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Abstract. We report here the results of total mercury (HgT)
determinations along the 2014 GEOTRACES GEOVIDE cruise
(GAO1 transect) in the North Atlantic Ocean (NA) from
Lisbon (Portugal) to the coast of Labrador (Canada).
HgT concentrations in unfiltered samples (HgTyng) were
log-normally distributed and ranged between 0.16 and
1.54 pmol L~!, with a geometric mean of 0.51 pmol L™! for
the 535 samples analysed. The dissolved fraction (< 0.45 um)
of HegT (HgTE), determined on 141 samples, averaged 78 %
of the HgTynr for the entire data set, 84 % for open seawa-
ters (below 100 m) and 91 % if the Labrador Sea data are ex-
cluded, where the primary production was high (with a win-
ter convection down to 1400 m). HgTynF concentrations in-
creased eastwards and with depth from Greenland to Europe
and from subsurface to bottom waters. The HgTyng con-
centrations were similarly low in the subpolar gyre waters
(~0.45 pmol L), whereas they exceeded 0.60 pmol L™! in
the subtropical gyre waters. The HgTynF distribution mir-
rored that of dissolved oxygen concentration, with highest
concentration levels associated with oxygen-depleted zones.
The relationship between HgTF and the apparent oxygen uti-
lization confirms the nutrient-like behaviour of Hg in the NA.
An extended optimum multiparameter analysis allowed us to

characterize HgTynr concentrations in the different source
water types (SWTs) present along the transect. The distri-
bution pattern of HgTyng, modelled by the mixing of SWTs,
show Hg enrichment in Mediterranean waters and North East
Atlantic Deep Water and low concentrations in young waters
formed in the subpolar gyre and Nordic seas. The change in
anthropogenic Hg concentrations in the Labrador Sea Water
during its eastward journey suggests a continuous decrease in
Hg content in this water mass over the last decades. Calcula-
tion of the water transport driven by the Atlantic Meridional
Overturning Circulation across the Portugal-Greenland tran-
sect indicates northward Hg transport within the upper limb
and southward Hg transport within the lower limb, with re-

sulting net northward transport of about 97.2 kmol yr~.

1 Introduction

The ocean plays a central role in the global mercury (Hg)
cycle. It receives Hg mainly from atmospheric deposition,
whereas it disposes of it in deep marine sediments (e.g. Ma-
son et al., 1994). In the meantime, the largest part of Hg is
recycled in the atmosphere, while a smaller fraction pene-
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trates the ocean interior via thermohaline circulation or the
biological pump (see reviews by Mason and Sheu, 2002;
Fitzgerald et al., 2007; Mason et al., 2012). Firstly, Hg re-
injection to the atmosphere results from the formation of
volatile elemental Hg via photoreduction and microbiolog-
ical reduction of divalent Hg (e.g. Mason et al., 1995; Amyot
et al., 1997). Secondly, Hg integration into the thermohaline
circulation involves its solubilization in surface waters fol-
lowed by the subduction of these water masses along isopy-
cnals (e.g. Gill and Fitzgerald, 1988). Thirdly, the biolog-
ical pump consists of Hg sorption onto biogenic particles
produced in the euphotic zone. Then it conveys sinking ma-
terials at depth with possible Hg remobilization due to the
particulate remineralization—dissolution process (e.g. Mason
and Fitzgerald, 1993). The shape of observed vertical oceanic
Hg profiles, characterized by increasing concentrations with
depth, includes the marks of these different routes and is akin
to nutrient-type profiles (Gill and Fitzgerald, 1988; Cossa et
al., 2004; Lamborg et al., 2014; Bowman et al., 2015, 2016).
The Hg cycle is also known for being highly perturbed by hu-
man activities (e.g. Mason et al., 2012; Lamborg et al., 2014;
Zhang et al., 2014; Amos et al., 2015). Modern Hg concen-
trations in the global atmosphere are more than 3 times the
pre-industrial Hg concentrations, leading to increasing Hg
concentrations in surface and intermediate oceanic layers,
which remain to be precisely estimated. Despite these ad-
vances in knowledge of the Hg biogeochemical cycle, the key
features of the Hg distribution among the principal oceanic
water masses are still poorly documented. Recent enhance-
ments in the precision of Hg analyses allow more reliable
vertical Hg profiles in the water columns (e.g. Cossa et al.,
2011; Lamborg et al., 2014; Heimbiirger et al., 2015; Bow-
man et al., 2015, 2016; Munson et al., 2015; Cossa et al.,
2017a, b). In addition, an original approach for the estima-
tion of the anthropogenic fractions of Hg concentrations in
oceanic waters has been proposed (Lamborg et al., 2014).
Owing to these last methodological breakthroughs, signifi-
cant advances in detailed Hg oceanic distributions are possi-
ble.

The North Atlantic Ocean (NA) plays an active role in the
cycling of chemical species in the ocean because it is a region
where deep water formation drives the Atlantic Meridional
Overturning Circulation (AMOC) (Kuhlbrodt et al., 2007).
Particularly in the subpolar NA, chemical properties, includ-
ing Hg, are transported to the ocean interior; thus, NA of-
fers a unique opportunity for studying the oceanic response
to changes in atmospheric Hg deposition. The GEOTRACES-
GAO3 zonal and meridional transects, sampled in 2010 and
2011, covered the NA from east to west between 18 and
40° N, from the coast of Africa to the coast of the USA.
Here, we report the results of the GEOVIDE cruise along the
GEOTRACES-GAQOL transect, which targeted the NA from 40
to 60° N, from Portugal to Newfoundland via the southern
tip of Greenland (Fig. 1). This article provides (i) a high-
resolution description of the HgT distribution in the waters
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of the subpolar and subtropical gyres of the NA, (ii) charac-
terization the HgT concentrations of the main water masses
of the NA, (iii) an estimate of the temporal change of an-
thropogenic Hg in LSW and (iv) quantification of the HgT
transport associated with the upper and lower limbs of the
AMOC. These new data contribute to a refinement of the de-
piction of the Hg distribution in the NA waters and should
allow further improvements in the oceanic Hg modelling.

2 Oceanographic context

A full description of the water masses along the
GEOTRACES-GAOL1 transect can be found in Garcia-Ibafiez
et al. (2018). Briefly, the North Atlantic Current (NAC) con-
veys the warm salty surface waters from subtropical regions
northwards to the subpolar regions, where they are cooled
down by heat exchange with the atmosphere (Fig. 1). The in-
termediate and deep waters formed this way fill up the Global
Ocean, initiating the southward-flowing limb of the AMOC
(e.g. McCartney and Talley, 1984; Lherminier et al., 2010).
In addition, the general circulation pattern is characterized by
the subtropical and the subpolar gyres (Fig. 1).

In the subtropical gyre (Fig. 1), several water masses can
be identified. They are listed from top to bottom: (i) the
mixed layer, (ii) the eastern North Atlantic Central Water
(ENACW), (iii) the Mediterranean waters (MW), (iv) the
Labrador Sea Water (LSW) and (v) the Lower North East
Atlantic Deep Water (NEADWL), which contains about
30 % Antarctic Bottom Water (AABW) (Garcia-Ibanez et al.,
2015). The transformation of ENACW leads to the forma-
tion of different mode waters including the Subpolar Mode
Waters (SPMWs) (McCartney and Talley, 1982; Tsuchiya et
al., 1992; van Aken and Becker, 1996; Brambilla and Tal-
ley, 2008; Cianca et al., 2009). SPMWs are the near-surface
water masses of the subpolar gyre of the NA characterized
by thick layers of nearly uniform temperature, often de-
noted with temperature in subscript (SPMWg, for example).
SPMWs are formed during winter convection at high lati-
tudes due to atmospheric freshening of surface waters origi-
nating from the subtropical gyre (McCartney, 1992). SPMWs
participate in the upper limb of the AMOC and provide much
of the water that is eventually transformed into the several
components of North Atlantic Deep Water (NADW; Bram-
billa and Talley, 2008).

In the subpolar gyre, ocean—atmosphere interaction is par-
ticularly intense. The cooling down of subtropical waters
produces dense waters, triggering the deepening of the mixed
layer and further leading to deep convection. The main NA
convection zones are located in the Labrador (LS), Irminger
(IrS) and Nordic seas (NS) (Fig. 1). Convection in those
zones leads to the formation of intermediate and deep waters
such as LSW, Denmark Strait Overflow Water (DSOW) and
Iceland—Scotland Overflow Water (ISOW). LSW and ISOW
are the main components of NEADW, and the all three are
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Figure 1. Schematic view of the water circulation in the North Atlantic Ocean adapted from Garcia-Ibéfiez et al. (2015) and Daniault et
al. (2016). Red lines indicate the circulation in surface, while blue lines indicated circulation at depth. Black lines represent the GEOVIDE
cruise that transects (GEOTRACES-GAOQ1). The main geographical features, water masses and currents are indicated: Newfoundland (NFL),
United Kingdom (UK), United States of America (USA), Denmark Straight Overflow Water (DSOW), Iceland—Scotland Overflow water
(ISOW), Labrador Sea Water (LSW), Lower North East Atlantic Deep Water (NEADW] ), Mediterranean waters (MW) and North Atlantic
Deep Water (NADW), Deep Western Boundary Current (DWBC), East Greenland Current (EGC), Labrador Current (LC), North Atlantic

Current (NAC) and West Greenland Current (WGC).

components of the NADW, which constitutes the cold deep
limb of the AMOC, flowing southward towards the Southern
Ocean in the western Atlantic basin. LSW has been variably
produced in the past 50 years, depending on the intensity of
winter convection, linked to the intensity of the North At-
lantic Oscillation (e.g. Rhein et al., 2002; Cianca et al., 2009;
Yashayaev and Loder, 2016). Depths of winter convection in
the LS vary from a few hundred metres (the early 2000s) to
over 2000 m (early 1990s). The LSW is a thick layer in the
LS but thins out as it travels south-westwardly. It spreads out
into the entire NA, filling the subpolar gyre and entering the
subtropical gyre. Within the subpolar gyre, LSW is marked
by a salinity minimum above the ISOW. In both gyres, the
well-ventilated LSW has a marked oxygen maximum.

3 Materials and methods
3.1 Sampling

Water samples were collected during the French-led
GEOVIDE cruise (GEOTRACES-GAO] transect), on board the
RV Pourquoi Pas? sailing from Lisbon (Portugal) on 15 May
and arriving on 30 June 2014 in St John’s (Newfoundland,
Canada) (Fig. 1). Seventy-eight (78) stations (Table S1 in
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the Supplement) were occupied for hydrographic profiles
(CTD, dissolved oxygen, nutrients), of which 29 included
trace-metal sampling. Sampling and water treatment for HgT
determination (Lamborg et al., 2012; Cutter et al., 2017)
were performed using ultra-trace techniques following the
GEOTRACES recommendations. During the GEOVIDE cruise,
an epoxy-coated aluminum rosette, equipped with 12L Go-
FLO (General Oceanics©) bottles initially cleaned follow-
ing the GEOTRACES procedures (Cutter and Bruland, 2012),
was deployed on a 6 mm Kevlar hydrowire. The rosette
was also equipped with probes for pressure, conductivity,
temperature, dissolved oxygen, fluorometry and transmis-
sion measurements (titanium SBE model 911-plus, Sea-Bird
Electronics®). Specifically for Hg determination, all materi-
als in contact with the seawater samples were made of Teflon
or were Teflon coated, acid cleaned and rinsed with ultrapure
water (Milli-Q, Millipore®) prior to utilization. Original vent
fixture and sampling valves of the GO-FLO bottles were re-
placed with Teflon (PTFE) ones. GO-FLO bottles were sub-
sampled under a laminar flow bench inside a clean trace-
metal container. The efficiency of the high-efficiency partic-
ulate air filter (HEPA, 0.3 um) in the container was checked
with a Coulter counter during the cruise. All subsequent sam-
ple treatments (including filtration) and Hg analyses were
also performed in clean class 100 containers. For sample

Biogeosciences, 15, 2309-2323, 2018



2312

filtrations, acid-washed 0.45 um polycarbonate membranes
(Nuclepore) were preferred to cellulose acetate or polyether-
sulfone membranes proposed in the GEOTRACES protocols
(Fig. S1 in the Supplement). Subsamples were stored in
Teflon bottles (FEP) until the on board HgT analyses, which
occurred within 6 h after sampling.

3.2 Chemical analyses

In order to access all Hg species, the release of Hg from
its ligands was achieved by a BrCl solution (50uL of a
0.2N solution is added to a 40 mL sample), and then the
Hg was reduced with an acidic SnCl, solution (100 uL of
a 1 M solution is added to a 40 mL sample). Potassium bro-
mide (Sigma Aldrich, USA) and potassium bromate (Sigma
Aldrich, USA) were heated for 4h at 250 °C to remove Hg
traces before making up BrCl solution with freshly double-
distilled HCI (Heimbiirger et al., 2015). The generated Hg
vapour was amalgamated into a gold trap and then released
by heating into an atomic fluorescence spectrometer (AFS).
We used two AFS systems in parallel (Tekran® Model 2500,
Brooks® Model 3), both calibrated against the NIST 3133
(National Institute of Standards and Technology) certified
reference material. This technique, initially described by
Bloom and Crecelius (1983) and subsequently improved by
Gill and Fitzgerald (1985), is now an authoritative procedure
officialised by the US EPA as method 1631 (Environmental
Protection Agency, 2002). The definitions of detection limit
(DL), reproducibility and accuracy given here are adopted
from Taylor (1987) and Hewitt (1989). Using a mirrored
quartz cuvette (Hellma®) allowed for an “absolute DL”, de-
fined as 2 times the electronic noise magnitude, as low as
1.7 femtomoles. However, in practice for trace measure-
ments, the DL is governed by the reproducibility of the blank
values and calculated as 3.3 times the standard deviation of
blank values. The blank values were determined on a purged
Hg-free seawater sample spiked with reagents (i.e. BrCl and
SnCly). The mean (+ standard deviation) of blank values
measured during the GEOVIDE cruise was 3.2 & 1.0 femto-
moles. Thus, for a 40 mL seawater aliquot, the DL expressed
in HgT concentration was 0.07 pmol L. The reproducibil-
ity (coefficient of variation of six replicate measures) varied
according to the concentration level between 5 and 15 %. The
accuracy of HgT measurements was tested using ORMS-5
certified reference material (CRM) from the National Re-
search Council of Canada (http://www.nrc-cnrc.gc.ca/, last
access: April 2018) and spiked to a purged Hg-free seawa-
ter sample. Measurements were always within the given con-
fidence interval. To ensure good data quality and to con-
tinue previous efforts (Cossa and Courau, 1990; Lamborg
et al., 2012), we organized the 2014 GEOTRACES intercal-
ibration exercise for total HgT and methyl Hg as a part of
the GEOVIDE cruise. The intercalibration sample was taken
on 22 June 2014 in the LS at 49.093° W, 55.842° N, and
2365 m depth. The sample was sent out to 10 participating
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laboratories. This station was also planned as crossover sta-
tion within the 2015 Arctic GEOTRACES effort (Canadian
cruise) but has subsequently been changed to another lo-
cation. Our results compare well with the consensus val-
ues, HgT =0.63 - 0.12 pmol L~!, n =8. We measured the
2014 GEOTRACES intercalibration sample twice for HgT and
obtained 0.51 (22 June 2014, on board) and 0.58 pmol L}
(30 October 2014, home lab).

3.3 Extended optimum multiparameter analysis

We used an extended optimum multiparameter (¢OMP) anal-
ysis to characterize the water mass HgTyng concentrations
along the GEOTRACES-GAO] transect (Garcia-Ibafiez et al.,
2015, 2018). The eOMP analysis quantifies the proportions
of the different source water types (SWTs) that contribute
to a given water sample. The HgTyng concentration of each
SWT, [HgTunrli, was estimated through an inversion of the
SWT fractions given by the eOMP analysis. This approach
was successfully applied to dissolved organic carbon water
mass definitions in the NA (Fontela et al., 2016) and to evalu-
ate the impact of water mass mixing and remineralization on
the N> O distribution in the NA (de 1a Paz et al., 2017). Here,
we performed an inversion of a system of 430 equations
(HgTynr samples) and 11 unknowns ([HgTyng];). Samples
for which the difference between the observed HgTynr and
the predicted HgTynr values by the multiple linear regres-
sion (Eq. 1 below) was 3 times greater than the standard
deviation were removed from the analysis. Nine samples
were used: Station 2 (125 m), Station 11 (793 m), Station 11
(5242 m), Station 13 (1186 m), Station 15 (170 m), Station 19
(99 m), Station 26 (97 m), Station 32 (596 m) and Station 38
(297 m). The SWTs were characterized by potential temper-
ature, salinity, and macronutrients. The eOMP was restricted
to depths below 75m in order to avoid air-sea interaction
effects. The eOMP gave us the fractions of the 11 SWTs,
and we resolved the following expression to estimate the

[HgTunrli:

11 i
[HeTunglj = D, SWT/
x [HgTyngli +¢;(j = 1...430), (10

where [HgTynr]; represents the measured HgTuyng concen-
tration for each sample j, SWT{ the proportion of SWT
i to sample j (obtained through the eOMP), [HgTunrl;
the HgTynF concentration for each SWT i (unknown), and
¢; the residual. The 430 ¢;s of the inversion presented a
null mean and a standard deviation of 0.085 pmol L™! (R =
0.84).

3.4 Mercury transport calculation

Velocity fields across the GEOTRACES-GAOI transect were
calculated using an inverse model constrained by Doppler
current profiler velocity measurements (Zunino et al., 2017)

www.biogeosciences.net/15/2309/2018/
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Figure 2. Distribution of unfiltered total mercury (HgTynF) concentrations along the GEOTRACES-GAO]1 transect. LS: Labrador Sea; IrS:
Irminger Sea; IcB: Iceland basin; ENABw: western part of the eastern North Atlantic basin; ENABe: eastern part of the eastern North Atlantic

basin; IAP: Iberian Abyssal Plain.

an overall mass balance of 1 43 Sv to the north (Lherminier
et al., 2007, 2010). The volume transport per SWT was com-
puted by combining these velocity fields with the results of
the eOMP (Garcia-Ibafiez et al., 2018). Finally, the HgTyng
transport per water mass was calculated through Eq. (2):

11
TrgTone = 2, Tswr, % [HeTung], X pi, 2)

i=1

www.biogeosciences.net/15/2309/2018/

where Tgwr; is the volume transport of SWT i, [HgTynr]; is
the HgTynr concentration for each SWT i (from Eq. 1), and
pi is the density of the SWT i.

The inverse model configuration for the GEOVIDE cruise
data is described in Zunino et al. (2017). The inverse model is
based on the least squares formalism, which provides errors
on the velocities and associated quantities such as the magni-
tude of the AMOC (estimated in density coordinate) and the

Biogeosciences, 15, 2309-2323, 2018
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Figure 3. Mercury concentrations in filtered (HgTE) vs. unfiltered
(HgTynp) samples (n = 141) collected along the GEOTRACES-
GAO1 transect.

heat flux (Lherminier et al., 2010). The inverse model com-
putes the absolute geostrophic transport orthogonal to the
section. The Ekman transport is deduced from the wind fields
averaged over the cruise period and added homogeneously to
the upper 40 m (Mercier et al., 2015). The transport estimates
of the inverse model across the section have been validated
by favourable comparisons with independent measurements
(Gourcuff et al., 2011; Daniault et al., 2011; Mercier et al.,
2015).

4 Results

Distributions of potential temperature, salinity, dissolved
oxygen and silicic acid are given in Garcia-Ibafiez et
al. (2018),

HgTynr concentrations along the GEOTRACES-GAOI
transect ranged from 0.16 to 1.54pmolL~! (n=535),
these data being log-normally distributed, positively skewed
(Skewness = 1.1; Kurtosis =2.1; Fig. S3) and having 97 %
of the values lower than 1.00 pmol L™!. The geometric mean
and the median were 0.51 pmol L™!, whereas the arithmetic
mean and standard deviation were 0.54 and 0.19 pmol L™!,
respectively. These concentrations are within the range found
along the GEOTRACES-GAO3 transect (0.09-1.89 pmol L™!,
n = 605) that crossed the NA within the subtropical gyre
from 18 to 40° N (Bowman et al., 2015), but are lower than
the range and the unusually high arithmetic mean determined
in the South Atlantic along the GEOTRACES-GA10 transect
(0.39-3.39 pmol L', n =375; Arne Bratki¢, personal com-
munication, 2017 and 1.45 #£ 0.60 pmol L~!: Bratki¢ et al.,
2016).
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The overall distribution of the HgTynr concentrations
along the GEOTRACES-GAOI transect is represented in
Fig. 2. The main features of HgTynF concentrations are an
eastward increase from Greenland to Europe and a down-
ward increase from subsurface to bottom waters. In addi-
tion, the lowest and highest (most variable) HgTynr values
were encountered in surface and subsurface waters, where
Hg evasion to the atmosphere and high particulate matter
concentrations may generate low and high HgTynr con-
centrations, respectively. Out of the 141 filtered samples
that were analysed, altogether, the filtered fraction of Hg
(HgTF) represents, on average, 78 % (range: 36-98 %) of the
HgTunr (Fig. 3). Excluding the upper 100 m, where the bio-
genic suspended particles are usually abundant, and the sta-
tions located on the shelf and slope, where particulate mat-
ter from continental sources are usually present, the HgTF
fraction represents, on average, 84 % (range: 72-98 %) of the
HgTynr. In addition, in the LS, HgTr / HgTyng mean ratios
were rather low ranging 62-92 %, with a mean of 76 %. In
fact, the primary production was high in spring 2014 in LS,
and the winter convection, which reached 1400 m, conveyed
surface particles at depth (Yashayaev et al., 2015; Lemaitre
et al., 2017). If we exclude the LS from the HgTr mean
computation, we obtain a mean percentage HgTr / HgTunr
ratio of 91 %, which is similar to values (~ 90 %) obtained
along the GEOTRACES-GAO3 zonal and meridional transects
(Bowman et al., 2015). In the following subsections, de-
tailed descriptions of the HgTynr profiles for the five fol-
lowing oceanographic environments are given: LS, IrS, Ice-
land basin (IcB), the eastern North Atlantic basin (ENAB)
and Iberian Abyssal Plain (IAP).

www.biogeosciences.net/15/2309/2018/
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4.1 Labrador Sea (stations 61 to 78)

In the LS, the HgTynr concentrations ranged from 0.25
to 0.67 pmolL_l, with a mean (% standard deviation) of
0.44 4 0.10 pmol L™! (n = 113). Distribution, source and cy-
cling of Hg in the LS have been described and discussed in
detail in a companion paper (Cossa et al., 2017b). In sum-
mary, the highest HgTynr concentrations were found in the
waters of the Labrador Current (LC) receiving fresh wa-
ter from the Canadian Arctic Archipelago and in the wa-
ters over the Labrador shelf and continental rise. In the LSW
that formed during the 2014 winter convection, HgTynF con-
centrations were low (0.38 &= 0.05 pmol LY, n=23)and in-
creased gradually with depth (up to >0.5pmolL~") in the
North East Atlantic Deep Water.

4.2 Irminger Sea (stations 40-60)

HgTynr concentrations in the IrS waters varied from 0.22
to 0.76 pmol L~!, with a mean of 0.4540.10 pmol L~ (n =
103). In the IrSPMW, which was encountered in the upper
1000 m near eastern Greenland and the upper 500 m in the
rest of the IrS (Fig. 4a in Garcia-Ibafiez et al., 2018), HgTynr
values span between 0.29 and 0.42 pmol L~ (Fig. 2). Deeper
HgTynr increased up to 0.50 and 0.63pmol L~ in LSW
(~ 1000 m) and ISOW (~ 2500 m). Lower HgTynF concen-
trations (0.40—-0.50 pmol L™!) were associated with DSOW
in the bottom waters (stations 42—44, Fig. 2).

4.3 Iceland basin (stations 34-38)

HgTuynr concentrations in the IcB ranged from 0.18 to
0.65pmol L~!, with a mean of 0.46+0.10 pmol L™! (n =
51). In the top 100 m of the water column, HgTynF concen-
trations were quite variable (0.25-0.62 pmol L™!), probably
as a result of the counteracting importance of Hg evasion
to the atmosphere, high particulate matter and/or complex-
ing substance concentrations. West of the IcB (Station 38),
contrasting HgTynr levels were found on both sides at
500 m, characterized by a thermohaline gradient (Fig. 2a
and b in Garcfa-Ibafiez et al., 2018). In the top waters,
HgTunr levels were depleted to 0.18 pmol L™!, whereas be-
low 500 m, they were much higher and converge to val-
ues close to what we found, at the same depths in the
adjacent IrS (~0.60 pmol L™!, Station 40). In the bottom
waters, constituted by more than 50 % of ISOW (Garcia-
Ibafiez et al., 2018), HgTynF concentrations reached values
>0.50 pmol L1,

4.4 Eastern North Atlantic basin (stations 17-32)

The HgTynr concentrations in the ENAB varied from 0.18
to 1.14 pmol L™, with a mean of 0.61 +0.18 pmol L™! (n =
174). The ENAB, also named western European basin, is
characterized by complex vertical stratification of the wa-
ter column. The HgTuynF vertical profiles at all the stations
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of the ENAB were characterized by a complex but repro-
ducible pattern depicting (i) two maxima peaks (the upper
one at the subsurface, the lower within the intermediate wa-
ters), and below, (ii) a HgTynr enhancement from 2500 m to
the bottom (Fig. 2). The position and intensity of the peaks
vary with longitude. The upper peak, which occurs within the
top 200 m, is only 0.48 pmolL’1 at Station 29, but reaches
1.14 pmol L~! at Station 19 (Fig. 2). The vertical position of
maxima of the lower peak deepens eastwards, from 200 m
down to 800 m, concurrently with an increase in its magni-
tude (Fig. 2). The position of the upper peaks suggests a re-
lation with the position of the fluorescence maximum (data
not shown), whereas the position of the lower peaks, which is
close to the maximum of apparent oxygen utilization (AOU)
that rose above 70 umol L™! (Fig. 2), suggests a dependence
on the organic matter remineralization (see Discussion be-
low). Between 1400 and 2500 m, in the layer corresponding
to LSW, HgTynr concentrations were quite uniform, with a
mean concentration of 0.54 +0.04 pmol L™! (n = 18). The
HgTuynr concentration increased from 3000 m downwards
to the sea bottom, consisting of NEADWT7, where it reaches
0.95,0.97, 1.03 and 1.13 pmol L—! at stations 21, 19, 25 and
23, respectively.

4.5 TIberian Abyssal Plain (stations 1-15)

In the IAP, HgTynr concentrations ranged from 0.19 to
1.54pmol L™!, with a mean of 0.69+0.23pmolL~! (n =
94). The highest HgTynr concentrations were measured in
the upper 100 m near the shelf slope. At Station 2, the only
station on the European shelf (bottom at 152 m), the HeTynr
concentrations increased from 10 m to the bottom, from 0.38
to 0.86 pmol L ™!, but did not differ from the open NA ocean
levels. Offshore, at stations 1, 11, 13 and 15 (Fig. 2), the
vertical distributions of HgTyng presented a certain simi-
larity with those of the eastern ENAB, but with an addi-
tional third deep peak. As in the eastern ENAB, the upper
peak is associated with subsurface waters, and the second,
centred around 800 m, is associated with the oxygen min-
imum of SPMWjg. The third peak, centred around 1100-
1200 m, is associated with the salinity maximum of the core
of MW (Fig. S2). The presence of a HgTynr peak in the MW
was still visible westwards, at stations 17, 19 and 23, near
1100 m, as a shoulder of the main peak at 800 m (Fig. 2).
Deeper within the water column, HgTynFr increased grad-
ually from 2000 m (LSW) to 3000 m (ISOW), 3500 m and
below (NEADW] ), where HgTynr concentrations reached
0.87 to 1.04 pmol L~! depending on the station.

In summary, the HgTynr mean concentrations were low
and similar in the basins of the subpolar gyre (0,44, 0.45 and
0.46 pml L~! for LS, IrS and IcB respectively), whereas they
exceeded 0.60 pml L ™! in the subtropical gyre (0.61 and 0.69
pmlL~! for ENAB and IAP, respectively). On the other hand,
the profiles were rather homogenous in the subpolar gyre
compared to the multipeak vertical distribution observed in
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Figure 5. Total Hg in unfiltered samples (HgTynE) vs. apparent
oxygen utilization (AOU) within the various source water types.

the subpolar gyre (Fig. 2). A multipeak pattern was also ob-
served in 1994 in the eastern Atlantic slope water column
in the Celtic Sea (Cossa et al., 2004). The shape of the Hg
profiles exhibited the same peaks in the same water masses
as the ones observed in this study (i.e. SPMWs and MW).
However, HgTynr concentration levels measured 20 years
ago were much higher, varying most often from 0.3 pmol L™!
in subsurface waters to more than 2.0 pmol L™ at depth.

5 Discussion

5.1 Biogeochemical and hydrographical controls on
HgT distribution

The main paths of the Hg cycle in the open ocean can be
briefly summarized as follows. Direct atmospheric deposi-
tion is the dominant source of Hg for the oceans, most of the
deposited Hg is re-emitted in the atmosphere, and a minor
Hg fraction is drawn down to the ocean interior with down-
wards convecting waters or associated with sinking particles.
At depth, the dissolution of particulate matter, produced as a
result of organic matter microbiological remineralization, re-
mobilizes Hg from particles produced in the euphotic zone.
The biological pumping/regeneration process results in a re-
lationship between Hg concentrations and nutrient or dis-
solved oxygen concentration (or AOU), which are proxies
of the organic matter remineralization (mainly the micro-
bial respiration) that the sample had experienced since it was
last in contact with the atmosphere. This biogeochemical be-
haviour, which is qualified of nutrient-like behaviour, is ob-
served in the present study (Fig. 4). The correlation coeffi-
cient (R) between HgTF and the AOU, obtained from in situ
measurements of dissolved oxygen and temperature, reached

Biogeosciences, 15, 2309-2323, 2018

the highly statistically significant value of 0.87 (n = 141,
p <0.01). Similar behaviour was already observed in the wa-
ter column near the shelf edge of the western European mar-
gin (Cossa et al., 2004) and elsewhere in the NA (Lamborg
et al., 2014; Bowman et al., 2015). Thus, the present results
confirm that biological uptake and regenerative processes ap-
pear to control a large part of the oceanic Hg distribution in
the subpolar and subtropical gyres of the NA.

Hydrological circulation may also impact the Hg distribu-
tion in the NA. We estimated the HgTynr (and AOU) val-
ues of each SWT using eOMP (Table 1). The correlation
coefficient between observed and predicted (eOMP-based)
values calculated with Eq. (1) (Materials and Methods sec-
tion) for HgTynr is 0.71. The estimated HgTyng concen-
trations vary significantly between SWTs from 0.32 +0.03
to 1.04£0.02pmolL~! for the IrSPM to the NEADWY.
However, a large part of the HgTyng between SWTs is
due to the regeneration process as suggested by the corre-
lation coefficient (R = 0.82) of the linear relationship be-
tween HgTynr and AOU (Fig. 5). Based on this model
(HgTung = 0.0043 x AOU +0.3547), we calculated mean
corrected HgTynr concentrations for each identified SWT
for a zero AOU concentration. Corrected mean values range
from 0.22 to 0.61 pmol L1 in 'SPMW and NEADW, re-
spectively (Table 1). This variation should result from the
origin, the route and the age of each SWT. The corrected
HgTuynr values of rfSPMW, PIM, SPMW, DSOW and LSW,
which formed in the subpolar gyre and in the NS last win-
ter, present very low and similar values, 0.22—0.31 (Table 1).
The IrSPMW is the youngest SPMW that has formed in the
ItS as a result of interaction between the air and the wa-
ters transported northwards by the NAC (e.g. McCartney
and Talley, 1984); the low HgTynr value found in the Ir-
SPMW may result from a net Hg evasion in this region,
consistently with the conclusion that western and central
NA are a net source of Hg in the atmosphere (Mason et
al., 2017). On the contrary, on the eastern NA side, where
Hg deposition and evasion are rather similar (Mason et al.,
2017), the ENACW shows a higher corrected HgT con-
centration (0.41 pmol L~!, Table 1). The highest corrected
HgTynr mean concentration is calculated for NEADW,
(0.61 pmol L~!, Table 1), which is the dominant water mass
in the bottom IAP. Its main core is below ~ 3500 m depth
and spreads down to the bottom (see Fig. 4 in Garcia-Ibafiez
et al., 2018). This water mass contains a significant compo-
nent from the Southern Ocean (AABW), which is known
to be Hg-rich (HgTaapw = 1.35 %+ 0.39 pmol L1, Cossa et
al., 2011). The same rationale can be drawn for the cor-
rected HgTyng concentration in MW (0.41 pmolL_l, Ta-
ble 1). Indeed, recent measurements in the waters of the west-
ern Mediterranean give HgTynp values between 0.53 and
1.25 pmol L~! within the layer that flows out of the Mediter-
ranean Sea at the Strait of Gibraltar (Cossa and Coquery,
2005; Cossa et al., 2017a).
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Table 1. Total Hg in unfiltered samples (HgTynF) vs. apparent oxygen utilization (AOU) concentrations of each source water type (SWT),

calculated according to eOMP (Eq. 1) (see also Garcia-Ibéiiez et al.,

2018). Corrected HgTyNF is a theoretical HgT concentration for a

AOU concentration equal to zero, using the equation from Fig. 5. ENACW,: eastern North Atlantic Central Water of 12 °C; SPMWg and
SPMW?7: Subpolar Mode Water of the Iceland basin of 7 and 8 °C; I'SPMW: Subpolar Mode Water of the Irminger basin; LSW: Labrador Sea
Water; MW: Mediterranean waters; ISOW: Iceland—Scotland Overflow Water; NEADW] : Lower North East Atlantic Deep Water; DSOW:
Denmark Strait Overflow Water; PIW: Polar Intermediate Water; and SAIW¢: Subarctic Intermediate Water of 6 °C.

SWT HgTynr AOU  Corrected HgTynF

(pmolL™1)  (umolL™1) (pmol L~ 1)
ENACW), 0.47£0.01 1442 0.41
SPMWg 0.73£0.03 105 +4 0.28
SPMW> 0.57 £0.03 7143 0.27
IrSPMW 0.32+0.03 2344 0.22
SAIW 0.43+£0.03 -16+4 0.50
MW 0.83 +£0.05 98+5 0.41
LSW 0.46 +0.01 35+1 0.31
NEADW,  1.04+0.02 100 £2 0.61
PIW 0.53+0.10 72411 0.22
ISOW 0.62+0.02 5742 0.38
DSOW 0.44 £0.03 30+4 0.31

In summary, the distribution pattern of HgTynr along
the GEOTRACES-GAO] transect, modelled by the mixing of
SWTs (Fig. S4), stresses the importance of Hg scavenging
by plankton and organic matter regeneration, but also shows
that part of the Hg enrichment in certain SWTs, including
MW and NEADW, is due to preformed Hg outside the NA.
This type of result, characterizing the Hg concentrations in
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principal oceanic water masses, should contribute to refine-
ments in model formulation and predictability.

5.2 Change in anthropogenic Hg in LSW
Evidence for a decrease in the Hg anthropization in the NA
waters can be obtained from the comparison of the present

results with those obtained 20 years ago with similar clean
sampling and analytical techniques. In a companion paper
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Table 2. Water and total Hg in unfiltered samples (HgTyNF) transported by the upper and lower limbs of the Atlantic Meridional Overturning

D. Cossa et al.: Mercury distribution and transport in the North Atlantic Ocean

Circulation. Positive (negative) transport corresponds to northward (southward) flow.

SWT Entire water column ‘ Upper limb Lower limb
Water HgTunrk Water HgTunrk Water HgTunrk
transport transport | transport transport | transport transport
(Sv) (mmols™!) (Sv) (mmols™1) (Sv) (mmols~h)
ENACW o 9.5 4.52 9.5 452 0.0 0.00
SPMWyg 4.1 3.02 3.7 2.70 0.4 0.31
SPMW, 33 1.86 1.8 1.01 1.5 0.85
IrSPMW —10.2 —3.23 —0.6 —0.19 -9.6 —3.04
SAIWgq 1.0 0.41 24 1.04 —1.5 —0.62
MW 0.7 0.60 0.6 0.53 0.1 0.06
LSW 1.9 0.87 14 0.86 0.5 0.21
NEADWL 0.3 0.34 0.0 0.00 0.33 0.34
PIW —2.2 —1.18 —0.1 —0.08 —2.1 —1.10
ISOW —4.9 —3.04 0.0 0.00 —-4.9 —-3.04
DSOW -25 —-1.09 0.0 0.00 -2.5 —1.09
Total 1.1 3.08 | 18.7 102 | -177 -7.12

(Cossa et al., 2017b), we have already compared the present
findings for the convection layer in the LS with the results
of the 1993 International Oceanographic Commission cruise
(Mason et al., 1998). Between 1993 and 2014 the decrease in
HgTuynr concentrations would have been more than a factor
of 2 (1.14 £ 0.36 pmol L~! vs. 0.40 4 0.07 pmol L~!). How-
ever, bearing in mind the uncertainty of the accuracy of early
numbers, this magnitude of decrease cannot be taken for
granted. To circumvent this difficulty, the approach proposed
by Lamborg et al. (2014) can be used to estimate the anthro-
pogenic Hg (Hganm) concentrations in subsurface waters.
Hganm is inferred from the difference between measured
HgTynr concentrations and the concentrations predicted
based on a worldwide relationship between deep-ocean Hg
concentrations and remineralised phosphate (Lamborg et
al., 2014). There is a Redfield ratio of 141 between AOU
and remineralized phosphate (Minster and Boulahdid, 1987),
which is more representative for the NA than the global value
of 170 proposed by Anderson and Sarmiento (1994). The
LSW takes less than 20 years (Doney et al., 1997) to flow
more than 3000 km eastward from the LS to the subtropi-
cal gyre of the NA. Along its path, LSW bears the record
of Hg incorporation at the time of its formation; thus sam-
pling along its flow path allows the observation of decadal
variations in anthropogenic Hg inputs to the NA. In the NA,
estimation of Hganm concentrations in the core of LSW, de-
fined within potential densities of 27.74 and 27.82, account
for 36 £0.07 % of the HgTynr, and are one-third lower for
younger waters (LS and IrS: 0.16 & 0.11 pM) than for older
waters (IcB and ENAB: 0.24 £ 0.06 pM) (Fig. 6). This 30 %
decrease in Hg concentrations are consistent (i) with the ob-
servations of a temporal decrease of Hg in the marine bound-
ary layer of the NA (Sprovieri et al., 2010; Weigelt et al.,
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2014) over the last two decades and with (ii) the estimated
decline in Hg concentrations in subsurface waters of the
NA estimated by models over the last few decades (e.g. So-
erensen et al., 2012).

This means that LSW that formed in the 1990s in the LS
and is currently present in the ENAB received more Hgan
from the atmosphere than the LSW»(14—2015 that formed dur-
ing the 2014 winter. These results contrast with what can be
deduced from the vertical profile of HgTynr in the LS, where
the Hg regeneration in the water column is sufficient to ac-
count for the Hg increase between the shallow LSW layer
(LSW2014-2015) and the deep LSW layer (LSW1987-1994)
(Cossaetal., 2017b). This discrepancy between these two de-
ductions suggests that LSW, which is present in the eastern
NA, is likely older (and more imprinted by legacy Hganwm)
than the LSW currently present in the LS.

5.3 Latitudinal transport of Hg

The transport of HgTynF per unit of water mass, calculated
with Eq. (2) (Materials and Methods section), are given in
Table 2. We also applied Eq. (2) separately to the upper and
lower limbs of the AMOC and computed the transport of
HgTuynr per water mass for the two limbs. The velocity fields
across the Portugal-Greenland transect were calculated us-
ing an inverse model constrained by Doppler current pro-
filer velocity measurements (Zunino et al., 2017). The vol-
ume transport per SWT was computed by combining these
velocity fields with the results of the eOMP (Garcia-Ibafiez
etal., 2018).

The mean (velocity-weighted) HgTyng concentration of
the water advected northwards within the upper limb of the
AMOC is 0.55 pmol L1, whereas the one advected south-
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wards within the lower limb of the AMOC is 0.40 pmol L™!.
Across the Portugal-Greenland transect, there is northward
HgTynr transport within the upper limb of the AMOC
(10.20 mmol s~ !), and southward HgTuynr transport within
the lower limb (7.12mmols~!), resulting in a net north-
ward transport of 97.2 kmol yr~!. Most of the HgTynr south-
ward transport is due to I'SPMW and ISOW displacements,
whereas the HgTynr northward transport is associated with
ENACW and SPMW displacements (Table 2). The Hg ex-
change across the LS section can be roughly estimated at
133 kmol yr~!, using the mean southward water transport of
the shelf edge LC as the Seal Island transect (Hamilton Bank
near stations 77 and 78; 7.5 Sv, according to Han et al., 2008)
and a mean HgT concentration of 0.56 pmol L™! (Cossa et
al., 2017b). Thus, from our snapshot study, the net Hg ex-
change across the GEOVIDE transect, which crosses the LS
and the NA from Portugal and Greenland, would mean a loss
in the Arctic of 36 kmol yr’l. In comparison, Soerensen et
al. (2016), based on a mass balance budget, estimated that
“Arctic seawater is enriched in total Hg relative to inflowing
waters from the North Atlantic and North Pacific Oceans at
all depths, resulting in a 26 Mga~! (i.e. 130kmola~!) net
loss from the Arctic via circulation”.

6 Summary and conclusions

HgTunr concentrations in the waters along the GEOTRACES-
GAO1 transect, which crossed the NA from 40 to 60°N
(Portugal to Canada), ranged from 0.16 to 1.54 pmol L~!,
but with 97 % of the values lower than 1.00 pmol L~! and
a geometric mean of 0.51pmolL~" (n =535). The dis-
solved fraction (<0.45 um) of HgT, determined on 141 sam-
ples, averaged 78 % of the HgTynr for the entire data set,
84 % for deep open seawaters and 91 % if the Labrador Sea
data, where the primary production was high, are excluded.
HgTuynr concentrations increased eastwards and downwards.
The HgTynr concentrations were similarly low in the sub-
polar gyre waters (~ 0.45 pmol L™!), whereas they exceeded
0.60pmol L™! in the subtropical gyre waters, especially
within NEADW/[.. The relationship between HgTr and AOU,
which indicates a nutrient-like behaviour for Hg in the NA,
attests to the influence of organic matter regeneration on HgT
mobilization. The distribution pattern of HgTynr along the
transect, modelled by the mixing of SWTs, show Hg enrich-
ment in MW and NEADW, and low Hg concentrations in
younger water masses that formed last winter at high lati-
tudes. Using the HgTynF fraction unexplained by regenera-
tion processes as a proxy for Hganm, we observed geograph-
ical trend in the Hgan in the LSW along its eastward jour-
ney in the NA. It was characterized by an eastward increase,
which suggests that Hg incorporation in the downwelling wa-
ters of the LS has decreased over the last 20 years, paral-
lel with the decrease in Hg concentrations in the NA tro-
posphere. By combining the velocity fields with the results
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of the eOMP, a net northward Hg transfer of 97.2 kmol yr—!
across the Portugal-Greenland transect can be calculated as
a result of the AMOC. Taking into account the southern Hg
export with the LC, the net Hg exchange along the entire
GEOVIDE transect would result in a loss in the Arctic of
36 kmol yr—.

Data availability. The data are available at the website: www.
eGEOTRACES.org.
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Appendix A
Abbreviations
AABW Antarctic Bottom Water
AFS Atomic fluorescence spectrometer
AMOC Atlantic Meridional Overturning Circulation
AOU Apparent oxygen utilization
CFCs Chlorofluorocarbons
CRM Certified reference material
DL Detection limit
DSOW Denmark Strait Overflow Water
DWBC Deep Western Boundary Current
EGC East Greenland Current
ENAB Eastern North Atlantic basin
ENACW Eastern North Atlantic Central Water
eOMP Extended optimum multiparameter analysis
Hg Mercury
HgTanth anthropogenic HgT
HgT Total mercury
HgTunr unfiltered HgT
HgTr filtered HgT
IAP Iberian Abyssal Plain
IcB Iceland basin
10C International Oceanographic Commission
IrS Irminger Sea
ISOW Iceland—Scotland Overflow Water
LC Labrador Current
LS Labrador Sea
LSW Labrador Sea Water
MW Mediterranean waters
NA North Atlantic Ocean
NAC North Atlantic Current
NADW North Atlantic Deep Water
NEADW, Lower North East Atlantic Deep Water
PIW Polar Intermediate Water
SPMW Subpolar Mode Water
SWT Source water type
WGC West Greenland Current
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