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The Spatial Spectrum Of Tangential Skin
Displacement Can Encode Tactual Texture

Michael Wiertlewski, José Lozada, and Vincent Hayward Fellow, IEEE

Abstract—The tactual scanning of five naturalistic textures was
recorded with an apparatus capable of measuring the tangential
interaction force with a high degree of temporal and spatial
resolution. The resulting signal showed that the transformation
from the geometry of a surface to the force of traction, and
hence to the skin deformation experienced by a finger is a
highly nonlinear process. Participants were asked to identify
simulated textures reproduced by stimulating their fingers with
rapid, imposed lateral skin displacements as a function of net
position. They performed the identification task with a high
degree of success, yet not perfectly. The fact that the experimental
conditions eliminated many aspects of the interaction, including
low-frequency finger deformation, distributed information, as
well as normal skin movements, shows that the nervous system is
able to rely on only two cues: amplitude and spectral information.
The examination of the “spatial spectrograms” of the imposed
lateral skin displacement revealed that texture could be repre-
sented spatially despite being sensed through time and that these
spectrograms were distinctively organized into what could be
called “spatial formants”. This finding led us to speculate that the
mechanical properties of the finger enables spatial information
to be used for perceptual purposes in humans without any
distributed sensing, a principle that could be applied to robots.

I. INTRODUCTION

TEXTURE — the organized deviation from smoothness
of the surface of objects — typically is first apprehended

visually but once contact is made with the hand, touch must
take charge. Katz, in 1925, noted that there are two ways in
which organisms can become tactually aware of the texture
of objects [1]. One way is to determine directly the relevant
spatial features of the geometry of a touched surface. To
illustrate how this could be done, consider a deeply grooved
grating, such as a knurled knob. Under reasonable normal
static loading, the skin interacts with such a surface through
a collection of minute contact surfaces. Assuming that the
sensory apparatus is able to detect these individual contact sur-
faces, then presumably a coarse notion of the surface geometry
can be acquired. If such surface has any degree of fineness,
however, the individual contacts become so numerous that
such strategy becomes highly implausible. Most psychologists
and neurophysiologists agree with Katz that the experience of
surface texture must result from mechanical signals brought
about by finger sliding that change through time, in addition
to mechanical signals that vary through space.
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To the haptics engineer interested in devices and transducers
able reproduce tactile and haptic sensations, these observations
are very significant since the overriding objective is to extract
from the complexity of the ambient physics those aspects that
are the most significant to the perceiver and to discard the
others in the name of technical feasibility.

Of course, tactual texture is an ill-defined notion. In a
single sentence, it is hard to discuss the sensations caused
by rough burlap, those resulting from finely machined bronze,
or those derived from the velvety skin of an apricot. To make
things worse, from a physical view point, and even restricting
attention to hard materials, texture and roughness can be
characterized in many different ways that also depend on the
method used to measure it [2], [3]. With soft materials the
situation is even more inextricable.

The many studies in the psychophysics of texture and
roughness perception unfortunately contribute little insight to
the haptics engineer because these studies rarely speak of the
same quantities, although there is a general agreement that
roughness has perceptual significance [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], even if it is nearly impossible
to define it unambiguously from the physical characteristics
of the touched object [15].

If roughness, and more generally, if tactual texture is
hard to discuss directly from the physics of an object, then
perhaps a more productive approach from the view point of
interface design would be to focus on the characteristics of the
mechanical interaction of the skin with an object, although the
prospects for identifying simple signals are rather bleak at first
sight. The finger is a soft, highly deformable object which,
besides its complex detailed geometry, exhibits several types
of nonlinearities that are manifest at different length scales
of interaction with surfaces [16], [17], [18], [19], [20]. Even
under the extremely simplified assumption of linear visco-
elasticity and perfectly clean contacts free of foreign bodies
and liquids, the contact of deformable bodies with rough
surfaces gives rise to theories of considerable complexity that
are unlikely to yield simple interaction models [21]. These
observations justify the measurement-reproduction approach
adopted in this study.

II. ROUGHNESS AND TEXTURE IN
MANUFACTURING AND VIRTUAL REALITY

Numerous industrial processes, from mirrors to roads, de-
pend on the measurement of roughness. It is achieved using
profilometers based on slow mechanical scanning with a sharp
stylus (the tip radius can be as small as a few nanometers) or
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by optical methods (confocal microscopy, laser triangulation,
interferometry). Reporting roughness is mostly a function
of the intended application. In part machining, for instance,
roughness is traditionally characterized in terms of the relative
heights of a set of asperities specifying their standardized
moments: 0th, 1st, 2nd, 3rd. Interestingly, the latter measures
report zero roughness for any regular grating and therefore
cannot be applied to perceptual studies. Other measures report
the statistics of the peak-to-valley distances of sets of asperities
which makes them more relevant. Some measures consider
autocorrelation, some account for spatial wavelength or for
extrema density. Some others take into consideration the
magnitude of the slopes of asperities, and yet others their
curvature. The later measure is probably one of the most
relevant to tactual roughness of these different approaches.

The measurement process is typically slow (minutes, hours)
and provides details that are not necessarily relevant to tactual
sensing. On the other hand, it is an everyday experience that
the roughness of a surface can be felt, or that two textured
surfaces can be discriminated, or even that a wood grain can
be identified in a fraction of a second by the scanning finger.

These observations have let researchers in virtual reality
to adopt the more expeditious method used by humans to
sense texture, rather than to rely on industrial-type methods.
Examples of this approach can be found in [22] where the
scanning interaction force is measured, in [23] where the
scanning acceleration of a stylus is measured, or in [24] where
the scanning velocity is measured. The reader is referred
to a recent survey where 50 articles on the subject are
commented [25].

For texture reproduction, the most widely adopted approach
is the force-feedback device with a position-dependent tex-
tured virtual wall, also extensively surveyed in [25]. A more
recently introduced technique is to modulate the friction force
between the finger and a mechanically grounded active surface.
The friction force modulation can be achieved, for instance,
by electrostatic fields [26], ultrasonic amplitude modulation
[27], surface acoustic waves [28] or with the squeezed film
effect [29], [30].

III. DESIGN MOTIVATION FOR A TEXTURE TRANSDUCER

The above considerations led us to engineer a new de-
vice capable of accurate measurement and reproduction of a
surface-finger interaction, having a bandwidth and a dynamic
range able to do justice to the biomechanics and sensory
performance of the human finger. This device is already briefly
described in reference [31] where is was shown that it was
able to provide perceptually equivalent sensations of roughness
between a virtual and a real surface. The surface used in these
preliminary experiments was a “simple” triangular grating of
spatial period 1.0 mm with groove depth 0.1 mm. Although
the surface was periodic, the force of interaction during
sliding turned out to be a complex, broadband signal having
a complicated harmonic signature which can be appreciated
by consulting Fig. 1 and caption. The transformation from
geometry to signal is highly nonlinear, a fact that is hardly
surprising considering that friction is the primary phenomenon
involved [32].
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Figure 1. Spatial spectrogram produced by sliding a finger on a perfectly
periodic triangular grating. The methods used to construct such plots are
described in detail later in this article. For now, it can be appreciated
that the transformation from a triangular profile to a force signal is far
from straightforward. A triangular wave has only odd harmonics. While the
fundamental “formant”, or spectral peak, at 1 mm−1 is present, it is actually
weaker than the first even-harmonic spectral peak. Notice also the present of
energy in the sub-harmonic frequencies. These are the hallmarks of a nonlinear
transformation.

In the present article, we describe this device in greater
detail and we employ it in a experiment where it is used to re-
produce various textures. We show that the textural recording-
reproduction obtained with this device is of sufficient quality
to enable several participants to correctly match a virtual
surface with a real surface included in a set of five. The
mechanical consequences of net friction were eliminated by
the transduction process and so was distributed skin deforma-
tion within the finger contact area. As a result, the apparatus
reproduced accurately the oscillatory components of the skin
tangential displacement at the exclusion of other mechanical
consequences of sliding a finger over a rough surface.

A particular feature of our device is that the same mechan-
ical structure was used in the sensor and actuator modes. It is
based on the piezoelectric effect which, as is well known, is
reversible. In sensor mode it operates like a high-quality, stiff
force sensor. In actuator mode it provides accurate isometric
stimulation to the skin. The questions regarding the reciprocal
signal causalities are discussed in [31].

A. Performance Considerations

The device should be orders of magnitude stiffer than the
fingertip to provide unambiguous measurement and stimula-
tion, noting that the converse possibility is considerably harder
to achieve due to the difficulties met in reducing the effects
of inertia to sub-threshold levels [33].

Other design considerations include the level at which
interaction forces should be resolved. In absence of knowledge
on the smallest dynamic forces able to stimulate the skin, an
estimate can be obtained by considering that the elasticity of
the fingertip is roughly of the order of 103 N·m−1 and that a
detectable skin displacement is of the order of 10−7 m. One
could infer that the sensor should resolve 10−4 N, which is far
beyond the reach of commercial strain-gauge force sensors. In
terms of actuator displacement, similar considerations indicate
that 10−4 m would be needed to create the 10−1 N peak-to-
peak force oscillations that can be encountered when stroking
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texture as can be seen from Fig. 1. This requirement has been,
in hindsight, the hardest to meet and, due to saturation, has
somewhat limited the scope of our investigations. Finally, it
is commonly accepted that a 500 Hz bandwidth is needed
to represent tactile interactions. Interestingly, this figure was
actually proposed by Katz almost a century ago [1].

B. Description

The main components, shown in Figure 2a, comprise a
multilayer, 40 mm piezoelectric disk-bender (CMBR07, Noliac
Group A/S, Kvistgaard, Denmark) connected to a 20 mm-
wide tray that can hold a sample. The bender is clamped
vertically by two epoxy ridges of semi-circular section that
apply uniform pressure on the bender. A treaded rod connected
to the hollow center of the bender transmits motion to the tray
which is linearly guided by a flexure made of two leaf springs.
Connection to the bender is realized by two Delrin c© washers
that can tolerate ± 0.5o of misalignment. The texture samples
are bonded to the tray using double-sided adhesive tape.

During sensor operation, the interaction forces induce flexu-
ral deformations of the blade along x and in the piezoelectric
element, as indicated in Fig. 2b. Through the piezoelectric
effect, the deformation of the ceramic causes charges to appear
on the electrodes that are picked up by an instrumentation am-
plifier. Conversely, when applying a voltage to the electrodes
of the bender, the piezoelectric effect causes the transducer to
operate as an actuator. In this case, displacements of the tray
impose deformations in the fingertip resting on it.

leaf springs

tray 20 x 45 mm bender

clamp

base

a b y

xz

Figure 2. a. Transducer schematic. b. Cross section of the system at rest
(solid lines) and during deformation (dashed lines).

C. Transducer Modeling

Since the mechanical constitution of the transducer is com-
mon to the sensor and to the stimulator, their models include
the same lumped parameters. They differ only by the electron-
ics. In sensor mode, a high gain, low noise instrumentation
amplifier collects charges and convert it into readable voltage,
whereas in actuator mode, a high voltage amplifier, with a low
output impedance is used to drives voltage on the electrodes of
the piezoelectric bender and therefore the tray’s displacement.

1) Mechanical Flexure: The flexure acts like a mass-spring-
damper system with stiffness kr according to Fig. 3a. Damping
due to internal and external friction is by and large dominated
by losses in the bender. It arises mostly from hysteresis in
the piezoelectric material. As further discussed later, it is
reasonable to represent it by viscous damping. The inertial

term corresponds to the equivalent moving masses of the tray
and of the bender. The actuator force is shown as an external
force, fp, acting in the opposite direction of x. Another
external force, fd, models the finger interaction through its
contact with the sample.

a by

xz
fd

kr

br

x(t)

fp fp

q̇−

q̇p

q̇+
v−

v+
m

Figure 3. a. The plate, the sample and the bender are modeled by a mass
m. It is suspended by a spring of stiffness kr connected to a damper br .
Forces fp and fd represent the piezoelectric actuator and finger interaction
forces, respectively. b. The piezoelectric effect causes charges to appear on
the electrodes as a result of displacement.

Applying Newton’s second law and converting to the
Laplace domain gives

(ms2 + brs+ kr)X(s) = −Fp(s) + Fd(s), (1)

where X(s), Fp(s) and Fd(s) represent the Laplace transform
of the variables x(t), fp(t) and fd(t).

2) Static Constitutive relationships: The Y-poled bimorph
piezoelectric element has two external electrodes plus one cen-
tral electrode located in the neutral fiber. Bending deformation
results in the compression of one layer and traction of the
other. Layers are polarized which creates charges q+, qp and
q− through the piezoelectric effect. Operating as an actuator,
imposed voltages v+ and v− push the charges on the armatures
to induce axial deformation as a result of the radial strain.
The linear, static constitutive relationships can be expressed
in matrix form as follows [34], x

q+

q−

 =

1/kp β β

β Cp 0

β 0 Cp


fp

v+

v−

 , (2)

where β = δmax/2vmax is the ratio of the largest unloaded
deflection to the total maximum operating voltage applied to
one layer, kp is the flexural stiffness in open circuit and Cp

is the capacitance of one piezoelectric layer when no stress is
applied. In this model, the dynamic parameters like mass and
damping are not taken into account.

3) Transfer function in sensor mode: Only one layer is
used. The voltage generated by an external force can be written
from (2) by summing the piezoelectric induced voltage, vp,
with the voltage due to the circulation of charges,

v+ =
q0 +

∫
q̇+dt

Cp
− β

Cp
fp =

q+
Cp

+ vp.

The transducer acts electrically like a voltage generator in
series with a capacitor Cp. The generated voltage, v+, is
amplified by a high input impedance (1012 Ω) instrumentation
amplifier (LT1789, Linear Technology Corp., Milpitas, CA,
USA), see Fig. 4. Load resistances, Rs, combined with the
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capacitor form a first-order high-pass filter which can be
expressed in the Laplace domain by

V+ = − 2βRs s

1 + 2RsCp s
Fp =

2RsCp s

1 + 2RsCp s
Vp. (3)

piezo

Gs

Rs

Rs

Cp

vp
vs

Figure 4. Schematic of the sensor circuit. The electrode of the upper layer is
connected to an instrumentation amplifier. Resistors create a high-pass filter.

Neglecting the contribution of vp to the mechanical behav-
ior, the mechanical constitutive equation is x(t) = 1/kp fp(t).
Combining it with (3), Vs(s) = GsV+(s) gives the output
voltage, Vs(s), as a function of the displacement X(s) :

Vs(s) = −Gsβkp
2Rs s

1 + 2RsCp s
X(s)

Using (1), the transfer function of the sensor, Hs(s), becomes

Hs(s) =
Vs(s)

Fd(s)
=

−2GsRskpβ s

(1 + 2RsCps)(ms2 + brs+ kr + kp)

4) Transfer function in actuator mode: The bender is con-
nected to a power source (PA86U, Cirrus Logic Inc., Austin,
TX, USA) which drives the central electrode as in Fig. 5. The
amplifier is connected voltage-mode with a gain Ga = 20.
A resistor, Ra, in series with the output tunes the frequency
response since a low pass filter is formed with the capacitance
of the piezoelectric element.

v+

vp
v−

q̇p

q̇−

q̇+
Ra

Ga

va

−vmax

+vmax

Figure 5. Circuit in actuator mode. Upper and lower electrodes are connected
to fixed voltages ±vmax. The power amplifier drives the central electrode
voltage, vp.

By application of Kirchhoff’s law at the output node,

q̇+ + q̇p = q̇−, (4)

with q̇+ = Cpv̇+, q̇p = (1/Ra) (Gava − vp) and q̇− = Cpv̇−.
Using these values in (4) and substituting v+ = vmax−vp and
v− = vp + vmax yields in the Laplace domain,

1

Ra
(GaVa − Vp) = Cp(Vp + Vmax) s− Cp(Vmax − Vp) s,

finally giving,

Vp =
Ga

1 + 2RaCp s
Va. (5)

The power stage acts as an amplifier of gain Ga with a first-
order low-pass filter of cutoff frequency νcut = 1/(4πRaCp).
The first line of (2) combined with (1) gives

(ms2 + brs+ kr + kp)X(s) = 2βkpVp(s) + Fd(s). (6)

The two last lines of (2) can be simplified since the voltage
driver supplies and draws charges as necessary such that (2)
becomes

q+ = CfV+ and q− = CfV−.

The transfer function of the unloaded stimulator is found by
combining (5) with (6),

Ha(s) =
X(s)

Va(s)
=

Gakpβ

(1 + 2RaCp s)(ms2 + brs+ kr + kp)
.

D. Identification

The model parameters could be initially estimated from the
data provided by manufacturers, as well as from the design
of the leafs and of the tray. Parameter identification was then
performed to obtain a better model and to take into account
nonlinearities and parameter deviations from their manufac-
turing specification. Because the mechanical parameters are
common to the sensor and the actuator, it is more convenient
to identify the system first in actuator mode.

1) Actuator mode: The frequency response was determined
using a frequency sweep from 10 Hz to 1000 Hz, applying
4 Vpp voltage signal, va, (using a digital-to-analog converter
PCI-6229, National Instruments Corp., Austin, TX, USA).
Output displacement was measured using a laser telemeter
(LT2100 with LC2210, Keyence Corp., Osaka, Japan). At
each frequency, amplitude and phase were measured after a
200 ms pause to let the transients subside. The response was
determined under the following conditions: unloaded, with a
finger resting on the tray (normal force ≈ 0.5 N) and with
a finger pushing down the plate (normal force ≈ 1 N). The
result is shown in Fig. 6. The system exhibits the intended
natural resonance at 500 Hz followed by a small un-modeled
resonance at 800 Hz.
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Figure 6. Frequency response of the actuator. Measurement are in grey dot
and the model in plain black.

Since the actuator is two order of magnitude stiffer than the
finger, finger loading has a negligible impact on response in
a 10–400 Hz band. At resonance, however, damping due the
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fingertip causes a 3 dB attenuation of the resonant peak. In
the experiments, caution was taken to roll-off the signal with
3 dB attenuation at 500 Hz, flattening the response. The effects
of the finger damping as well as of the second resonance
can therefore be neglected. Least-square fitting (R2 = 0.85)
provided the parameters shown in Table I. As can be seen from
the figure, the model and the uncorrected system responses are
graphically indistinguishable up to 500 Hz.

Table I
ELECTRO-MECHANICAL PARAMETERS.

Mechanical Electrical
δ = 82.35 µm Cp = 818 nF
kp = 76.47 × 103 N·m−1 vmax = 100 V
m = 6.8 g Gs = 100
br = 4.49 N·mm−1·s−1 Rs = 12 kΩ
kr = 4.05 × 10−3 N · m−1 Ga = 20

Ra = 680 Ω

It is known that piezoelectric ceramic transducers have
significant hysteresis which affects the quasi-static and the
dynamic responses. Fig. 7 plots the response of the trans-
ducer to 0.1 Hz sinusoidal 10 V peak-to-peak amplitude
signal showing a 16% hysteresis. The hysteresis introduced
by piezoelectric ceramics is of non-saturating type and hence
introduces small amplitude distortion of no consequence in
our experiments, since the minor loops are very small. It does
introduce constant phase lag of 8◦ which, at a given frequency,
can be represented as linear damping [35]. It is the actuator
hysteresis that accounts for the nicely damped resonance of
the system at 500 Hz but is neglected in the low frequences.
In summary, the actuator is capable of a maximum peak-to-
peak displacement of 200 µm, with a quasi-static gain of 20
µm/V in the range from DC to 500 Hz.
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Figure 7. Quasi-static measurement of the actuator response (gray circles).
Data show a non saturating hysteresis that can be approximate by a 8◦ ideal
phaser (black line).

2) Sensor mode: A known external force, calibrated using
a conventional force sensor (Nano 17, ATI Industrial Automa-
tion, Apex, NC, USA), was applied to the sensor. This force was
used as an input for the model described earlier. Fig. 8 the fit of
the model with the measurement (R2 = 0.91). The simulated
output is 10 times more noisy than the actual measurement
from the sensor because of the noisy input measurements from
the strain-gauge force sensor.

The model predicts a sensitivity of 26 V·N−1 for a gain
of Gs = 100 in the bandwidth 10–500 Hz with the resistor

input
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Figure 8. Fit of the sensor model with actual measurements.

Rs set to 12 kΩ. Like in the actuator mode, the sensor has
a natural resonance at 500 Hz. The signal is acquired with
the data acquisition board already mentioned. With 16 bits
of resolution, the force signal can be measured with 10−5 N
resolution. The experimentally measured noise floor is as low
as 25 µN/

√
Hz.

IV. EXPERIMENT 1 : TEXTURE IDENTIFICATION

As described in [31], the transducer was used in a causal-
ity inversion process: recording force and stimulating with
displacement, but instead of asking participants to simply
compare the roughness of a virtual surface with that of a
real one, we asked them to identify different textures, thereby
showing that they could discriminate textured surfaces in the
complete absence of stimulation distributed in space. The
principle of the experiment was to first record interaction with
five different texture samples. A group of participants were
then asked to identify three of these virtual samples among the
five real samples, and another group of participants to match
three of the real samples with the five real samples, leaving
much possibility for confusion. We expected participants to
be able to identify the real or the virtual textures with an
equivalent level of performance. We also expected that a
learning effect would be made apparent from the order of
testing.

A. Methods and Materials

1) Design: We used a 5-alternative forced-choice matching
procedure during which the participants were asked to identify
a comparison stimulus with the five five standard textures.
With the first group of five participants, in a first session, the
comparison stimulus was a real surface picked randomly in a
set of three and the standard stimuli were the five real textures.
They were then tested in a second session with a simulated
surface picked randomly among the same set of three as the
comparison stimulus and the standard stimuli were also the
five real textures. A different group of five participants was
also tested, but with the simulated stimuli first, and then with
real comparisons. The two missing textures in the comparison
set served as ‘catch samples’ to test the participants’ ability
to detect non matching textures. They also acted as distractors
since the participants were looking for them.

2) Sensing apparatus: The transducer was used to measure
the interaction force of the author’s finger sliding on a textured
surface as in Fig. 9. The samples were placed on the tray of the
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transducer. The aforementioned strain-gauge based force sen-
sor measured the low frequency components of the interaction
force. The finger position was located by a precision a LVDT
sensor (SX 12N060, Sensorex SA, Saint-Julien-en-Genevois,
France) attached to the fingernail.

force sensor

LVDT

0

1

2

0

20

40

−100

0

100

0 0.5 1
Time (s)

m
N

N
m

m

xc(t)

fN

fT

xc(t)

fT

fT

fN

Figure 9. Sensor operation. A textured sample is bonded to the central plate.
The finger position is measured by a LVDT sensor and the total interaction
force monitored by a six-axis force sensor.

The position of the finger, the net force, and the tangential
force sensed by the transducer were recorded at a 10 kHz,
i.e. with sampling period T = 10−4 s. The transducer signal
was processed by computing its Fourier transform, truncating
the spectrum to 15–500 Hz and then reconstructing the signal.
This method ensured that the signal was restricted in the band
where the transducer had a flat frequency response, excluding
any artifact and phase distortion.

3) Stimulating apparatus: The friction force is correlated
with the position of the finger, hence the signal is better
expressed in the spatial domain and must be converted into
this domain. Since the speed of a finger is of the order
of 50 mm·s−1 the displacement resolution had to be better
than 5.0 µm. An interpolation procedure was employed to
reconstruct the signal in the spatial domain with the required
resolution from the time-sampled force, fT(jT ), and from
the time-sampled finger position xc(jT ), j ∈ N. The discrete
functions xc(jT ) and fT(jT ) were first fitted with piecewise
cubic Hermite functions, Sx(t) ' xc(t) and Sf (t) ' fT(t),
and then re-discretized. Given a space sampling period, ε,
position was resampled into samples xi = iε, i ∈ N. The
force could then be represented in the discrete space domain
following

fT(xi) = Sf (S−1
x (xi)). (7)

The spatial sampling period was chosen to match the smallest
step achievable with the apparatus, ε = 1.0 µm.

The transducer was guided by a precision linear bearing,
E, located by an encoder, F, (Model R119 Gurley Precision
Inc, Troy, NY, USA) that could resolve position with 1.0 µm
precision. The fingertip rested on the tray, A, and the transducer
tracked the position of the proximal phalanx, D, resting in a
cradle, G, see Fig. 10a, relieving the fingertip from lateral
loads. As the slider moved with the finger, the transducer
stimulated the fingertip as shown in Fig. 10b. Each 0.5 ms
the position of the slider was read, the software interpolated
the drive signal from a pre-recorded texture profile.

A gain Gψ was adjusted to calibrate the stimulation for
perceptually equivalent roughness with the real sample as
described in [31]. To ensure that the drive signal matched
the mechanical bandwidth of the transducer, an active analog
3th order Butterworth filter with a cut-off frequency 600 Hz
(Salen-Key configuration with amplifier OP2177, Analog De-
vices Inc., Norwood, MA, USA). The filter served as a signal
reconstruction filter and also compensated for the mechanical
resonance.

F

D

A

E

G

texture

interpolation

a

b

fT(xi)

xc(t) Gψ
va(t)zoh

2 kHz

Figure 10. Stimulator operation. a. The transducer is mounted on linear
bearing. The slider is located by an encoder. b. The control voltage is updated
of piezoelectrical actuator as a function of the position and the texture profile
used. The open loop command used.

Assuming that the Fourier transform of the texture signal
exists, the accuracy of its restitution can be analyzed in terms
of the maximum achievable spatial frequency for particular
speeds, ẋc(t), of the finger. The signal generated digitally was
filtered at νcut = 500 Hz. It had for effect to limit the largest
reproducible spatial frequency to, Fmax = νcut/ẋc [36]. As-
suming a finger velocity of 50 mm·s−1, the finest represented
grating had a 0.1 mm period. The spatial resolution of the
device was ε = 10−3 mm, the largest spatial frequency was
Fmax = 10 mm−1 so the textures were represented by at
least 100 samples per period. At higher speeds, the temporal
sampling became the limiting factor. In terms of the Nyquist
sampling frequency, the fastest variations were reconstructed
with at least ẋc/(FmaxT ) = 12 temporal samples.

This analysis shows that the device could reproduce spatial
grating as low as 0.1 mm, with high fidelity and a low
sampling noise, both in spatial and temporal domain.

4) Test bench: In order to ensure that the matching of
virtual and real textures were performed under conditions that
were as similar as possible, a test bench was constructed where
the simulated and the real surfaces had to be touched under
the same constraints, see Fig. 11a. In the two conditions, the
user’s finger was resting on a cradle that was attached to
the stimulator. Since all moving parts were rigidly attached,
participants felt the same inertia and the same mechanical
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imperfections in the two conditions. To ensure that the real
and simulated surfaces felt thermally equivalent, a smooth PVC
plate was glued to the tray of the stimulator.

sample

a

cradle

stimulator

rigid link

b

comparison bench

participant

curtain

experimenter

standard samples
buttons

sample holder

cradle

Figure 11. Experimental setup. a. The comparison stimuli bench. The
stimulator and a real sample are side by side. During exploration, the
participants experienced the stimuli under identical conditions. b. Participants
were asked to feel the comparison texture and to match it with the standard
textures. They answered by pressing one of the five buttons.

5) Stimuli: Five textured samples were used as stimuli.
They were 40 mm long, 20 mm wide, 3 mm thick, and
made out of PVC plastic (see Fig. 12). The texture on each
sample was created using different machining processes as
described in Table II. The resulting micro-geometries were
not perceivable without relative motion. The interaction force
resulting from scanning with a finger was acquired as de-
scribed earlier. To do so, one of the participants scanned the
surfaces at a constant speed of 50 mm/s ±15 mm/s and a
constant normal force of 0.5 N ±0.25 N to match the typical
values of natural exploratory movements [37]. Before each
measurement a solvent was used to clean the surfaces the
participant washed her hand. Recordings were resampled using
the method described earlier.

Figure 12. Photos of the five samples.

Table II
MACHINING PROCESSES.

texture process parameters observations
A handheld drill speed: 6000 tr/min melted the surface

polishing disk
B milling speed: 100 tr/min 1.5 mm ridge

40 mm endmill feed rate: 1 mm/s 0.1 mm high
multiple teeth depth: 0.1 mm

C milling speed: 5000 tr/min 3 mm period
2 mm endmill feed rate: 2 mm/s 0.1 mm deep
two-flute grating

D coarse sandpaper P40 grade random scratches
E drilling with 60o depth: 0.1 mm quincunx pattern

conical end-mill 0.5 mm spacing

6) Participants: Ten volunteers were recruited for the study.
They were seven male and three female from the staff of
CEA-LIST, aged 25 to 31. Three of them had experience with
haptic devices, but all of them were naive as to the purpose
of the experiment. They all were right-handed. They all gave
their informed consent and did not report any motor or tactile
deficit.

7) Procedure: Participants were placed in front of the setup
hidden by a curtain, as illustrated in Fig. 11a. They were
explained verbally and by a schematic the overall layout,
without disclosing the details of the apparatus and then were
explained their task. They then donned acoustic isolation head-
phones (1015210, Sperian Protection, Roissy-CDG, France)
that provided 30 dB of sound attenuation. White noise was
also played through the headphones, and the volume could
be adjusted to a comfortable level. There was a small light
attached to the curtain to cue the participants to the next trial.

The five real textures samples were placed on a jig right
behind the curtain and each was associated to a push-button,
see Fig. 11b. Behind the answer panel was the comparison
stimulus bench slightly elevated so that the jig did not perturb
exploration. The experimenter guided the third phalanx of the
participants to rest in the cradles. Three of the five textures,
C, D, and E were used as comparison stimuli whether real or
simulated.

Before each session, all five comparison stimuli, either real
or simulated, were presented successively to the participant
until they would be familiar with them. They typically became
familiar with the stimuli after two rounds, but did not have to
memorized them. A group of five participants were presented
simulated textures first, and the other five real textures as
comparison stimuli first. They were then all tested in the
other condition in the second session. During the trials, the
comparison stimuli C, D, and E were presently randomly.
Participants identified the samples by matching them with one
of the five standard textures.

When real textures were used as comparison, the experi-
menter manually changed the sample according to the instruc-
tions of the computer. The trials stopped whenever the session
duration exceeded 15 minutes, typically after 30 or 40 trials,
or when the trial number reached a hundred, whichever came
first. In the case of virtual textures, since the process was
faster, all participant performed 100 trials under 15 minutes.
The volunteers were interviewed after each session to record
their subjective experience.
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B. Results
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Figure 13. Confusion matrices. a. Matching real textures. b. Matching
simulated with real textures. The gray scale represent the proportion of correct
answers.

The overall results can be summarized by the confusion
matrices shown in Fig. 13. The answer rates are shown by a
gray scale from no match (white) to perfect match (black).
When the real textures were used as comparison stimuli,
Fig. 13a, identification was nearly perfect, which showed
that it was possible to identify the samples. There was some
confusion with the textures that were not used as comparison.
After the experiment, the participants reported that they felt the
need to detect them even though they were never presented. All
noticed, however, that some samples were missing. When the
comparison textures were simulated, Fig. 13b, the pattern was
similar and the identification rate high but there was noticeably
more confusion between samples A and E.

The rates of success of each participant in the two conditions
are presented in Fig. 14. Although no detailed statistics were
computed due to the small amount of data, it is apparent that
the participants who were tested with the real comparisons
first, participants 4, 5, and 6, performed better than their
counterparts, but more importantly, that there was transfer due
to learning from the real condition to the simulated condition.

The overall success rate in the real texture condition was
0.93, with 0.10 of standard deviation. In the simulated texture
condition the mean success rate was 0.75 with 0.14 of standard
deviation among all participants. The group who performed the
task in the real condition first had a success rate of 0.79 with
standard deviation of 0.11 in the simulated condition.

Upon debriefing, we learned that all the participants, except
one, felt a difference between the two sessions. They also
described realistic sensations of rough textures, but the lack of
an associated sensation of friction disturbed them somewhat.
Six of them noticed the absence of relative motion between the
stimulator and their finger. The confusion between sample A
and E seems to be due to the fact that the perceived magnitudes
of roughness were almost identical.

0.0
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1.0
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1 2 3 4 5 6
participants

real texture condition simulated texture condition
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Figure 14. Success rates at the matching experiment with real and digital
tactile textures.

C. Discussion
The results suggest that the texture recognition task can be

adequately performed but say nothing regarding the fidelity
of the representation. Key indications regarding the percepual
accuracy of the sensations given by the apparatus concern the
spectral properties of the stimuli in addition and their intensity.
The ability of the apparatus to convey stimulation magnitude
was already tested in [31], so we designed an experiment
aimed at testing the participants’ ability to discriminate the
spatial frequency of pure tones.

V. EXPERIMENT 2: TONE DISCRIMINATION

We characterized the realism of the display by asking par-
ticipants to discriminate pure spatial tones and by comparing
the results with data found in the literature. The participants
were asked to discriminate the frequency of a single sinusoidal
grating that of a simulated counterpart. The Weber fraction,
extracted from the data, was then compared to the results
of [38].

A. Materials and Methods
1) Participants: Eight volunteers, 6 male and 2 female were

recruited from the staff of CEA LIST (age 23 to 31). Two of
them had experience with haptic interfaces, but were naive
about the purpose of the study. They all were right-handed
and did not report any somatosensory deficits. They verbally
gave their inform consent.

2) Stimuli: The reference stimulus was a single sinusoidal
wave epoxy grating accurately reproduced by a molding
process of the very same 1.76 mm-spatial-period and 12.8 µm-
amplitude grating used in [38]. The process used RTV silicon
that can reproduce details as small as 1 µm. The first author’s
finger response was recorded as described in Experiment 1.
The average finger speed was 64 mm/s and the normal force
was 0.74 N. Comparison stimuli were delivered as previ-
ously described, with the difference that the spatial scale was
stretched with a ratio r. The samples was then truncated and
stiched to adjust the length of the records. The amplitudes of
the virtual gratings were scaled by the factor r so the slope of
the undulation would have the same value as described in [39].
Six stretching factor were tested : -70%, -50%, -30%, -10%,
+10%, +30%, +50% and +70%, that is, the spatial period of
the simulated textured varied from 0.53 mm to 2.99 mm.
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3) Procedure: A 2-AFC constant stimuli procedure was
carried out using the same bench as in Experiment 1, Fig. 11b.
The standard stimulus was rigidly bonded to the support of
the left of the bench. The comparison stimuli were presented
as described earlier. Participants sat behind a curtain that
concealed the apparatus and listened to the same white noise.
They were ask to sense the texture by resting their finger
in a cradle to experience the comparison and the standard
stimulus alike. After a short instruction of the task, they could
experience the standard stimulus and the comparison stimuli
from the smallest spatial period to the largest twice. They were
then presented randomly stretched samples and asked to tell
which one of the two had the smallest spatial period. They
gave their answer by keystrokes. The procedure stopped when
all the samples were presented at least 10 times. The total
procedure took 30 minutes at most.

4) Analysis: The data analysis described in [38] was carried
out. The results were fitted cumulative gaussian distribution
using a Maximum Likehood techniques. The 0% stretching
corresponds to the point of subjective equivalence, so its value
should correspond to the 50% proportion. We used a prior on
the position of the inflection point of the statistic distribution
at 0% of stretching coefficient. Therefore, only the slope of the
distribution was adjusted. The Weber fractions were retrieved
from the stretching factor that led to the 75% threshold. One
of the participant, had abnormal results that are not reported.

B. Results and Discussion

Figure 15 shows the results for each participant. The average
Weber fraction is 25.3% with a standard deviation of 5.8%.
Using similar procedure but with real samples, Nefs et al.
found a Weber fraction of 15.5% [38].
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Figure 15. Spatial frequency discrimination performance for all participants.

While the discrimination performance using our apparatus
caused a small deficit in performance compared to real sam-
ples, the results show that particants could discriminate spatial
frequences adequately.

VI. DISCUSSION: IMPLICATIONS FOR
HUMAN AND ROBOTIC TOUCH

This discussion follows directly from the above findings that
were obtained from the performance of human participants.
In fact, they apply also to robotic touch if robots of the
future are to be endowed, like humans, with the faculty to
detect, discriminate, and identify textured surfaces instantly.
The discussion is organized as a set of observations.

A. The Absence Of Spatially Distributed Information Does Not
Imply Temporal Representation

The experimental conditions in which we placed the par-
ticipants forced them to base their judgement on just two
perceptual cues: stimulation magnitude and spectral content,
since spatially distributed information was completely elimi-
nated, as well as low frequency signal components and vertical
movements. Yet they performed very well at matching textures
and the majority reported a high degree of realism despite
missing cues such as relative slip. This observation begs the
question of the choice of domain in which spectral content of
tactual textures should be represented, implicitly implying the
domain in which textures might or should be processed.

One possibility is to represent the mechanical signal of
interaction, the rapid skin lateral displacements specifically, in
the time domain, like in acoustics. Several facts argue against
this option. First, in contrast to acoustics, the representation
would depend crucially on the condition under which the
signal is acquired, namely on the scanning velocity, and
hence would not be invariant, something which is perceptually
troublesome. Secondly, while touch is capable of fine temporal
discrimination (5–10 ms), unlike audition, its time-domain
spectral processing abilities are poor [40], [41], [42]. In
fact, when experiencing the signals that we have collected
directly and without correlated movement is not felt by naive
participants as texture but as what it is: vibrations. In fact, it
is quite difficult to discriminate the textures tactually on the
basis of temporal information only.

B. Candidate Representation: The Spatial Spectrograms and
The Spatial Formant Organization

Another option is to represent texture in the space domain,
even if it was acquired through regular time intervals, by
expressing the interaction force as a function of finger position,
that is, using a transformation such as that discussed in
Section IV-A3. An analysis in terms of the variation of spectral
components through space gives rise to “spatial spectrograms”
that express at each point in space the distribution of signal
energy in terms of spatial frequencies: from ‘smooth to sharp’,
rather than ‘low to high’ in the time domain.

The spatial spectrograms of the five standard texture where
computed using a short-term fast Fourier transform with a
10 mm Blackman window and with zero-padding to match
the length of the temporal representation. The results can be
seen in Fig. 16 where each texture corresponds to a distinctive,
highly structured pattern. This fact is quite intriguing. Recall
from Fig. 1 that a texture profile, a triangular wave in this case,
is converted through scanning into a complex interaction signal
by a highly nonlinear transformation, despite the fact that the
finger is a soft, deformable, low curvature object, but with high
frequency details [12], [43]. After nonlinear transformation
by the finger, the five textures are compactly represented by
highly distinguishable structured patterns.

Each has a particular “formant” organization, to adopt a no-
tion from acoustics, which are two-dimensional regions of high
signal energy and that are not necessarily harmonic or even
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quasi-harmonic. The presence of this organization further ar-
gues against the notion of time-domain texture processing. For
instance, in texture B, the original 1.5 mm-wide geometrical
ridge is tactually represented by a round energy peak, 10 mm-
wide and one-decade high. That texture samples A and E were
hardly confused in the real condition but that in the simulated
condition texture E was relatively frequently mistaken for A is
interesting. The corresponding spatial spectrograms do share
some common features but are shifted in spatial frequency.
It could be that the very low frequencies of A contained
spatially distributed information that was eliminated by the
experimental conditions. Surprisingly, samples D and E were
not confused frequently. Although their spatial formants differ,
E is noticeably stronger than D, thus supporting a two-cue
hypothesis. If one cue fails to provide reliable information,
the other takes over.

C. Other Possibilities Based On Neurophysiology

Of course, other representations would be possible and with
appropriate transformations could even be equivalent to the
spatial spectrograms. Chiefly among them in the context of
textures, are scalograms. These representations would also
be compact and informative but have the inconvenience of
depending on the arbitrary choice of a particular wavelet
function—unless some optimality principle could be invoked.
The short-time Fourier transform has the advantage that the
only arbitrary parameter is the window length, which is worth
discussing. The 10 mm window used in the short-term Fourier
transform was selected simply because it is about the size
of the contact surface of a scanning finger. In essence, this
means that an isolated spatial feature should give signal inside
a 10 mm window during scanning and be silent outside.
Other window sizes could also be based on other optimality
properties, for instance, be based the size of receptive fields of
particular classes of mechanoreceptors in the skin [44], [45].

VII. CONCLUSION

We designed an apparatus that was able to record with
high precision and wide bandwidth the force of interaction
between a finger and a textured surface. We first found by
examining the results of scanning a “simple texture” that
the interaction mechanics were complex and nonlinear that
transform the underlying geometry into a broadband signal
with little harmonic connection with the original geometry.
We then used this apparatus to record different textures and
inverted the process to reproduce as precisely as we could
the original vibrations of the skin, but discarding distributed
information and normal movements. Participants were still
able to identify those textures with a high rate a success and
several reported a keen yet imperfect experience of realism.
Interestingly, the deficit of realism was not due, consciously,
to the absence of distributed information or vertical movement
but rather to the absence of the sensation of sliding friction,
something we intend to correct in the near future.

For about a century, the notion that tactual texture percep-
tion is dependent on the relative sliding of a finger against a
surface has been the subject of much discussion. Underlying
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11

this discussion is the assumption that the signals of interest to
the sensing organism is a vibration pattern dependent on time,
like in acoustics, combined with a spatial detection mechanism
distributed on the skin. In our method we stimulated the finger
with vibrations arising from a bare finger scanning natural-
istic, textured surfaces, but dependent on space, that is, the
stimulation depended on how the subject moved which they
were free to choose, and there was no information regarding
the distribution of stimulation on the skin. We then computed
spatial spectrograms using a short-term Fourier transform with
a 10 mm window and found that fingers transformed the
original textures into a signal that could be represented as a
spatial formant organization that compactly encoded the orig-
inal surface. Our experiments are not incompatible with the
hypothesis that these, or similar space-based transformations,
could be employed by the nervous system to identify textures
at perceptual speed. Such an approach might also be applicable
to texture-aware robots.
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