
HAL Id: hal-01771670
https://hal.science/hal-01771670v1

Submitted on 19 Apr 2018 (v1), last revised 22 Dec 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On is an n-MCFL
Sylvain Salvati

To cite this version:
Sylvain Salvati. On is an n-MCFL. [Research Report] Université de Lille, INRIA, CRIStAL CNRS.
2018. �hal-01771670v1�

https://hal.science/hal-01771670v1
https://hal.archives-ouvertes.fr

On is an n-MCFL

Sylvain Salvati
Université de Lille, INRIA, CNRS

The language On is the language built on the alphabet Σn = {ai, bi | i ∈
[1, n]} and that contains exactly all those words w which, for every i in [1, n],
have the same number of occurrences of ai and of bi. If we write |w|c the number
of occurrences of the letter c in w, then this condition becomes that for every i
in [1, n], |w|ai = |w|bi . It has first been conjectured that the language O2 was
not a Multiple Context Free Language (MCFL), but it was subsequently shown
that it actually was an MCFL [Sal15] and more precisely an MCFL of dimen-
sion 2 (a 2-MCFL) while not being a well-nested MCFL of dimension 2 [KS12]
(a 2-MCFLwn). Giving a similar proof of the same result, Nederhof [Ned16]
conjectured that On is an n-MCFL. As pointed in [Ned16], a simple pumping
argument shows taht for every m < n, On cannot be an MCFL of dimension
m. A recent breakthrough has been made about that conjecture by Meng-Che
Ho [Hoar] who proved that On is an MCFL for every n. However the dimension
of the MCFL induced by the proof is larger than n, it is 8

⌊
n+1
2

⌋
− 2. All the

proofs related to these results are based on algebraic topology. While the result
of [Sal15] as well as the proof of [Ned16] strongly use some properties of the
plane (the existence of winding numbers of curves around points), the proof
of [Hoar] is based on a more general and well-known result of algebraic topol-
ogy: Borsuk-Ulam Theorem. This theorem has topological proofs, but it can
also be seen as a consequence of a combinatorial lemma of Tucker [Tuc45]. In
this paper, we present a rather elementary proof that On is an n-MCFL using
octahedral Tucker’s Lemma.

Interestingly several theorems that were proved using Borsuk-Ulan Theo-
rem have been reproved using the octohedral Tucker’s Lemma. For example
Matoušek[Mat04] gave a combinatorial proof of Kneser Theorem proving and
using that lemma. Similarly Pàlvölgyi [Pál09] used that lemma so as to give a
combinatorial proof of the bound for the splitting necklace problem. Interest-
ingly the first bounds for this problem were proved using Borsuk-Ulam theorem
with the very same technique as the one used in [Hoar] so as to prove that On
is an MCFL.

1 Preliminaries

We start out with some preliminaries. We introduce Multiple Context Free
Grammars (MCFG) and their dimension.

1

For a given finite set Σ, we write Σ∗ for the monoid freely generated by
Σ, and Σ+ the free semigroup generated by Σ. The elements of Σ are called
letters while the elements of Σ∗ are called strings or words and we write ε for
the empty word. Given a word w, we write |w| for its length, and |w|c for the
number of occurrences of the letter c in w. Given two words w1 and w2 we write
w1 w2 for the shuffle of w1 and w2, that is the set of words u1v1 . . . unvn so
that w1 = u1 . . . un and w2 = v1 . . . vn (here n is arbitray and some of the ui’s
or vi’s can be the empty word).

A ranked alphabet Ω is a pair (A, ρ) where A is a finite set and ρ is a function
from A to N. Given a in A, ρ(a) is the rank of a. We shall write Ω(n) for the
set {a ∈ A | ρ(a) = n}.

A Multiple Context Free Grammar (MCFG) G is a tuple (Ω,Σ, R, S) where
Ω is a ranked alphabet, Σ is a finite set of letters, R is a set of rules and S is
an element of Ω(1). The rules in R are of the form

A(α1, . . . , αn)⇒ B1(x1,1, . . . , x1,l1), . . . , Bp(xp,1, . . . , xp,lp)

where A is in Ω(n), Bj is in Ω(lj), the xk,j are pairwise distinct variables and
the αj are elements of (Σ ∪ X)∗ with X = {xk,j | k ∈ [p] ∧ j ∈ [lk]} and
the restriction that each xk,j may have at most one occurrence in the string
α1 · · ·αn. Note that p may be equal to 0 in which case the right part of the rule
(the one on the right of the ⇒ symbol) is empty, in such a case we will write
the rule by omitting the symbol ⇒.

An MCFG such as G defines judgments of the form `G A(s1, . . . , sn) where
A is in Ω(n) and si belongs to Σ∗. Such a judgment is said to be derivable when
there is a rule A(α1, . . . , αn) ⇒ B1(x1,1, . . . , x1,l1), . . . , Bp(xp,1, . . . , xp,lp) and
there are derivable judgments `G Bk(wk,1, . . . , wk,lk) for all k in [p] such that
sj is equal to αj where the possible occurrences of the xk,j are replaced by wk,j .
The language defined by G, L(G), is the set {w ∈ Σ∗ | S(w) is derivable}.

Let Gn be the n-MCFG that uses two non-terminals S and I that are respec-
tively of arity 1 and n. The grammar uses the alphabet Σn = {ai, bi | i ∈ [1, n]}.
The rules of the grammar are the following:

• S(x1 . . . xn)⇒ I(x1, . . . , xn),

• I(s1, . . . , sn)⇒ I(x1, . . . , xn), I(y1, . . . , yn) where s1 . . . sn is in x1 . . . xn y1 . . . yn,

• I(ai, bi, ε, . . . ε) for every i in [1, n],

• I(bi, ai, ε, . . . , ε) for every i in [1, n],

• I(ε, . . . , ε).

Our main theorem is that the language of Gn is On. The inclusion of L(Gn)
into On is obvious and our effort only bears on proving the converse inclusion.
For this our main technical lemma is:

Lemma 1 For every tuple (s1, . . . , sn) in (Σn)+ so that s1 . . . sn is in On and
|s1 . . . sn| > 2 there are tuples (u1, . . . , un) and (t1, . . . , tn) so that

2

• |u1 . . . un| > 0, |t1 . . . tn| > 0

• u1 . . . un and t1 . . . tn are in On and,

• there is v1 . . . vn in x1 . . . xn y1 . . . yn so that for every i in [1, n], si is
obtained by substituting in vi the xk’s by the corresponding uk’s and the
yl’s by the corresponding tl’s.

From this the inclusion follows easily.

Proposition 1 We have On ⊆ L(Gn).

Proof
To show this inclusion, we prove that for every w in On if w = s1 . . . sn, then
I(s1, . . . , sn) is derivable.

When for every i, |si| ≤ 1, then it is obvious that I(s1, . . . , sn) is derivable by
induction on |s1 . . . sn|. Indeed, when all the si’s are empty then by definition
of Gn, I(s1, . . . , sn) is derivable. Now suppose that si = ak, there must j so
that sj = bk. Without loss of generality let’s assume that i < j. By induction
we obtain that `Gn I(s1, . . . , si−1, ε, . . . sk−1, ε, . . . sn) is derivable. Then using
the rule

I(x1, . . . , xi−1, xiy1, xi+1, . . . xj−1, xjy2 . . . yn, xj , . . . xn)⇒ I(x1, . . . , xn), I(y1, . . . , yn)

with the derivable judgments `Gn I(s1, . . . si−1, ε, . . . sk−1, ε, . . . sn) and `Gn

I(ak, bk, ε, . . . , ε) we obtain a derivation of `Gn I(s1, . . . , sn).
Now we assume that for some i, |si| > 1 and let p be the number of

components of (s1, . . . , sn) which are empty. We then show by induction on
the pair of numbers (|s1 . . . sn|, p) ordered lexicographically that I(s1, . . . , sn)
is derivable. In case p is equal to 0, it suffices to use Lemma 1. In case
p > 0, then there is i so that |si| > 1 and j so that sj = ε. Let us as-
sume that i < j, the other case is treated similarly. Since |si| > 1 there are
u and v so that si = uv and |u| > 0 and |v| > 0. Let J be the judgment
`Gn

I(s1, . . . , si−1, u, si+1, . . . , sj−1, v, sj+1, . . . , sn). In case for all i, the ele-
ment of that tuple have length smaller than 1, we can use the result above
to obtain that J is derivable. Otherwise, the induction hypothesis implies
that J is derivable and using an appropriate rule, as above, we obtain that
`Gn

I(s1, . . . , sn) is derivable. �

From this we can derive our main theorem.

Theorem 2 The language On is an n-MCFL.

2 The main technical Lemma

We now turn to the proof of Lemma 1. We start by proving it for relatively
small tuples.

3

Lemma 3 For every tuple (s1, . . . , sn) in (Σn)+ so that s1 . . . sn is in On and
4n > |s1 . . . sn| > 2, there are tuples (u1, . . . , un) and (t1, . . . , tn) so that

• |u1 . . . un| > 0, |t1 . . . tn| > 0

• u1 . . . un and t1 . . . tn are in On and,

• there is v1 . . . vn in x1 . . . xn y1 . . . yn so that for every i in [1, n], si is
obtained by substituting in vi the xk’s by the corresponding uk’s and the
yl’s by the corresponding tl’s.

Proof
There are two simple cases where it is easy to find tuples (u1, . . . , un) and
(t1, . . . , tn) that satisfy the conclusions of the lemma.

The first one is when there is i and j in [1, n] (here i can be equal to j) so
that ak and bk occur as the first or last letter of si or sj . For example when
i < j and si = aks

′
i and sj = s′jbk. In that case, it suffices to choose ul = sl

for every l 6= i and l 6= j, ui = s′i, uj = s′j and t1 = ak, t2 = bk, and tj = ε for
j ∈ [3, n]. All the other cases are handled similarly.

The second one is when some of the si’s is equal either to ak or to bk. Assume
that si = ak (the other case is similar). Because s1 . . . sn is in On, there is j so
that sj = s′jbks

′′
j . Without loss of generality, we suppose that i < j. In that case

it suffices to take uk = sk for k < i, uk = sk+1 when i ≤ k < j − 1, sj−1 = s′j ,
sj = s′′j and uk = sk when j < k and t1 = ak, t2 = bk and tj = ε for j ∈ [3, n].

The proof of this lemma consists in remarking that when |s1 . . . sn| < 4n,
we must be in one of the two previous cases. We prove that if we are not in the
second case, then we necessarily are in the first one. So suppose that for every
i, |si| > 1, and that si = ci,1s

′
ici,2 with ci,1, ci,2 ∈ Σn. For c ∈ Σn, we introduce

the notation c to be bi when c = ai and ai when c = bi. If for every (i, j), (k, l)
in [1, n] × [1, 2], ci,j 6= ck,l, then, as s1 . . . sn is in On, it must be the case that
|s′1 . . . s′n| ≥ 2n and thus that |s1 . . . sn| ≥ 4n which is in contradiction with the
hypotheses. Therefore, there must be (i, j) and (k, l) in [1, n]× [1, 2], ci,j = ck,l.
�

To complete the proof of Lemma 1, it remains to treat the case of large tuples.
This is where we use the octahedral Tucker lemma. Tucker’s lemma is the
combinatorial counter-part of Borsuk-Ulam theorem. This lemma is generally
stated using an antipodally symmetric triangulation of the m-sphere. However
an octohedral version has been given a combinatorial proof by Baker [Bak70]
and later on it has been given an even more combinatorial statement together
with a proof that does not require topological notions by Matoušek [Mat04].
This statement has been later on used to give a combinatorial proof of the
necklace splitting problem [Pál09]. We take a more convenient and equivalent
formulation of the octohedral Tucker lemma by Alishahi and Meunier [AM17].
This formulation uses strings built on the alphabet O = [−1, 1]. These string
are ordered by the least congruence of monoid 4 so that 0 4 −1 and 0 4 1. In
other words, x 4 y when they have the same length and the respective letters
of x and y at a position i may be different only when the ith letter of x is 0. We

4

write −(·) the (unique) homomorphism that maps −1 to 1, −1 to 1 and 0 to
0. Then −x is the string that is obtained from x by replacing 1’s by −1’s and
−1’s by 1’s. We may also write x for −x.

Lemma 4 (Octohedral Tucker lemma) Given the natural numbers m and
p, if there is a map λ : Om − 0∗ 7→ [−p, p]− {0} so that:

• λ(x) = −λ(−x),

• when x 4 y, λ(x) + λ(y) 6= 0,

then p ≥ m.

We use this lemma in a way that is similar to [Pál09]. Let B = {−1, 1}.
In this setting given a string two strings w and x that have the same length
and which are respectively built on Σ∗n and B∗, the string x serves as a mask
that describes a factorization of w. For example, take κ ∈ B and let x =
κk1κl1 . . . κkrκlr with the li’s and ki’s strictly positive, then w = u1v1 . . . urvr
with |ui| = ki and |vi| = li. Here, x describes uniquely decomposition of w
into two r-tuples (u1, . . . , ur), (v1, . . . , vr). When x is in O∗, x describes an
underspecified factorization, i.e. a factorization where it remains to determine
where the letters of w that are aligned with 0 have to go.

We generalize in an obivous way this notion of factorization induced by
strings in O∗ to tuples (s1, . . . , sn) so that every si is in Σ+

n . Let m be |s1 . . . sn|,
we are going to consider a strings x in −1, 1m. Such a string x can be fac-
tored in x1 . . . xn so that for every i in [1, n], |xi| = |si|. Now each xi de-
termines a factorization of si, say ui = (ui,1, . . . , ui,ki), vi = (vi,1, . . . , vi,li)
where ui corresponds to the parts of si that are marked with 1 and vi corre-
sponds to the pars of si that are marked with −1. Now we let u be the tuple
(u1,1, . . . , u1,k1 , . . . , un,1, . . . , un,kn) and v be the tuple (v1,1, . . . , v1,l1 , . . . , vn,1, . . . , vn,ln);
these tuples are the factorisation that x induces on the tuple (s1, . . . , sn). Again,
when we consider x in Om, it represents a partially defined factorization where
the positions corresponding to 0 need to be assigned either to −1 or to 1. The
octahedral Tucker lemma will help us to prove that a factorization such as the
one required in Lemma 1 always exists in the case m ≥ 4n.

From now on, we fix a tuple s = (s1, . . . , sn), so that for every i in [1, n],
si ∈ Σ+

n , |s1 . . . sn| = m and m ≥ 4n. We are going to define λ from Om to
[−m+ 1,m− 1] and show using Lemma 4 that it has a 0. From this 0, we will
be able to construct a factorization satisfying Lemma 1. The definition of λ
requires a bit of work.

Taking x in Om − 0∗, we let x = x1 . . . xn so that |xi| = |si| for every i in
[1, n]. We define ind(x) to be the min{i | xi /∈ 0∗}. Notice that, since x cannot
be in 0∗, ind(x) is well-defined. Now given x in Bm we define sizeκ(x) with κ ∈ B
to be the number of components of the tuple defined from s by the positions
marked with κ. We then let size(x) = max(size+(x), size−(x)). We can bound
size(x) with m+n

2 . Indeed so as to maximize the size of a tuple, it suffices to
take for every xi a string which alternates between −1 and 1 at each position.

5

In that case, if the length of xi is even, the number of factors that contribute
the factorization of s is the same for the −1 and 1. Otherwise when the length
of xi is odd, the number of factors that contribute to the factorization of s is
one more for the symbol that starts xi. Thus if o is the number of xi’s that
have an odd length we can construct an x that maximizes size(x) and in that
case size(x) = m+o

2 . As o is smaller than n, we obtain the bound we have given.

Lemma 5 For every x in Bm, we have size(x) ≤ m+n
2 .

We now extend the function size(·) to any x in Om as follows:

size(x) = max{size(y) | y ∈ Bm ∧ x � y} .

By definition and Lemma 5, we also have that size(x) ≤ m+n
2 . There are

several simple properties that we can observe about the functions size(·) and
ind(·).

Lemma 6 The functions size(·) and ind(·) are even and antitone, i.e. for every
x, y in Om so that x � y we have:

• size(x) = size(−x), ind(x) = ind(−x),

• size(y) ≤ size(x) and ind(y) ≤ ind(x).

Proof
These properties are immediate consequences of the definitions. �

We now associate a sign to every x in Om. Suppose that ind(x) = i and
xi = 0kκu for some κ ∈ B, k ∈ N and u ∈ O∗, we let sign(x) ∈ B be κ× (−1)k.
Notice that sign(·) is odd, i.e. that sign(x) = −sign(−x).

Lemma 7 Given x, y in Om, if x � y, size(x) = size(y) and ind(x) = ind(y),
then sign(x) = sign(y).

Proof
Let i = ind(x), and suppose that xi = 0kκu. So as to obtain z in Bm so that
x � z and size(z) = size(x). Then it must be the case that zi = u1κu2 so that
u1κ alternates between −1 and 1 at each letter. Notice then that sign(x) is
actually the first letter of u1. It must then be the case that yi = v1κv2 with
v1κ � u1κ because otherwise we would not have size(x) = size(y). But then as
ind(x) = i = ind(y), we must also have that sign(y) is the first letter of u1. As
a consequence we have sign(x) = sign(y). �

Given x in Om, c ∈ Σn and κ ∈ O, we write δc,κ(x) for the number of c in
s1 . . . sn that are aligned with κ in x. We then write Eκ,i(x) for δai,κ(x)−δbi,κ(x).
Notice that because s1 . . . sn is in On, we have that E1,i(x)+E0,i(x)+E−1,i(x) =

6

0 in particular, when x is in Bm we have E1,i(x) = −E−1,i(x). We define unbi(·)
that measures how unbalanced x is as follows for the letter i,

unbi(x) =

 1 when for every y ∈ Bm so that x � y, E1,i(x) > 0
−1 when for every y ∈ Bm so that x � y, E−1,i(x) > 0
0 otherwise

notice that unbi(·) is odd, i.e. unbi(x) = −unbi(−x). Let Ux be the set {i |
unbi(x) 6= 0}, we then let

unb(x) =

{
unbi(x)i when Ux 6= ∅ ∧ i = min(Ux)
0 otherwise

Again unb(x) = −unb(−x).
We can now define λ(·) as follows:

λ(x) =


sign(x)(size(x) + ind(x)) when |x|1 > 0 ∧ |x|−1 > 0 ∧ size(x) > n
n+ 1 when |x|1 = 0
−n− 1 when |x|−1 = 0
unb(x) when |x|1 > 0 ∧ |x|−1 > 0 ∧ size(x) ≤ n

Lemma 8 There is x so that λ(x) = 0.

Proof
We first remark that λ is odd, i.e. λ(x) = −λ(−x). Now supposing that for
every x, λ(x) 6= 0, we can prove that for every x, y in Om, if x � y, then
λ(x) + λ(y) 6= 0. But, |λ(x)| is bounded by max(n + 1, size(x) + ind(x)), as
size(x) ≤ m+n

2 and ind(x) ≤ n, we have that |λ(x)| ≤ m+3n
2 . But we can prove

m+3n
2 ≤ m − 1, which is equivalent to 3n + 2 ≤ m. Indeed, since, n ≥ 2 and

m ≥ 4n we have 3n+ 2 ≤ 4n ≤ m. And as a conclusion |λ(x)| ≤ m− 1. Then
the use of the octahedral Tucker lemma leads to a contradiction and therefore
there is x so that λ(x) = 0.

So as to get our conclusion, it remains to show that when x � y, λ(x)+λ(y) 6=
0 under the assumption that for every x, λ(x) 6= 0. We proceed by case analysis
on the properties of x.

Suppose that either |x|1 = 0 (or similarly that |x|−1 = 0). As x is not
in 0∗, we have that |x|−1 > 0 and thus for every y so that x � y, we also
have |y|−1 > 0. So it cannot be the case that λ(y) = −n − 1 and therefore
λ(x) + λ(y) 6= 0.

Suppose that both |x|1 > 0 and |x|−1 > 0 and size(x) > n. In that case, we
have that |λ(x)| > n+ 1. Take y verifying x � y. Suppose that size(y) ≤ n, we
have that |λ(y)| ≤ n and therefore λ(x) + λ(y) 6= 0. Now in case size(y) > n
the conclusion follows from the use of Lemma 6 and Lemma 7. Indeed, as
from Lemma 6, size(·) and ind(·) are antitone, the only means for λ(x) + λ(y)
to be equal to 0 is that size(x) = size(y) and ind(x) = ind(y). But in that
case Lemma 7 tells us that sign(x) = sign(y) and so λ(x) = λ(y). Therefore
λ(x) + λ(y) 6= 0.

7

The last case is when |x|1 > 0, |x|−1 > 0 and size(x) ≤ n. Take y so that
x � y, now it must be the case that size(y) ≤ size(x) by Lemma 6. So, λ(y) =
unb(y), and as, from hypothesis, λ(y) 6= 0, we have that unb(y) = unbj(y)j
where j = min(Uy). Similarly we have that λ(x) = unb(x) = unbi(x)i where
i = min(Ux). As x � y, it must be the case that Ux ⊆ Uy. Indeed, by definition,
for every l in [1, n], unbl(x) 6= 0 implies that unbl(y) 6= 0. Moreover, the
definition also implies that unbl(x) = unbl(y). In particular unbi(x) = unbi(y).
So, if min(Uy) = min(Ux) = i, then λ(y) = λ(x), so λ(x) + λ(y) 6= 0. If
min(Uy) 6= min(Ux), as Ux ⊆ Uy, it must be the case that min(Uy) < min(Ux)
and in that case |λ(x)| > |λ(y)| so that λ(x) + λ(y) 6= 0. �

Lemma 9 There is x in Bm so that λ(x) = 0.

Proof
From the previous lemma, we know that there is x in Om so that λ(x) = 0.
We construct y so that x � y, y ∈ Bm and λ(y) = 0. As λ(x) = 0, it must
be the case that, |x|1 > 0, |x|−1 > 0 and size(x) ≤ n. So for every y in Bm
so that x � y it must be the case that we also have |y|1 > 0, |y|−1 > 0 and
size(y) ≤ n. From the fact that λ(x) = 0, we know that Ux = ∅ and that for
every i, unbi(x) = 0. In particular, this means that there is zi in Bm so that
x � z and E1,i(zi) = 0 = E−1,i(zi). Now if we turn every occurrence of 0 in x
that is in front of an ai or a bi in s to the same value as in z, we obtain xi so
that λ(xi) = 0. By iteratively doing this construction for every i we obtain y in
Bm so that λ(y) = 0. �

This last lemma actually finishes the proof Lemma 1.

References

[AM17] Meysam Alishahi and Frédéric Meunier. Fair splitting of colored paths.
arXiv preprint arXiv:1704.02921, 2017.

[Bak70] James K Baker. A combinatorial proof of Tucker’s lemma for the n-
cube. Journal of Combinatorial Theory, 8(3):279–290, 1970.

[Hoar] Meng-Che ”Turbo” Ho. The Word Problem of Zm Is a Multiple-
Context Free Language. Groups, Complexity, Cryptology, to appear.

[KS12] Makoto Kanazawa and Sylvain Salvati. MIX is not a tree-adjoining
language. In Proceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 666–674. Association for
Computational Linguistics, 2012.

[Mat04] Jǐŕı Matoušek. A combinatorial proof of Kneser’s conjecture. Combi-
natorica, 24(1):163–170, 2004.

8

[Ned16] M.-J. Nederhof. A short proof that O2 is a MCFL. In Proceedings of
the 54th Annual Meeting of the Annual Meeting of the Association for
Computational Linguistics, pages 1117–1126, 2016.

[Pál09] Dömötör Pálvölgyi. Combinatorial necklace splitting. the electronic
journal of combinatorics, 16(1):79, 2009.

[Sal15] Sylvain Salvati. MIX is a 2-MCFL and the word problem in is captured
by the IO and the OI hierarchies. Journal of Computer and System
Sciences, 81(7):1252 – 1277, 2015.

[Tuc45] A.W. Tucker. Some topological properties of disk and sphere. In Proc.
First Canadian Math. Congress, pages 285—-309, 1945.

9

	Preliminaries
	The main technical Lemma

