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Abstract

An exact run in a string T is a non-empty substring of T that is a repetition of a smaller
substring. Finding maximal exact runs in strings is an important problem and therefore a well-
studied one in the area of stringology. For a given string T of length n, finding all maximal exact
runs in the string can be done in O(n log n) time on general ordered alphabets or O(n) time on
integer alphabets. In this paper, we investigate the maximal approximate runs problem: for a
given string T and a number k, find non-empty substrings T ′ of T such that changing at most
k letters in T ′ transforms them into a maximal exact run. We present an O(nk2 log2 k + occ)
algorithm to solve this problem, where occ is the number of substrings found.
Keywords: algorithms on strings, pattern matching, repetitions, tandem repeats, runs.

1 Introduction

Periodicities and repetitions are ubiquitous in nature, and they play a central role in the field
of stringology. They are used to obtain efficient algorithms for pattern matching problems, to
conserve space via text compression, and to better analyze data, e.g. in biological sequences. The
research of repetitions and their characteristics has been thoroughly investigated for both exact
and approximate ones.

Exact Repetitions: Several methods are available to detect all the occurrences of exact squares
in strings, where a square is defined as exactly two consecutive copies of a pattern (see [7, 2, 26]).
For a given string T , of length n, these algorithms run in O(n log n) time, which is optimal since

∗A preliminary version appeared in the proceeding of CPM 2013.
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it is possible for a string to contain Ω(n log n) squares. Selecting some of their occurrences, or just
distinct squares, regardless of their number of occurrences, paved the path to faster algorithms
[22, 15] (for constant alphabets) and [4] (for integer alphabets).

Runs have been introduced by Iliopoulos, Moore, and Smyth [16], and are defined as repetitions
with two or more consecutive copies of a pattern. They showed that Fibonacci words contain only
a linear number of maximal runs. Kolpakov and Kucherov [20] (see also [9], Chapter 8) proved that
this property holds for any string. In [3], the authors provided a simple and elegant proof that the
number of maximal runs in a string of length n is at most n − 3. Recently, in [12], it was shown
that for binary strings this number is bounded by 0.957n.

In [20], the authors designed an algorithm to compute all maximal runs in a string of length n over
an alphabet Σ. The time complexity of this algorithm is O(n log |Σ|). Their algorithm extends
Main’s algorithm [25], which itself extends the method in [8] (see also [9]).

The design of a linear-time algorithm for building the Suffix Array of a string on an integer alphabet
(see [17, 18, 19]) and the introduction of another related data structure (the Longest Previous Factor
table in [10]) have eventually led to a linear-time solution (for integer alphabet) for computing all
maximal runs in a string. This is a consequence of the linear-time computation of the Ziv-Lempel
factorization on integer alphabets (see [1] and [6]), which removed the O(n log |Σ|) time bottleneck
in the Kolpakov-Kucherov algorithms [20]. A recent algorithm by Bannai et al. [3] uses similar
tools and also runs in linear time. On an ordered alphabet, namely where letters can be compared
w.r.t. a linear order, the optimal computing time is O(n log n) [26, 11].

Approximate Repetitions: In many applications, finding approximate runs is more sensible
than finding exact runs. A typical example is genetic sequence analysis. This problem was widely
researched and many different measurements have been used in order to find such runs. In [28],
a k-approximate run is defined as follows: a string x is an approximate run if there exists a
consensus string u such that x can be divided into a number of adjacent occurrences of substrings
x = u1u2 · · ·ut where the distance between u and every ui is not greater than k. In this version
of the problem, the difference between two periods ui and uj can be as big as 2k, for example:
the string x = bacd abdc cbad is a 2-approximate run, since the difference between the substring
u = abcd and each ui, 1 ≤ i ≤ 3 is exactly 2. [28] provide an O(n3)-time algorithm for finding all
such maximal repetitions in an input string of size n.

A different approach to the problem is defined as follows [14]: given a string x and an integer k, x is
an approximate run if it can be divided into a number of adjacent substrings x = u1u2 · · ·ut, such
that the sum over all distances between adjacent substrings, ui and ui+1, is not greater than k. In
this version, the first period and the last period can be completely different from each other. For
instance: the string x = abcd dbcd dccd dcbd dcba is a 4-approximate run. [14] provide an O(n2)-
time algorithm for finding such maximal approximate runs in a string. This version of the problem
can be extended to the problem where the sum over all distances between every two substrings ui
and uj in x (for 1 ≤ i < j ≤ t) cannot exceed k. In this case, all substrings ui, 1 ≤ i ≤ t must be
similar to each other, as one error between two substrings ui and uj may imply O(t) errors . For
example, the string x = (abcd)t−1abed is a (t− 1)-approximate run according to this definition.

In [23] another definition of approximate run is given: a substring x is a k-approximate run if
x = u1u2 · · ·ut and the removal of the same k positions from each ui will generate an exact
run. According to this definition, any number of mismatches in the same column of the period is
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counted as 1 mismatch. For example, the string x = abcd abdd abbd abad is a 1-approximate run.
The algorithm for finding such repetitions [23] has time complexity O(nka log(n/k)), where n is
the length of the input string, k is the number of allowed error columns, and a is the maximum
number of periods in any found repeat.

In this paper we introduce a novel, more global definition of an approximate run. Informally, in
our problem we count the total number of letters that need to be replaced in order to generate an
exact run. A k-approximate run can be transformed into an exact run through the modification
of at most k letters. This definition is similar to the one presented in [28], as it finds a consensus
string u that is similar to all substrings ui of x. But, as opposed to the former version, this version
sums the total number of differences between all ui and u, which requires the substrings to be more
similar to each other. The formal definition of the problem is given in Section 2. For example,
the substring x = bacd abdc cbad, that contains periods that are very different from each other,
is a 2-approximate run according to the former definition, and in our problem definition, it is a
6-approximate run. Note that the substring x = abcd aadd abcd abcd is a 2-approximate run
according to both definitions. In this paper we present an O(nk2 log2 k + occ)-time algorithm to
find such maximal approximate runs in a given input string of length n, where occ is the number
of maximal approximate runs that are found.

Roadmap: We start in Section 2 with definitions and notations that will be used throughout the
paper. In Section 3, we present the main procedure of our algorithm. Initially, in subsection 3.1, we
describe a simple O(n) algorithm for the main procedure, and then in subsection 3.4 we present an
improved O(k3) algorithm for it. In Section 4, we describe the efficient O(k2 log k)-time algorithm
for the main procedure. Finally, in Section 5, we present the entire algorithm for searching a given
input string of length n for maximal approximate runs with k modifications.

2 Definitions and Notation

Let T = T [1]T [2] · · ·T [n] be a string of size n defined over the constant size alphabet Σ. We denote
the substring of T that starts at position i and ends at position j as Ti,j = T [i]T [i + 1] · · ·T [j]. A
position h is contained in the substring Ti,j if i ≤ h ≤ j. The following definitions are needed in
order to formally define the problem we solve in the paper.

Exact Run. An exact run is a non-empty string, x, that can be written as x = u1u
tu2, where

t ≥ 2, the first substring u1 is a (possibly empty) suffix of u, and the last substring u2 is a (possibly
empty) prefix of u. u is called a period and its length is denoted as the period length, p = |u|. Each

position i in u (1 ≤ i ≤ p) is called a column of u. The exponent of the run is of size |x|p ≥ 2.
For instance, ababababa, has exact runs with period length 2 (u = ab) and 4 (u = abab). Their
exponent are 4.5 and 2.25, respectively. For both exact runs we have u1 is the empty string, and
u2 is the letter a.

For simplicity, we set the first column of the period to be position 1 in the text. This means that
an exact run, x = u1u

tu2, can start at any column of the period, and for period length p, the
column of index i, denoted by Column(i), is equal to i mod p (with the exception of the case where
i mod p ≡ 0, in which Column(i) is p).
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Maximal Exact Run. A maximal exact run is an exact run, x, that is a substring of a longer
string, T , such that x cannot be extended in T either to the right or left. For instance, dabababac,
has a maximal exact run starting at position 2 with period length 2 and exponent 3.5. If a string T
contains a maximal exact run starting at index i, it means that either i = 1 or T [i−1] 6= T [i+p−1],
for otherwise, the exact run is not maximally extended. Similarly, if the maximal exact run ends
at position j, then either j = n or T [j + 1] 6= T [j + 1− p].

k-Maximal Approximate Run (k-MAR). A k-MAR is a non-empty substring S of T , such
that the modification of at most k letters in S generates a maximal exact run. We denote the
positions of these letters as modified positions.

For instance, let T = haabaabcabaabcd. For p = 3 and k = 1, the string has four 1-maximal
approximate runs. One starts at location 2 and ends at location 13, with exponent 4. In this
example, the letter in position 8 is a modified position, since modifying it from c to a generates a
maximal exact run. The maximal approximate run is T2,13 = u1u

3u2, where u = baa, u1 = aa and
u2 = b. The second 1-MAR is T6,14 = u1u

2u2, with u = bca, u1 = a, u2 = bc and exponent 3. Here,
the letter in position 11 is a modified position, since modifying it from a to c generates a maximal
exact run. The third 1-MAR is the substring T1,7 = u2u2, with approximate period u = baa and
u2 = b. Here, position 1 is a modified position. The fourth 1-MAR is the substring T3,10 = u1u

2u2,
with approximate period u = bca, u1 = a and u2 = b. Here, position 5 is a modified position.
Observe that T3,10 is contained entirely in the 1-MAR T2,13.

Contained k-MAR. Let Ti,j and Ti′,j′ be two k-MARs with period length p. Ti,j is contained
in Ti′,j′ if and only if i′ ≤ i ≤ j ≤ j′. For example, let T = habcbcbabade. For p = 2 the string
contains two 2-maximal approximate runs from location 2 to 9 (where modifying the a to c at
positions 2 and 8, generates a maximal exact run of cb with exponent 4) and from location 2 to
10 (where modifying the c to a at positions 4 and 6, generates a maximal exact run of ab with
exponent 4.5). The 2-MAR T2,9 is contained in the 2-MAR T2,10. For a given period length p, our
algorithm reports only k-MARs that are not contained in another k-MAR.

We are now ready to present the formal definition of our problem:

The k-Maximal Approximate Runs Problem:
Given a string T of size n defined over the alphabet Σ, and a number k, find all k-MARs in the
string T of all period lengths p, 1 ≤ p ≤ n

2 . In the case where a k-MAR is contained in another
k-MAR, only the containing k-MAR is reported.

We continue with a definition of Parikh matrix (see also [27]) that will be used throughout the
paper to count the number of modified positions in a substring with respect to a period length. A
Parikh matrix , P p

i,j = P [1 . . |Σ|, 1 . . p], is a two-dimensional array defined over a substring Ti,j and
a period length p. An entry P p

i,j [let, col] contains the number of occurrences of let ∈ Σ in column
col of p in Ti,j . In addition, for each column, col, we keep an additional variable win(col). The
variable win(col) contains the winner letter - the letter that occurs more than any other letter in
this column (in case of a tie, the variable win is arbitrarily set to one of the winners).

We use the Parikh matrix, P p
i,j , in order to count the number of modified positions in the substring

Ti,j with regards to a period length p. We say that col contains modified positions if the sum
over all letters that are not the winner letter in col is greater than 0. i.e. the number of modified
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Figure 1: Examples of Parikh matrices. P 3
3,16 contains 4 modified positions with approximate

period aaa. Note that in column 2 the winner letter is chosen arbitrarily (we can also have that
u = aba). P 5

1,25 contains 5 modified positions, with approximate period abaab.

positions that col contains is equal to Σlet6=win(col)P
p
i,j [let, col]. Similarly, a substring, Ti,j , contains

modified positions in p if the sum of modified positions over all its columns is greater than 0.

In the following, when it is clear from the context, we omit the period length p, when referring to
modified letters with respect to the period length.

Figure 1 shows two examples of Parikh matrices computed for two substrings of T and two period
lengths.

3 The Main Procedure

The main framework of our algorithm uses the ideas of Kolpakov and Kucherov [21] for finding
maximal approximate runs. Similar methods were used in [26, 20, 23]. As in [21], our algorithm
generates a set of calls to the main procedure. Each call contains a substring T , an anchor position,
anc, and a period length, p. The procedure reports the k-MARs in T that contain position anc
and have period length p. In Section 5 the outline of the entire algorithm is described.

The procedure can be formally described as follows.

Input: (a) string T of length n. (b) anchor position, anc, 1 ≤ anc < n. (c) period length, p.

Output: All k-MARs, T ′ = Ti,j , such that T ′ is a k-MAR with period length p, and i ≤ anc < j.

We start with a high level description of the main procedure. Let Ti,j be a k-MAR. The Parikh
matrix P p

i,j contains exactly k modified positions. In addition, from the maximality of k-MARs, we
have that if we extend the substring to the right or to the left by one letter, the number of modified
positions in the substring exceeds k.

In the main procedure we keep two pointers to the string, ` and r, which represent possible leftmost
and rightmost boundary of a k-MAR, respectively. For convenience reasons, that will become clearer
in the following sections, we always set ` to one position before a possible k-MAR and r to one
position after it. Thus, the pointers ` and r are initially set to i− 1 and j + 1, respectively.

The procedure works in iterations, each iteration starts with a k-MAR, T`+1,r−1, and ends with
a k-MAR. At the beginning of the iteration, since r cannot be increased without exceeding the
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number of allowed modified positions, we start with increasing ` and stop only when r can be
increased. Then, we increase r for as long as T`+1,r−1 contains at most k modified positions. When
r is stopped, the substring T`+1,r−1 is a new k-MAR, and it is reported (T`+1,r−1 is reported only
if its length is greater than or equal to 2p).

Assume that the leftmost k-MAR in T was found, T first, and that its Parikh matrix is given (this
initial step is described in Subsection 4.5). We set ` (r) to one position before (after) T first. The
main procedure continues until either ` is equal to anc or r is greater than n. For simplicity of
presentation, assume that T is not a k-MAR (the case where the entire string is a k-MAR is easily
computed in O(n) time).

We now proceed with a detailed description of the pointers move. We start with the move of `.
At first, T`+1,r−1 contains exactly k modified positions, and since moving r to the right requires
another modified position, we start with moving `. This move contains two steps: first, we move
the pointer, and then we update the Parikh matrix and decide whether the next move will be of `
or r. Let x = T [`], and let col be its column. Clearly, the number of occurrences of x in col was
decreased by 1 in the Parikh matrix. We describe three cases (see Figure 2):

• continue with `: The letter x was the only winner in col before the contraction, and stays
the only winner after it. This contraction does not change the number of modified positions,
and therefore we continue with moving ` to the right.

• move to r: The letter x was either a losing letter in col or it was one of the winners before the
contraction. In both cases, x is a loser in the contracted substring. Clearly, this contraction
releases a modified position. Therefore, ` is stopped and r pointer is increased.

• special case: The letter x was the only winner before the contraction, and after the con-
traction there is a tie between x and (at least one) other letter in the contracted substring.
Although this contraction does not reduce the number of modified positions, there might be
a case where r can be moved without using additional modified positions: this will happen if
after the contraction y = T [r] is one of the winners in col. If this is the case, ` is stopped and
r pointer is increased.

After ` is stopped, we move to r. Now, T`+1,r−1 contains either k − 1 or k (if ` was stopped on
the special case) modified positions. As described above, r will be moved as long as the substring
T`+1,r−1 contains at most k modified positions. The move of r contains two steps: we first check
whether T [r] can be added to the substring without exceeding the maximum number of allowed
modified positions. If so, the substring is extended to include T [r] and r is further increased. Else,
we report the found k-MAR, r is stopped and we continue to the next iteration to move `. Let
y = T [r], and let col be its column. Clearly, if r is increased, the number of occurrences of y in col
is increased by one in the Parikh matrix. We describe the following cases (see Figure 2):

• free move of r: The letter y is the only winner or one of the winners in col before the
extension. This means that in the extended substring, y is the only winner in its column.
This extension does not use a modified position, and therefore we can continue with moving
r to the right.

• r move uses a modified position: The letter y is a losing letter before the extension.
After the extension, y either stays a losing letter, or is one of more than one winners in col.
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Figure 2: Examples of ` and r moves. Let p = 3 and k = 2.
T4,17 is a 2-MAR with period abc. We start with moving ` from position 3 to 4. Since y = T [4] is
a losing letter in column 1, this move releases a modified position and ` is stopped. We continue
with a move of r. We first check whether d = T [18] can be added to the substring. The letter d
is a losing letter in column 3, and since there is only 1 modified position in T5,17, we can increase
r from 18 to 19. We proceed with moving r pointer. Both a and b are winners in columns 1 and
2, respectively, therefore r is increased to position 21. Now, the 2-MAR T5,20 is reported, and r is
stopped.
The letter b = T [` + 1] = T [5] is the only winner in column 2, therefore, the move of ` from 4 to
5 does not reduce the number of modified positions. We continue with `, that moves to position
6. Now, c becomes one of the winners in column 3, and since d = T [r] = T [21] becomes one of the
winners in column 3, ` is stopped and we continue with moving r until position 23. The 2-MAR
T7,22 is reported.

Clearly, this extension uses a modified position, and hence the move of r depends on the
number of modified positions in the substring before the extension: the number is either (a)
k − 1 or (b) k. In case (a), the substring can be extended to contain T [r], and we continue
with r moves. In case (b), if r is further increased, the number of modified positions exceeds
the maximum allowed, and therefore r is stopped and the new k-MAR, T`+1,r−1, is reported.
Now, we continue to the next iteration with ` move.

• special case: As in the previous case, the move of r uses a modified position. In the special
case, the number of modified positions in the substring before the extension is exactly k − 1.
Therefore, we continue with moving r to the right.

In the following we present three algorithms for the main procedure.

3.1 A Simple O(n) Main Procedure

In the simple implementation, we keep a Parikh matrix, P , of size (|Σ|+ 1)×p. The pointers ` and
r are always increased by 1. Each increase of the pointers is followed by an update of the Parikh
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matrix. A run example of the simple procedure is demonstrated in Figure 2.

Time Complexity: The algorithm visits every position in [1..n] at most once. Assuming that
|Σ| is constant, each such visit consists of a constant time update to the Parikh matrix (a discussion
on larger alphabet size is presented in Subsection 4.9). This gives a total time of O(n).

3.2 Definitions and Observations

In the following subsections, we present improved algorithms for the main procedure. For that, we
need some definitions and observations.

Let T be the input string, and let Ti,j be a k-MAR containing anc. In the improved implementation
of the main procedure we take advantage of the fact that not all the positions in T need to be visited.
Assume that there exists a column col (1 ≤ col ≤ p) that contains the same letter in all its positions
in T . This means that modified positions will never be used in this column in all k-MARs Ti,j , and
therefore its positions need not be visited by the algorithm. We proceed with defining the actual
positions that need to be visited.

Mismatch. When two letters T [i] and T [i+ p] are not identical, we say that there is a mismatch
between positions i and i + p in T .

In a k-MAR, Ti,j , a mismatch and a modified position (defined in Section 2) have a strong relation,
but are not always identical. Given a string T , the mismatch positions with respect to a period
length p are permanent, whereas the modified positions depend only on Ti,j that is now being
inspected.

In the following example, the number of mismatches and modified positions in a specific substring
is the same. This relation between the terms is not always straightforward, as we will describe
shortly.

Example 1 (Same number of mismatches and modified positions in a k-MAR). Let k = 2 and
T = abc abd abd abc abc. There are two mismatches between positions 3 and 6 and between positions
9 and 12 (between c and d). The positions 6 and 9 are modified positions in T , where the letters
are modified to c in order to generate a maximal exact run of u = abc.

Problematic Column in T . Let i and i + p be positions of a mismatch (i.e. T [i] 6= T [i + p]).
Then, the column of i in p is denoted as a problematic column in T . For example, in Figure 2,
column 1 contains a mismatch between positions 4 and 7. Therefore, column 1 is a problematic
column in T .

We continue with some observations regarding the relation between the terms. Each observation is
followed by an example. In the examples assume that p = 3.

Observation 1. For all Ti,j in T , the modified positions in Ti,j can be only in positions of prob-
lematic columns. However, since the problematic columns are defined in T , for a specific k-MAR,
Ti,j, it is possible that there will be no modified positions in the positions of a problematic column
(this will happen when there are no mismatches in Ti,j).
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Example 2. In Figure 2, in the 2-MAR T5,20 there are no modified positions in column 1, although
it is a problematic column in T .

Observation 2 (One mismatch implies more than one modified position in a k-MAR). In a k-MAR

Ti,j, one mismatch can imply at most
|Ti,j |
2p modified positions.

Example 3. In the 3-MAR of T = abc abc abc abd abd abd abd, there is only one mismatch between
positions 9 and 12 and there are three modified positions at positions 3, 6 and 9.

Observation 3 (Two mismatches might imply one modified position in a k-MAR). In a k-MAR,
Ti,j, it is possible for two mismatches to imply one modified position.

Example 4. Let k = 1 and T = aba aba abc aba aba. There are two mismatches between positions
6 and 9 and between positions 9 and 12. Here, there is one modified position in 9, since modifying
the c to a generates a maximal exact run of u = aba.

Observation 4 (At most 2k mismatches in a k-MAR). In a k-MAR, Ti,j, there are at most 2k
mismatches such that T [h] 6= T [h + p], for i ≤ h ≤ j − p.

Following Observation 4, if Ti,j is the leftmost k-MAR that contains anc, then the substring Ti,anc

includes at most 2k mismatches. Similarly, if Ti,j is the rightmost k-MAR that contains anc, then
the substring Tanc,j includes at most 2k mismatches.

Observation 5 (O(k) problematic columns in T ). For all Ti,j in T containing anc, there are at
most O(k) columns that can contain modified positions.

Marking Mismatches. A mismatch occurs between two positions i and i + p, and we want to
mark one of the two positions as the mismatch position. We divide the mismatches into three
groups according to the positions i, i+ p, and anc. When i is to the right of anc, we mark position
i + p as the mismatch position, and denote the mismatch by mr. When i + p is to the left of anc,
we mark position i as the mismatch position, and denote the mismatch by m`. In the special case
where i ≤ anc ≤ i + p, we do not mark either of its positions. Note that even though we don’t
mark such mismatches, their corresponding column is a problematic column (see Subsection 3.3).

In a substring Ti,j , we enumerate the mismatches starting from anc. i.e., the mismatches to the left
of anc are enumerated from right to left, and the mismatches to the right of anc are enumerated
from left to right (see Figure 4).

Example 5. Let T = abc abc abd abd abe abc abd abd abc, p = 3, and anc = 14. The i position of
the mismatches in T are {6, 12, 15, 18, 24}. We mark the mismatches at {m`

1 = 6,mr
1 = 18,mr

2 =
21,mr

3 = 27}.

Zone. We divide the string T into adjacent periodic substrings according to the mismatch posi-
tions in T and anc. We call each such substring a zone. Following the symmetric way we mark
mismatches, we define zones (see Figure 3). The mismatches to the left of anc define the `-zones:
an `-zone starts one position to the right of a mismatch and ends at a mismatch (i.e., for two
mismatches, m`

j and m`
j+1, the substring of T starting at position m`

j+1 + 1 and ending at position

m`
j is an `-zone). The mismatches to the right of anc define the r-zones: an r-zone starts at a
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mismatch position and ends one position to the left of a mismatch (i.e., for two mismatches, mr
j

and mr
j+1, the substring of T starting at position mr

j and ending at position mr
j+1−1 is an r-zone).

Finally, we define two additional zones that overlap anc. An `-zone T [m`
1 + 1..anc] and an r-zone

T [anc..mr
1 − 1].

For a zone, T`z ,rz , although there are no mismatches in it, it is not necessarily a maximal exact
run: on the one hand, it can be smaller than 2p, and on the other hand, following the definitions of
zones and mismatches, if it is an `-zone, it can be extended to the right by at most p− 1 positions,
or, if it is an r-zone, it can be extended to the left by at most p− 1 positions.

In Example 5, the `-zones are: T1,6 and T7,14, and the r-zones are: T14,17, T18,20, T21,26, and T [27].

Our algorithm will look for the k-MARs that start in a specific `-zone and end in a specific r-zone
in T , considering each viable pair of such zones. The following lemma defines the relation between
zones and the possible leftmost and rightmost positions of a k-MAR in them.

Lemma 1. Let z = T`z ,rz be a zone, and let Ti,j be a k-MAR. If Ti,j starts in z then either the
entire zone or less than k + 1 of its rightmost periods are contained in Ti,j. Symmetrically, if Ti,j

ends in z then either the entire zone or less than k+1 of its leftmost periods are contained in Ti,j.

Proof. We prove the case where Ti,j starts with z, i.e., z is the leftmost `-zone in the k-MAR. The
proof for the case where Ti,j ends in z is symmetric. Cleary, unless the entire string T is periodic,
a k-MAR cannot start and end in the same zone. Also, note that if |z| is smaller than (k+ 1)p, the
lemma is trivially true.

Assume z contains more than k + 1 periods. We prove the lemma by contradiction.

Assume that the leftmost position of the k-MAR is a position i in z, and that this position is not
its first position, `z, and is to the left of its rightmost k + 1 periods, namely `z < i < rz − (k + 1)p.
We consider two cases regarding the problematic columns in this zone.

Case 1: There exists at least one letter in z that is a non-winner letter in its column - since all
periods in a zone are equal, this means that the number of modified positions in Ti,j exceeds k, a
contradiction.

Case 2: All letters in z are winners of their columns - since all periods in a zone are equal, and
since all letters in z are winners, the k-MAR must start at position `z. Contradicting the fact that
the k-MAR is maximally extended.

(k+1)-periods. Denote the k+1 rightmost (leftmost) periods of an `-zone (r-zone) as the (k+1)-
periods of the zone.

We start with the procedure that finds the mismatch positions in T . The mismatches are used to
define the zones and the problematic columns in T in both the O(k3)-time and the O(k2 log k)-time
improved algorithms.

3.3 Finding the Mismatches.

Recall that there are three groups of mismatches that we want to find: mismatches that are entirely
to the right of anc, mismatches that are entirely to the left of anc and mismatches that overlap
position anc. We use the technique described in [23], using [24] and [13], in order to find these
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mismatches. the output of the procedure is two lists of mismatch positions (RightMismatches and
LeftMismatches) and a set of problematic columns (ProblematicColumns).

First, for the mismatches to the right of anc, we want to find all mismatches T [i] 6= T [i + p] such
that i ≥ anc. For that, we construct a suffix tree of T , and use the ”kangaroo” jumps of [13]
to find the 2k + 1 mismatch positions in T starting at anc going to the right (i.e., using suffix
trees and LCA algorithm for a constant time ”jump” over equal substrings of the aligned copies of
T ). These mismatches are marked by their right position, i + p, and are saved in increasing order
to the auxiliary list, RightMismatches = {mr

1,m
r
2, ...,m

r
2k+1}. In addition, for each mismatch,

its column is added to the set ProblematicColumns. Second, for the mismatches to the left of
anc, we construct a suffix tree of the reversed string of T , TR, and again use the ”kangaroo”
jumps of [13] to find the 2k + 1 mismatch positions starting from anc going to the left. These
mismatches are marked by their left position, i, and are saved in decreasing order to the auxiliary
list LeftMismatches = {m`

1,m
`
2, ...,m

`
2k+1}. In addition, for each such mismatch, its column is

added to the set ProblematicColumns.

Finally, for the mismatches T [i] 6= T [i + p], such that i ≤ anc ≤ i + p, we use the suffix tree of T
and the ”kangaroo” jumps in order to find 2k+ 1 mismatch positions in the substring Tanc−p,anc+p.
These mismatches are not marked, but their columns are added to the set ProblematicColumns.

Clearly, if the substring contains less than 2k + 1 mismatches to the left (right) of anc, the corre-
sponding mismatch list will contain less than 2k+ 1 positions. Furthermore, if there are more than
2k + 1 mismatches T [i] 6= T [i + p] such that i ≤ anc ≤ i + p, only 2k + 1 positions are found and
are saved to the ProblematicColumns set (this actually means that the rightmost k-MAR that
contains anc must end at the leftmost r-zone).

Time Complexity: The suffix trees of T and TR are built and preprocessed for answering LCA
queries once for the entire algorithm in linear time. Therefore, we add O(n) to the total time
complexity of the algorithm. Finding the O(k) mismatches with respect to anc is done in O(k)
time.

We are now ready to present the O(k3)-time algorithm. We use the definitions from above and
Lemma 1 to define the positions that both ` and r pointers visit.

3.4 An Improved O(k3) Main Procedure

Following Observation 1, since modified positions are only used on problematic columns, the Parikh
matrix can contain only the O(k) problematic columns of T . Recall that in our implementation, we
always set the pointer ` (r) to a position that is one position to the left (right) of a possible k-MAR.
Therefore, following Lemma 1, ` (r) should only point to positions within the (k + 1)-periods of a
zone.

In this implementation, we define two different kinds of a pointer move: a move inside the (k + 1)-
periods of the zone, and a move between zones. Let L denote the `-zone in which ` is currently
contained, and R be the r-zone of r (see Figure 3).

A move inside the (k + 1)-periods of the zone. When a pointer moves inside the (k + 1)-
periods of a zone, it only visits positions of problematic columns: the pointer is moved from one
problematic column to the next problematic column to its right.
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In a similar way to the simple algorithm, on each such move the procedure updates the Parikh
matrix in the respected problematic column in constant time.

A move between zones. We distinguish between the move of r and of ` between zones:

A move of r. The r pointer is moved from the last problematic column in the (k + 1)-periods of
an r-zone, R′, to the first position of the r-zone to its right, R. This move requires an update of
the Parikh matrix. If the size of R′ is smaller than (k + 1)p, we only need to update the value in
one column. Otherwise, all letters in R′ are winners in their column, and this move can result in an
update of O(k) columns. Each update is done in O(1) time since a zone is periodic, the alphabet
size is constant, and the size of R′ is known in advanced.

A move of `. The move of ` between zones starts when ` is moved from the last position of an
`-zone to a position of the `-zone to its right, L. The previous position of ` is of a problematic
column, by definition. Observe that the case when the entire L zone is contained in a k-MAR was
already reported by the algorithm.

Assume that the size of L is greater than (k + 1)p (otherwise this move is treated as a move inside
the (k + 1)-periods of a zone). We want to find a new position for ` in L: we first set ` to the
leftmost position of a problematic column in the (k + 1)-periods of L. Then, we update the Parikh
matrix. This move might increase ` by more than one problematic column, and therefore the Parikh
matrix is updated in all its columns. Again, since L is periodic, the alphabet size is constant, the
size of L is known in advance, and the Parikh matrix of T`,r for the previous ` is already computed
at this point, this update can be done in O(k) time.

Now, we keep moving ` from one problematic column to the one on its right, until the number of
modified positions in T`+1,r−1 is exactly k.

Total Time Complexity: For each zone, moving to the zone takes O(k) time to update the
Parikh matrix. Then, the pointers visit O(k2) positions of problematic columns in the (k + 1)-
periods of the zone. Each such visit updates the Parikh matrix in one column, therefore takes
O(1) time, and therefore, takes O(k2) time per zone. There are O(k) zones in T . Therefore, the
algorithm that finds the k-MARs in T takes O(k3) time.

4 The Efficient O(k2 log k) Main Procedure

In the efficient algorithm we further decrease the number of visited positions in each zone. Observe
that for a specific pair of `-zone and r-zone, there might be problematic columns that we do not
need to visit. If, for instance, r-zone contains a letter, y, that is a winner in T`+1,r−1, then no
matter where the r pointer is positioned in this r-zone, y stays the winner. Therefore, there is no
need to visit its positions in this r-zone. In general, only the positions of letters that are losers
or might lose their majority are of interest. We continue with defining these positions. First, we
introduce the following notations.

Consider the substring T`+1,r−1 (` < anc < r). Denote the `-zone in which ` is contained as L and
the r-zone in which r is contained as R. Let m`

i be the mismatch position of L zone (m`
i is the

rightmost position in L), and let mr
j be the mismatch position in the R zone (mr

j is the leftmost
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Figure 3: L, M and R substrings, and the positions ` and r in them. The mismatch positions are
marked with X. For k = 3, the relevant periods in L and R zones are marked with brackets and are
numbered from 1 to 4.

position in R). We also denote the middle substring, Tm`
i+1,mr

j−1
, between L and R as M (see

Figures 3 and 4).

For a specific pair of L and R zones, the positions of a problematic column, col, are visited by the
algorithm if one of the following cases apply:

• The letter in L and the letter in R are different. This means that at least one of the letters
is a losing letter.

• The letter in L equals the letter in R, and it is the losing letter in T`+1,r−1.

• The letter in L, x, equals the letter in R, and it is the winner in T`+1,r−1. Let w (w 6= x)
be the letter with the maximal number of occurrences in M . Denote this number by |w|. If
|w| > |x| in the substring Tm`

i+1,r−1, then x might lose its majority to w, as ` increases.

Furthermore, a problematic column that is visited in L zone might not be visited in R zone, and
vice versa. This depends on the majority of the letter in L (or in R) in its column. The decision
whether to visit a column in L or in R is thoroughly described in subsection 4.2. The columns that
should be visited in L and R are saved in auxiliary lists (LeftList and RightList , respectively, see
definitions in subsection 4.1), and are updated as the pointers increase.

In addition, consider the case where a letter in L is initially a winner in its column, but as ` increases,
the number of its occurrences decreases, and it becomes a loser. In the efficient algorithm we visit
its positions only when the letter becomes a loser. Therefore, additional methodological stops are
added whenever ` moves between periods in the same zone. On each such stop positions that need
to be visited starting this current period are added to LeftList .

The improved main procedure can be roughly divided into the following three sub-procedures,
described in detail in the ensuing subsections:

Moving between zones. This sub-procedure is called whenever ` or r is moves from one zone to
the next zone to its right. It is responsible for computing the first position of ` in the new zone,
for updating the Parikh matrix according to the new position, and for updating auxiliary lists with
the relevant problematic columns. It is explained in subsection 4.2.

Moving between periods. This sub-procedure is called whenever ` is moved from one period
to the next period to its right. It is responsible for computing the first position of ` in the new
period, for updating the Parikh matrix according to the new position, and for adding new relevant
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problematic columns that need to be visited in the L zone, starting the new period. It is described
in 4.3.

Moving between positions (within a period). This is the basic step that updates the Parikh
matrix according to the new position of ` or r. It is described in 4.4.

The rest of this section is organized as follows. We start in 4.1 with a description of the data
structures used in the algorithm. We continue with a description of each one of the sub-procedures
for ` and r moves. In Subsection 4.5 we describe the procedure that finds the leftmost k-MAR that
contains anc. In Subsection 4.6 a running example of the algorithm is presented and in Subsec-
tion 4.7 we provide the pseudocode for the efficient algorithm. Then, in Subsection 4.8 we prove
Lemma 2, that bounds the number of visited positions in every zone. Finally, in Subsection 4.9,
we analyze the total time complexity of the main procedure.

4.1 Data Structures

We start with describing the data structures used in the main procedure. As mentioned above, we
use the Parikh matrix in order to count the number of modified letters in the substring T`+1,r−1.
The Parikh matrix contains only O(k) columns, which are the problematic columns in T .

In addition, the following auxiliary lists are used throughout the algorithm. LeftList and RightList
are sorted lists of problematic columns that need to be visited in L and R, respectively. Both lists
contain a subset of the problematic columns in T . Each list is implemented as a balanced search
tree, where the keys to the records are column positions. These lists are both initialized whenever
` or r is moved to a new zone, and in addition, are updated as ` and r increase.

Observe that for a problematic column in L, there might be a situation in which the letter in L
starts as the only winner of its column, and as ` and r increase, the letter becomes a loser in its
column. We want to visit this column in L only in the positions where the letter becomes a loser (or
one of more than one winners in the column). Therefore, we need to add this problematic column
to LeftList only when it is relevant.

In order to support this kind of update, an additional data structure is used. For each period i in
the (k + 1)-periods of L, we keep a list, newColumnList i, that contains problematic columns that
need to be added to LeftList starting period i. Each newColumnList i is a doubly linked list. We
keep an array of O(k) pointers, such that for every problematic column in T , we have a pointer to
the specific list that it is contained in, or Null if it is not contained in any newColumnList . Then,
we can find the list a column is contained in, and update the lists (insert and delete columns)
in constant time. This data structure is further discussed in Subsections 4.2 and 4.3, and in the
example in Subsection 4.6.

4.2 Moving Between Zones

This sub-procedure is called whenever ` or r moves between zones. It is responsible for finding the
initial position for the pointer within its new zone, for updating the Parikh matrix according to
the new position and for finding the problematic columns that need to be visited by the algorithm
in this current pair of L and R zones.

When r moves from R′ zone to R zone to its right, its new position is the leftmost position in R
zone, which is a position of a mismatch (and, of a problematic column in T ). The computation
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Figure 4: Given a text T , a period size p = 3, and mismatch positions (marked with x), a possible
partition for L, M and R zones is given. Note that for simplicity of presentation, the text is divided
into 3 overlapping substrings, as presented in the figure. L zone contains 15 (not full) periods (i.e.,
bd(bbd)14) and R zone contains 12 (not full) periods (i.e., c(abc)11). M contains 9 different zones.
The anc position is 57.

of the new position of ` in a new L zone is more complicated: following Lemma 1, ` is within
the (k + 1)-periods of L. The procedure finds the leftmost position in L such that the number of
modified positions in the substring T`+1,r−1 does not exceed k. Since all periods in the L zone are
equal, and since the Parikh matrix of the substring before the contraction is already computed, it
is easy to find this position in O(k) time. Observe that there might be a situation in which there
is no possible position for ` in L zone. This can happen when all the letters in L zone are winners
in their column. This means that no modified position can be released on this zone, and ` has to
be moved to the next `-zone to its right.

After the new position of the pointer is computed, the Parikh matrix is updated and the auxiliary
lists, LeftList , RightList , and newColumnList are initialized according to the majority of the letters
in the problematic columns in both L and R.

We introduce the following notations that will be used throughout this subsection. Denote by
first` (firstr) the first position of ` (r) in L (R) zone after the new position for either ` or r is
computed (if ` moved between zones, r has not changed, and vice versa). Denote by p` (pr) the
period in which first` (firstr) is positioned. Clearly, we have p`, pr ≤ k + 1.

For every problematic column, col, we decide whether the positions of the column in either L or R
should be visited. Let x and y be the letters in col in L and R zones, respectively. The columns
that need to be visited in R zone are added to RightList , whereas the columns that need to be
visited in L are added to LeftList . In addition, as described in subsection 4.1, columns that should
be visited starting a specific period in L are added to newColumnList .

For RightList we consider the following three cases:

• R1: y is the winner in its column, and will stay the winner as ` and r increase in the specific
R and L zones. In this case col is not added to RightList .
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Figure 5: An example for case R3. Let p = 5 and k = 14. Assume that ` moved to a new `-zone,
L = T9,24. We have first` = 9 and firstr = 72. LeftList contains only column 5. RightList
contains columns 1, 3, 4 and 5. Observe that although a is the winner in column 1 in T10,71, it is a
losing letter in T20,73. Therefore, it is added to RightList . When r reaches position 94, the letter a
can no longer lose its majority to the letter d and it is removed from the RightList .

• R2: y is the loser in its column. In this case col is added to RightList . Note that there
might be a situation in which the letter will gain majority as r is increased, and the column
should be removed from the corresponding list. This is handled as part of the moving between
positions sub-procedure.

• R3: y is the winner in its column, but as ` and r are increased, the letter might lose its
majority to a letter in M . This can only happen when x = y, and as ` increases, the number
of occurrences of y is decreased. In this case, col is added to RightList . The column will be
removed from RightList when y cannot lose its majority to the letter in M (as in case R1).
Observe that although y might be the winner of its column, its positions are visited in R.
Since the number of such positions over all problematic columns is bounded by the number of
modified positions in M , i.e, k, we allow these redundant visits (see Figure 5 for an example).

For LeftList we consider the following three cases:

• L1: x is the winner in its column, and will stay the winner as ` and r increase in the specific
R and L zones. In this case col is not added to LeftList .

• L2: x is the loser in its column. In this case col is added to LeftList . Note that there might
be a situation in which the letter will gain majority as r is increased. This can happen when
x = y and a letter z in M loses its majority to x. As in case R3, col will be visited by the
algorithm although x might be the winner in col. Observe that since initially, when we move
between zones, these positions are modified positions (since x was a losing letter to begin
with), there cannot be more than k such positions over all problematic columns in L (see
Figure 6 for an example).

• L3: x is the winner in its column, but as ` and r increase, the letter might lose its majority
to a letter w in M or in R. In this case, we want ` to visit the positions of col only in the
periods where the letter is a loser. Thus, col is not added to LeftList , but we want to mark
the period in L where it might lose its majority.

Assume that the difference between the number of x and w occurrences in Tfirst`+1,firstr−1
is q, There are p` occurrences of x in L (or maybe p` − 1 if first` points to a column greater
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Figure 6: An example for case L2. Let p = 5 and k = 19. Assume that ` moved to a new `-zone,
L = T7,24. We have first` = 7 and firstr = 65. LeftList contains the columns 1, 3, 4 and 5.
RightList contains columns 1 and 3. Observe that after ` is moved to position 8, r is further moved
to position 67 and a becomes one of the winners of column 1. Although the letter in L is the
winning letter in column 1, LeftList contains it. Initially (when ` moved to L zone), there were 3
modified positions in column 1 in L, these positions will be visited by the algorithm, although a
might be the winner in them.

than col). This means that starting period i = p` − q (or maybe p` − q − 1), x might lose
its majority to w. Therefore, col is added to the corresponding newColumnList i. During
the run of the main procedure, we might need to move col to a period greater than i (left
to i), according to the move of r. This is handled in the sub-procedure for moving between
positions, described in 4.4 (see running example in 4.6).

Observe that in a special scenario of case R3 we add col to RightList even though the letter y in
R (which is equal to the letter in L) is the winner in its column. Only when r is at a position
where y cannot lose its majority to a letter in M (regardless of ` position), col is removed from
RightList . This means that the number of such positions in R is bounded by the number of initial
modified positions in M , which is O(k). Furthermore, the number of such positions over all possible
problematic columns in R is bounded by O(k).

Observation 6. There are at most O(k) initial positions that are marked to be visited in R although
the letter in R is a winner in its column.

In a similar way, in a special scenario of case L2, we do not remove col from LeftList although the
letter x in L (which is equal to the letter in R) is a winner in its column. Observe that initially,
when col was added to LeftList , the letter x was a losing letter, meaning that the number of such
positions cannot exceed the number of allowed modified positions, k. Furthermore, the number of
such positions over all problematic columns in L can be at most k.

Observation 7. There are at most O(k) initial positions that are marked to be visited in L although
the letter in L is a winner in its column.

We proceed with the time complexity analysis of this sub-procedure.

Time Complexity: First, the sub-procedure finds the first position for the pointer in its new
zone. For r, this is done in constant time, and for ` it is done in O(k) time.
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Second, the sub-procedure updates all problematic columns in the Parikh matrix and initializes
LeftList , RightList and newColumnList lists. These updates are done in O(k) time for each zone
move. Note that even though LeftList and RightList are sorted lists, their initialization is done in
linear time to their sizes since the columns are inserted to the lists in increasing order using the list
of problematic columns in T . Thus, overall the time complexity is O(k) for a move between zones.

4.3 Moving Between Periods

This sub-procedure is called whenever the ` position moves from a period to the period on its right
in the same `-zone. It checks whether new columns need to be added to LeftList . The procedure
is very simple: it goes over all columns in newColumnList i, and adds them to LeftList in a sorted
manner. Then, the Parikh matrix is updated according to the new position of ` in L.

Time Complexity: On each period i in the (k + 1)-periods of L zone, LeftList is updated as
follows. Every problematic column in newColumnList i is added to LeftList . This is done in O(log k)
time per column. The total number of such updates in one `-zone is bounded by the number of
problematic columns in T , which is O(k). This gives a total of O(k log k) for an entire `-zone
handling.

4.4 Moving Between Positions Within a Period

This sub-procedure is called when ` or r are moved inside a period in their zone. ` (r) is moved
to the next problematic column according to the LeftList (RightList) list, and the Parikh matrix
is updated accordingly. Recall that LeftList and RightList don’t necessarily contain the same
problematic columns. This means that when a pointer is moved to a new position in a problematic
column, col, the Parikh matrix should be updated according to the number of occurrences of both
the letter x in L zone and the letter y in R zone. Actually, if col is not in LeftList (RightList),
we don’t need to update the entry P [x, col] (P [y, col]) on the move of r (`) since it is a winning
letter in the column, but for easier handling we update them. Since all periods in a zone are equal,
and since the starting and ending positions of all zones in T`+1,r−1 are known, computing these
numbers is done in constant time.

When r pointer is moved, we perform two additional checks: first, if the letter y in R becomes
the only winner in its column, and cannot lose its majority, its column is removed from RightList .
Second, we check whether newColumnList needs to be updated.

Recall that newColumnList represents the first period q in L that a winner letter x in L may lose
its majority to another letter (in M or in R). It is initialized when ` or r moves between zones. In
the case when x is different than y, we check whether the position in which y might gain majority
over x changed (it might need to be moved to the left by one period). If so, we update the respected
newColumnList . See example in Subsection 4.6, when r pointer is increased to position 81.

Note the special case in which the column is added to a period that ` is currently in. In this case,
the column is added straight to LeftList in a sorted manner.

Observe that when x = y and x might lose its majority to a letter in M , we do not update
newColumnList . This can add O(k) redundant visited positions.
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Time Complexity: When either r or ` positions are increased, both the Parikh matrix and the
auxiliary lists, LeftList ,RightList and newColumnList , are updated. The Parikh matrix is updated
in at most 3 entries: the entry counting the number of occurrences of the letter in the column in
L zone, the entry counting the number of occurrences of the letter in the column in R zone, and
the winner entry of the column. The entries are updated in constant time per visited position. In
addition, the update of newColumnList is also done in constant time. Therefore, each pointer move
takes constant time for updating the Parikh matrix and newColumnList .

Last, adding or removing problematic columns from LeftList and RightList are done in O(log k)
time. A problematic column can be added at most once to LeftList (since a letter that becomes a
loser in L remains a loser at least as long as r does not move between zones). In a similar way, a
problematic column is removed from RightList when it is the winner of the column, and it cannot
lose its majority. Therefore, each column is inserted or deleted from a list at most once, which
gives a total of O(k log k) time for all updates for a specific pair of L and R zones..

4.5 Finding the Leftmost k-MAR.

We continue with a description of the procedure that finds the leftmost k-MAR in T that contains
anc. The process of finding the first k-MAR is different from the process of finding the rest of the
k-MARs that contain anc. We keep two pointers to the text, ` are r, representing the possible
leftmost and rightmost positions of a k-MAR, respectively. We start with setting ` to anc− 1 and
r to anc + 1. The procedure moves the ` pointer to the left until the number of modified positions
in the substring T`+1,r−1 exceeds k. The ` pointer is moved from one `-zone to the one on its left,
setting it each time to the leftmost position of the `-zone. There, the number of modified positions
in T`+1,r−1 is computed using the Parikh matrix (note that since modified positions can be used
only in a problematic column, the Parikh matrix contains only these columns). We stop when the
number of modified positions in T`+1,r−1 exceeds k.

Let z be the `-zone to which the ` points. We now find the leftmost position for ` in z such that the
number of modified positions in T`+1,r−1 is exactly k. Following Lemma 1, ` points to a position
within the (k + 1)-periods of z. Therefore, it is easy to find in O(k)-time the period, and the
problematic column in this period, to which ` should point.

Finally, we try to extend the k-MAR to the right. The procedure finds the rightmost position for
r such that the number of modified positions in T`+1,r−1 is exactly k. Recall that by definition,
the leftmost r-zone does not contain mismatches in it, therefore, either the r position is within the
(k + 1)-periods of the zone, or it should point to the first position of the R zone to its right. After
r is found, the algorithm reports the k-MAR T`+1,r−1.

Observe that if there are less than k modified positions to the left of anc, ` pointer is set to 0,
and the procedure moves r pointer to the right in a similar way to the move of ` above, until the
k-MAR T1,r−1 is found.

Time Complexity: Each move of either ` or r updates the Parikh matrix in O(k) columns,
which is done in O(k) time. There are O(k) zones in the substring, which leads to O(k2)-time.
Finding the position of ` in its zone is done by moving the pointer from one period to the next
period on its right, for at most O(k) periods. Each move is done in O(k) time. This gives a total
of O(k2) time for finding the position `. Finding the final position for r pointer, is done in O(k2)
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Figure 7: Running Example of the Efficient Main Procedure.

time.

Therefore, the time complexity of the initialization step is bounded by O(k2).

4.6 Running Example of the Efficient Main Procedure

We use Figure 7 to illustrate the algorithm of the efficient main procedure. The same substring
of T is presented in Figure 4 where the current L, M and R zones are shown. For simplicity of
presentation, in Figure 7, the M substring is presented by its Parikh matrix. In both examples,
the period length, p, is 3, and the number of allowed modified positions, k, is 12. Assume that
the sub-procedure starts when ` is moved to a new zone L. Although L zone contains 15 periods
of bbd, ` position can be placed within the rightmost 13 periods of L (the periods are numbered
above the text). Furthermore, since the first position of ` in the new zone should imply exactly 12
modified positions in T`+1,r−1, the leftmost such position is computed and ` is set to 34.

The Parikh matrix of T`+1,r−1 = T35,75 is computed: column 1 having 7 occurrences of a and 6
occurrences of b, column 2 has 13 occurrences of b and 1 occurrence of d, and column 3 having 5
occurrences of c and 9 occurrences of d. Note that column 2 should not be visited, since for both
L and R the column contains the same letter, b, and even though it is a problematic column, b will
stay the winner for the L and R zones: L = T5,48 and R = T75,108. Thus, the Parikh matrix of this
L and R zones contains only two columns, 1 and 3.

Now, we proceed with updating the problematic column lists, LeftList ,RightList and newColumnList .
LeftList contains column 1, since b is a losing letter in the column (Case L2). RightList contains
column 3 since c is currently a losing letter (Case R2).

Observe that as r and ` pointers are increased, d might lose its majority to c in column 3. The
initial period in which it can happen is the first period of L zone (in position 48). Thus, we add
column 3 to newColumnList1 (Case L3).

We proceed with a move of r. The pointer is moved to column 3, to position 78. Since a is now
the winning letter in its column, this move did not use a modified position. As r cannot be further
moved to the right without using additional modified positions, the new 12-MAR, T35,77 is reported.

The ` pointer is moved to column 1, at position 37. This move releases a modified position, since
b is a losing letter in column 1. Now, we can continue with moving r. The r pointer is moved to
position 81, and uses 1 modified position. Now the number of c occurrences in column 3 increases
by 1, and newColumnList is updated: column 3 is removed from newColumnList1 and is added to
newColumnList2 (since d can lose its majority to c in this period).

Observe that even though r points to position 81, the Parikh matrix contains P [a, 1] = 8, where
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actually the number of occurrences of a in T`+1,r−1 is equal to 9. This column will be updated
when ` position is moved to column 1.

Now, the number of modified positions in T38,80 is equal to 12 and the new 12-MAR is reported.

We continue with a move of ` to position 40. The Parikh matrix is updated as follows. P [b, 1] = 4
and P [a, 1] = 9. This move released a modified position and we continue with moving r to position
84.

4.7 Pseudocode for the Efficient Main Procedure

We are now ready to present the following pseudocode of the efficient main procedure for finding
k-MARs. Given a string T , an anchor position, anc, and a period length, p, the procedure finds
the k-MARs with period p, containing anc, in the string.

As an initialization, the sub-procedure for finding the leftmost k-MAR that contains anc is called,
and it is reported. After the initial positions for ` and r are set, the variable count, that counts
the number of used modified positions, is set to k, and the auxiliary lists (LeftList ,RightList and
newColumnList) are updated according to T`+1,r−1.

Then, we proceed to find the rest of the k-MARs that contain anc. The body of the main while
loop (lines 5-28) is an iteration of the procedure. It starts with a k-MAR that was previously
found, T`+1,r−1. Then, the pointer ` is moved until r can be moved without exceeding the number
of allowed modified letters (lines 6 - 15). When ` is stopped, the procedure continues with moving
r to the right, until a new k-MAR is found (lines 16-26). Finally, the new k-MAR, T`+1,r−1 is
reported (line 27), and another iteration starts.

The move of ` starts in line 7, where ` is moved to the next position according to LeftList . If ` was
moved between zones, a new position is found for it in the new zone, and the auxiliary lists are
updated according to the new L and (the same) R zones (lines 8-10). Else, if ` was moved from
one period, to the period on its right (lines 11-13), the respected newColumnList is checked and
the columns it contains are added to LeftList . Observe that there might be a situation where new
columns were added to LeftList , and ` is positioned to the right of these columns. Therefore, in
line 13, the leftmost possible position for ` is found.

In line 14, the Parikh matrix and the count variable are updated according to the contracted
substring. Then, in line 15, we check whether ` should be stopped. There are two cases where we
want to continue with r: either the contraction released a modified position (happens when T [`] is
a losing letter) or the special case where T [r] becomes the winner of its column, which means that
r has a ”free” move. In all other cases, ` is further moved to the right.

The while loop for the r move, in line 16, has two conditions: either the number of modified
positions (count) is smaller than k, and then r can be moved no matter if T [r] is a losing letter or
not. Or, T [r] is a winner letter, and therefore the move of r is a ”free” move.

If any of the conditions apply, r can be moved. Then, the Parikh matrix and count variable are
updated according to the extension of the substring to end at position r. Now, we proceed to check
whether a move between zones happened as a result of the extension (line 18). In this case, the
auxiliary lists are updated according to the (same) L and the new R zones.

In line 19, we check whether the column of r, denoted by col, should be removed from RightList .
In lines 20-23, we update newColumnList , if needed.
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Then, the new position for r is set according to RightList . If the position is to the right of the
(k + 1)-periods of R, in line 25, r is set to the first position of the next r-zone.

Finally, in line 27, when r cannot be further moved to the right, if the size of T`+1,r−1 is greater
than 2p, the new found k-MAR is reported.

input : string T , position anc, period length p
output: All k-MARs containing anc in T

1 compute leftmost k-MAR, Ti,j , and its Parikh matrix
2 (`, r, count)← (i− 1, j + 1, k)
3 report new k-MAR, T`+1,r−1
4 update LeftList , RightList and newColumnList

5 while ` < anc and r < |T | do
6 repeat /* move ` to the right until r can be moved */

7 `← next position according to LeftList
8 if ` is in a new zone then
9 `← leftmost possible position for ` in new zone

10 update LeftList , RightList and newColumnList

11 else if ` is in a new period i then
12 update LeftList using newColumnList i
13 `← leftmost possible position for ` in new period

14 update Parikh Matrix and count according to T`+1,r−1
15 until !Winner(`) or Winner(r)
16 while count = k − 1 or (count = k and Winner(r)) do /* move r to the right */

17 update Parikh Matrix and count according to T`+1,r

18 if r is in a new zone then update LeftList , RightList and newColumnList
19 if T [r] cannot lose its majority in its column, col then remove col from RightList
20 if !Winner(r) and T [r] wins starting period i of L then
21 remove col from newColumnList i−1
22 add col to newColumnList i
23 end
24 r ← next position according to RightList
25 if r is outside (k + 1)-periods of its zone then r ← first position of next zone

26 end
27 if `− r ≥ 2p then report new k-MAR, T`+1,r−1
28 end

Algorithm 1: The Improved Find k-MARs Algorithm

4.8 The Number of Visited Positions in a Zone

In the efficient algorithm we visit the following positions: (a) positions of modified positions,
(b) methodological stop at each period in the (k + 1)-periods of an `-zone, and (c) additional O(k)
special case positions described in observations 6 and 7. The total number of visited positions of
cases (b) and (c) is bounded by O(k). Therefore, we now proceed to bound the number of positions
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that can be modified positions in L and R zones.

Following Lemma 1, there are O(k2) possible positions for modified positions in a zone. Although
only these positions can be modified, the efficient algorithm does not visit all of them. In Lemma 2
we prove that we actually visit only O(k log k) positions in a zone.

For clarity of presentation, we conceptually mark modified positions with pebbles. We put a pebble
on each modified position in T`+1,r−1. Clearly, if T`+1,r−1 is a k-MAR, there are exactly k pebbles
in T`+1,r−1. A move of ` can decrease the number of pebbles in the substring (when a modified
position is released) and a move of r can increase their number (when a modified position is used).
Additionally, a move of the pointers can move pebbles from R to L (and maybe M). This happens
when a letter in R becomes the only winner in its column, col. If the pebbles were placed in R (and
M) before the extension of the substring, they are now conceptually moved to the other positions
of col in L (and M).

The modified positions are the positions marked with pebbles in L and R. Computing the number
of these positions is not trivial, since pebbles are moved back and forth from L to R. Every pebble
that is released as a result of an ` move implies an additional position that can be visited in R
(and be marked with a pebble). In addition, an r move may result a move of pebbles from R to L,
which means that positions in L that were not marked with pebbles are now marked and should
be visited. Lemma 2 proves a bound for the total number of visited positions.

Lemma 2. For a given L and R zones, the efficient algorithm visits O(k log k) positions.

Proof. We start with positions that are not marked with pebbles. First, we visit every period of
the (k+ 1)-periods of L. Second, following observations 6 and 7, there are at most O(k) redundant
positions in L and R that are visited although they may not be marked with pebbles. Clearly, the
number of these positions is bounded by O(k).

We now proceed to count the maximum number of positions that can be marked with pebbles in
both L and R.

We consider two cases: when ` moves between zones (and r points to some position in the (k + 1)-
periods of the R zone) and when r moves between zones (and ` points to some position in the
(k + 1)-periods of the L zone). We start with the move of `.

Assume that ` is moved from an `-zone, L′, to position first` in the `-zone on its right, L (see
Subsection 4.2). Clearly, k (or k− 1) pebbles are spread in L, M and R, according to the modified
positions in Tfirst`+1,r−1. During the computation of the algorithm pebbles move from L to R and
from R to L. The move of pebbles from L to R occurs when ` moves to the right and a pebble is
released. Then, as r increases, the pebble is used. Observe that an r move can use a pebble, only
after a pebble was moved from L.

Clearly, the number of pebbles that are moved from L to R is bounded by the initial number of
pebbles in L and the number of pebbles that can be moved from R to L. Thus, the challenge is
computing the number of pebbles that can be moved from R to L. This situation occurs when a
letter in R gains majority over a letter in L in the same column.

In the second case, when r moves between zones, from an r-zone, R′, to the r-zone on its right,
R. Recall that the first position of r in R is the leftmost position of R (see Subsection 4.2). This
means that k (or k − 1) pebbles are spread in L and M only, according to the modified positions
in T`+1,r−1. Now, there are no initial pebbles in R, but as ` increases pebbles move from L to R,
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and can again move from R to L as letters in R gain majority.

Since we want to bound the number of pebbles moved from R to L, we assume that initially there
are O(k) pebbles in R zone. We distinguish between the two cases when the letter in R equals the
one in L in the same column, and when they are different.

Let x be the letter of a column col in L, y be the letter of col in R, and w be the letter with the
maximum number of occurrences in col in M .

• Case 1: x 6= y

Assume that the number of problematic columns in RightList is a (a ≤ k). Consider the
first positions `′, r′ where a losing letter y gains majority over a letter in L (in the extended
substring T`′+1,r′ , y becomes the winner in col).

After the extension, the pebbles in R that were marking positions in col are moved to the
left, to L zone (and possibly M). If R contained b pebbles before the extension (b ≤ k),
then after the extension at most dk/ae pebbles are moved from R to the left. Note that from
this point on, y will never again lose its majority to x (at least as long as ` does not move
between zones), since the number of its occurrences will only increase as r pointer increases.
The number of problematic columns in RightList decreases to a− 1.

As the algorithm continues, pebbles are released from L zone, and are moved to R zone.
Allowing for at most dk/ae additional positions that can be visited in R.

When another letter y′ in R gains majority in another problematic column, col′, at most
dk/(a− 1)e pebbles are moved from R to L. This situation can continue until either r reaches
the end position of the (k + 1)-periods of R zone or all the letters in R are winning letters in
their columns (i.e., when r moves between zones).

Therefore, the maximal number of positions visited in R in this case is equal to Σk
i=1dk/ie,

which gives a total of O(k log k).

• Case 2: x = y

If y becomes a winner in its column (i.e. |y| ≥ |w|), it does not necessarily mean that y will
continue to be the winner in its column as ` and r pointers are increased (since the number
of occurrences of y is decreased as ` position is increased). This situation is described in
Subsection 4.2: all positions of this problematic column are visited in R zone until r reaches
the |w|’th period (counting from left). Starting from this position, y cannot lose its majority
to w anymore. Since the positions of w M are positions of modified positions in a k-MAR,
their number is bounded by the number of allowed modified positions in a k-MAR, k. Thus,
the number of visited positions of R for the letter y is also bounded by k. Moreover, the total
number of all such cases, for all the problematic columns in which x = y, cannot exceed k,
as it is bounded by the number of modified positions used in M .

Thus, the total number of positions marked with pebbles in R cannot exceed O(k log k), resulting
at most O(k log k) visited positions in L zone. This gives a total of O(k log k) visited positions in
both L and R zones.
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4.9 Time Complexity Analysis of the Main Procedure

The time complexity of the initialization step is O(k), and it is done once.

Moving between zones is done in O(k) time for each zone move (see Subsection 4.2).

Moving between periods is done in O(k log k) for an entire `-zone handling (see Subsection 4.3).

Moving between positions is done in constant time per each visited position in a zone. Following
Lemma 2, there are at most O(k log k) visited positions in each pair of L and R zone. Thus the
time complexity of moving between positions sub-procedure is bounded by O(k log k).

There are O(k) zones in the input string T . Each one of the zones is visited at most once as L or
as R, which gives a total of O(k2 log k) time complexity for the entire procedure.

Alphabet Size: Note that in this time complexity analysis the alphabet size is constant. For
ordered alphabet, the time complexity of visiting a position is higher since updating the winner
letter of a column cannot be done in constant time. Assume that the letter T [r] = a was a loser
letter in its column. As r position increases, the number of occurrences of a in the column increases
and it might become a winner in the column. In order to support quick queries for finding the
winner letter of a column, we can keep a priority queue for each column of the period. The priority
queue stores the letters occurring in the column ordered by the number of their occurrences. On
each update of the Parikh matrix, the queue is also updated in O(log |Σ|) time. After the queue is
updated, finding a letter with maximal number of occurrences is done in constant time. This will
raise the time complexity of the main procedure to O(k2 log k log |Σ|) time for ordered alphabet.

The next section describes the entire algorithm, that given a string T locates the k-MARs in the
string. The algorithm uses this O(k2 log k) version of the main procedure for finding the k-MARs
in substrings of T .

5 The Algorithm

We are now ready to present the entire algorithm, following the framework of Kolpakov and
Kucherov [21] for finding maximal approximate runs. As in [21], we decompose the text into
factors and blocks using a variation of the LZ-factorization of the string, called LZ-factorization
with overlap.

The LZ-factorization (with copy overlap) of a string T divides T into non-overlapping substrings,
f1 · f2 · · · fr, each fi is called a factor, as follows. The first factor is the first letter of T , i.e. T [1].
For every i > 1, fi is the shortest substring occurring in T immediately after f1 · f2 · · · fi−1 that
does not occur in f1 · f2 · · · fi−1 · fi other than as a suffix. For example, the LZ-factorization of the
string aabbabababbbb is a|ab|ba|bababb|bb. The computation of the LZ-factorization of a string can
be done in time linear in its length. Then, the string T is divided into consecutive blocks, each of
which contains 2k + 2 consecutive LZ-factors1. Let T = B1 · B2 · · ·Br be the partition of T into
these blocks.

We now present our algorithm. Given a string T of length n and a number k, the algorithm outputs
an array, results, of size n, such that an entry results[left] contains a list of couples (p, right) that
corresponds to a k-MAR, Tleft,right, with period length p.

1Observe that in [21], each block contains k + 1 factors. Here, since we want to capture modified positions (as
opposed to mismatches in [21]), we compose each block from 2k + 2 factors.
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The algorithm is divided into four steps, following the steps of [21].

• Decompose the string T into factors and blocks. During the process of decomposing the string
into factors, we keep a pointer, orig, from each factor to its previous occurrence in the string
(without its rightmost letter). In addition, build the suffix trees of S and SR, and preprocess
them to answer constant time LCA queries.

• Find k-MARs crossing blocks: for each period length p ranging from k to |BiBi+1|, let anc be
the rightmost position of the block Bi, and let lb (rb) be the position of the 2k + 1 mismatch
to the left (right) of anc. Call the efficient main procedure with Tlb,rb, anc and p. Discard
the k-MARs that contain the rightmost letter of block Bi+1. All found k-MARs, Tleft,right,
are saved in the results array.

• Find k-MARs that are entirely contained inside blocks: for each block, B = fi . . . fi+m, a
recursive binary division of the block according to its factors is done, such that B = B′B′′,
B′ = fi . . . fi+(m/2) and B′′ = fi+(m/2)+1 . . . fi+m. Let anc be the rightmost position of factor
fi+(m/2), and let lb (rb) be the position of the 2k + 1 mismatch to the left (right) of anc. For
period length p ranging from k to |B|/2, call the efficient main procedure with Tlb,rb, anc and
p. Discard the k-MARs that contain the rightmost letter of fi+m or the leftmost letter of fi.
All found k-MARs are saved in the results array. Finally this step is called recursively with
sub-blocks B′ and B′′, independently.

• Find k-MARs that are entirely contained inside factors: in this step, we go over the factors
from left to right, and for each factor starting at position i we follow its pointer to its
generating factor, orig: if results[orig] contains a k-MAR and its length is not longer than
the current factor’s length, its data is copied to results[i] (if the k-MAR length is longer than
the factor’s length, the k-MAR was found in an earlier stage).

Total Time Complexity: The time complexity analysis is similar to the analysis in [21]. The
only difference is that the main procedure in our algorithm takes O(k2 log k) time and not O(k) as
in their algorithm.

The first step is done in linear time. In the second step, for each block Bi, the k-MARs that
touch the rightmost letter of Bi are found, discarding the k-MARs that touch the rightmost letter
of Bi+1. The period size of these k-MARs is bounded by the sizes of Bi and Bi+1 blocks, i.e.
p < 2|BiBi+1|. For each block Bi and for each period length p ranging from k to |BiBi+1| we
first find the boundaries of the substring Tlb,rb using the sub-procedure described in Subsection 3.3.
This is done in O(k) per period size. Then, we call the efficient main procedure to find the k-MARs
that contain anc. The efficient main procedure runs in O(nk2 log k) per period size. This gives a
total of O(nk2 log k) time complexity for the second step.

In the third step, for each block Bi and each period length p ranging from k to |Bi|/2, a binary
division of the block according to its factors is done. Similarly to the previous step, we start with
finding the boundaries lb and rb in O(k) time. Then, the efficient main procedure is called and
runs in O(nk2 log k) per period length. For each block, the number of recursion levels is derived
from the number of its factors, i.e. O(log k). Thus, for all blocks, the time complexity is bounded
by O(nk2 log2 k) time.
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The final step takes O(n + occ) time, where occ is the number of k-MARs found, as we perform a
linear scan on the results array.

This gives a total time complexity of O(nk2 log2 k + occ) for the entire algorithm.
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