (2.2) turns out to be an α-Fréchet random sup-measure with extremal
coefficient functional θ, and furthermore its law is uniquely determined by θ. It was demon-
strated in [23] that this family of random sup-measures plays a crucial role among all Fréchet
random sup-measures from several aspects, and the Choquet theorem plays a fundamental
role in this framework, which explains the name.

In view of limit theorems, Choquet random sup-measures arise naturally in the inves-
tigation of extremes of a stationary sequence, including the independently scattered and
stable-regenerative random sup-measures (see (1.2) and (6.4) respectively). In extreme
value theory, many limit theorems are established in terms of extremal processes rather
than random sup-measures. Given a general random sup-measureM, let M(t) :=M([0, t]),
t ≥ 0, denote its associated extremal process. It is well known that M contains much less in-
formation than M in general. This is particularly the case in the framework of self-similar
Choquet random sup-measures, as their extremal processes are necessarily time-changed
versions of a standard α-Fréchet extremal process. Recall that a random sup-measureM is
H-self similar for some H > 0 if

(2.3) M(λ ·) d
= λHM(·), for all λ > 0.

By standard α-Fréchet extremal process, we mean the extremal process determined by the
independently scattered random sup-measure Mα, Mα(t) :=Mα([0, t]). That is, using the
same {(Γ`, U`)}`∈N as in (1.2),

(2.4) Mα(t) := sup
`∈N

1

Γ
1/α
`

1{U`≤t}, t ≥ 0.
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Proposition 2.1. For any H-self-similar Choquet α-Fréchet random sup-measure M with
H > 0, the corresponding extremal process M satisfies

θ([0, 1]) {M(t)}t≥0
d
=
{
Mα(tαH)

}
t≥0

.

To the best of our knowledge, this fact has not been noticed in the literature before. This
proposition actually follows from a more general result on Choquet random sup-measures
and the corresponding extremal processes, which is of independent interest and established
in Proposition A.1 in the appendix. In the upcoming setting, this provides another justifi-
cation that it is important to work with random sup-measures in the presence of long-range
dependence, as the corresponding extremal processes capture much less information of the
dependence. See also the discussion in Section 6.

3. Karlin random sup-measures

In this section we provide two representations of Karlin random sup-measures. They
are Choquet random sup-measures with α-Fréchet marginals and they depend on a second
parameter β ∈ (0, 1).

Let us denote by xA, for x > 0 and A ⊂ R, the scaled set {xy : y ∈ A}. The Karlin
random sup-measure Mα,β on R is defined by the following representation

(3.1) Mα,β(A) := sup
`∈N

1

Γ
1/α
`

1{Ñ`(x`A) 6=0}, A ∈ G(R),

where {(Γ`, x`, Ñ`)}`∈N is an enumeration of the points from a Poisson point process on

R+ × R+ ×M+(R) with intensity measure dγ × Γ(1 − β)−1βx−β−1dx × dP̃. Here M+(R)

is the space of Radon point measures on R and P̃ is the probability measure on it induced
by a standard Poisson random measure (with intensity dx). Equivalently, the Poisson point

process {(Γ`, x`, Ñ`)}`∈N can be viewed as the Poisson point process {(Γ`, x`)}`∈N on R+ ×
R+ with intensity dγ × Γ(1− β)−1βx−β−1dx and i.i.d. marks {Ñ`}`∈N with law P̃.

To see thatMα,β is a Choquet random sup-measure, we introduce the random closed set

R̃` induced by Ñ` as

R̃` :=
{
t ∈ R : Ñ`({t}) = 1

}
,

and then write {Ñ`(x`A) 6= 0} = {(R̃`/x`) ∩A 6= ∅}. So (3.1) now becomes

Mα,β(A) = sup
`∈N

1

Γ
1/α
`

1{(R̃`/x`)∩A6=∅}, A ∈ G(R),

as in (2.2), and then it can be extended to all A ⊂ R by the canonical extension of sup-
measures.

Viewing {Mα,β(A)}A⊂R as a set-indexed α-Fréchet max-stable process, we have the
following joint distribution:

(3.2) P (Mα,β(A1) ≤ z1, . . . ,Mα,β(Ad) ≤ zd)

= exp

(
−Γ(1− β)−1

∫ ∞
0

βx−β−1Ẽ

(
d∨
i=1

1{Ñ (xAi)6=0}
zαi

)
dx

)
,

for all d ∈ N, z1, . . . , zd > 0, where Ẽ is the expectation with respect to P̃. See [23, 33]
for more details. It suffices to consider A1, . . . , Ad as open (or compact) intervals in R (not
necessarily disjoint) above to determine the law of Mα,β .
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From the above presentation, in particular we compute for d = 1 and a compact set
K ⊂ R,

P(Mα,β(K) ≤ z) = exp

(
−Γ(1− β)−1

∫ ∞
0

βx−β−1P̃
(
Ñ (xK) 6= 0

)
dxz−α

)
.

Let Leb denote the Lebesgue measure on R. We have∫ ∞
0

βx−β−1P̃
(
Ñ (xK) 6= 0

)
dx =

∫ ∞
0

βx−β−1 (1− exp(−xLeb(K))) dx(3.3)

= Leb(K)

∫ ∞
0

x−β exp(−xLeb(K))dx

= Γ(1− β)Leb(K)β .

Therefore we arrive at, for all z > 0,

P(Mα,β(K) ≤ z) = exp

(
−θβ(K)

zα

)
with θβ(K) := Leb(K)β .

The function θβ is the extremal coefficient functional of the random sup-measure Mα,β .
It is clear from the definition (3.2) thatMα,β is β/α-self-similar in the sense of (2.3) and

translation-invariant

Mα,β(·) d
=Mα,β(x+ ·), for all x ∈ R.

It is also remarkable that it is symmetric in the sense that its law only depends on the
Lebesgue measures of the sets. More precisely, for two collections of disjoint open intervals
{A1, . . . , Ad} and {B1, . . . , Bd} such that Leb(Ai) = Leb(Bi), i = 1, . . . , d, we have

(Mα,β(A1), . . . ,Mα,β(Ad))
d
= (Mα,β(B1), . . . ,Mα,β(Bd)) .

This is a stronger notion than the translation invariance, which has been known to hold
true for all random sup-measures arising from stationary sequences [24].

By self-similarity essentially all properties of Mα,β can be investigated by restricting to
a bounded interval, in which caseMα,β has a more convenient representation. We consider
its restriction to [0, 1] here. In this case, θβ determines the law of a random closed set R(β)

in [0, 1] by

(3.4) P(R(β) ∩K 6= ∅) =
θβ(K)

θβ([0, 1])
= Leb(K)β , for all K ⊂ [0, 1] compact.

Now, restricting to [0, 1], it follows that

(3.5) Mα,β(·) d
= sup

`∈N

1

Γ
1/α
`

1{(R(β)
` ∩ ·

)
6=∅
} on [0, 1],

where {Γ`}`∈N is the sequence of arrival times of a standard Poisson point process on R+,
{R(β)

` }`∈N are i.i.d. copies of R(β), and the two sequences are independent. The fact that
Mα,β in (3.1) has the same presentation (in law) as in (3.5) when restricted to [0, 1], follows
from either a straightforward computation of finite-dimensional distributions of random sup-
measures based on (3.5), or from a more general property of Choquet random sup-measures
[23, Corollary 4.5].

In addition, we have the following probabilistic representation of R(β).

Lemma 3.1. Suppose β ∈ (0, 1). Let Qβ be an N-valued random variable with probability
mass function

P(Qβ = k) =
β(1− β)(k−1)↑

k!
=: pβ(k), k ∈ N,



8 OLIVIER DURIEU AND YIZAO WANG

with (a)n↑ = a(a+ 1) · · · (a+ n− 1), n ∈ N, a ∈ R. Let {Un}n∈N be i.i.d. random variables
uniformly distributed over (0, 1), independent from Qβ. Then,

R(β) d
=

Qβ⋃
i=1

{Ui}.

Proof. It suffices to prove that
⋃Qβ
i=1{Ui} has the same capacity functional as R(β) in (3.4).

We have, by first conditioning on Qβ ,

P

Qβ⋃
i=1

{Ui}

 ∩K 6= ∅
 = E

[
1− (1− Leb(K))Qβ

]
.

One can show that the prescribed distribution of Qβ satisfies the property, for all z ∈ (0, 1),

1− zβ = E
[
(1− z)Qβ

]
.

See for example [27, Eq. (3.42)]. In view of (3.4), this completes the proof. �

Remark 3.2. The law of Qβ has been known to be related to the Karlin model defined
in Section 4, and hence it is not a coincidence that it shows up in the limit random sup-
measure. In fact, Qβ is a size-biased sampling from the asymptotic frequency {pβ(k)}k∈N
of blocks of size k of an infinite exchangeable random partition with β-diversity. See [27,
Section 3.3] for more details and Remark 4.3 below.

Remark 3.3. The first representation ofMα,β has been already considered by Molchanov
and Strokorb [23]. Their description starts with and focuses on the extremal coefficient
functional θβ whereas we start from the underlying Poisson point process directly. This
is suggested in [23, Remark 9.8], while more detailed discussions can be found in the first
arXiv online version of the same paper. In particular, Example 9.5 therein provides the
same representation as in (3.1). The interpretation of the set R(β) in our Lemma 3.1 seems
to be new.

The Karlin random sup-measures also interpolate between the independently scattered
random sup-measures and the completely dependent one, defined as Mc

α(·) = Z1{ · 6=∅} for
a standard α-Fréchet random variable Z (the random sup-measure taking the same value Z
on any non-empty set).

Proposition 3.4. For every α > 0, Mα,β ⇒Mα as β ↑ 1, and Mα,β ⇒Mc
α as β ↓ 0.

Proof. It suffices to notice that by the capacity functional in (3.4), R(β) ⇒ U as β ↑ 1
where U is the random closed set induced by the uniform random variable on (0, 1), and
R(β) ⇒ [0, 1], a deterministic set, as β ↓ 0. �

We conclude this section by examining the ergodic properties ofMα,β . Every self-similar
and translation invariant random sup-measure naturally induces a stationary process, the
so-called max-increment process defined as

ζt :=Mα,β((t− 1, t]), t ∈ R.

Proposition 3.5. The max-increment process {ζt}t∈R of Mα,β is not ergodic.

Proof. Introduce, for z > 0, t ∈ R,

τz(t) := logP(ζ0 ≤ z, ζt ≤ z)− 2 logP(ζ0 ≤ z).
A simple necessary and sufficient condition for ergodicity of a stationary α-Fréchet process
is that

lim
T→∞

1

T

∫ T

0

τz(t)dt = 0 for all z > 0,
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see Kabluchko and Schlather [15]. Here we have, for t > 1,

− logP(ζ0 ≤ z, ζt ≤ z)

=
1

zα
Γ(1− β)−1

∫ ∞
0

βx−β−1P̃
(
Ñ (x(−1, 0]) 6= 0, Ñ (x(t− 1, t]) 6= 0

)
dx

=
1

zα
Γ(1− β)−1

∫ ∞
0

βx−β−1(1− e−x)2dx = (2− 2β)z−α.

In addition to (3.3), this implies for all t > 1, z > 0,

τz(t) =
[
2θβ((−1, 0])− (2− 2β)

]
z−α = 2βz−α.

The desired result hence follows. �

4. A heavy-tailed Karlin model

In this section, we introduce a discrete stationary process {Xn}n∈N based on a model,
originally studied by Karlin [16], which is essentially an infinite urn scheme. Here, we shall
work with a heavy-tailed randomized version of the original model.

To start with, consider an N-valued random variable Y with P(Y = k) = pk, k ∈ N. We
assume that p1 ≥ p2 ≥ · · · > 0 and, for technical purpose, encode them into the measure

ν :=

∞∑
`=1

δ1/p` ,

where δx is the unit point mass at x. The following regular variation assumption is made
on the frequencies:

(4.1) ν((0, x]) = max{` ∈ N : 1/p` ≤ x} = xβL(x) with β ∈ (0, 1),

for some slowly varying function L at infinity.
The randomized Karlin model {Xn}n∈N is defined through a two-layer construction. We

imagine that there are infinitely many empty boxes indexed by N. First, we independently
associate a heavy-tailed random variable to each box. Second, at each round n, we throw
a ball at random in one of the boxes (according to the law of Y ) and we consider the
corresponding heavy-tailed random variable as the value of our process at time n. Namely,
let {ε`}`∈N be i.i.d. random variables with common law such that

(4.2) P(ε1 > y) ∼ cαy−α as y →∞ with α > 0, cα ∈ (0,∞),

each associated with the box with label ` ∈ N. For the sake of simplicity, in particular for
the normalization bn (4.4) below, we do not introduce a slowly varying function in (4.2)
as in the common setup for heavy-tailed random variables. Let {Yn}n∈N be i.i.d. random
variables with common law as Y described above, independent of {ε`}`∈N. The stationary
sequence {Xn}n∈N is then obtained by setting

Xn := εYn , n ∈ N.

Here, we are interested in the empirical random sup-measure of {Xn}n∈N on [0, 1] intro-
duced as

Mn(·) := max
i/n∈ ·

Xi,

and its limit as n→∞. Important quantities relying on the infinite urn scheme are,

Kn,` :=

n∑
i=1

1{Yi=`}, ` ≥ 1, and Kn :=

∞∑
`=1

1{Kn,` 6=∅},

the number of balls in the box ` and the number of non-empty boxes at time n, respectively.
We know from [16] that, under (4.1), Kn ∼ Γ(1− β)nβL(n) almost surely.
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For a more detailed description of the model, we shall work within the framework of
point-process convergence generalizing (1.1). For each n ∈ N, introduce, for ` ≥ 1,

Rn,` = {i ∈ {1, . . . , n} : Yi = `}.
The following point process ξn on R+ × F([0, 1]) encode the information of our random
model at time n:

(4.3) ξn :=
∑

`≥1, Kn,` 6=0

δ(ε`/bn,Rn,`/n),

The first coordinate in the Dirac masses presents the value (normalized by bn, given below)
attached to the box ` and the second coordinate the possible multiple positions among
{1, . . . , n} (standardized by 1/n) where this box has been chosen.

Our main results are the following. The first is a complete point-process convergence.

Theorem 4.1. For the model above under assumptions (4.1) and (4.2), with

(4.4) bn := (cαΓ(1− β)nβL(n))1/α,

we have

ξn ⇒ ξ :=

∞∑
`=1

δ(
Γ
−1/α
` ,R(β)

`

), as n→∞,

in M+((0,∞)×F([0, 1])), where {(Γ`,R(β)

` )}`∈N have the same law as in (3.5).

The second is the convergence of random sup-measures.

Theorem 4.2. Under the assumption of Theorem 4.1, we have

1

bn
Mn ⇒Mα,β , as n→∞,

in SM([0, 1]).

Theorem 4.1 is proved by analyzing the top order statistics of the model and their lo-
cations. Theorem 4.2 is a direct corollary of Theorem 4.1. Nevertheless, we will also give
a second proof of it which is straightforward, without any analysis of the other top order
statistics except the largest.

Remark 4.3. In the representation of the law of R(β) in Lemma 3.1, the probability mass
function {pβ(k)}k∈N has an intrinsic connection to the Karlin model: each pβ(k) is the
asymptotic frequency of the number of boxes with exactly k balls, namely

lim
n→∞

1

Kn

∞∑
`=1

1{Kn,`=k} = pβ(k) a.s.

This has been known since Karlin [16].

5. Proofs

In order to analyze the point process ξn, we introduce a description of it through the
extreme values of the Karlin model. For each n ∈ N, we consider the Kn random variables

{ε` : Kn,` 6= 0}
and their order statistics denoted by

εn,1 ≥ · · · ≥ εn,Kn .

When there are no ties, we let ̂̀n,k denote the label of the box corresponding to the k-th
order statistics, so that

εn,k = ε̂̀
n,k
, for k ≤ Kn,
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and set ̂̀n,k := 0 for k > Kn. When there are ties among the order statistics, the aforemen-
tioned labeling is no longer unique, and we choose one at random among all possible ones
in a uniform way. This procedure guarantees the independence between the values of the
order statistics and the permutation that classifies them. That is, given Kn, the variableŝ̀
n,1, . . . , ̂̀n,Kn are independent of the variables εn,1, . . . , εn,Kn . Now, introduce the random

closed sets

R̂n,k :=
{
i = 1, . . . n : Yi = ̂̀

n,k

}
, k = 1, . . . ,Kn,

and R̂n,k := ∅ if k > Kn. The point processes ξn introduced in (4.3) can then be written as

ξn =

Kn∑
k=1

δ(εn,k/bn,R̂n,k/n).

The key step in our proof is to investigate the following approximations of ξn, keeping only
the top order statistics,

ξ(m)

n :=

m∑
k=1

δ(εn,k/bn,R̂n,k/n), m ∈ N.

Here and below, we set εn,k := 0 if k > Kn.

Proposition 5.1. For all m ∈ N, we have

ξ(m)

n ⇒ ξ(m) :=

m∑
`=1

δ(
Γ
−1/α
` ,R(β)

`

), as n→∞,

in M+((0,∞)×F([0, 1])), where {(Γ`,R(β)

` )}`∈N have the same law as in (3.5).

Proof. There is only a finite number of random points in both ξ(m)
n and ξ(m). Hence, it

suffices to prove the joint convergence

(5.1)

(
εn,1
bn

, . . . ,
εn,m
bn

,
R̂n,1
n

, . . . ,
R̂n,m
n

)
⇒
(

Γ
−1/α
1 , . . . ,Γ−1/α

m ,R(β)

1 , . . . ,R(β)

m

)
in Rm+ × F([0, 1])m, as n → ∞. Under the heavy-tail assumption (4.2), the convergence
of the first m coordinates, as the normalized m top order statistics of Kn i.i.d. random
variables, is well known from [21] if Kn is a deterministic sequence increasing to infinity and

the normalization (here bn) is c
1/α
α K

1/α
n . For the Karlin model, under the regular variation

assumption (4.1), it has been shown that

lim
n→∞

Kn

nβL(n)
= Γ(1− β) a.s.,

see [12, Corollary 21]. Therefore the convergence of the first m coordinates follows. Further,
on the left-hand side of (5.1), the first and last m coordinates are conditionally independent
given the event {Kn ≥ m}. Since P (Kn ≥ m) → 1 as n → ∞, it is sufficient to prove
the convergence of the last m coordinates to conclude. For this purpose, we consider the
Poissonized version of the model. Namely, let {N(t)}t≥0 denote a standard Poisson process
on R+ independent of {Yn}n∈N and {εn}n∈N, and let 0 < τ1 < τ2 < · · · denote its consecutive
arrival times. We consider the coupled model where we shift the fixed locations 1, 2, . . . , n
of the original model to the random points corresponding to the consecutive random arrival
times of N . The Poissonized process is then {XN(t)}t≥0. In this way, we set

(5.2) K̃n,` :=

∞∑
i=1

1{Yi=`, τi≤n} and K̃n :=

∞∑
`=1

1{K̃n,` 6=0}.

It is important to keep in mind that, for this model, there are K̃n different ε involved at

time n, instead of Kn. Note that, thanks to the coupling, K̃n = KN(n). Thus, the order
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statistics of the set {ε` : K̃n,` 6= 0} are exactly εN(n),1 ≥ · · · ≥ εN(n),K̃n
. Now, introduce˜̀

n,k such that

ε˜̀
n,k

= εN(n),k, k = 1, . . . , K̃n,

and ˜̀n,k := 0 if k > K̃n. Again, in case of ties, we choose uniformly a random labeling as
before. Then we define

R̃n,k :=
{
τi : Yi = ˜̀

n,k

}
∩ [0, n], k = 1, . . . , K̃n.

The key observation on the Poissonization procedure is that given that ˜̀n,1 = `1, . . . , ˜̀n,m =

`m, with `1, . . . , `m > 0, R̃n,1, . . . , R̃n,m are independent random closed sets; moreover, the

law of each R̃n,k is the conditional law of arrival times of a Poisson processNk with parameter
p`k during [0, n], given that Nk(n) 6= 0.

We first show that

(5.3)

(
R̃n,1
n

, . . . ,
R̃n,m
n

)
⇒
(
R(β)

1 , . . . ,R(β)

m

)
.

Let A1, . . . , Am be m open intervals within (0, 1) and with Lebesgue measures λ1, . . . , λm,
respectively. We first compute

(5.4) P

(
m⋂
k=1

{
1

n
R̃n,k ∩Ak 6= ∅

})

=
∑

`1,...,`m∈N
P

(
m⋂
k=1

{
1

n
R̃n,k ∩Ak 6= ∅

}
∩
{˜̀

n,k = `k

})
,

For every choice of `1, . . . , `m ∈ N that are mutually distinct (otherwise the probability

above is zero), let Nk be a Poisson process with parameter p`k , k = 1, . . . ,m, and R̃k the

corresponding random closed set induced by its arrival times in [0, n]. Given {K̃n,`}`∈N, the

probability of the event {˜̀n,k = `} is

1{K̃n,` 6=0}∑
`′≥1 1{K̃n,`′ 6=0}

=
1{K̃n,` 6=0}

K̃n

,

as each non-empty box has equal probability to be the `-th largest. Therefore we have, by

conditioning on the values of {˜̀n,k}k=1,...,m first,

P

(
m⋂
k=1

{
1

n
R̃n,k ∩Ak 6= ∅

}
∩
{˜̀

n,k = `k

})

= E

[
m∏
k=1

1{K̃n,`k 6=0}

K̃n

P
(
R̃k ∩ nAk 6= ∅ | R̃k ∩ [0, n] 6= ∅

)]

= E

[
1

K̃m
n

m∏
k=1

1{K̃n,`k 6=0}

(
1− e−λknp`k
1− e−np`k

)]

= E

[
1

(m+ K̃
(`1,...,`m)
n )m

]
m∏
k=1

(1− e−λknp`k ),

where

K̃(`1,...,`m)
n =

∑
`≥1, ` 6∈{`1,...,`m}

1{K̃n,` 6=0}.
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We shall prove, in Lemma 5.2 below, that Φ̃n/(K̃n ∨m) → 1 in Lm, where Φ̃n := EK̃n ∼
Γ(1− β)nβL(n) according to [12, Proposition 17 and Lemma 1]. Using that

m ∨ K̃n ≤ m+ K̃(`1,...,`m)
n ≤ m+ K̃n,

we infer that

Φ̃n

m+ K̃
(`1,...,`m)
n

→ 1 in Lm, uniformly in (`1, . . . , `m), as n→∞.

The right-hand side of (5.4) then becomes∑
`1,...,`m∈N, 6=

E

[
1

(m+ K̃
(`1,...,`m)
n )m

]
m∏
k=1

(1− e−λknp`k )

∼ 1

(Γ(1− β)nβL(n))m

∑
`1,...,`m∈N,6=

m∏
k=1

(
1− e−λknp`k

)
, as n→∞,(5.5)

where in the summation, 6= indicates that `1, . . . , `m are mutually distinct. If we sum over
all `1, . . . , `m ∈ N instead, we have

(5.6)
∑

`1,...,`m∈N

m∏
k=1

(
1− e−λknp`k

)
=

m∏
k=1

∫ ∞
0

(1− e−λkn/x)ν(dx).

For the Karlin model, it is well known that the regular variation assumption (4.1) on ν leads
to, after integration by parts and change of variables,∫ ∞

0

(1− e−λn/x)ν(dx) =

∫ ∞
0

λn

x2
e−λn/xν((0, x])dx

∼ ν((0, n])λ

∫ ∞
0

xβ−2e−λ/xdx = ν((0, n])λβΓ(1− β).

This gives the asymptotic of (5.6), and also tells that the summations in (5.6) and (5.5) are
asymptotically equivalent. Therefore, we have shown that

lim
n→∞

P

(
m⋂
k=1

{
1

n
R̃n,k ∩Ak 6= ∅

})
=

m∏
k=1

λβk .

This established the claimed weak convergence in (5.3).

To complete the proof, it remains to show that R̃n,k/n and R̂n,k/n can be made close
with arbitrarily high probability by taking n large enough. To make this idea precise, we
consider the Hausdorff metric dH for non-empty compact sets defined as, for two non-empty
compact sets F1 and F2,

dH(F1, F2) := max

{
sup
x∈F1

d(x, F2), sup
x∈F2

d(x, F1)

}
,

where d above is the distance between a point and a set induced in R by Euclidean metric:
d(x,A) := infy∈A |x − y|. It is known that dH metricizes the Fell topology on F ′([0, 1]) :=
F([0, 1]) \ {∅}. See for example [22, Appendix C]. For n large enough, consider the event

B(m)

n := {Kn ≥ m} ∩ {K̃n ≥ m},

so that, under B(m)
n , R̂n,k 6= ∅ and R̃n,k 6= ∅ for all k = 1, . . . ,m. It is clear that

limn→∞ P(B(m)
n ) = 1. Therefore, (5.1) and hence the proposition shall follow from (5.3)

and the fact that for all δ > 0,

(5.7) lim
n→∞

P

({
max

k=1,...,m
dH

(
R̂n,k
n

,
R̃n,k
n

)
> δ

}
∩B(m)

n

)
= 0.



14 OLIVIER DURIEU AND YIZAO WANG

To prove (5.7), we first introduce the event

E(m)
n =

{̂̀
n,1 = ˜̀

n,1, . . . , ̂̀n,m = ˜̀
n,m

}
,

and we shall prove that limn→∞ P(E
(m)
n ) = 1. Since the probability of having ties in the m

top order statistics goes to 0 as n→∞, this will follow if one can show that

(5.8) lim
n→∞

P
(
εn,1 = εN(n),1, . . . , εn,m = εN(n),m

)
= 1.

The event in the probability above holds if (but not only if, because of the possible ties)

the m top order statistics from {ε` : Kn,` 6= 0 or K̃n,` 6= 0} are taken from {ε` : Kn,` 6=
0 and K̃n,` 6= 0}. Introduce K∧n := Kn ∧ K̃n and K∨n := Kn ∨ K̃n. Then, first conditioning
on the event B(m)

n and then using that the corresponding locations (labellings) of the order
statistics among {1, . . . ,K∨n } are uniformly distributed, we infer that

P
(
εn,1 = εN(n),1, . . . , εn,m = εN(n),m

)
≥ E

[
K∧n (K∧n − 1) · · · (K∧n −m+ 1)

K∨n (K∨n − 1) · · · (K∨n −m+ 1)
1
B

(m)
n

]
,

The quotient in the expectation converges to 1 almost surely and it is bounded by 1. There-

fore, by the dominated convergence theorem, we obtain (5.8) and thus limn→∞ P(E
(m)
n ) = 1.

From now on, we assume that the events E
(m)
n and B

(m)
n hold. Let k ∈ {1, . . . ,m} be

fixed and denote `k = ̂̀
n,k = ˜̀

n,k. Recall our definition of τi, the i-th arrival time of the
Poisson process N in the Poissonization and set

ρn := max
i=1,...,n

|i− τi|,

the maximal displacement of the positions 1, . . . , n by the Poissonization. Consider also the
Poisson process Nk derived from N by keeping only the arrival times corresponding to the
box `k (Nk(t) :=

∑∞
i=1 1{τi≤t}1{Yi=k}, t ≥ 0). Thus, Nk is a Poisson process of intensity p`k

and we denote by τ
(k)
1 < τ

(k)
2 < · · · its consecutive arrival times.

For i ∈ R̂n,k, we first consider those such that τi ≤ n and hence τi ∈ R̃n,k. In this case

we have d(i, R̃n,k) ≤ |i − τi| ≤ ρn. On the other hand, for i ∈ R̂n,k such that τi > n, we
have

d(i, R̃n,k) ≤ |i− τ (k)
Nk(n)| ≤ |i− n| ∧ |τ

(k)
Nk(n) − n|.

Since in this case N(n) < i < n, we have |i− n| ≤ |N(n)− n| and hence

(5.9) sup
i∈R̂n,k

d(i, R̃n,k) ≤ max
{
ρn, |N(n)− n|, |τ (k)

Nk(n) − n|
}
.

Now, consider τi ∈ R̃n,k. For such τi with i ∈ {1, . . . , n}, we have d(τi, R̂n,k) ≤ |τi− i| ≤ ρn,

whereas for τi ∈ R̃n,k with i > n, denoting by jk the maximum of R̂n,k (non-empty by
assumption), we have

d(τi, R̂n,k) ≤ |τi − jk| ≤ |τi − τjk |+ |τjk − jk| ≤ |n− τjk |+ |τjk − jk|,

where we used that τjk ≤ τi ≤ n in the last inequality. Note that τjk = τ
(k)
Nk(τn) and thus,

sup
i: τi∈R̃n,k

d(τi, R̂n,k) ≤ ρn + |τ (k)
Nk(τn) − n|.

Therefore, above and (5.9) yield

dH

(
R̂n,k
n

,
R̃n,k
n

)
≤ max

 |N(n)− n|
n

,
|τ (k)
Nk(n) − n|

n
,
ρn
n

+
|τ (k)
Nk(τn) − n|

n

 .
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It is well known that limn→∞ ρn/n = 0 and limn→∞ |N(n)− n|/n = 0 almost surely.
Furthermore,

lim
n→∞

τ
(k)
Nk(n)

n
= lim
n→∞

τ
(k)
Nk(n)

Nk(n)

Nk(n)

n
= p`k

1

p`k
= 1 almost surely

and hence limn→∞ τ
(k)
Nk(τn)/n = 1 almost surely. This established (5.7) and the proposition.

�

Lemma 5.2. Let {K̃n}n≥1 be the process defined in (5.2) and Φ̃n = EK̃n, n ≥ 1. For any
positive constant C, we have

Φ̃n

K̃n ∨ C
→ 1, as n→∞,

almost surely and in Lp for all p ≥ 1. The same statement holds true with K̃n ∨C replaced

by K̃n + C.

Proof. We consider C = 1 in the proof. We know from [12] that K̃n ∼ Φ̃n almost surely and

thus the almost sure convergence above follows. Recalling that K̃n is a sum of independent

{0, 1}-valued random variables and that Var(K̃n) = Φ̃2n−Φ̃n ≤ Φ̃n, the Bernstein inequality
(see e.g. [4]) gives

P

(∣∣∣∣∣K̃n

Φ̃n
− 1

∣∣∣∣∣ > 1

2

)
≤ 2 exp

(
− (Φ̃n/2)2

2(Var(K̃n) + Φ̃n/6)

)
≤ 2 exp

(
− 3

28
Φ̃n

)
.

Let p ≥ 1 and q > p be fixed. We have

E

(
Φ̃n

K̃n ∨ 1

)q
= E

((
Φ̃n

K̃n ∨ 1

)q
1{ K̃n

Φ̃n
≥ 1

2

}
)

+ E

((
Φ̃n

K̃n ∨ 1

)q
1{ K̃n

Φ̃n
< 1

2

}
)

≤ 2q + 2Φ̃qn exp

(
− 3

28
Φ̃n

)
.

We infer that {Φ̃n/(K̃n∨1)}n≥1 is bounded in Lq and then {[Φ̃n/(K̃n∨1)]p}n≥1 is uniformly
integrable. The desired Lp convergence follows. �

Proof of Theorem 4.1. To prove the convergence of the point processes of interest, we com-
pute their Laplace transform:

Ψξn(f) := E exp (−ξn(f)) = E exp

(
−

Kn∑
k=1

f
(
εn,k/bn, R̂n,k/n

))
,

for f ∈ C+
K((0,∞)×F([0, 1])), the space of non-negative continuous functions with compact

support. Similarly,

Ψξ(f) := E exp

(
−
∞∑
`=1

f
(

Γ
−1/α
` ,R(β)

`

))
is the Laplace transform of ξ. Recall that the desired convergence follows if and only if

(5.10) lim
n→∞

Ψξn(f) = Ψξ(f), for all f ∈ C+
K((0,∞),F([0, 1])),

see for example [28, Proposition 3.19].
Now we prove (5.10). When investigating the weak convergence of point processes here,

the topology on (0,∞) is such that all compact sets are bounded away from zero and
F([0, 1]) is itself a compact metric space. So, for any f ∈ C+

K((0,∞) × F([0, 1])), there
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exists κ = κ(f) > 0 so that f(x, F ) = 0 for all x < κ and F ∈ F([0, 1]). Given f and thus
κ > 0 fixed, for all ε > 0, we can pick m = m(κ, ε) ∈ N large enough, so that

lim
n→∞

P
(
B(m)

κ,n

)
= P

(
Γ−1/α
m < κ

)
> 1− ε with B(m)

κ,n :=

{
εn,m
bn

< κ

}
.

Now we express Ψξn(f) as

Ψξn(f) = E
[
exp (−ξn(f))1

B
(m)
κ,n

]
+ E

[
exp (−ξn(f))1

(B
(m)
κ,n )c

]
.

The second term on the right-hand side above is then bounded by 1− P(B(m)
κ,ε,n). The first

term equals

(5.11) E

[
exp

(
−

m∑
k=1

f
(
εn,k/bn, R̂n,k/n

))
1
B

(m)
κ,n

]
.

This is the expectation of a function from Rm+ ×F([0, 1])m to [0, 1], continuous everywhere
except at points from the set

(5.12)
{

(x1, . . . , xm, F1, . . . , Fm) ∈ Rm+ ×F([0, 1])m : xm = κ
}
.

We have seen the convergence (εn,k/bn, R̂n,k/n)k=1,...,m ⇒ (Γ
−1/α
k ,R(β)

k )k=1,...,m in Propo-
sition 5.1, and we can notice that the set of discontinuity points (5.12) above is hit by

(Γ
−1/α
1 , . . . ,Γ

−1/α
m ,R(β)

1 , . . . ,R(β)
m ) with probability zero. Therefore, applying the continu-

ous mapping theorem to (5.11), we have that

lim sup
n→∞

Ψξn(f) ≤ E

[
exp

(
−

m∑
k=1

f
(

Γ
−1/α
k ,R(β)

k

))
1{

Γ
−1/α
m <κ

}
]

+ ε

= E

[
exp

(
−
∞∑
k=1

f
(

Γ
−1/α
k ,R(β)

k

))
1{

Γ
−1/α
m <κ

}
]

+ ε

≤ Ψξ(f) + ε.

Similarly, one can show that

lim inf
n→∞

Ψξn(f) ≥ Ψξ(f)− P
(

Γ−1/α
m ≥ κ

)
≥ Ψξ(f)− ε.

Since ε > 0 is arbitrary, we have thus proved (5.10) for every test function f , and hence the
desired result. �

Proof of Theorem 4.2. It suffices to prove, for all open intervals A1, . . . , Ad in [0, 1] and
positive reals z1, . . . , zd, that

Pn := P
(
Mn(A1)

bn
> z1, . . . ,

Mn(Ad)

bn
> zd

)
−→ P(Mα,β(A1) > z1, . . . ,Mα,β(Ad) > zd) := P, as n→∞.

This is a direct consequence of Theorem 4.1 since, denoting

FAi = {F ∈ F([0, 1]) : F ∩Ai 6= ∅}, i = 1, . . . , d,

we have

Pn = P (ξn ((z1,∞)×FA1
) ≥ 1, . . . , ξn ((zd,∞)×FAd) ≥ 1)

−→ P (ξ ((z1,∞)×FA1
) ≥ 1, . . . , ξ ((zd,∞)×FAd) ≥ 1) = P, as n→∞.

�
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Our proof of Theorem 4.2 is based on the presentation (3.5) ofMα,β , which we have shown
at the beginning can be derived from the presentation (3.2). We conclude this section by
giving a direct proof of Theorem 4.2 using the presentation (3.2) and also without using
Proposition 5.1.

Second proof of Theorem 4.2. Fix d ∈ N, open intervals A1, . . . , Ad in [0, 1] and positive
reals z1, . . . , zd. We shall prove that

P
(
Mn(Ak)

bn
≤ zk, k = 1, . . . , d

)
→ P (Mα,β(Ak) ≤ zk, k = 1, . . . , d) ,

as n → ∞. For every ` ∈ N and every n ∈ N, we record whether Yi = ` for some
i ∈ nAk, for each k = 1, . . . , d, and count different types of boxes. More precisely, introduce
δ = (δ1, . . . , δd) ∈ Λd := {0, 1}d \ {0, . . . , 0}, and consider

τδA(n) :=

∞∑
`=1

∏
k=1,...,d
δk=1

1{∃i∈nAk,Yi=`}
∏

k′=1,...,d
δk′=0

1{∀i∈nAk′ ,Yi 6=`}.

For example, τ1,...,1
A (n) is the number of box ` that has been sampled in some round i1 ∈

nA1, i2 ∈ nA2, . . . , id ∈ nAd, and τ1,0,...,0
A (n) is the number of box ` that has been sampled

in some round i1 ∈ nA1, but never in any round in nA2, . . . , nAd. So all boxes that have
been sampled during the first n rounds are divided into disjoint groups indexed by δ ∈ Λd.

Now we need the following limit theorem for τδA(n):

(5.13) lim
n→∞

τδA(n)

nβL(n)
= τδA :=

∫ ∞
0

βx−β−1P̃
(
1{Ñ (xAk) 6=0} = δk, k = 1, . . . , d

)
dx

in probability. This follows from [9, Theorem 2] (which was also established by the Pois-
sonization technique): the above identity therein was established for the corresponding
Poisson random measures being even or odd, and we obtain the desired result here by
applying the identity

P̃
(
Ñ (A) 6= ∅

)
=

1

2
P̃
(
Ñ (2A) odd

)
.

Then, conditioning on {Yn}n∈N, we can write

P
(
Mn(Ak)

bn
≤ zk, k = 1, . . . , d

)
= E

[ ∏
δ∈Λd

P0

(
ε0

bn
≤ min
k=1,...,d,δk=1

zk

)τδA(n)
]

= E exp

{∑
δ∈Λd

τδA(n) log

[
1− P0

(
ε0

bn
> min
k=1,...,d,δk=1

zk

)]}
,

where ε0, defined on another probability space (Ω0,F0,P0), has the same distribution as ε1.
By (5.13) and heavy-tail assumption (4.2) on ε’s distribution,

lim
n→∞

∑
δ∈Λd

τδA(n) log

[
1− P0

(
ε0

bn
> min
k=1,...,d,δk=1

zk

)]

= Γ(1− β)−1
∑
δ∈Λd

τδA

(
min

k=1,...,d,δk=1
zk

)−α
in probability.
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This last sum can be written as

Ẽ

(∑
δ∈Λd

max
k=1,...,d,δk=1

1

zαk

d∏
k=1

1{
1{Ñ(xAk)6=0}=δk

}
)

= Ẽ

(∑
δ∈Λd

max
k=1,...,d

1{Ñ (xAk) 6=0}

zαk
1{

1{Ñ(xAk)6=0}=δk,k=1,...,d
}
)

= Ẽ
(

max
k=1,...,d

1{Ñ (xAk)6=0}

zαk

)
.

Summing up, we have thus shown that

lim
n→∞

P
(
Mn(Ak)

bn
≤ zk, k = 1, . . . , d

)
= exp

(
−Γ(1− β)−1

∫ ∞
0

βx−β−1Ẽ
(

max
k=1,...,d

1{Ñ(xAk)6=0}

zαk

)
dx

)
,

which is the desired finite-dimensional distribution as in (3.2). �

6. Discussion

The extremal process associated to the Karlin random sup-measure Mα,β appears to be
a time-changed version of a standard α-Fréchet extremal process Mα, precisely

(6.1)
{
Mα(tβ)

}
t≥0

.

As noticed in Section 2, this is a consequence of the more general fact that the extremal
process of any Choquet α-Fréchet random sup-measure is determined by the extremal co-
efficient functional evaluated on sets {[0, t]}t>0 only. This is proved in Proposition A.1 in
the appendix. The Karlin random sup-measure is of course not the only Choquet random
sup-measure corresponding to the same extremal process (6.1). Another such family that
arises naturally from limit theorems with long-range dependence are the stable-regenerative
random sup-measures [17], denoted by Msr

α,β and described in Remark 6.2 below. Both
Mα,β and Msr

α,β are stationary and self-similar.
We now give an example of random sup-measure that is self-similar, non-stationary, and

yet also has the same extremal process. For β > 0, let Tβ be the mapping between subsets
of R+ induced by t 7→ tβ . Then, Mα ◦ Tβ is β/α-self-similar, but non-stationary, and
the corresponding extremal process also has the form {Mα(tβ)}t≥0. In the special case
β ∈ (0, 1), we provide another equivalent representation of the above Mα ◦ Tβ , which can

also be connected to a variation of the Karlin model investigated in Section 4. Let Ñ be

a Poisson random measure on R+, and view it as a Poisson process by letting Ñ (t) =

Ñ ([0, t]) ∈ N0 := {0} ∪ N denote the counting number of the Poisson process. We write

Ñ [A] :=
{
Ñ (t) : t ∈ A

}
⊂ N0, for A ⊂ R+.

We then introduce

(6.2) M∗α,β(·) := sup
`∈N

1

Γ
1/α
`

1{Ñ`[x` · ]31} on R+.

When restricted to [0, 1],

M∗α,β(·) d
= sup

`∈N

1

Γ
1/α
`

1{R(β)∗
` ∩ · 6=∅

},
with R(β)∗ d

= minR(β) (recall (3.4)). In fact, one could define Mα,β and M∗α,β based on

the same Poisson point process such that with probability one, Mα,β(·) ≥M∗α,β(·).
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Proposition 6.1. Let Mα be defined as in (1.2) and Tβ be the mapping between subsets of
R+ induced by t 7→ tβ for some β ∈ (0, 1), then

(6.3) M∗α,β
d
=Mα ◦ Tβ

as random sup-measures on R+.

Proof. To show (6.3), by self-similarity it suffices to restrict to [0, 1] and compare the capacity
functionals of the random closed sets in the Poisson point process presentation (6.2) and
(1.2). We start by computing the extremal coefficient functional corresponding to (6.2): for
an interval A = (a, b],

Γ(1− β)−1

∫ ∞
0

βx−β−1P̃
(
Ñ [xA] 3 1

)
dx

= Γ(1− β)−1

∫ ∞
0

βx−β−1P̃
(
Ñ (xa) = 0, Ñ (xb) > 0

)
dx

= Γ(1− β)−1

∫ ∞
0

βx−β−1
[
P̃
(
Ñ (xa) = 0

)
− P̃

(
Ñ (xb) = 0

)]
dx

= (bβ − aβ).

This implies that the capacity functional for R(β)∗ is

θ([a, b])P
(
R(β)∗ ∩ [a, b] 6= ∅

)
= bβ − aβ = Leb(Tβ([a, b])),

whence

M∗α,β(·) d
= sup

`∈N

1

Γ
1/α
`

1{U`∈Tβ(·)},

with {Un}n∈N being i.i.d. uniform random variables on [0, 1]. The desired result hence
follows. �

The above representation ofMα ◦Tβ was discovered during our investigation on the limit
of empirical random sup-measures for the following variation of the Karlin model

X∗n := εYn1{Kn,Yn=1}, n ∈ N,

with {Yn}n∈N, {εn}n∈N and Kn,`, as in Section 4. In this variation, if a box ` is sampled
(Yn = `), then X∗n = ε` only if this is the first time for the box `, and X∗n = 0 otherwise. For
this model, one could establish a limit theorem for the empirical random sup-measure, and
the limit is exactly the random sup-measureM∗α,β . The sequence {X∗n}n∈N is not stationary,

a drastically difference from {Xn}n∈N considered in Section 4. Nevertheless, we see that
partial maxima of both sequences are equal, explaining the equality of the corresponding
extremal processes in the limit.

We summarize the discussion of this section in the following remark.

Remark 6.2. Known examples for self-similar and stationary Fréchet random sup-measures
that arise from limit theorems include now independently scattered random sup-measures,
Karlin random sup-measures and the stable-regenerative random sup-measures. For com-
parison, we recall the definition of stable-regenerative random sup-measures:

(6.4) Msr
α,β(·) := sup

`∈N

1

Γ
1/α
`

1{(
V

(β)
` +R

(β)
`

)
∩ · 6=∅

},
where {(Γ`, V (β)

` , R(β)

` )}`∈N is a Poisson point process on R+ × R+ × F(R+) with intensity

dx(1 − β)v−βdvdPβ where Pβ is the law of β-stable regenerative set (i.e., the closure of a
β-stable subordinator [2]) on R+. It was shown [17, 25] that{

Msr
α,β([0, t])

}
t≥0

d
=
{
Mα(t1−β)

}
t≥0

.
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(Strictly speaking only β ∈ (0, 1/2) was considered in [17], although the extension to β ∈
(0, 1) is straightforward.) In summary, for β ∈ (0, 1),

Mα,β ,Msr
α,1−β , and Mα ◦ Tβ

all have the same extremal process as {Mα(tβ)}t≥0.

Appendix A. Extremal processes of Choquet random sup-measures

As before, given a random sup-measure M, we let M(t) := M([0, t]), t ≥ 0, denote its
associated extremal process. We denote by Mα the standard α-Fréchet extremal process
defined in (2.4). In the literature, Mα was originally named the extremal process [11, 19].
The notion has become however more and more common to refer to various limits of partial-
maxima processes. The same notion was also used for random sup-measures in [24].

Recall the definition Choquet random sup-measures (2.2) in Section 2. Proposition 2.1
therein is a special case of the following result.

Proposition A.1. Let M be a Choquet α-Fréchet random sup-measure with extremal co-
efficient functional θ, and M its extremal process.
(i) For d ∈ N, 0 < t1 < · · · < td and x1, . . . , xd ∈ R+,

P (M(tk) ≤ xk, k = 1, . . . , d) = exp

(
−

d∑
k=1

akθ([0, tk])

)
with

ak :=
1∧d

j=k xj
− 1∧d

j=k+1 xj
, k = 1, . . . , d− 1,

and ad := 1/xd.
(ii) If in addition M is H-self-similar with H > 0, then,

θ([0, 1]) {M(t)}t≥0
d
=
{
Mα(tαH)

}
t≥0

.

Proof. We start by computing the finite-dimensional distribution of the associated extremal
process. We write

P(M(tk) ≤ xk, k = 1, . . . , d) = P (M([0, tk]) ≤ xk, k = 1, . . . , d)

= P

(∫ ∨
R+

d∨
k=1

1[0,tk]∧d
j=k xj

dM≤ 1

)
.

See [33] for background on stochastic extremal integrals
∫ ∨

fdM. We then express the
integrand as

f(t) :=

d∨
k=1

1[0,tk](t)∧d
j=k xj

=

d∑
k=1

ak1[0,tk](t).

In this way, we see that f is an upper-semi-continuous function expressed as the sum of d
comonotonic functions. Let θ denote the extremal coefficient functional of M. From [23],

we know that P(
∫ ∨

fdM≤ t) = exp(−`(f)/t), t > 0, where here and below, `(f) :=
∫
fdθ

(understood as a Choquet integral) is the tail dependence functional of M, and `(1K) =
θ(K). In particular we have

P
(∫ ∨

fdM≤ 1

)
= exp (−`(f)) = exp

(
−

d∑
k=1

akθ([0, tk])

)
,

and in the last step we applied the comonotonic additivity of the tail dependence function `
for Choquet random sup-measures (i.e., for comonotonic functions g, h,

∫
g+hdθ =

∫
gdθ+∫

hdθ [7, 23]). We have proved the first part of the proposition.
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We also know that for an H-self-similar α-Fréchet random sup-measure, the extremal
coefficient functional necessarily has the scaling property θ(λ[0, t]) = λαHθ([0, t]) for all
λ > 0 (see (2.1)). So for such a random sup-measure the conclusion of the first part
becomes

P (M(tk) ≤ xk, k = 1, . . . , n) = exp

(
−θ([0, 1])

∑̀
k=1

akt
αH
k

)
.

Recall that for the independently scattered random sup-measure Mα, extremal coefficient
functional is the Lebesgue measure. The second part of the proposition then follows. �
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