LSIS at SemEval-2017 Task 4: Using Adapted Sentiment Similarity Seed Words For English and Arabic Tweet Polarity Classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

LSIS at SemEval-2017 Task 4: Using Adapted Sentiment Similarity Seed Words For English and Arabic Tweet Polarity Classification

Résumé

We present, in this paper, our contribution in SemEval2017 task 4 : " Sentiment Analysis in Twitter " , subtask A: " Message Polarity Classification " , for En-glish and Arabic languages. Our system is based on a list of sentiment seed words adapted for tweets. The sentiment relations between seed words and other terms are captured by cosine similarity between the word embedding representations (word2vec). These seed words are extracted from datasets of annotated tweets available online. Our tests, using these seed words, show significant improvement in results compared to the use of Turney and Littman's (2003) seed words, on polarity classification of tweet messages.
Fichier principal
Vignette du fichier
AmalHtait_SemEval2017.pdf (177.07 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01771654 , version 1 (19-04-2018)

Identifiants

  • HAL Id : hal-01771654 , version 1

Citer

Amal Htait, Sébastien Fournier, Patrice Bellot. LSIS at SemEval-2017 Task 4: Using Adapted Sentiment Similarity Seed Words For English and Arabic Tweet Polarity Classification. 11th International Workshop on Semantic Evaluation (SemEval-2017), Aug 2017, Vancouver, Canada. pp.718 - 722. ⟨hal-01771654⟩
215 Consultations
113 Téléchargements

Partager

More