
HAL Id: hal-01771651
https://hal.science/hal-01771651v2

Submitted on 4 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

POSITIVE GAUSSIAN KERNELS ALSO HAVE
GAUSSIAN MINIMIZERS

Franck Barthe, Pawel Wolff

To cite this version:
Franck Barthe, Pawel Wolff. POSITIVE GAUSSIAN KERNELS ALSO HAVE GAUSSIAN MINIMIZ-
ERS. Memoirs of the American Mathematical Society, 2022, 276 (1359), 90 p. �10.1090/memo/1359�.
�hal-01771651v2�

https://hal.science/hal-01771651v2
https://hal.archives-ouvertes.fr


POSITIVE GAUSSIAN KERNELS ALSO HAVE GAUSSIAN
MINIMIZERS

FRANCK BARTHE AND PAWE L WOLFF

Abstract. We study lower bounds on multilinear operators with Gaussian kernels act-
ing on Lebesgue spaces, with exponents below one. We put forward natural conditions
when the optimal constant can be computed by inspecting centered Gaussian functions
only, and we give necessary and sufficient conditions for this constant to be positive. Our
work provides a counterpart to Lieb’s results on maximizers of multilinear operators with
real Gaussian kernels, also known as the multidimensional Brascamp-Lieb inequality. It
unifies and extends several inverse inequalities.

1. Introduction

1.1. Background and motivation. Our title hints at Lieb’s article “Gaussian kernels
have only Gaussian maximizers” [33]. This remarkable work studies operators with Gauss-

ian kernels between Lebesgue spaces Lp(Rn,C), with norm ‖f‖p =
(∫

Rn |f(y)|p dy
)1/p

.
These operators are of the following form: for any integrable f : Rn → C,

Gf(x) =

∫

Rn

e−Q(x,y)f(y) dy, x ∈ Rm,

where Q : Rm × Rn → C is such that Re(Q) : Rm × Rn → R is a semi-definite positive
quadratic form and Im(Q) : Rm ×Rn → R is a quadratic form. Lieb has given conditions
which ensure that the operator norm of G : Lp(Rn,C) → Lq(Rm,C) can be computed
by inspecting centered Gaussian functions only, i.e. functions of the form f(y) = e−q(y)

where Re(q) is q positive definite quadratic form and Im(q) is a quadratic form (when q
is real-valued, f is a real-valued Gaussian function). Here is a simplified version of his
result:

Theorem 1.1 ([33]). With the above notation, the relationship

‖G‖Lp→Lq = sup

{‖Gf‖q
‖f‖p

; g centered Gaussian

}

holds in any of the following cases

• 1 < p ≤ q < +∞,
• 1 < p, q < +∞ and the Gaussian kernel is real (i.e. Q is a quadratic form). In
this case it is enough to consider real-valued Gaussian functions.

An important step of the proof consists in the study of the non-degenerate case when
Re(Q) is definite positive: the operator is shown to be compact, weak topology argu-
ments yield the existence of maximizers of the ratio ‖Gf‖q/‖f‖p, and a careful study of

2010 Mathematics Subject Classification: 26D15, 47G10.
This paper is partially based upon work supported by the National Science Foundation under Grant

No. DMS-1440140 while the first named author was in residence at the Mathematical Sciences Research
Institute in Berkeley, California, during the Fall 2017 semester.

Research of the second named author was partially supported by ANR-11-LABX-0040-CIMI within
the program ANR-11-IDEX-0002-02 and by the National Science Center, Poland project number
2015/18/A/ST1/00553.

1



2 FRANCK BARTHE AND PAWE L WOLFF

the product operator G ⊗ G with kernel e−Q(x,y)e−Q(x′,y′) allows to show that they are
Gaussian. For further comparison, let us emphasize that these arguments use Banach
space techniques, which only apply when p ≥ 1.

Lieb’s theorem extends and unifies many important analytic results. By considering
the kernel ei〈x,y〉, it recovers the calculation of the norm of the Fourier transform from
Lp to Lp′ for p ∈ (1, 2), which was first achieved by Beckner [13]. It also encompasses
Nelson’s theorem for the Ornstein-Uhlenbeck semigroup:

Ptf(x) =

∫

Rn

f
(
e−tx +

√
1 − e−2ty

)
dγn(x),

where γn is the standard Gaussian measure on Rn, dγn(x) = (2π)−n/2 exp(−|x|2/2) dx.
Nelson’s theorem [37] asserts that this operator is hypercontractive: for p, q > 1 satisfying
e2t ≥ q−1

p−1
, and every measurable function f ,

‖Ptf‖Lq(γn) ≤ ‖f‖Lp(γn).

Lieb’s article also addresses multilinear operators with Gaussian kernels, and features an
extension of the latter theorem in the case of real-valued kernels and functions. (From
now on we only consider real-valued functions).

Theorem 1.2 ([33]). Let m ≥ 1 and for i = 1, . . .m let pi ≥ 1 and let Bi : R
n → Rni

be a linear surjective map. Let Q be a semi-definite positive quadratic form on Rn. For
non-identically zero functions fi ∈ Lpi(Rni ,R), let

H(f1, . . . , fm) =

∫

Rn e
−Q(x)

∏m
i=1 fi(Bix) dx

∏m
i=1 ‖fi‖pi

.

Then the supremum of H over all such functions is equal to its supremum over centered
Gaussian functions only.

Setting ci = 1/pi and replacing fi with f ci
i gives an analogous result for the following

functional on integrable functions:

I(f1, . . . , fm) =

∫

Rn e
−Q(x)

∏m
i=1 fi(Bix)ci dx

∏m
i=1

(∫

Rni
fi
)ci .

The above theorem is a far-reaching extension of Hölder’s inequalities. In the case when
Q = 0 and the maps Bi are linear forms (i.e. ni = 1), it recovers a celebrated inequality
of Brascamp and Lieb [20], which allowed these authors to compute the optimal constants
in Young’s convolution inequality, independently of Beckner [13]. Indeed using duality

‖f ∗ g‖r ≤ C‖f‖p‖g‖q
can be rewritten as

∫

R2n

f(x− y)g(y)h(x) dxdy ≤ C‖f‖p‖g‖q‖h‖r′.

The classical Loomis-Whitney inequality [34] and its extension by Finner [27] are also
particular cases of Theorem 1.2. The Brascamp-Lieb inequalities found striking appli-
cations in convex geometry thanks to the work of K. Ball, see e.g. [4, 3, 5]. He put
forward a situation where the optimal constant is 1, and could use it in order to derive
various sharp upper bounds on volumes of convex sets. The “geometric” Brascamp-Lieb
inequality reads as follows: if u1, . . . , um are unit vectors in Rn and if c1, . . . , cm ≥ 0 verify

m∑

i=1

ciui ⊗ ui = IdRn , (1.1)
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where ui ⊗ ui is the orthogonal projection onto Rui and IdRn is the identity of Rn, then
for all integrable functions fi : R → R+,

∫

Rn

m∏

i=1

fi
(
〈x, ui〉

)cidx ≤
m∏

i=1

(∫

R

fi

)ci

.

Observe that when m = n and (ui)
n
i=1 is an orthonormal basis, the inequality becomes an

equality by Fubini’s theorem. So, in some sense, the geometric Brascamp-Lieb inequality
describes an extremal property of orthonormal bases among sets of vectors which decom-
pose the identity as in (1.1). An extension to functions of several variables appears in
[11].

Over the years, several related inverse inequalities appeared in the literature. A first
and very simple example is the inverse Hölder inequality (obviously, Hölder’s inequalities
are a particular case of Lieb’s theorem): if λ ≥ 1 and f, g : Rn → R+ then

∫

Rn

fλg1−λ ≥
(∫

Rn

f

)λ(∫

Rn

g

)1−λ

,

provided
∫
g > 0 and with the convention that 0 · ∞ = 0. By rearranging the terms, this

is easily deduced from the usual inequality. The inverse Hölder inequality can also be
rewritten as a sort of duality for the (non-normed) spaces Lp when p ∈ (−∞, 0) ∪ (0, 1):
for f, g : Rn → R+,

∫

Rn

fg ≥ ‖f‖p‖g‖p′,

where p′ ∈ (−∞, 0)∪ (0, 1) is still defined by p−1 + (p′)−1 = 1. Since the latter inequality
is sharp, it follows that for f ≥ 0,

‖f‖p = inf
g≥0

∫
fg

‖g‖p′
. (1.2)

Another instance appears in the article of Brascamp and Lieb [20], where a sharp
inverse Young inequality is proved: given p, q, r ∈ (0, 1] with 1 + 1/r = 1/p + 1/q, the
best constant C such for all positive functions

‖f ∗ g‖r ≥ C‖f‖p‖g‖q
is described, and is achieved by Gaussian functions. Observe that thanks to (1.2), the
latter can be rewritten as

∫

R2n

f(x− y)g(y)h(x) dxdy ≥ C‖f‖p‖g‖q‖h‖r′.

Later on, Borell [18] proved a reverse form of Nelson’s hypercontractivity: if p, q ∈
(−∞, 1) and e2t ≥ 1−q

1−p
then for all positive functions f on Rn:

‖Ptf‖Lq(γn) ≥ ‖f‖Lp(γn).

This bound shows that the Ornstein-Uhlenbeck semigroup improves the positivity of func-
tions (for p < 0, ‖f‖p = 1/‖1/f‖|p| and q ≤ p).

Among the examples of reverse inequalities are the Prékopa-Leindler inequalities [38,
32]: for all λ ∈ (0, 1) and all f, g : Rn → R+,

∫ ∗

Rn

sup
z=λx+(1−λ)y

f(x)λg(y)1−λ dz ≥
(∫

Rn

f

)λ(∫

Rn

g

)1−λ

,

where the left hand side term is an outer integral and the supremum is over all (x, y) ∈
(Rn)2 verifying z = λx + (1 − λ)y. This functional version of the Brunn-Minkowski
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inequality is actually a particular case of the more general reverse Brascamp-Lieb in-
equalities proved by the first-named author [9, 11]. For shortness, we only state the rank
one geometric version of the reverse Brascamp-Lieb inequalities (and refer to Section 5
for more details): given unit vectors u1, . . . , um in Rn and c1, . . . , cm ≥ 0 satisfying the
decomposition of identity (1.1), for all integrable functions fi : R → R+, it holds

∫ ∗

Rn

sup
x=

∑

i ciθiui

m∏

i=1

fi(θi)
ci dx ≥

m∏

i=1

(∫

R

fi

)ci

.

This inequality allows to derive geometric properties which are dual to the ones that can
be proved using the Brascamp-Lieb inequality (which was the motivation of K. Ball’s
conjecture of the reverse inequality). See [11, 10] for the first results in this direction.
Again, centered Gaussian functions achieve (or almost achieve) the optimal constant. The
reader may object that the latter inequality seems rather different from the other ones.
Nevertheless, the supremum being an L∞ norm can be viewed as a limit of Lp norms.
Building on this idea, Brascamp and Lieb [20] were able to deduce the Prékopa-Leindler
inequality as a limit case of their inverse Young inequality. In the same way, the first-
named author proved in [6] an extension of the inverse Young inequality which recovers
as a limit the geometric reverse Brascamp-Lieb inequalities. See [25] for further results
in this direction. Actually, in view of the content of the present paper and of the dual
features of their applications, a better name for reverse Brascamp-Lieb inequalities could
be dual Brascamp-Lieb inequalities.

It is natural to ask for a general principle that would unify and explain these reverse
inequalities. They definitely share some common features: they provide lower bounds on
integrals involving products of positive functions in terms of their Lp norms, often with
p < 1, and Gaussian functions play a special role. A significant progress in this direction
was recently made by Chen, Dafnis and Paouris. One of their main results is stated in
probabilistic terms:

Theorem 1.3 ([25]). Let n = n1 + n2 + . . . + nm be positive integers and (X1, . . . , Xm)
be a Gaussian random vector in Rn (where Xi ∈ Rni), with covariance matrix Σ. For
each i, let Σi denote the covariance matrix of Xi (which is a diagonal block of Σ). Let
p1, . . . , pm ∈ R \ {0} and consider the block diagonal matrix P = diag(p1Σ1, . . . , pmΣm).
Then for all positive functions f1, . . . , fm,

if Σ ≤ P, then E

(
m∏

i=1

fi(Xi)

)

≤
m∏

i=1

E (fi(Xi)
pi)

1
pi ,

if Σ ≥ P, then E

(
m∏

i=1

fi(Xi)

)

≥
m∏

i=1

E (fi(Xi)
pi)

1
pi ,

Here the order on matrices is for the cone of semi-definite positive matrices.

The first part of the theorem is actually a direct consequence of the general Brascamp-
Lieb inequality. The second part is a very neat reverse inequality. Observe that the
condition Σ ≥ P implies, by restriction to diagonal blocks, that 1 ≥ pi. The functional
inequality can be rewritten as a lower bound on a multilinear operator with a generalized
Gaussian kernel (i.e. the exponential of a quadratic form, without sign condition). Chen,
Dafnis and Paouris use transformations of this inequality by linear changes of variables
in order to get more, and doing so they succeed to recover most of the above mentioned
reverse inequalities. Nevertheless, their results do not have full generality and involve
conditions which are sometimes difficult to check. In the note [12], we have announced a
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general result on the optimal constant in inequalities of the form
∫

H

e−Q(x)
m∏

k=1

f ck
k (Bkx) dx ≥ C

m∏

k=1

(∫

Hk

fk

)ck

for all positive functions fi. The goal of the present paper is to give a full proof of the
results of [12], and to provide an extensive answer to the following questions: when is it
possible to calculate the best constant C by considering only Gaussian functions? or only
centered Gaussian functions? when is there a non-trivial inequality (C > 0)?

1.2. Notation and main results. Here is a description of the setup of this article. Let
0 ≤ m+ ≤ m be integers and H , H1, . . . , Hm be Euclidean spaces endowed with the usual
Lebesgue measure. For k = 1, . . . , m let ck be a real number satisfying ci > 0 for i ≤ m+

and cj < 0 for j > m+, and let Bk : H → Hk be a surjective linear map. Further, let
Q : H → R be a quadratic form with signature

(
s+(Q), s−(Q)

)
. For measurable functions

fk : Hk → [0,+∞] satisfying 0 <
∫

Hk
fk < +∞ define

J(f1, . . . , fm) =

∫

H
e−Q(x)

∏m
k=1 f

ck
k (Bkx) dx

∏m
k=1

(∫

Hk
fk

)ck (1.3)

and assume the convention 0 · ∞ = 0 for the product
∏m

k=1 f
ck
k (Bkx).

Our goal is to study the minimization problem for the functional J . It turns out that
centered Gaussian functions, i.e. the functions of the form e−q(x) for a positive definite
quadratic form q, play a pivotal role. One of our main results is the following counterpart
to Lieb’s Theorem 1.2:

Theorem 1.4. Let c1, . . . , cm+ > 0, cm++1, . . . , cm < 0 with 0 ≤ m+ ≤ m. Assume that
the map x 7→ (B1x, . . . , Bm+x) from H to H1 × · · · ×Hm+ is onto and that

dimH ≥ s+(Q) + dimH1 + · · · + dimHm+ .

Then inf J = infCG J , where the right-hand side stands for the infimum of J over all
choices of centered Gaussian functions gk.

Hence a Gaussian minimizers principle holds under some hypotheses. It may fail when
they are not fulfilled, but this happens only in degenerate situations. The purpose of
Section 2 is to give a full picture of these degenerate cases. This is done via a care-
ful inspection of the values of the functional J on centered as well as general Gaussian
functions (i.e. non necessarily centered) of the form e−q+ℓ, where q is a positive definite
quadratic form and ℓ is a linear form. This allows to put forward a natural and convenient
non-degeneracy condition:

Q
|
⋂m+

i=1 kerBi
is positive definite and dimH ≥ s+(Q) + dimH1 + · · · + dimHm+ . (1.4)

Section 3 gives a proof of the Gaussian minimizers principle under the above condition
(1.4). The main tool is monotone transportation as in the proof of Brascamp-Lieb inequal-
ities of [11], see also [7, 41]. The presence of negative exponents introduces substantial
additional difficulties. A crucial technical step is to use a particular decomposition of
the quadratic form Q which is adapted to the geometric structure of the problem, and
is inspired by (1.4). One could have tried and follow other techniques which applied
to Brascamp-Lieb inequalities, as semigroup interpolation or stochastic representations
[24, 15, 19, 8, 14, 31, 25, 36, 30]. Nevertheless the transportation technique has the
advantage that it does not require any a priori structural study of extremizers.

In Section 4, we establish the analogue in our setting of the geometric Brascamp-Lieb
inequality, and show that it is equivalent to the correlation inequality of Chen, Dafnis and
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Paouris presented here as Theorem 1.3. Our structural study allows a better analysis of
equality conditions. Note however that their semigroup proof of the geometric inequality
is simpler than ours (somehow for the transportation approach the geometric situation is
not easier than the general case).

Section 5 presents a dual form of the inverse Brascamp-Lieb inequalities, which can be
obtained from the very same proof. A brief summary of the various types of inequalities
is provided.

The next sections are devoted to the question of existence of a non-trivial inverse
Brascamp-Lieb inequality. In other words, when is it true that inf J > 0? For Brascamp-
Lieb inequalities, the analogous question (of boundedness of multilinear Gaussian opera-
tors) was settled in the general case by Bennett, Carbery, Christ and Tao [15, 16] after
other contributions in the rank one case [11, 24].

Section 6 establishes, for fixed geometric data (Q, (Bk)mk=1), a convexity property of the
set of exponents (ck)mk=1 for which inf J > 0. We call this set the positivity domain of J .

Section 7 gives a description of the positivity domain in the rank one case, i.e. when
the maps Bk are linear forms and when s+(Q), s−(Q) ≤ 1. In this case, the proof is
simple and based on explicit calculations on Gaussian functions. The positivity domain
is a polyhedral convex cone which we can describe as an intersection of half-spaces or by
generating vectors.

Section 8 deals with the general case. We follow the inductive approach of Bennett,
Carbery, Christ and Tao [16]. In our setting, the fact that the quadratic form can have
positive and negative parts (and thus corresponds to fixing two Gaussian functions instead
of one) makes the analysis more delicate. For simplicity, we state here our characterization
in the case when no kernel is involved (the general result is formulated as Theorem 8.9).

Theorem 1.5. Let c1, . . . , cm+ > 0, cm++1, . . . , cm < 0 with 0 ≤ m+ ≤ m. Assume that
the map x 7→ (B1x, . . . , Bm+x) from H to H1×· · ·×Hm+ is a bijection. For any integrable
functions fk : Hk → [0,+∞] with

∫
fk > 0, let

J(f1, . . . , fm) =

∫

H

∏m
k=1 f

ck
k (Bkx) dx

∏m
k=1

(∫

Hk
fk

)ck ·

Then inf J > 0 if and only if the following two conditions are verified:

(1) dimH =
∑m

i=1 ck dimHk,

(2) For every linear subspace V ⊂ H such that dimV =
∑m+

i=1 dimBiV , it holds

dim V ≥
m∑

k=1

ck dimBkV.

If x 7→ (B1x, . . . , Bm+x) is not surjective then min J = 0. If it is surjective but not
injective then inf J = +∞.

Let us emphasize that in the positivity domain, ci ≥ 1 for i = 1, 2, . . . , m+ (see Propo-
sition 8.13), which means that our results can be stated in terms of Lpk-spaces with
pk = 1/ck ≤ 1 and possibly negative.

Let us conclude this introduction with some more notation and comments on the setting.
In the rest of the paper, we use the notation infG J for the infimum of J on m-tuples of
Gaussian functions (not necessarily centered).

We could only require the sets Hk to be finite dimensional vector spaces equipped with a
Lebesgue measure. Euclidean structures are not relevant for our problems, but working in
Euclidean spaces is convenient for explicit calculations for Gaussian functions, as quadratic
functions are represented by symmetric linear maps. Also Euclidean structures induce a
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canonical choice of Lebesgue measure. In a context of a Euclidean space, we will use
〈·, ·〉 for the inner product, | · | for the Euclidean norm and for a linear map L between
Euclidean spaces, L∗ will stand for its adjoint. We denote by Q a self-adjoint map on H
such that for all x ∈ H ,

Q(x) = π〈x,Qx〉.
Eventually let us mention that we allow Hk = {0} and choose by convention the

Lebesgue measure to be the Dirac mass at 0. For such a k, the terms involving fk can be
canceled out from (1.3).

1.3. Acknowledgments. This work has benefited from discussions on related topics
with several colleagues. We would like to thank in particular Jérôme Bertrand, Max
Fathi, Piotr Mi loś, Krzysztof Oleszkiewicz, Grigoris Paouris.

2. Well-posedness of the minimization problem and the minimum value

We denote by B+ the linear map (B1, . . . , Bm+), that is

B+ : H → H1 × · · · ×Hm+

x 7→ (B1x, . . . , Bm+x).
(2.1)

2.1. A non-degeneracy condition. We put forward a simple condition on the above
map B+ which allows the functional J to vanish.

Lemma 2.1. (i) If the map B+ from H to H1 × · · · ×Hm+ is not onto, then inf J =
min J = 0.

(ii) Conversely, if the map B+ is onto, then all fk : Hk → [0,+∞] with 0 <
∫

Hk
fk <

+∞ one has J((fk)) ∈ (0,+∞].

Proof. (i) Consider a point (a1, . . . , am+) ∈ H1×· · ·×Hm+ , so that its Euclidean distance

to the range of the non-surjective linear map B+ is at least
√
m+. If we denote by BH(x, r)

the open ball of center x and radius r in H , then
(
BH1(a1, 1) × · · · × BH+

m
(am+ , 1)

)
∩
{

(B1x, . . . , Bm+x); x ∈ H
}

= ∅.

For 1 ≤ i ≤ m+ consider the function fi : Hi → R+ defined as the characteristic function
of BHi

(ai, 1). Then the latter empty intersection ensures that for all x ∈ H ,

m+
∏

i=1

f ci
i (Bix) = 0.

Therefore, for any choice of functions (fj)j>m+, it holds J(f1, . . . , fm) = 0.
(ii) Since

∏

i≤m+

∫

Hi
fi > 0, the measure of points (z1, . . . , zm+) ∈ H1 × · · · ×Hm+ for

which
∏

i≤m+ f
ci
i (zi) > 0 is positive. From the hypothesis that B+ is onto it follows that

the measure of

{x ∈ H ;
∏

1≤i≤m+

f ci
i (Bix) > 0}

is positive. To conclude it is enough to notice that integrability of fj (for m+ < j < m)
implies that

∏m
j=1+m+ f

cj
j (Bjx) > 0 x-a.e. in H . �

As a consequence of the previous lemma, we will often work under the non-degeneracy
assumption that B+ is surjective.
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2.2. Calculations for centered Gaussian functions. Recall the classical formula
∫

R
e−πt2dt = 1. From this, it follows that for any self-adjoint operator A on Rd (or a

d-dimensional Euclidean space),
∫

Rd

e−π〈x,Ax〉dx =

{
det(A)−1/2 if A is positive definite,
+∞ otherwise.

When A is positive definite, we denote gA the centered Gaussian function defined by

gA(x) = e−π〈x,Ax〉.

An elementary computation shows that

J(gA1 , . . . , gAm) =







(
det(Q+

∑m
k=1 ckB

∗
kAkBk)

∏m
k=1(detAk)

ck

)−1/2

if (A1, . . . , Am) ∈ Λ,

∞ otherwise,
(2.2)

where the set Λ is defined as follows

Λ =
{

(A1, . . . , Am) : Ak : Hk → Hk and Q+
m∑

k=1

ckB
∗
kAkBk : H → H are positive definite

}

.

Therefore the infimum of J over centered Gaussian functions equals D−1/2, where

D = sup

{
det(Q+

∑m
k=1 ckB

∗
kAkBk)

∏m
k=1(detAk)ck

: (A1, . . . , Am) ∈ Λ

}

, (2.3)

with the convention that D = 0 for Λ = ∅ (and thus D−1/2 = ∞).

2.3. Ensuring finiteness for some functions. We investigate the existence of non-zero
functions for which J takes a finite value. The right setup for the functional J to be non
degenerate on centered Gaussian functions is the following condition:

Q is positive definite on kerB+. (2.4)

Proposition 2.2. The following assertions are equivalent:

(i) there exist centered Gaussian functions g1, . . . , gm with J(g1, . . . , gm) < +∞,
(ii) Λ 6= ∅,

(iii) Q| kerB+
is positive definite.

Proof. The equivalence of (i) and (ii) is a direct consequence of Formula (2.2). Assertion
(ii) is equivalent to the existence of positive maps (Ak)

m
k=1 such that Q+

∑m
k=1 ckB

∗
kAkBk

is positive definite. This can be rewritten as

Q+

m+
∑

i=1

ciB
∗
iAiBi >

m∑

j=1+m+

|cj|B∗
jAjBj.

Since one may choose the matrices Aj > 0 arbitrarily small, (ii) is equivalent to the

existence of positive maps (Ai)
m+

i=1 such that

Q+

m+
∑

i=1

ciB
∗
iAiBi > 0.

Similarly, one may choose each matrix Ai as an arbitrarily large multiple of the identity

on Hi. Hence (ii) is equivalent to the existence of D > 0 such that Q+
∑m+

i=1DB
∗
iBi > 0,

or in terms of quadratic forms

x 7→ 〈x,Qx〉 +D
m+
∑

i=1

|Bix|2 = 〈x,Qx〉 +D|B+x|2
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is positive definite. We may conclude thanks to Lemma 2.3 below for L = B+. �

Lemma 2.3. Let R be a quadratic form on Rd. Let L : Rd → Rk be a linear map between
Euclidean spaces. Then the following assertions are equivalent:

(i) There exists D > 0 such that the quadratic form x 7→ R(x) + D|Lx|2 is positive
definite,

(ii) R|kerL is positive definite.

Proof. If (i) holds then for D large enough x 7→ R(x) +D|Lx|2 is positive definite. Hence
its restriction to kerL is also positive definite, namely R|kerL is positive definite.

Next, let us show that (ii) implies (i), by contradiction. If (i) is not true then for every
integer N there exists a unit vector xN ∈ Sd−1 ⊂ Rd such that

R(xN ) +N |LxN |2 ≤ 0.

By compactness of the unit sphere, one can find a converging subsequence (xNk
). Let

x ∈ Sd−1 denote its limit.
Since R(xNk

) ≤ −Nk|LxNk
|2 ≤ 0, passing to the limit gives R(x) ≤ 0. Moreover

|LxNk
|2 ≤ −R(xNk

)

Nk
≤ −minSd−1 R

Nk
,

so by continuity, letting k go to infinity |Lx| = 0. Hence x ∈ kerL\ {0} verifies R(x) ≤ 0,
meaning that the restriction of R to kerL is not positive definite. �

Combined with the above proposition, the forthcoming one shows that if the map B+

defined in (2.1) is surjective then the following holds: there exists functions for which J
is finite if and only if there exists centered Gaussian functions for which J is finite.

Proposition 2.4. Assume that the map B+ is surjective. If Q| kerB+ is not positive
definite, then for every functions fk : Hk → R+ with

∫
fk ∈ (0,+∞), the quantity

J((fk)1≤k≤m) is +∞.

Proof. Without loss of generality, we consider arbitrary functions fk with
∫
fk = 1. By our

hypothesis, there exists a unit vector v ∈ H such that 〈v,Qv〉 ≤ 0 and for all 1 ≤ i ≤ m+,
Biv = 0. Let S ⊂ H be any linear complement of Rv. Then there is a positive constant
cS such that, decomposing each element of H as x = y + tv with y ∈ S and t ∈ R

J((fk)) = cS

∫

e−π
(
〈y,Qy〉+2t〈Qy,v〉+t2〈v,Qv〉

) ∏

1≤i≤m+

f ci
i (Biy)

∏

m+<j≤m

f
cj
j (Bjy + tBjv) dtdy

≥ cS

∫

S

e−π〈y,Qy〉
∏

1≤i≤m+

f ci
i (Biy)





∫

R

e−2πt〈Qy,v〉
∏

m+<j≤m

f
cj
j (Bjy + tBjv) dt



 dy

Let us prove that y-almost everywhere in S, the inner integral equals +∞. To do this,
we prove that y-a.e. in S, the non-negative function t 7→ ∏

m+<j≤m f
cj
j (Bjy + tBjv) is

bounded from below by a positive constant, except maybe on a set of finite Lebesgue
measure. Here are the details:

If m+ < j ≤ m is such that Bjv = 0 then for all t, f
cj
j (Bjy + tBjv) = f

cj
j (Bjy). Since

Bj : H → Hi is surjective and Bjv = 0 it follows that the restriction of Bj to S is also
surjective. Since

∫

Hj
fj < +∞, we know that fj < +∞ a.e. in Hj. As the preimage of a

Lebesgue negligible set by a linear surjection is also Lebesgue negligible, we deduce that
y-a.e in S, fj(Bjy) < +∞. Using that cj is negative, we get that y-a.e. in S, f

cj
j (Bjy) > 0.

If m+ < j ≤ m is such that Bjv 6= 0 we proceed differently. First, for each y, one can
decompose Bjy using orthogonal projections as follows

Bjy = P(RBjv)⊥Bjy + PRBjvBjy = Ljy + tj(y)Bjv
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where Lj = P(RBjv)⊥Bj . By translation invariance of Lebesgue’s measure

vol1
(
{t ∈ R; f

cj
j (Bjy + tBjv) ≤ 1}

)
= vol1 ({t ∈ R; fj(Ljy + (t+ tj(y))Bjv) ≥ 1})

= vol1 ({t ∈ R; fj(Ljy + tBjv) ≥ 1}) .

Next

1 =

∫

Hj

fj = |Bjv|
∫

(RBjv)⊥

∫

R

fj(z + tBjv)dtdz,

hence z-a.e. in (RBjv)⊥, the inner integral is finite and therefore

vol1 ({t ∈ R; fj(z + tBjv) ≥ 1}) < +∞.

Since by construction the above map Lj : S → (RBjv)⊥ is linear and onto, it follows that
y-a.e. in S, {t ∈ R; f

cj
j (Bjy + tBjv) ≤ 1} has finite Lebesgue measure.

Putting everything together, we obtain as claimed that y-a.e. in S, t 7→ ∏

j>m+ f
cj
j (Bjy+

tBjv) is bounded from below by 1, except for a set of finite Lebesgue measure. Lemma
2.5 below then yields that y-a.e. in S the inner integral in the latter expression for J((fk))
is infinite. Consequently

J((fk)) ≥ cS

∫

S

e−π〈y,Qy〉
∏

1≤i≤m+

f ci
i (Biy) × (+∞) dy.

So J((fk)) = +∞ provided the set of elements y ∈ S for which
∏

i≤m+ f
ci
i (Biy) > 0 has

positive measure (for at least one choice of S). To this end we use the hypothesis that B+

is surjective and Lemma 2.1(ii) to obtain that J((fk)) > 0, which readily implies that the
set of x ∈ H for which

∏

i≤m+ f
ci
i (Bix) > 0 has positive measure. By integrating over the

Grassmannian of hyperplanes in H there exists a non-negligible set of hyperplanes S such
that for each S ∈ S, the set of y ∈ S for which

∏

i≤m+ f
ci
i (Biy) > 0 has positive measure.

Since the set of hyperplanes of H containing v is negligible, there must be a hyperplane
not containing v in S. �

Lemma 2.5. Let A ⊂ R be a Borel set. If Ac has finite Lebesgue measure then
∫

A
etdt =

+∞
Proof. Assume on the contrary that

∫

A
etdt = C < +∞. Then for every N ∈ N,

eNvol1(A ∩ [N,N + 1)) ≤ C. Hence vol1(A
c ∩ [N,N + 1)) ≥ 1 − Ce−N . Summing

over N ∈ N gives that Ac has infinite measure. �

2.4. On the effect of translating Gaussian functions and consequences of posi-
tivity. In order to explain the relevance of the hypothesis

dimH ≥ s+(Q) + dimH1 + · · · + dimHm+ (2.5)

which appears in Theorem 1.4, we study the value of the functional J on non-centered
Gaussian functions.

In order to handle the Gaussian kernel exp(−Q) as two additional (fixed) Gaussian
functions (one function corresponding to a positive exponent and the other corresponding
to a negative exponent), we will decompose the quadratic form Q into a positive and
negative part. To this end, note the following simple fact:

Lemma 2.6. Let S : H → X and T : H → Y be linear maps. The map (S, T ) : H →
X × Y is surjective if and only if S and T are surjective and

ker S + ker T = H. (2.6)

It is a linear isomorphism if and only if S and T are surjective and ker S ⊕ ker T = H.
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Proof. Assume that the map (S, T ) is surjective. Then S and T are surjective too.
For (2.6), consider any x ∈ H and we aim to decompose it into ker S and ker T . By
surjectivity of the map (S, T ), there exists y ∈ H such that (Sy, Ty) = (Sx, 0). Therefore
x− y ∈ kerS and y ∈ ker T , hence

x = (x− y) + y ∈ ker S + ker T.

For the other implication, take any x, y ∈ H . From the hypothesis (2.6) it follows that
there exists v ∈ kerS and w ∈ ker T such that x− y = v + w, i.e.

x− v = y + w.

Denote z = x− v. We clearly have

Sz = S(x− v) = Sx and Tz = T (y + w) = Ty,

i.e. (S, T )z = (Sx, Ty). This means that (S, T ) is surjective, since (Sx, Sy) is arbitrary
in SH × TH = X × Y , by surjectivity of S and T .

The second part of the lemma follows from ker(S, T ) = ker S ∩ ker T . �

In what follows we consider any decomposition of Q of the form

Q(x) = c0Q+(B0x) + cm+1Q−(Bm+1x) (2.7)

where c0 > 0 > cm−1 are real numbers, B0 : H → H0 and Bm+1 : H → Hm+1 are surjec-
tive linear maps onto Euclidean spaces H0 and Hm+1 (respectively), such that the map
(B0, Bm+1) is surjective, or equivalently, by Lemma 2.6,

kerB0 + kerBm+1 = H (2.8)

and Q+, Q− are positive definite quadratic forms on H0 and Hm+1 (respectively).
The existence of such decomposition is obvious by considering an eigenvalue decompo-

sition of the self-adjoint map Q. Then B0 can be taken as the orthogonal projection of H
onto H0 being a subspace spanned by eigenvectors corresponding to positive eigenvalues
of Q, and similarly Bm+1. One can take c0 = 1 and cm+1 = −1. Condition (2.8) follows
from orthogonality of H0 and Hm+1 in H . Moreover, we clearly have

s+(Q) = dimH0, s−(Q) = dimHm+1. (2.9)

Conversely, any decomposition of Q as in (2.7) satisfies (2.9). Indeed, by (2.8), one can
find a complement subspace V of kerB0 in H which satisfies V ⊆ kerBm+1 and hence Q
is positive definite on V . This yields s+(Q) ≥ dim V = dimH−dim kerB0 = dimH0. On
the other hand, Q is negative semi-definite on kerB0, hence s+(Q) ≤ dimH−dim kerB0 =
dimH0. The same argument shows the second assertion of (2.9).

The starting point of the forthcoming calculations is that for any self-adjoint map A
on Rd and any vector b ∈ Rd,

∫

Rd

e−π〈x,Ax〉+2π〈b,x〉dx =

{

eπ〈A
−1b,b〉 det(A)−1/2 if A is positive definite,

+∞ otherwise.
(2.10)

For k = 1, . . . , m, let Ak be a positive definite map on Hk. Moreover, let A0 be positive
definite map H0 such that Q+(x) = π〈x,A0x〉, and similarly define Am+1 for Q−. With
this notation (2.7) becomes

Q =
∑

k∈{0,m+1}

ckB
∗
kAkBk. (2.11)

For k = 0, . . . , m+ 1 fix any bk ∈ Hk. Since the map (B0, Bm+1) is surjective, we can find
a vector b ∈ H such that B0b = b0 and Bm+1b = bm+1.
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We calculate the value of J on the translated Gaussian functions gAk
(· + bk). By

translation invariance of Lebesgue’s measure,
∫
gAk

(· + bk) = det(Ak)−1/2. In order to
introduce a translation also in the Gaussian kernel, we perform a change of variable
y = x+ b in the integral

J
(
(gAk

(· + bk))
)

m∏

k=1

det(Ak)−ck/2 =

∫

H

e−π〈y,Qy〉
m∏

k=1

gckAk
(Bky + bk) dy

=

∫

H

e−π〈x+b,Q(x+b)〉
m∏

k=1

gckAk
(Bkx +Bkb+ bk) dx

=

∫

H

e−π
∑

k∈{0,m+1}〈Bkx+bk,Ak(Bkx+bk)〉
m∏

k=1

gckAk
(Bkx+Bkb+ bk) dx.

Here it is convenient to set uk = Bkb+bk for k = 1, 2, . . . , m+ and uk = bk for k ∈ {0, m+1}
(for the sake of consistency of notation). Developing all the quadratic terms shows that
the latter integral is equal to

∫

H

e−π
(
∑m+1

k=0 ck〈Ak(Bkx+uk),Bkx+uk〉
)

dx

=

∫

H

e−π
(
〈x,Ax〉+2〈x,v〉+

∑m+1
k=0 ck〈Akuk,uk〉

)

dx,

where we have set A =
∑m+1

k=0 ckB
∗
kAkBk and v =

∑m+1
k=0 ckB

∗
kAkuk. From the above

calculations and (2.10) it follows that

J
(
(gAk

(· + bk))
)
< +∞ ⇐⇒ A is positive definite (i.e. (Ak)mk=1 ∈ Λ) (2.12)

and in case A is positive definite,

J
(
(gAk

(· −Bkb+ uk))
)

=

(
det(A)

∏m
k=1 det(Ak)ck

)− 1
2

eπ
(
〈A−1v,v〉−

∑m+1
k=0 ck〈Akuk,uk〉

)

. (2.13)

In terms of the translation parameters uk (for k = 0, . . . , m + 1), the term inside the
exponential is a quadratic form. Hence its infimum is 0 if the quadratic form is positive
semi-definite and −∞ else. In the latter case, we get that the infimum of J is zero because
of certain non-centered Gaussian functions, while in the former case we get that J takes
smaller values on centered Gaussians (gAk

) than on their translates. In short,

inf
G
J ∈

{
0, inf

CG
J
}
.

Proposition 2.7. Suppose that Q is positive definite on kerB+ (which guarantees that
J is finite for some centered Gaussian functions) and that infG J > 0. Assuming the
notation that is involved in (2.7) and (2.11), the following assertions hold true:

(1) If (Ak)mk=1 ∈ Λ then for all vk ∈ Hk, k = 0, . . . , m+1, setting A =
∑m+1

k=0 ckB
∗
kAkBk

and v =
∑m+1

k=0 ckB
∗
kvk, it holds

〈A−1v, v〉 ≥
m+1∑

k=0

ck〈A−1
k vk, vk〉.

(2) The map x 7→ (B0x,B1x, . . . , Bm+x) from H to H0 × · · · ×Hm+ is onto.

(3) dimH ≥ s+(Q) +
∑m+

i=1 dimHi.
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Proof. Since infG J > 0, reasoning as above on the argument of the exponential term in
(2.13) shows that if v =

∑m
k=1 ckB

∗
kAkuk then

〈A−1v, v〉 ≥
m+1∑

k=0

ck〈Akuk, uk〉.

Applying this to uk = A−1vk (k = 0, 1, . . . , m+ 1) concludes the proof of the first item.
Let us address the second part of the claim. By duality, our goal is to show that the

map (v0, . . . , vm+) 7→ ∑m+

i=0 ciB
∗
i vi is injective. So we assume that

∑m+

i=0 ciB
∗
i vi = 0, and

we want to prove that v0 = · · · = vm+ = 0 (recall that ci 6= 0). If we set vj = 0 for

m+ < j ≤ m + 1, it holds that 0 =
∑m+1

k=0 ckB
∗
kvk. Thanks to Proposition 2.2, we may

find (Ak)
m
k=1 ∈ Λ and apply the first item of the present Proposition 2.7; it gives that

0 = 〈A−10, 0〉 ≥
m+1∑

k=0

ck〈A−1
k vk, vk〉 =

m+
∑

i=0

ci〈A−1
i vi, vi〉.

Since ci > 0 for 0 ≤ i ≤ m+, we deduce that 〈A−1
i vi, vi〉 = 0, thus vi = 0.

Eventually the third point of the claim is a direct consequence of the second one (sur-
jectivity implies that the dimension of the target space is not bigger than that of the
initial space, and s+(Q) = dimH0 by (2.9)). �

Proposition 2.8. Assume that Q is positive definite on kerB+ and that infCG J > 0.
Then B+ is surjective.

Proof. We proceed by contradiction. Assume that B+ is not onto. Then for some i ∈
{1, 2, . . . , m+} and v ∈ Hi \ {0}, the vector

(0, . . . , 0, v
︸︷︷︸

i-th component

, 0, . . . , 0) ∈ H1 × · · · ×Hm+

is not in the image of the B+ = (B1, . . . , Bm+) : H → H1 × · · · ×Hm+ . Fix such i and v

and let P(Rv)⊥ : Hi → Hi ∩ (Rv)⊥ be an orthogonal projection. Put H̃i = Hi ∩ (Rv)⊥ and

B̃i = P(Rv)⊥Bi : H → H̃i.

From the surjective maps B1, . . . , Bi−1, B̃i, Bi+1, . . . , Bm+ , we construct a map B̃+ =
(B1, . . . , Bi−1, B̃i, Bi+1, . . . , Bm+) from H to H1 × · · · ×Hi−1 × H̃i ×Hi+1 × · · · ×Hm+ .

Now we show that Q is positive definite on ker B̃+. To this end, take any x ∈ H for
which (B1x, . . . Bi−1x, B̃ix,Bi+1x, . . . , Bm+x) = (0, . . . , 0). Hence

B+x = (B1x, . . . , Bm+x) ∈ (0, . . . , 0, Rv
︸︷︷︸

i-th component

, 0, . . . , 0),

but since (0, . . . , 0, v, 0, . . . , 0) is not in the image of B+ = (B1, . . . , Bm+), we must have
B+x = 0. By assumption, Q is positive definite on kerB+, which gives 〈Qx, x〉 > 0 if
x 6= 0.

Applying Proposition 2.2 to Q and the maps B1, . . . , Bi−1, B̃i, Bi+1, . . . , Bm we have
positive maps Ak : Hk → Hk for k 6= i and Ãi : H̃i → H̃i such that the map

Q + ciB̃
∗
i ÃiB̃i +

∑

1≤k≤m

k 6=i

ckB
∗
kAkBk is positive.

For t > 0 define a positive map A
(t)
i = P ∗

(Rv)⊥ÃiP(Rv)⊥ + tvv∗ : Hi → Hi. Note that

lim
t→0+

det
(

Q+ciB
∗
iA

(t)
i Bi +

∑

1≤k≤m

k 6=i

ckB
∗
kAkBk

)

= det
(

Q+ciB̃
∗
i ÃiB̃i +

∑

1≤k≤m

k 6=i

ckB
∗
kAkBk

)

> 0
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while limt→0+ detA
(t)
i = 0. Therefore using the formula (2.2) we see that

lim
t→0+

J(gA1 , . . . , gAi−1
, g

A
(t)
i
, gAi+1

, . . . , gAm) = 0,

where gA(x) is a centered Gaussian function e−π〈Ax,x〉. �

2.5. Case analysis and non-degeneracy hypotheses. The goal of this section is to
give a full view of the cases when the best constant in inverse Brascamp-Lieb inequalities
can be computed with Gaussian functions only.

Case 0.0: The restriction of Q to kerB+ is not positive definite and B+ is not surjective.
In this case, Lemma 2.1(i) implies that min J = 0. On the other hand, Proposition 2.2
implies that infCG J = +∞, or equivalently Λ = ∅, which combined with (2.12) implies
that also infG J = +∞. Gaussian functions do not allow to compute the infimum of J .

Case 0.1: The restriction of Q to kerB+ is not positive definite and B+ is surjective.
Proposition 2.4 ensures that inf J = +∞. The functional is always infinite. In a very
degenerate sense, centered Gaussian functions allow to compute the infimum of J .

Case 1.0.0: The restriction of Q to kerB+ is positive definite, dimH < s+(Q) +
∑m+

i=1 dimHi and B+ is not surjective. By Lemma 2.1(i), min J = 0. Proposition 2.8
ensures that infCG J = 0.

Case 1.0.1: Q is positive definite on kerB+, dimH < s+(Q) +
∑m+

i=1 dimHi and B+ is
surjective. Proposition 2.7 gives infG J = 0. However, in this case the value of infCG J is
not always 0. We will give examples later.

Case 1.1: Q is positive definite on kerB+ and dimH ≥ s+(Q) +
∑m+

i=1 dimHi. This is
our last case, and in a sense the only non-degenerate one. Dealing with it is the main
part of the work. We postpone the proof of the following statement to the next section,
in order to discuss its consequences first.

Theorem 2.9. If Q is positive definite on kerB+ and

dimH ≥ s+(Q) +

m+
∑

i=1

dimHi,

then inf J = infCG J .

So under the above hypothesis, centered Gaussian functions allow to compute the opti-
mal constant in inverse Brascamp-Lieb inequalities. When the hypothesis of the theorem
is not verified, inf J can only be 0 or +∞.

Remark 2.10. Assume (2.7), (2.8) and the notation (2.11). Then

Q(x) = πc0〈A0B0x,B0x〉 + πcm+1〈Am+1Bm+1x,Bm+1x〉,
which ensures that

ker(B0, . . . , Bm+) ⊂
{
x ∈ H : Q(x) ≤ 0

}
∩

m+
⋂

i=1

kerBi.

Hence (B0, . . . , Bm+) is injective when Q is positive on kerB+. Together with (2.9), this
implies that dimH ≤ s+(Q)+dimH1 + · · ·+dimHm+ . Since the hypotheses of the above
theorem provide the converse inequality, they imply that dimH = s+(Q)+dimH1 + · · ·+
dimHm+ , and that (B0, . . . , Bm+) is a bijection.
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Q| kerB+
> 0?

B+ onto? dimH ≥ s+(Q) +
∑m+

i=1 dimHi?

B+ onto?min J = 0
inf
G
J = +∞

inf J = +∞

min J = 0
inf
CG
J = 0

inf
G
J = 0

inf
CG
J ∈ [0,+∞)

inf J = inf
CG
J < +∞

no yes

no yes no yes

no yes

Figure 1. Summary of the case analysis

Let us mention variants of the above theorem, which consist in grouping a bit differently
the various possible cases. A first variant is Theorem 1.4, as stated in the introduction.
Another one is given next. It means that under the assumption that the functional J
is finite for some Gaussian functions, the optimal constant can be computed using non-
centered Gaussian functions only.

Theorem 2.11. If Q is positive definite on kerB+ then inf J = infG J .

Next we provide examples of the cases when the Gaussian minimizers principle fails.

Example 2.12. Consider the very simple case of the functional

J(f, g) :=

∫

R2 f(x)g(x) dx dy
∫

R
f ×

∫

R
g

·

Here m+ = m = 2, c1 = c2 = 1, Q = 0 and B1(x, y) = B2(x, y) = x. The map
B+ : R2 → R2 is given by B+(x, y) = (x, x). It is not surjective, and Q is not positive
definite on kerB+ = {0} × R. So we are in the setting of Case 0.0 above.

By Fubini J(f, g) = +∞×
∫

R
f(x)g(x) dx/(

∫
f×
∫
g) which is equal to 0 if the supports

of f and g are disjoint, and is equal to +∞ for Gaussian functions.

Example 2.13 (Reversed hypercontractivity). Borell’s reverse Gaussian hypercontrac-
tivity [18] states that for any p, q ∈ (−∞, 1) the operators of the Ornstein-Uhlenbeck
semigroup Ptf(x) =

∫

R
f(e−tx+

√
1 − e−2ty)γ(dy), where γ is a standard Gaussian mea-

sure, satisfy

‖Ptf‖Lq(γ) ≥ ‖f‖Lp(γ)

for all positive functions f ∈ L1(γ) if and only if e−2t ≤ 1−p
1−q

. Excluding the case when

either p, q or t is 0 and using the fact that for q ∈ (−∞, 1) and h ∈ Lq, ‖h‖Lq =
inf{

∫
hk : k > 0,

∫
kq

′
= 1} where q′ = q/(q − 1), the above estimate can be restated as

follows: let n = 2, m = 2, n1 = n2 = 1, B1(x1, x2) = x1, B2(x1, x2) = x2, c1 = 1/p ∈
R \ [0, 1], c2 = 1/q′ ∈ R \ [0, 1], t > 0 and

Q =
1

2π(1 − e−2t)

(
1 − (1 − e−2t)c1 −e−t

−e−t 1 − (1 − e−2t)c2

)

.
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Then for the corresponding functional

J(f, g) =

∫

R2

e−π〈Qx,x〉f c1(x1)g
c2(x2) dx1dx2

(∫

f
)−c1(

∫

g
)−c2

,

we have inf J = (2π)1−
c1+c2

2

√
1 − e−2t if and only if c1c2 detQ ≥ 0.

Now, let us focus on the a specific example c1 = c2 = 2. In this case B+(x1, x2) =
(x1, x2). Hence B+ is surjective and Q is positive definite on kerB+ = {0}. Condition (2.5)
is violated if and only if s+(Q) > 0, which is equivalent to

tr(Q) > 0 or det(Q) < 0.

Actually, in our case tr(Q) > 0 implies det(Q) < 0. A simple calculation shows that
s+(Q) > 0 holds if and only if e−2t > 1/4. Thus, whenever e−2t > 1/4, we are in
Case 1.0.1 above, and inf J = infG J = 0. Besides, Borell’s result asserts that inf J =
(2π)−1

√
1 − e−2t provided e−2t ≤ 1/4. Next we claim that

inf
CG
J =

{

(2π)−1
√

1 − e−2t if e−2t ∈
(
1
4
, 1
2

]
,

0 if e−2t ∈
(
1
2
, 1
)
.

This is an illustration of Case 1.0.1 above: inf J = infG J = 0 but infCG J can be 0 in some
cases, and positive in some other cases.

It remains to prove the claim. Put f(x) = e−ax2/2 and g(x) = e−bx2/2 for some a, b > 0.
Then

J(f, g)2 =







(2π)2−(c1+c2)ac1bc2 (1−e−2t)2

det









1 + (1 − e−2t)c1(a− 1) −e−t

−e−t 1 + (1 − e−2t)c2(b− 1)









if det > 0,

+∞ otherwise.

Restricting our attention to the case c1 = c2 = 2,

J(f, g)2 =

{
(2π)−2(1 − e−2t) a2b2

4(1+ab)(1−e−2t)−3+2(2e−2t−1)(a+b)
if the denominator is positive

+∞ otherwise.

In the case e−2t ∈ (1/2, 1) we show that infa,b>0 J(f, g)2 = 0 by checking that

sup
a,b>0

4(1 + ab)(1 − e−2t) − 3 + 2(2e−2t − 1)(a+ b)

a2b2

≥ sup
a>0,b=1/a

8(1 − e−2t) − 3 + 2(2e−2t − 1)(a+ 1/a) = +∞.

In the case e−2t ∈ (1/4, 1/2] we will have infa,b>0 J(f, g) = (2π)−1
√

1 − e−2t if we show

sup
a,b>0

4(1 + ab)(1 − e−2t) − 3 + 2(2e−2t − 1)(a+ b)

a2b2
= 1. (2.14)

Put λ = 2−4e−2t ∈ [0, 1). Since a+b is multiplied by the coefficient 2(2e−2t−1) = −λ ≤ 0,

we can use the inequality a+ b ≥ 2
√
ab to calculate the supremum in (2.14) as follows:

sup
a,b>0

λ− 1 − λ(a+ b) + (λ+ 2)ab

a2b2
= sup

x=(ab)−1/2>0

(λ− 1)x4 − 2λx3 + (λ+ 2)x2 =: sup
x>0

ϕ(x).

Since

ϕ′(x) = −4(1 − λ)x(x− 1)
(

x− λ+ 2

2(λ− 1)

)

,

ϕ is increasing on (0, 1] and decreasing on [1,∞) and hence supx>0 ϕ(x) = ϕ(1) = 1.
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We conclude this section with the analysis of degenerate and non-degenerate cases for
the inverse convolution inequality.

Example 2.14 (Reverse Young inequality). As mentioned in the introduction: for p, q, r ∈
(0, 1] such that 1 + 1/r = 1/p + 1/q, and positive functions on Rn, Brascamp and Lieb
have proved that

‖f ∗ g‖r ≥
(
CpCq

Cr

)n

‖f‖p‖g‖q

holds where Ct = |t|1/t/|t′|1/t′ , and the constant is optimal. Our goal here is to discuss
extensions to negative exponents.

Using a duality type argument, a change of functions and the fact that Cp′ = 1/Cp

we can reformulate the above result as follows: if p, q ∈ (0, 1] and r′ ∈ (−∞, 0) verify
1/p+ 1/q + 1/r′ = 2 then for all positive integrable functions f, g, h,

∫

(Rn)2
f(x− y)

1
p g(y)

1
qh(x)

1
r′ dx dy ≥ (CpCqCr′)

n

(∫

f

) 1
p
(∫

g

) 1
g
(∫

h

) 1
r′

.

Simple changes of variables as
∫
F (x − y)G(y)H(x) dx dy =

∫
F (z)G(x − z)H(x) dx dz

show that p, q and r′ play symmetric roles. Therefore the convolution inequality is also
true when 1/p+ 1/q+ 1/r′ = 2 and among the three numbers p, q, r′, two are in (0, 1] and
one is in (−∞, 0), (which is more general than p, q, r ∈ (0, 1]). However no non-trivial
inequality holds beyond this range of indices, as we show next.

The condition 1/p+ 1/q+ 1/r′ = 2 is necessary (applying the inequality to f(λ·), g(λ·),
h(λ·) for λ > 0 and changing variables (x, y) = λ−1(X, Y ) gives it). Consider the three
surjective maps from R2n to Rn defined by B1(x, y) = x − y, B2(x, y) = y, B3(x, y) = x,
and the numbers c1 = 1/p, c2 = 1/q and c3 = 1/r′. The above analysis of degenerate cases
shows that one should focus on the map B+ = (Bi)i : ci>0. If p, q, r′ are positive then B+

is not surjective and the only possible constant in the convolution inequality is 0. If only
one among the three number p, q, r′ is positive, then B+ is surjective but not injective and
we are in Case 0.1, meaning that the functional under study never takes finite values.

3. Proof of Theorem 2.9

3.1. Decomposition of the kernel exp(−Q). The positive and negative parts of a
quadratic form Q play different roles, as do the functions fi with i ≤ m+ and the functions
fj with j > m+. Although there is no canonical decomposition of H into subspaces on
which Q is, respectively, positive and negative definite, Condition (2.4) provides a natural
candidate for a subspace on which Q is positive definite. This leads to the following result:

Lemma 3.1. The following two assertions are equivalent:

(1) (i) Q is positive definite on kerB+ and (ii) dimH ≥ s+(Q) +
∑m+

i=1 dimHi.
(2) There exist vector spaces H0, Hm+1, surjective linear maps B0 : H → H0 and

Bm+1 : H → Hm+1, and positive definite quadratic forms Q+ on H0 and Q− on
Hm+1 such that:

• (B0, B+) : H → H0 × · · · ×Hm+ is bijective, (3.1)

• kerB+ ⊂ kerBm+1, (3.2)

• for all x ∈ H, Q(x) = Q+(B0x) −Q−(Bm+1x).

Remark 3.2. The above decomposition of Q is more specific than the ones introduced
in Subsection 2.4 in (2.7). Although we have used for convenience the same notation
B0 and Bm+1 there, they do not necessarily represent the same maps as in the above



18 FRANCK BARTHE AND PAWE L WOLFF

lemma. However no confusion will be possible, since from now on we will only use the
decomposition of Lemma 3.1.

Proof. We start with (2) =⇒ (1): For any x ∈ kerB+ ⊂ kerBm+1, it holds

Q(x) = Q+(B0x) −Q−(Bm+1x) = Q+(B0x) ≥ 0.

Moreover, if Q(x) = 0, using that Q+ is definite positive, we deduce that B0x = 0. It
follows that x belongs to kerB0 ∩ kerB+, which is equal to {0} by hypothesis. Thus we
have shown that Q is positive definite on kerB+.

It remains to prove (1)(ii). By hypothesis, (B0, B+) is a linear isomorphism, which
implies that

dimH =
m+
∑

i=0

dimHi.

Therefore, it is enough to show that s+(Q) ≤ dimH0. Since Q− is positive definite, Q is
negative semi-definite on kerB0, and hence

s+(Q) ≤ dimH − dim kerB0 = dimH0.

Now we prove that (1) =⇒ (2). Set

H0 = kerB+ =

m+
⋂

i=1

kerBi.

Note that (1) implies dimH0 = s+(Q). Indeed,

dimH0 = dim kerB+ = dimH − dim ImB+ ≥ dimH −
m+
∑

i=1

dimHi ≥ s+(Q),

where the last inequality follows from (1)(ii). The converse inequality follows from
Sylvester’s theorem since Q is positive definite on H0.

Now consider the subspace

H
⊥Q

0 = {x ∈ H : ∀y ∈ H0, Q(x, y) = 0},
where we also denote by Q(·, ·) the symmetric bilinear form associated with the quadratic
form Q. Since Q is positive definite on H0, we have

H0 ∩H⊥Q

0 ⊆ {x ∈ H0 : Q(x, x) = 0} = {0}.
As a general fact, dimH

⊥Q

0 ≥ dimH − dimH0, therefore

H0 ⊕H
⊥Q

0 = H. (3.3)

Consider the projection P : H → H onto H0 with kernel H
⊥Q

0 . Then Id − P : H → H

is the projection onto H
⊥Q

0 with ker(Id − P ) = H0 and

Q(x) = Q(Px) + Q((Id − P )x). (3.4)

Next, note that Q is negative semi-definite on H
⊥Q

0 . Indeed, suppose that for some

0 6= x ∈ H
⊥Q

0 , Q(x) > 0. Then for all λ ∈ R and y ∈ H0,

Q(λx + y) = λ2Q(x) + 2λQ(x, y) + Q(y) = λ2Q(x) + Q(y) > 0

whenever λ 6= 0 or y 6= 0, which thanks to (3.3) is equivalent to λx + y 6= 0. In this way
Q would be positive definite on the subspace H0 ⊕ span{x} which has dimension strictly
larger than s+(Q) and thus it contradicts Sylvester’s theorem.
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Further on, as a general fact, the radical of Q
radQ = {x ∈ H : ∀y ∈ H, Q(x, y) = 0}

is a subspace in H
⊥Q

0 . Consider

Hm+1 = H
⊥Q

0 /radQ

and the maps B0 : H → H0 and Bm+1 : H → Hm+1 defined for x ∈ H by

B0(x) = P (x),

Bm+1(x) = π
H

⊥Q
0 →H

⊥Q
0 /radQ

(
(Id − P )(x)

)
,

where π
H

⊥Q
0 →H

⊥Q
0 /radQ

is the natural quotient map from H
⊥Q

0 to H
⊥Q

0 /radQ. Finally, con-

sider the following positive definite quadratic forms

Q+ = Q|H0 : H0 → R,

Q− : Hm+1 → R, Q−(x+ radQ) = −Q(x) for x ∈ H
⊥Q

0 .

Then the decomposition (3.4) becomes

Q(x) = Q+(B0x) −Q−(Bm+1x).

Next, let us establish the claimed properties of the linear maps which appear in the
above decomposition of Q.

The non-degeneracy conditions (1)(i) and (1)(ii) imply that the map

B0+ := (B0, B1, . . . , Bm+) : H → H0 ×H1 × · · · ×Hm+ is a linear isomorphism.

Indeed kerB0∩kerB+ = H⊥Q
0 ∩H0 = {0}, hence B0+ is injective. The dimension condition

(1)(ii), once rewritten as dimH ≥∑m+

i=0 dimHi, shows that B0+ is an isomorphism.
Note also that kerBm+1 = H0 + radQ and therefore

kerB+ = H0 ⊆ kerBm+1.

This concludes the proof of the claimed properties. �

The simple lemma stated below establishes the following consequence of (3.2):

if F ⊆ H1 × · · · ×Hm+ is compact, then Bm+1(B
−1
+ (F )) is compact. (3.5)

Lemma 3.3. Let S : X → Y and T : X → Z be linear maps between finite dimensional
linear spaces X, Y, Z and F ⊆ Y be a compact set. If kerS ⊆ ker T then T (S−1(F )) is a
compact subset of Z.

Proof. Put V = ker S and let π : X → X/V be the natural quotient map. Define S̃ : X/V →
Y and T̃ : X/V → Z as

S̃(x+ V ) = Sx, T̃ (x+ V ) = Tx

(these definitions are correct since the kernels of S and T contain V ), i.e. S̃ ◦ π = S and

T̃ ◦ π = T . Note that ker S̃ is trivial, hence S̃ is a linear an isomorphism onto its range,
and thus G = S̃−1(F ) is a compact subset of X/V . Finally write

T (S−1(F )) = T̃ (π(π−1(S̃−1(F )))) = T̃ (S̃−1(F )) = T̃ (G)

and use that T̃ (G) is also compact. �
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3.2. More on quadratic forms. We start with recalling a simple inequality, which
appears in the transportation proof of the Brascamp-Lieb inequalities.

Lemma 3.4. Let I be a finite set, and for each i ∈ I let di > 0, Li : H → Hi be linear
and onto and Ki : Hi → Hi be a linear symmetric definite positive map. Assume that
K :=

∑

i diL
∗
iKiLi > 0. Let w ∈ H, then for all yi ∈ Hi verifying w =

∑

i diL
∗
i yi, the

following holds

〈K−1w,w〉 ≤
∑

i

di〈K−1
i yi, yi〉.

There is equality if one chooses yi := KiLiK
−1w.

Proof. This is a direct application of the Cauchy-Schwarz inequality:

〈K−1w,w〉 =
∑

i

di〈K−1w,L∗
i yi〉 =

∑

i

di〈K1/2
i LiK

−1w,K
−1/2
i yi〉

≤
(
∑

i

di〈K1/2
i LiK

−1w,K
1/2
i LiK

−1w

) 1
2
(
∑

i

di〈K−1/2
i yi, K

−1/2
i yi〉

) 1
2

=

(
〈

(
∑

i

diL
∗
iKiLi)K

−1w,K−1w
〉
) 1

2
(
∑

i

di〈K−1
i yi, yi〉

) 1
2

= 〈K−1w,w〉 1
2

(∑

i

di〈K−1
i yi, yi〉

) 1
2

�

When proving Proposition 2.7, we have shown that the quadratic inequality stated as
its first conclusion implies that the map (B0, . . . , Bm+) is onto. Our next task is to prove
a converse statement, for further use.

Lemma 3.5. Let c1, . . . , cm+ > 0 > cm++1, . . . , cm. For k = 1, . . . , m, let Bk : H → Hk

be a linear surjective map, and let Ak : Hk → Hk be symmetric definite positive operator.
Assume that (B1, . . . , Bm+) : H → H1 × · · · ×Hm+ is onto.
If A :=

∑m
k=1 ckB

∗
kAkBk > 0 and y =

∑m
k=1 ckB

∗
kyk for some yk ∈ Hk, then

〈A−1y, y〉 ≥
m∑

k=1

ck〈A−1
k yk, yk〉.

There is equality if one chooses yk := AkBkA
−1y.

Proof. The statement is derived from the former lemma, after rearranging the terms. By
the surjectivity hypothesis, there exits z ∈ H such that for all i ≤ m+, yi = AiBiz.

The relationship y =
∑m

k=1 ckB
∗
kyk can be rewritten as

y +
∑

m+<j≤m

|cj|B∗
j yj =

( ∑

i≤m+

ciB
∗
iAiBi

)

z.

If we set K :=
∑

i≤m+ ciB
∗
iAiBi, w := Kz, Hm+1 := H , Bm+1 := IdH , Am+1 := A,

ym+1 := y and cm+1 = 1, we obtain that

w =
∑

m+<j≤m+1

|cj|B∗
j yj. (3.6)

With this notation, we may also rewrite the relationship A =
∑m

k=1 ckB
∗
kAkBk as

K =
∑

i≤m+

ciB
∗
iAiBi = A+

∑

m+<j≤m

|cj|B∗
jAjBj =

∑

m+<j≤m+1

|cj|B∗
jAjBj . (3.7)
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Observe that K > 0 holds, as a consequence of A > 0. Therefore (3.6) and (3.7) allow to
apply Lemma 3.4 and to get

∑

m+<j≤m+1

|cj |〈A−1
j yj, yj〉 ≥ 〈K−1w,w〉. (3.8)

By our definitions for w, K and z,

〈K−1w,w〉 = 〈Kz, z〉 =
〈 ∑

i≤m+

ciB
∗
iAiBiz, z

〉

=
∑

i≤m+

ci〈AiBiz, Biz〉 =
∑

i≤m+

ci〈yi, A−1
i yi〉.

Since |cm+1|〈A−1
m+1ym+1, ym+1〉 = 〈A−1y, y〉 and cj < 0 for m+ < j ≤ m, the statement

of (3.8) gives the claimed inequality. The case of equality is easily verified. �

3.3. Preliminaries and general strategy of the proof of Theorem 2.9. The very
first step in the proof of Theorem 2.9 is to consider a decomposition of the Gaussian
kernel exp(−Q) as explained before. Namely, thanks to the hypothesis of Theorem 2.9
the assertion (2) from Lemma 3.1 holds true. Therefore we will consider the quadratic
forms Q+ and Q− together with the maps B0 : H → H0 and Bm+1 : H → Hm+1 whose
existence is ensured by that assertion. Further consider self-adjoint maps Q+ : H0 → H0

and Q− : Hm+1 → Hm+1 which represent the respective quadratic forms, i.e.

Q+(x) = π〈Q+x, x〉 for x ∈ H0,

Q−(x) = π〈Q−x, x〉 for x ∈ Hm+1.

For k = 1, 2, . . . , m fix measurable functions fk : Hk → [0,∞] of integral one. We will
deal with the Gaussian kernel exp(−Q) as two additional functions, namely

exp(−Q(x)) =

√

detQ−

detQ+

f c0
0 (B0x)f

cm+1

m+1 (Bm+1x),

where f0 : H0 → [0,∞] and fm+1 : Hm+1 → [0,∞] are defined as

f0(x) =
√

detQ+ exp(−π〈Q+x, x〉),
fm+1(x) =

√

detQ− exp(−π〈Q−x, x〉)
and c0 = 1, cm+1 = −1. With this notation we have

J(f1, . . . , fm) =

√

detQ−

detQ+

∫

H

m+1∏

k=0

f ck
k (Bkx) dx. (3.9)

The general strategy is similar to the one of the proof of the direct and reverse Brascamp-
Lieb inequality from [11]. Namely we will consider a tuple of centered Gaussian functions
gk on Hk (k = 0, 1, . . . , m+ 1) of integral one and optimal transport maps Hk ∋ x 7→ y =
Tk(x) ∈ Hk which push forward the density fk(x) dx onto the density gk(y) dy. Starting
from the maps Tk, we will build a change of variable map θ : H → H which will allow us
to pass from J(f1, . . . , fk) in the form of (3.9) to the integral over H involving a Gaussian
function only. However, since we aim to bound (3.9) from below, it is crucial that the
map θ is surjective. This point is a substantial technical difficulty which is not present in
the transportation proof of the Brascamp-Lieb inequality with positive exponents.

In order to make the above strategy work, we need to restrict fk to carefully chosen
classes of functions. There are two reasons behind this: first, we need to ensure existence
of optimal transport maps; moreover, it will be convenient to have some regularity of
these maps and to have the Monge-Ampère equation satisfied in the classical sense. The
second reason is that we need to ensure surjectivity of the map θ. This can be done
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by appropriate choice of supports of the test functions. Finally, the inequality for any
integrable functions fk will be obtained via an approximation argument.

We close this subsection with notation and facts concerning convex functions on Eu-
clidean spaces. A standard reference is [39]. In the sequel we write intA, clA, bdA for
the interior, closure and boundary of A.

Let ϕ : Rn → R ∪ {+∞} be a convex function. The domain of ϕ is

domϕ = {x ∈ Rn : ϕ(x) < +∞}.
We say that ϕ is proper if domϕ 6= ∅. We say that ϕ is closed if the epigraph of ϕ, i.e.
the set {(x, y) ∈ Rn+1 : x ∈ domϕ, y ≥ ϕ(x)}, is a closed subset of Rn. A convex function
ϕ is closed if and only if it is lower semi-continuous (or, equivalently, for every α ∈ R,
{x ∈ Rn : ϕ(x) ≤ α} is a closed subset of Rn).

For x ∈ Rn, the subdifferential ∂ϕ(x) is the set of all vectors x∗ ∈ Rn, called subgradi-
ents, which satisfy

f(y) ≥ f(x) + 〈x∗, y − x〉 for all y ∈ H .

For A ⊆ Rn,

∂ϕ(A) =
⋃

x∈A

∂ϕ(x).

Note that ∂ϕ(x) 6= ∅ for all x ∈ int domϕ (actually for all x in the relative interior of
domϕ) and that if ϕ is proper then ∂ϕ(x) = ∅ for all x 6∈ domϕ. If ϕ is differentiable
at x ∈ Rn then ∂ϕ(x) contains exactly one vector ∇ϕ(x). The converse statement is
also true: for a convex function having a unique subgradient at a given point implies
differentiability at that point (see [39, Theorem 25.1]).

If ϕ is proper, we define the Legendre conjugate of ϕ as

ϕ∗(y) = sup
x∈domϕ

〈x, y〉 − ϕ(x),

which is a proper closed convex function on Rn. If ϕ is proper and closed then (ϕ∗)∗

coincides with ϕ.
If ϕ is proper and closed then the multi-valued maps ∂ϕ and ∂ϕ∗ are inverses of each

other, i.e.

y ∈ ∂ϕ(x) ⇐⇒ x ∈ ∂ϕ∗(y) (3.10)

(see [39, Corollary 23.5.1]). In particular, y ∈ ∂ϕ(Rn) if and only if ∂ϕ∗(y) 6= ∅ which
readily implies that if ϕ is proper and closed then

int domϕ∗ ⊆ ∂ϕ(Rn) ⊆ domϕ∗. (3.11)

3.4. Optimal transport map. Here we present a result (formulated as Corollary 3.12)
on existence of smooth solutions to the Monge-Ampère equation related to certain class
of optimal transport problems. Although the result is most probably well-known to spe-
cialists in the theory of the Monge-Ampère equation, we were not able to find a reference
where it is explicitly stated. For this reason we explain below how the result can be
derived from well-established results in optimal transport and regularity theory of the
Monge-Ampère equation.

Let us begin our discussion with the following result of McCann [35], which is a refine-
ment of an earlier result of Brenier [21] (see also references in [35] for related develop-
ments):

Theorem 3.6 (Brenier, McCann). Let µ and ν be Borel probability measures on Rn.
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(i) There exist a Borel probability measure γ on Rn×Rn whose marginals are µ and ν
(namely, for any Borel set A ∈ Rn, µ(A) = γ(A×Rn) and ν(A) = γ(Rn×A)) and
a closed convex function ϕ : Rn → R∪{+∞} such that the measure γ is supported
on the graph of the subdifferential of ϕ, i.e. the set

{(x, y) ∈ Rn × Rn : y ∈ ∂ϕ(x)}.
(ii) In addition to (i), if µ vanishes on Borel subsets of Rn Hausdorff dimension n−1,

then ϕ is differentiable µ-a.e. and the map ∇ϕ (defined in points where ϕ is
differentiable) pushes µ forward to ν, i.e. for every Borel subset B ⊆ Rn,

ν(B) = µ
(
(∇ϕ)−1(B)

)
(3.12)

(and in fact, the map (id,∇ϕ) : Rn → Rn×Rn pushes µ forward to γ). Moreover,
the map ∇ϕ satisfying (3.12) is uniquely determined µ-a.e. among gradients of
convex functions on Rn.

The map ∇ϕ from Theorem 3.6(ii) is called the Brenier map.

Remark 3.7. (i) For a closed convex function the graph of its subdifferential is a
closed subset of Rn × Rn.

(ii) From Theorem 3.6(i) it follows that

supp(µ) ⊆ cl{x ∈ Rn : ∂ϕ(x) 6= ∅} = cl domϕ (3.13)

and
supp(ν) ⊆ cl ∂ϕ(Rn). (3.14)

(iii) The assumption on µ in Theorem 3.6(ii) is satisfied if µ is absolutely continuous
with respect to the Lebesgue measure on Rn.

(iv) Using (3.12) and continuity of the (sub)gradient of a convex function (see e.g. [39,
Corollary 24.5.1]) one can show that

supp(ν) = cl∇ϕ(supp(µ)) (3.15)

(see e.g. the proof of Theorem 2.12 in [42] for details).
(v) By the above item (ii), the exterior of the domain of ϕ has measure µ zero, and

the boundary of domϕ (as the boundary of a convex set in Rn) has Hausdorff
dimension at most n − 1. Therefore, µ-a.e. differentiability of ϕ follows from
the result of Anderson and Klee [2] which says that a convex function on Rn is
differentiable everywhere in its domain except for a set of Hausdorff dimension at
most n− 1.

From now on we assume that µ is a probability measure on Rn with a density f > 0, and
ν is a probability measure on Rn with a density g which is positive in an open bounded
convex set Ω and g ≡ 0 in Ωc. Thanks to Theorem 3.6 we consider a closed convex
function ϕ for which ∇ϕ is the Brenier map which pushes µ forward to ν. Let us discuss
some basic properties of ϕ in this context:

(i) Since supp(µ) = Rn, it follows from (3.13) that domϕ = Rn.
(ii) By the hypothesis that f > 0, the Lebesgue measure on Rn is absolutely continuous

with respect to µ and hence ϕ is differentiable a.e. in Rn.
(iii) By (3.15) it is clear that

∇ϕ(x) ∈ cl Ω for all x ∈ Rn for which ∇ϕ(x) is defined. (3.16)

Moreover, by (3.12), µ((∇ϕ)−1(bd Ω)) = ν(bd Ω) = 0, hence the set (∇ϕ)−1(bd Ω)
has zero Lebesgue measure. Therefore

x-a.e. the following holds: ϕ is differentiable at x and ∇ϕ(x) ∈ Ω. (3.17)
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Thanks to the regularity theory of the Monge-Ampère equation it is known that under
some additional assumptions on the densities f and g, the Brenier map ∇ϕ is defined
everywhere on Rn and is a C1 diffeomorphism onto Ω. In such case, the change of variable
formula justifies that (3.12) is equivalent to the fact that ϕ is a solution to the Monge-
Ampère equation

det Hessϕ(x) =
f(x)

g(∇ϕ(x))
. (3.18)

To this end we follow the argument of Caffarelli as presented in the paper [1].
First note that due to (3.17) the right hand side of (3.18) is defined x-a.e. Second, we

use the result of Caffarelli [23] (see also Theorems 4.8 and 4.10 in [42]): since µ and ν
are absolutely continuous with respect to the Lebesgue measure and the support of ν is
convex, we have that ϕ satisfies (3.18) in the Aleksandrov sense, i.e. the Hessian measure
detH Hessϕ associated to ϕ, defined by

detH Hessϕ(A) = voln(∂ϕ(A)) for any Borel set A ⊆ Rn,

is absolutely continuous with respect to the Lebesgue measure and its density coincides
almost everywhere with the right-hand side of (3.18). For a proof of this result the
following relation is crucial:

∂ϕ(Rn) ⊆ cl Ω. (3.19)

To see (3.19), use (3.16) and a general result on a subdifferential of a (closed) convex
function [39, Theorem 25.6] which in our case says that for any x ∈ Rn, ∂ϕ(x) lies in
the closure of the convex hull of limits of ∇ϕ(xk), where (xk) runs through all sequences
of points of differentiability of ϕ which converge to x. Since cl Ω is already convex and
closed, ∂ϕ(x) ⊆ cl Ω for any x ∈ Rn.

Further on, we assume additionally that the functions f and 1/f are bounded on
compact subsets of Rn and g is bounded and bounded away from zero on Ω. Then for
any R > 0 there exists 0 < c(R) < C(R) < ∞ such that the right hand side of (3.18) is
between c(R) and C(R) almost everywhere in the ball B(0, R). Since ϕ satisfies (3.18)
in the Aleksandrov sense, it follows that detH Hessϕ has a density which is bounded and
bounded away from zero on compact sets. With these a priori bounds on detH Hessϕ we
apply a geometric lemma of Caffarelli [22, Theorem 1] (see also [28, Chapter 5]) which
will allow us to prove that ϕ is strictly convex.

Lemma 3.8 (Caffarelli [22, Theorem 1]). Let Γ ⊆ Rn be an open bounded convex set and
ψ : Γ → R be a non-negative convex function. Suppose for some constants 0 < c < C <∞,

c voln(A) ≤ voln(∂ψ(A)) ≤ C voln(A) for any Borel set A ⊆ Γ.

If the (convex) set {x ∈ Γ: ψ(x) = 0} is non-empty and contains more than one point,
then it has no extremal points.

Corollary 3.9. ϕ is strictly convex.

Proof. Assume the opposite. Then there exists x0 ∈ Rn and a supporting hyperplane l of
ϕ at x0 such the closed convex set that F = {x ∈ Rn : ϕ(x) = l(x)} contains some other
point z 6= x0.

First suppose that F contains an extreme point, say x1 (not necessarily distinct from
x0), and take Γ to be an (open) ball B(0, R) large enough to contain x0, z and the extreme
point x1. Let ψ be the non-negative convex function ϕ− l restricted to Γ. By translation
invariance of the Lebesgue measure, voln(∂ψ(A)) = voln(∂ϕ(A)) for any Borel set A ⊂ Γ
and thus we can apply Lemma 3.8. The set {x ∈ Γ: ψ(x) = 0} coincides with F ∩ Γ
and since F ∩ Γ contains two distinct points x0 and z, it follows from the lemma that
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x1 cannot be an extreme point of F ∩ Γ. This clearly contradicts the fact that x1 is an
extreme point of F .

Therefore F is a non-empty closed convex set which has no extreme points. Hence
it must contain a line (see e.g. [39, Corollary 18.5.3]). In consequence, the graph of ϕ
must contain a line and hence all hyperplanes supporting ϕ are parallel to that line. This
means that ∂ϕ(Rn) is contained in an affine subset of Rn of dimension at most n − 1,
which clearly contradicts (3.14). �

Having established strict convexity of ϕ we can conclude with a stronger statement
than (3.19), namely that ∂ϕ(Rn) = Ω. It is based on a convexity argument.

Lemma 3.10. Let ψ be a convex function on Rn with domψ = Rn. If ψ is strictly convex
then ∂ψ(Rn) = int domψ∗.

Proof. In the view of (3.11) it is enough to prove that ∂ψ(Rn) is disjoint from bd domψ∗.
To this end suppose x ∈ Rn and y ∈ ∂ψ(x) ∩ bd domψ∗. Since y ∈ bd domψ∗, by
convexity of domψ∗ there exists u ∈ Rn such that

〈u, v − y〉 ≤ 0 for all v ∈ domψ∗. (3.20)

On the other hand, consider z = x + λu with any λ > 0. By strict convexity of ψ,

ψ(z) − ψ(x) > 〈z − x, y〉
ψ(x) − ψ(z) > 〈x− z, v〉,

where v is an arbitrary vector from ∂ψ(z). Adding up the two above inequalities yields
〈z − x, y − v〉 = λ〈u, y − v〉 < 0 which means that 〈u, v − y〉 > 0. Since by (3.11) the
vector v ∈ ∂ψ(z) belongs to domψ∗, it contradicts (3.20). �

Applying the above lemma to ϕ we get that ∂ϕ(Rn) is an open convex subset of Rn. The
fact that ∂ϕ(Rn) is open combined with (3.19) implies that ∂ϕ(Rn) ⊆ int cl Ω = Ω. On
the other hand, since ∂ϕ(Rn) is open and convex, then (3.14) yields Ω ⊆ int cl ∂ϕ(Rn) =
∂ϕ(Rn). Therefore the three open convex sets

∂ϕ(Rn) = int domϕ∗ = Ω (3.21)

coincide.
Finally, we use the following

Theorem 3.11 (Caffarelli [1, Theorem 1.3]). Let µ(dx) = f(x)dx and ν(dx) = g(x)dx be
two probability measures on Rn. Assume that f is locally Hölder and strictly positive on
Rn. Assume that the restriction of g to an open bounded convex set Ω is locally Hölder,
bounded and bounded away from zero, and that g ≡ 0 in Ωc. Then any convex function
ϕ on Rn that induces the Brenier map ∇ϕ which pushes µ forward to ν belongs locally to
the Hölder class C2,α for some α > 0 and satisfies (3.18) for all x ∈ Rn.

We will also need a C2 convex function whose gradient pushes forward ν to µ. Clearly,
a natural candidate is ϕ∗. In the corollary below we state the final result we will use in
the sequel.

Corollary 3.12. Assume f and g are as in Theorem 3.11.

(i) There exists a strictly convex function ϕ ∈ C2(Rn) with Hessϕ positive definite
everywhere whose gradient ∇ϕ maps Rn onto Ω, pushes µ forward to ν and thus
satisfies the Monge-Ampère equation (3.18).
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(ii) For ϕ as in (i), the Legendre conjugate ϕ∗ has int domϕ∗ = Ω, belongs to C2(Ω),
∂ϕ∗(y) = ∅ for all y 6∈ Ω. Moreover ∇ϕ∗ pushes ν forward to µ, Hessϕ∗ is positive
definite everywhere in Ω and ϕ∗ satisfies

det Hessϕ∗(y) =
g(y)

f(∇ϕ∗(y))
for all y ∈ Ω. (3.22)

Proof. Consider ϕ as in Theorem 3.11. In order to complete the proof of (i) it is enough
to note that (3.21) becomes ∇ϕ(Rn) = int domϕ∗ = Ω.

(ii) Strict convexity of ϕ allows us to conclude that ∇ϕ is a C1 bijection from Rn onto
Ω. Combining it with (3.10) shows that ∂ϕ∗(y) = {(∇ϕ)−1(y)} for y ∈ Ω and ∂ϕ∗(y) = ∅
for y 6∈ Ω. The uniqueness of subgradient of ϕ∗ at each point of Ω implies that ϕ∗ is
differentiable everywhere in int domϕ∗ = Ω and the map ∇ϕ∗ : Ω → Rn is the inverse
map of ∇ϕ. This is already sufficient to justify that ∇ϕ∗ pushes ν forward to µ. In order
to show that ϕ∗ is in fact C2(Ω) and satisfies (3.22), it is enough to use that the Jacobian
of the map ∇ϕ (i.e. det Hessϕ) does not vanish and thus use the inverse function theorem
to obtain that the map ∇ϕ∗ is C1(Ω) and its derivative Hessϕ∗(y) equals (Hessϕ(x))−1

where y ∈ Ω and x = ∇ϕ∗(y) ∈ Rn. Thus (3.22) follows from (3.18). �

3.5. Classes of test functions. For each k = 1, 2, . . . , m fix a measurable function
fk : Hk → [0,∞] of integral one such that

• for 1 ≤ i ≤ m+, fi is locally Lipschitz, bounded and bounded away from zero on
some bounded open convex subset of Hi, and vanishes outside this set;

• for m+ < j ≤ m, fj is locally Lipschitz and strictly positive in its whole domain
Hj.

The target functions are chosen as follows. FixR > 0 and consider anym-tuple (A1, . . . , Am) ∈
Λ (for the definition of Λ refer to Subsection 2.2) and also put A0 = Q+ and Am+1 = Q−.
For k = 0, 1, . . . , m+ 1 define

gk(y) = (detAk)−1/2 exp(−π〈−A−1
k y, y〉).

The target functions will be g̃k defined as

g̃i = gi for 1 ≤ i ≤ m+,

g̃0 = g0,

g̃m+1 = gm+1,

g̃j = λjgj1BHj
(0,R) for m+ < j ≤ m,

where λj > 1 is a normalizing constant (such that
∫

Hj
g̃j = 1).

3.6. Transportation argument. For each i = 1, 2, . . . , m+ let ϕi : Hi → R ∪ {+∞} be
the function ϕ∗ from Corollary 3.12(ii) for probability measures µ and ν on Hi having the
densities g̃i and fi respectively. Each ϕi belongs to C2(int domϕi), is lower semi-continuous
(as the Legendre transform of a convex function) and satisfies

∂ϕi(x) = ∅ for all x 6∈ int domϕi. (3.23)

For each j = 1 +m+, . . . , m let ϕj : Hj → R be the function ϕ from Corollary 3.12(i) for
probability measures µ and ν of Hj having the densities fj and g̃j respectively. Each ϕj

is C2(Hj) and

∇ϕj(x) ∈ BHj
(0, R) for all x ∈ Hj. (3.24)

Additionally put ϕ0(x) = 1
2
〈Q+x, x〉 and ϕm+1(x) = 1

2
〈Q−x, x〉.
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For k = 0, 1, 2, . . . , m + 1, put Tk = ∇ϕk and note that by Corollary 3.12, for all
x ∈ int domϕk,

fk(x) = g̃k(Tk(x)) det dTk(x) (3.25)

and

dTk(x) = Hessϕk(x) is symmetric positive definite (3.26)

for all x ∈ int domϕk.
For x ∈ H put

ϕ+(x) =
∑

1≤i≤m+

ciϕi(Bix),

ϕ−(x) =
∑

m+<j≤m

(−cj)ϕj(Bjx),

ϕ(x) = ϕ0(B0x) + ϕ+(x) − ϕ−(x) − ϕm+1(Bm+1x) =
m+1∑

k=0

ckϕk(Bkx). (3.27)

On the open domain S =
⋂m+

i=1B
−1
i (int domϕi) ⊂ H , which is non-empty thanks to

surjectivity of B+, define the change of variable map θ : S → H by

θ(x) = ∇ϕ(x) =
m+1∑

k=0

ckB
∗
kTk(Bkx).

This map is C1 and its differential equals

dθ(x) = Hessϕ(x) =

m+1∑

k=0

ckB
∗
kdTk(Bkx)Bk

= B∗
0Q+B0 −B∗

m+1Q−Bm+1 +

m∑

k=1

ckB
∗
kdTk(Bkx)Bk

= Q +
m∑

k=1

ckB
∗
kdTk(Bkx)Bk.

(3.28)

Combining the above with (2.3) and (3.26) we obtain that for x ∈ S,

det dθ(x) ≤ D

m∏

k=1

(
det dTk(Bk)

)ck (3.29)

whenever dθ(x) is positive definite. Since (3.29) remains true for dθ(x) being positive
semi-definite, we will consider the subdomain of S,

S+ = {x ∈ S : dθ(x) is positive semi-definite}

on which (3.29) is valid. Note that by continuity of the map S ∋ x 7→ dθ(x), S+ is a
closed subset of S and in particular S+ is a measurable subset of H .

As announced above, the following lemma is crucial in our argument. We defer its proof
to Subsection 3.7.

Lemma 3.13. The map θ|S+
: S+ → H is surjective.
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Now we are in the position to establish a sharp lower bound on J(f1, . . . , fm). Starting
from (3.9) and using the Monge-Ampère equations (3.25) we get

J(f1, . . . , fm) ≥
√

detQ−

detQ+

∫

S+

m+1∏

k=0

f ck
k (Bkx) dx

=

√

detQ−

detQ+

∫

S+

m+1∏

k=0

(
g̃k(Tk(Bkx)) det dTk(Bkx))

)ck dx

=

√

detQ+

detQ−

∫

S+

(
m+1∏

k=0

g̃ckk (Tk(Bkx))

)(
m∏

k=1

(det dTk(Bkx))ck

)

dx

≥ D−1

√

detQ+

detQ−

∫

S+

(
m+1∏

k=0

g̃ckk (Tk(Bkx))

)

det dθ(x) dx

= (∗),

where the latter inequality comes from (3.29). Setting λ =
∏m

j=m++1 λ
cj
j and using the

point-wise estimate g̃
cj
j ≥ λ

cj
j g

cj
j for m+ < j ≤ m we continue with the bound

(∗) ≥ λD−1

√

detQ+

detQ−

∫

S+

(
m+1∏

k=0

gckk (Tk(Bkx))

)

det dθ(x) dx

≥ λD−1

√

detQ+

detQ−

∫

S+

(

inf
θ(x)=

∑m+1
k=0 ckB

∗
kyk

m+1∏

k=0

gckk (yk)

)

det dθ(x) dx

≥ λD−1

√

detQ+

detQ−

∫

H

inf
z=

∑m+1
k=0 ckB

∗
kyk

m+1∏

k=0

gckk (yk) dz (3.30)

= λD−1

(
m∏

k=1

(detAk)−ck/2

)
∫

H

exp

(

−π sup
z=

∑m+1
k=0 ckB

∗
kyk

m+1∑

k=0

ck〈A−1
k yk, yk〉

)

dz

= (∗∗),

where λ =
∏m

j=m++1 λ
cj
j and the last inequality follows from the area formula for C1 maps

[26, Theorem 3.2.5] and the fact that the map θ|S+ : S+ → H is surjective (Lemma 3.13).
Using Lemma 3.5, we finish the above estimate with

(∗∗) = λD−1

(
m∏

k=1

(detAk)−ck/2

)
∫

H

exp

(

−π
〈(m+1∑

k=0

ckB
∗
kAkBk

)−1

z, z

〉)

dz

= λD−1

(

det
(
Q +

∑m
k=1 ckB

∗
kAkBk

)

∏m
k=1(detAk)ck

)1/2

.

Thanks to (2.3), taking supremum over (Ak)mk=1 ∈ Λ and the limit R → ∞ (which results
in λ ↑ 1) yields the desired inequality, i.e. J(f1, . . . , fm) ≥ D−1/2.

3.7. Surjectivity of the map θ.

Lemma 3.14. Let f : H → R∪{+∞} be convex, lower semi-continuous and g : H → R be
convex. Assume that dom f 6= ∅ and ∂f(x) = ∅ at every x ∈ bd dom f . If f(x) − g(x) →
+∞ as |x| → +∞ then f − g attains its infimum at a point in int dom f .
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Proof. Note that f −g is lower semi-continuous which combined with the hypothesis that
f−g → +∞ at infinity implies that the sets Ar = {x ∈ H : f(x)−g(x) ≤ r} are compact
for all r ∈ R. Since dom f 6= ∅, Ar is non-empty for r large enough. Therefore f−g attains
its infimum at some point x ∈ dom f . Suppose x ∈ bd dom f . Take any x∗ ∈ ∂g(x) (note
that the subdifferential of g is everywhere non-empty). By hypothesis, ∂f(x) = ∅ hence
we can find y ∈ H such that

f(y) < f(x) + 〈x∗, y − x〉. (3.31)

On the other hand we have

g(y) ≥ g(x) + 〈x∗, y − x〉,
which combined with (3.31) gives

f(y) − g(y) < f(x) − g(x) = inf(f − g)

and hence contradicts the assumption that x ∈ bd dom f . �

We will need one more lemma, about the function ϕ, defined in (3.27).

Lemma 3.15. The function ϕ is superlinear, i.e.

lim
|x|→∞

ϕ(x)

|x| = +∞.

Proof. Consider the compact set

F =

m+
∏

i=1

cl domϕi.

Obviously

domϕ+ =

m+
⋂

i=1

B−1
i (domϕi) ⊆ B−1

+ (F ).

Using (3.5) we get

sup
x∈domϕ+

ϕm+1(Bm+1x) = C1 <∞. (3.32)

For each 1 ≤ i ≤ m+, since domϕi is bounded, we have infHi
ϕi > −∞ and thus

infH ϕ+ > −∞. Therefore for some constant C2 <∞ we have

ϕ+(x) ≥ |B+x|2 − C2 (3.33)

for all x ∈ H (it is enough to ensure this inequality on the set B−1
+ (F ), inside which

|B+x|2 − C2 has finite supremum).
Combining (3.33) with the fact that ϕ0 is a positive definite quadratic function on H0,

we get

ϕ0(B0x) + ϕ+(x) ≥ ε|B0x|2 + |B+x|2 − C2 ≥ ε′|x|2 − C2,

for some ε, ε′ > 0, where in the last inequality we used injectivity of the map B0+ =
(B0, B+). Combining the above estimate with (3.32) we get

ϕ(x) + ϕ−(x) = ϕ0(B0x) + ϕ+(x) − ϕm+1(Bm+1x) ≥ ε′|x|2 − C1 − C2,

hence the function ϕ+ ϕ− is superlinear.
Due to (3.24) the function ϕ− is Lipschitz. Therefore ϕ is also superlinear. �

Now we are ready to establish our claim about the map θ.
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Proof of Lemma 3.13. Consider the function f : H → R ∪ {+∞} defined by

f(x) = ϕ0(B0x) + ϕ+(x) =
m+
∑

i=0

ciϕi(Bix). (3.34)

Clearly f is convex and lower semi-continuous. Note also that

dom f =
⋂

1≤i≤m+

dom(ϕi ◦Bi) =
⋂

1≤i≤m+

B−1
i (domϕi)

and
int dom f =

⋂

1≤i≤m+

B−1
i (int domϕi),

i.e. int dom f coincides with the domain S.
Using Theorems 23.8 and 23.9 from [39] we express the subdifferential of f in terms of

subdifferentials of ϕ0 and ϕi with 1 ≤ i ≤ m+. Namely for all x ∈ H we have

∂f(x) =
∑

0≤i≤m+

ciB
∗
i ∂ϕi(Bix)

where the summation means the Minkowski sum of sets (in H). (The above formula is

an equality rather than merely an inclusion ⊃ if e.g. the set
⋂m+

i=0 dom(ϕi ◦ Bi) 6= ∅; this
follows from the fact that the domain S is non-empty). Combining the above with (3.23)
we obtain that if x 6∈ S (i.e. for some 1 ≤ i ≤ m+, Bix 6∈ int domϕi) then ∂f(x) = ∅.

Fix any y0 ∈ H . We claim that the C2 function S ∋ x 7→ ϕ(x) − 〈x, y0〉 attains a local
minimum at, say, x0 ∈ S. This will allow to establish the lemma. Indeed, since S is an
open set, the gradient of this function vanishes at x0, i.e. ∇ϕ(x0)−y0 = 0 and Hessϕ(x0)
is positive semi-definite, which means that θ(x0) = y0 and x0 ∈ S+.

Eventually, let us prove the claim that ϕ(·)−〈·, y0〉 : S → H attains its infimum. Beside
the function f defined in (3.34), consider a convex function g : H → R,

g(x) = ϕ−(x) + ϕm+1(Bm+1x) + 〈x, y0〉.
Obviously

f(x) − g(x) = ϕ(x) − 〈x, y0〉. (3.35)

By Lemma 3.15 and the fact that 〈·, y0〉 is Lipschitz we obtain that f − g is superlinear
at infinity, so in particular f(x) − g(x) → ∞ as |x| → ∞. Since the subdifferential of f
is empty outside S = int dom f , we can use Lemma 3.14 in order to conclude. �

3.8. Approximation argument. For non-negative, integrable functions fi (1 ≤ i ≤
m+) and fj (m+ < j ≤ m) denote

I((fi), (fj))(x) = e−Q+(B0x)eQ−(Bm+1x)
m+
∏

i=1

f ci
i (Bix)

m∏

j=1+m+

f
cj
j (Bjx) for x ∈ H .

We proved that under the hypothesis of Theorem 2.9,
∫

H

I((fi), (fj)) ≥ K
∏

1≤i≤m+

(∫

Hi

fi

)ci ∏

m+<j≤m

(
∫

Hj

fj

)cj

, (3.36)

for all fi ∈ F0
i (1 ≤ i ≤ m+) and for all fj ∈ F0

j (m+ < j ≤ m), where K = infCG J and

• F0
i is the class of non-negative functions on Hi which are locally Lipschitz, bounded

and bounded away from zero on an open bounded convex subset of Hi, and vanish
outside this set,

• F0
j is the class of strictly positive and locally Lipschitz functions on Hj .
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We proceed in three steps s = 1, 2, 3. In each step we consider different classes of functions
F s

i and F s
j for which we prove (3.36) to be valid. At the final step s = 3, the classes F3

i ,

F3
j will consist of all non-negative, integrable functions.

Step 1. Fix fi ∈ F1
i (1 ≤ i ≤ m+) and fj ∈ F1

j (m+ < j ≤ m) where

• F1
i is the class of non-negative bounded measurable functions on Hi with compact

support,
• F1

j is the class of positive bounded Lipschitz functions fj on Hj for which fj(y)−1

is bounded from above by a polynomial in |y|.
Note that fj belongs to F0

j as well. For each i, take Ri > 0 such that the ball BHi
(0, Ri)

contains the support of fi. Consider the sequence of functions

fi,n = fi ∗ φi,n +
1

n
1BHi

(0,Ri+1),

where φi,n(x) = cin
dimHidist(x,Hi \BHi

(0, 1/n)) and ci is such that
∫

Hi
φi,n = 1.

Since φi,n are bounded, Lipschitz and fi are non-negative and measurable with com-
pact support, fi,n ∈ F0

i . Moreover
∫

Hi
fi,n →

∫

Hi
fi and by the Lebesgue differentiation

theorem, fi,n → fi a.e.. In other words the set Ωi ⊂ Hi where the latter convergence
holds has a negligible complement. Then the convergence I((fi,n), (fj)) → I((fi), (fj))

holds for all points in the set Ω :=
⋂m+

i=1B
−1
i (Ωi). Since the maps Bi are surjective, the

complement of Ω is negligible. Hence I((fi,n), (fj)) → I((fi), (fj)) a.e.
In order to verify (3.36) it is enough to ensure that

lim
n→∞

∫

H

I((fi,n), (fj)) =

∫

H

I((fi), (fj)). (3.37)

To this end we find an integrable function on H which dominates I((fi,n), (fj)) uniformly
in n and then apply the Lebesgue dominated convergence theorem.

First, since fi are bounded, all fi,n are bounded uniformly in n and thus for some
constant C > 0 and a compact set F ⊆ H1 × · · · ×Hm+ ,

m+
∏

i=1

f ci
i,n(Bix) ≤ C1F (B+x) for all x ∈ H .

Second, by (3.5), Bm+1(B
−1
+ (F )) is compact, hence after adjusting the constant C, we

also have

eQ−(Bm+1x)
m+
∏

i=1

f ci
i,n(Bix) ≤ C1F (B+x) for all x ∈ H . (3.38)

Since the map (B0, B+) is a linear isomorphism, I((fi,n), (fj)) would be compactly sup-
ported if only the function e−Q+ was compactly supported. Obviously it is not (unless
Q+ is trivial), but we can still use a compactness argument by decomposing e−Q+ into
slices, namely

e−Q+(y) =

∫ 1

0

1{e−Q+≥u}(y) du =

∫ ∞

0

2te−t21{Q+≤t2}(y) dt

=

∫ ∞

0

2te−t21t{Q+≤1}(y) dt.
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Combining the above with (3.38), we can bound I((fi,n), (fj))(x) pointwise and uniformly
in n by a constant times

∫ ∞

0

te−t21t{Q+≤1}(B0x)1F (B+x) dt
m∏

j=1+m+

f
cj
j (Bjx)

≤
∫ ∞

0

te−t21(t+1)BH (0,R)(x) dt

m∏

j=1+m+

f
cj
j (Bjx)

with R > 0 large enough. Since fj(y)−1 is bounded from above by a polynomial in |y|,
we finally obtain a pointwise upper bound

I((fi,n), (fj))(x) ≤
∫ ∞

0

(C1t
α + C2)e

−t21(t+1)BH (0,R)(x) dt

with some constants C1, C2, α > 0, which is clearly an integrable function of x ∈ H .

Step 2. Fix fi ∈ F2
i (1 ≤ i ≤ m+) and fj ∈ F2

j (m+ < j ≤ m) where

• F2
i = F1

i ,
• F2

j is the class of non-negative integrable functions on Hj .

Let φ(u) = 1
π(1+u2)

be the density of the standard Cauchy distribution and for each

j = 1 +m+, . . . , m and λ > 0 put

φj,λ(x) = λdimHj

dimHj∏

l=1

φ(λxl).

Fix ε > 0 and for each j and n put

fj,n = (fj + εφj,1) ∗ φj,n.

For each j and n, φj,n is bounded and Lipschitz and fj is integrable, hence fj,n is also
bounded and Lipschitz. From the estimate

fj,n ≥ εφj,1 ∗ φj,n = εφj, n
n+1

≥ ε2− dimHjφj,1

(the equality above follows from the fact that the Cauchy distribution is 1-stable), we
obtain that

fj,n(y)−1 is bounded from above by a polynomial in |y| uniformly in n. (3.39)

Hence we proved that fj,n ∈ F1
j .

By the result of Step 1 (i.e. (3.36) for (fi), (fj,n)),

∫

H

I((fi), (fj,n)) ≥ K
∏

1≤i≤m+

(∫

Hi

fi

)ci ∏

m+<j≤m

(
∫

Hj

fj,n

)cj

= K
∏

1≤i≤m+

(∫

Hi

fi

)ci ∏

m+<j≤m

(

ε+

∫

Hj

fj

)cj

,

where the last equality follows from
∫

Hj
fj,n = ε+

∫

Hj
fj. Obviously

∫

H

I((fi), (fj)) ≥
∫

H

I((fi), (fj + εφj,1)),

so proving

lim
n→∞

∫

H

I((fi), (fj,n)) =

∫

H

I((fi), (fj + εφj,1)) (3.40)
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would yield
∫

H

I((fi), (fj)) ≥ K
∏

1≤i≤m+

(∫

Hi

fi

)ci ∏

m+<j≤m

(
∫

Hj

fj + ε

)cj

and in consequence (3.36) by letting ε→ 0.
Since fj,n → fj + εφj,1 a.e., we have I((fi), (fj,n)) → I((fi), (fj + εφj,1)) a.e. In the

view of (3.39) and the fact that fi are bounded with compact support, we can proceed as
in Step 1 to find an integrable function on H which dominates I((fi), (fj,n)) for all n and
conclude with (3.40).

Step 3. Fix fi ∈ F3
i (1 ≤ i ≤ m+) and fj ∈ F3

j (m+ < j ≤ m) where

• F3
i is the class of non-negative integrable functions on Hi,

• F3
j = F2

j .

We approximate fi with fi,n = min(fi, n)1BHi
(0,n) which belong to F2

i . The convergence

as in (3.37) follows from the monotone convergence theorem. We conclude with (3.36) by
using the result of Step 2 for the functions (fi,n), (fj).

4. Geometric Brascamp-Lieb inequality

We study specific non-degenerate situations for which inf J = 1 and some extremizing
functions can be identified. They are related to geometric Brascamp-Lieb inequalities
and the decomposition of the identity (1.1). More precisely, they are characterized by the
following conditions:

BkB
∗
k = IdHk

for k = 1, . . . , m, (4.1)

Q +
m∑

k=1

ckB
∗
kBk = IdH . (4.2)

4.1. Finding infCG J. The aim of this subsection is to prove that if the non-degeneracy
condition (1.4) and the geometric conditions (4.1) and (4.2) hold then the infimum of
J on centered Gaussian functions is equal to 1, and is achieved when for all k, fk(·) =
exp(−π| · |2). The crucial result here is Proposition 4.4 which establishes a concavity
property of a function related to Formula (2.2).

First, let us put forward two useful facts and a lemma.

Fact 4.1 (see e.g. [29, Theorem 7.7.6]). Let A be n× n real symmetric matrix and C be

m×m real symmetric matrix and B be an n ×m real matrix. Let X =

(
A B
B∗ C

)

. If

C > 0 then

(i) X ≥ 0 if and only if A− BC−1B∗ ≥ 0;
(ii) X > 0 if and only if A− BC−1B∗ > 0.

Below In denotes the n× n identity matrix.

Fact 4.2 (Woodbury formula). For an m× n matrix A,

A∗(Im + AA∗)−1A = In − (In + A∗A)−1.

Proof. Direct calculation. �

Lemma 4.3. Let R be a p × n real matrix and S be an r × n real matrix. Consider the
(p+ r) × (p+ r) matrix

M =

(
−Ip +RR∗ RS∗

SR∗ Ir + SS∗

)

.
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(i) M ≥ 0 if and only if R(In + S∗S)−1R∗ ≥ Ip.
(ii) If n = p and R is invertible then M ≥ 0 if and only if R∗R − S∗S ≥ In.

Proof. Applying Fact 4.1(i) we obtain that M ≥ 0 is equivalent to

−Ip +RR∗ −RS∗(Ir + SS∗)−1SR∗ ≥ 0.

Using Fact 4.2 for A = S the above can be rephrased as

−Ip +RR∗ − R
(
In − (In + S∗S)−1

)
R∗ ≥ 0,

which finishes the proof of (i).
If n = p and R is invertible, then M ≥ 0 is also equivalent to

(In + S∗S)−1 ≥ R−1R−∗ = (R∗R)−1

which in turn is equivalent to
In + S∗S ≤ R∗R.

�

In the context of Brascamp-Lieb inequalities the following easy consequence of the
Cauchy-Binet formula is useful, see Proposition 6 of [11]: if d ≤ n and U is an n × d
matrix, then the map

x ∈ Rn 7→ log det
(
U∗diag((exi)i≤n)U

)

is convex. The next property is a counterpart for inverse Brascamp-Lieb inequalities.

Proposition 4.4. Let m ≥ n ≥ 1 and U be an invertible n × n real matrix and V be a
real (m− n) × n matrix. Let

Ω =
{

(x1, . . . , xm) ∈ Rm : U∗diag((exi)i≤n)U − V ∗diag((exj)j>n)V > 0
}
.

Then Ω is convex and the map φ : Ω → R,

φ(x1, . . . , xm) = log det
(
U∗diag((exi)i≤n)U − V ∗diag((exj )j>n)V

)

is concave.

Proof. First we show that Ω is convex. Take any x = (x1, . . . , xm) ∈ Ω, y = (y1, . . . , ym) ∈
Ω and λ ∈ (0, 1). Let X = diag((exk/2)1≤k≤m), Y = diag((eyk/2)1≤k≤m) and X+, X− be
the diagonal blocks of X of size n× n and (m− n) × (m− n) (resp.), similarly Y+, Y−.

From x ∈ Ω it follows that U∗X2
+U > V ∗X2

−V . By invertibility of U ,

In > X−1
+ U−∗V ∗X2

−V U
−1X−1

+ = (X−V U
−1X−1

+ )∗(X−V U
−1X−1

+ ),

which is equivalent to ‖X−V U
−1X−1

+ ‖ < 1 (‖ · ‖ denotes the operator norm). Similarly,
y ∈ S implies ‖Y−V U−1Y −1

+ ‖ < 1.
Put A = Y−V U

−1X−1
+ and B = X−Y

−1
− and C = X+Y

−1
+ . Then we have

‖BA‖ < 1, ‖AC‖ < 1.

Now use [17, Corollary IX.5.3] which asserts that

‖BλAC1−λ‖ ≤ ‖BA‖λ‖AC‖1−λ

to obtain

In > (BλAC1−λ)∗(BλAC1−λ) = Y λ−1
+ X−λ

+ U−∗V ∗X2λ
− Y

2(1−λ)
− V U−1X−λ

+ Y λ−1
+ ,

which is equivalent to

U∗(X2
+)λ(Y 2

+)1−λU > V ∗(X2
−)λ(Y 2

−)1−λV. (4.3)

Since (X2)λ(Y 2)1−λ is the diagonal matrix with the entries eλxk+(1−λ)yk , (4.3) ensures that
λx+ (1 − λ)y ∈ Ω.
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Next we establish concavity of φ on Ω. For x = (x1, . . . , xm) ∈ Rm, set x+ =
(x1, . . . , xn) ∈ Rn and x− = (xn+1, . . . , xm) ∈ Rm−n. Let A : Rm → Rn×n be defined
as

A(x) = U∗ediag(x+)U − V ∗ediag(x−)V.

Then φ(x) = log detA(x) for x ∈ Ω. Since φ is a smooth function, we can analyze the
Hessian of φ. To this end, we will use the following formulas:

∂ log detX = tr(X−1∂X), for X > 0, (4.4)

∂X−1 = −X−1(∂X)X−1, for X > 0, (4.5)

∂A(x) = U∗ediag(x+)diag((∂x)+)U − V ∗ediag(x−)diag((∂x)−)V. (4.6)

Specialization of (4.6) to partial derivatives gives

∂iA(x) = exiU∗eie
∗
iU for i ≤ n, (4.7)

∂jA(x) = −exjV ∗fj−nf
∗
j−nV for j > n, (4.8)

where for i ≤ n, ei is a column matrix with n rows, a coefficient 1 in the i-th row and all
other coefficients equal to 0. Similarly, for ℓ ≤ m− n, fℓ is a column matrix with m− n
rows, with a 1 in its ℓ-th row and zeroes elsewhere. Fix x ∈ Ω. Using (4.4) and (4.7), for
i ≤ n we obtain

∂iφ(x) = tr
(
A−1(x)∂iA(x)

)
= exie∗iUA

−1(x)U∗ei,

Similarly, for j > n,

∂jφ(x) = −exje∗j−nV A
−1(x)V ∗ej−n.

In order to calculate second order partial derivatives, we use (4.5) combined with (4.7)
or (4.8). For i1, i2 ≤ n and i1 6= i2 we have

∂2i1i2φ(x) = −exi1e∗i1UA
−1(x)∂i2A(x)A−1U∗ei1

= −exi1
+xi2e∗i1UA

−1(x)U∗ei2e
∗
i2
UA−1(x)U∗ei1

Denoting

R = ediag(x+)/2UA−1/2(x)

we can write the above second order mixed partial derivative in a more compact way

∂2i1i2φ(x) = −(RR∗)i1i2(RR
∗)i2i1 = −(RR∗)2i1i2 ,

and for i ≤ n we have

∂2iiφ(x) = ∂iφ(x) − (RR∗)2ii = (RR∗)ii − (RR∗)2ii.

Combining the two above formulas we can write that for any i1, i2 ≤ n,

∂2i1i2φ(x) = (RR∗)i1i2(In −RR∗)i1i2 .

If we denote

S = ediag(x−)/2V A−1/2(x),

then by similar calculations we get that for j1, j2 > n,

∂2j1,j2φ(x) = −(SS∗)j1−n,j2−n(Im−n + SS∗)j1−n,j2−n.

Lastly, for i ≤ n and j > n,

∂2ijφ(x) = −exie∗iUA
−1(x)∂jA(x)A−1(x)U∗ei

= exi+xje∗iUA
−1(x)V ∗fj−nf

∗
j−nV A

−1(x)U∗ei

= (RS∗)i,j−n(SR∗)j−n,i = (RS∗)2i,j−n = (SR∗)2j−n,i.
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As a result,

Hess φ(x) = −
(

(RR∗) ◦ (−In +RR∗) −(RS∗) ◦ (RS∗)
−(SR∗) ◦ (SR∗) (SS∗) ◦ (Im−n + SS∗)

)

= −
(

RR∗ −RS∗

−SR∗ SS∗

)

︸ ︷︷ ︸

M

◦
(

−In +RR∗ RS∗

SR∗ Im−n + SS∗

)

︸ ︷︷ ︸

N

,

where A ◦B denotes the Hadamard product (i.e. entry-wise product) of A and B.

Note that M is positive semi-definite. Indeed, M =

(
R
−S

)

(R∗,−S∗) ≥ 0. Now we

argue that also N ≥ 0. From definitions of the matrices A(x) and R and S it follows
immediately that

R∗R − S∗S = In.

Since U is invertible, so does R and Lemma 4.3(ii) implies N ≥ 0.
Now it is enough to apply the Schur product theorem (see e.g. [29, Theorem 7.5.3])

which asserts that if M and N are positive semi-definite then M ◦ N is also positive
semi-definite. Therefore Hess φ(x) is negative semi-definite at any x ∈ Ω and hence φ is
concave. �

The next theorem uses the notation from Subsection 2.2.

Theorem 4.5. Assume the non-degeneracy condition (1.4) holds. Let (A1, . . . , Am) ∈
Λ. Put A = Q +

∑m
k=1 ckB

∗
kAkBk > 0. Then the supremum in (2.3) is attained at

(A1, . . . , Am), i.e.

D =
detA

∏m
i=k(detAk)ck

(4.9)

if and only if

A−1
k − BkA

−1B∗
k = 0 for all k = 1, . . . , m for which ck 6= 0. (4.10)

In particular, if (4.1) and (4.2) hold then D = 1.

Remark 4.6. If (4.10) holds, then Q̃ := A−1/2QA−1/2 and B̃k := A
1/2
k BkA

−1/2 satisfy the
generalized geometric conditions (4.1) and (4.2). This allows to show that up to linear

isomorphisms (by A1/2 on H and A
1/2
k on Hk) the situations where infCG J is achieved

are equivalent to the geometric situations. This follows exactly what happens for direct
Brascamp-Lieb inequalities, see [15].

Proof of Theorem 4.5. Consider the function Φ: Λ → R,

Φ(M1, . . . ,Mm) = log det

(

Q +
m∑

k=1

ckB
∗
kMkBk

)

−
m∑

k=1

ck log detMk.

Note Φ is smooth and supΛ Φ = logD.
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Fix any self-adjoint operators Xk : Hk → Hk (for k = 1, . . . , m). Using Formula (4.4)
the directional derivative of Φ at (A1, . . . , Am) in the direction of (X1, . . . , Xm) is

∂(X1,...,Xm)Φ(A1, . . . , Am)

= lim
t→0

1

t

(
Φ(A1 + tX1, . . . , Am + tXm) − Φ(A1, . . . , Am)

)

= tr

(

A−1
( m∑

k=1

ckB
∗
kXkBk

)
)

−
m∑

k=1

cktr(A−1
k Xk)

=
m∑

k=1

cktr(A
−1B∗

kXkBk) −
m∑

k=1

cktr(A−1
k Xk) =

m∑

k=1

cktr
(
(BkA

−1B∗
k − A−1

k )Xk

)
.

The condition (4.9) implies that the derivative must be 0. Using the fact that a self-adjoint
operator Y is zero if and only if tr(Y X) = 0 for all self-adjoint operators X , (4.10) follows
by considering X1, . . . , Xk−1, Xk+1, . . . , Xm being zero and Xk being arbitrary for each
k = 1, . . . , m such that ck 6= 0.

For the converse implication assume that (4.10) holds. Then the above calculation
shows that the derivative of Φ at (A1, . . . , Am) is zero. In order to conclude that Φ has a
global maximum at this point, we prove below that Φ enjoys a concavity type property
along well chosen curves.

Fix any self-adjoint operators Yk : Hk → Hk (for k = 1, . . . , m) and for any real t put

A(t) =
(
A

1/2
1 exp(tY1)A

1/2
1 , . . . , A1/2

m exp(tYm)A1/2
m

)
. (4.11)

For t ∈ R for which A(t) ∈ Λ consider the function

ϕ(t) = Φ
(
A(t)

)
.

Since Λ is an open set and the function t 7→ A(t) is continuous, the domain of ϕ is an
open subset of R. The domain contains 0 and, as ϕ is smooth, ϕ′(0) vanishes.

For each k = 1, . . . , m take an orthogonal transformation Uk ∈ O(Hk) such that U∗
kYkUk,

when identified with its matrix in the standard basis (eHk
l )l in Hk, is a diagonal matrix.

Denote the diagonal entries by yk1, . . . , yknk
, where nk = dimHk. Then

B∗
kA

1/2
k exp(tYk)A

1/2
k Bk = (UkA

1/2
k Bk)∗diag

(
(etykl)l≤nk

)
UkA

1/2
k Bk. (4.12)

Thanks for the non-degeneracy condition (1.4) we can use the decomposition of the Gauss-
ian kernel exp(−Q) as asserted by Lemma 3.1. Beside the maps B0 : H → H0 and
Bm+1 : H → Hm+1 consider also A0 > 0 on H0 and Am+1 > 0 on Hm+1 such that

Q =
∑

k∈{0,m+1}

ckB
∗
kAkBk,

with c0 = 1 and cm+1 = −1. For the sake of consistency with (4.12), for k ∈ {0, m + 1}
put Yk = 0 (a zero map on Hk), Uk = IdHk

and ykl = 0 for all l ≤ nk = dimHk.
Let

U = (
√
ciUiA

1/2
i Bi)0≤i≤m+ : H → H0 × · · · ×Hm+

V = (
√
−cjUjA

1/2
j Bj)m+<j≤m++1 : H → Hm++1 × · · · ×Hm+1.

Considering the diagonal matrix D+(t) = diag
(
(etyil)0≤i≤m+,l≤ni

)
as an operator acting

on H0 × · · · × Hm+ and the diagonal matrix D−(t) = diag
(
(etyjl)m+<j≤m+1,l≤nj

)
as an

operator acting on Hm++1 × · · · ×Hm+1 we can write

ϕ(t) = log det (U∗D+(t)U − V ∗D−(t)V ) −
m∑

k=1

ck log detAk − t

m∑

k=1

cktrYk,
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where used the formula log det(exp(Y )) = trY for a self-adjoint Y .
It follows from Assertion (3.1) that U is a linear isomorphism. Therefore we can apply

Proposition 4.4, which tells us that the domain of ϕ must be an open interval and that ϕ
is concave. Since ϕ′(0) = 0, ϕ attains its global maximum at t = 0.

Since for any (X1, . . . , Xm) ∈ Λ there exist t and self adjoint operators Yk on Hk

(for k = 1, . . . , m) such that (X1, . . . , Xm) is of the form (4.11) (e.g. take t = 1 and

Yk = log(A
−1/2
k XkA

−1/2
k ), we actually showed that (A1, . . . , Am) is a global maximum of

Φ and thus (4.9) holds. �

4.2. Geometric version of Inverse Brascamp-Lieb inequalities.

Theorem 4.7. For k = 1, . . . , m, let ck ∈ R and let Bk : H → Hk be linear surjective
maps such that BkB

∗
k = IdHk. Let Q : H → H be a symmetric operator. Assume that

Q+

m∑

k=1

ckB
∗
kBk = IdH and dimH ≥ s+(Q) +

∑

k: ck>0

dimHk.

Then for all non-negative integrable functions hk : Hk → [0,+∞] with
∫
hk > 0, it holds

∫

H

exp(−π〈x,Qx〉)
m∏

k=1

hckk (Bkx) dx ≥
m∏

k=1

(∫

Hk

hk

)ck
.

There is equality when for all k and all y ∈ Hk, fk(y) = exp(−π|y|2).
Proof. We may assume without loss of generality that c1, . . . , cm+ > 0 > c1+m+ , . . . , cm.
The above decomposition of the identity implies that

Q +

m+
∑

i=1

ciB
∗
iBi = IdH +

∑

j>m+

|cj|B∗
jBj > 0.

Hence the restriction ofQ to kerB+ =
⋂m+

i=1 kerBi is positive definite. The non-degeneracy
conditions (1.4) are verified and we may apply Theorem 2.9 to conclude inf J = infCG J .

Then Theorem 4.5 ensures that infCG J = D− 1
2 = 1. �

4.3. Relation with the results of Chen, Dafnis and Paouris. The reverse Gaussian
correlation inequality by Chen, Dafnis and Paouris, presented here in Theorem 1.3, turns
out to be the geometric version of our main result. To see this, let us consider a slight
reformulation of the second inequality from Theorem 1.3, which appears explicitly in [25]:

Theorem 4.8 ([25, Theorem 3(ii)]). Let γE stand for the standard Gaussian measure
on a Euclidean space E. Let Bk : H → Hk (for k = 1, . . . , m) be linear maps satisfying
BkB

∗
k = IdHk

. Denote

B = (B1, . . . , Bm) : H → H1 × · · · ×Hm

and let C : H1 × · · · ×Hm → H1 × · · · ×Hm be the block diagonal operator defined as

C = diag
(
c1IdH1, . . . , cmIdHm

)
.

If

BB∗ ≥ C−1 (4.13)

then for any non-negative functions fk ∈ L1(Hk, γHk
) (k = 1, . . . , m),

∫

H

m∏

k=1

f ck
k (Bkx) dγH(x) ≥

m∏

k=1

(∫

Hk

fk dγHk

)ck
,
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By setting hk(x) = fk(
√

2πx)e−π|x|2 we can rewrite the above inequality in terms of
integrals with respect to the Lebesgue measure:

∫

H

exp(−π〈x,Qx〉)
m∏

k=1

hckk (Bkx) dx ≥
m∏

k=1

(∫

Hk

hk

)ck
,

where Q = IdH−∑m
k=1 ckB

∗
kBk. Hence the geometric condition (4.2) is obviously satisfied.

In order to deduce Theorem 4.8 from Theorem 4.7, we need to establish the dimension
condition dimH ≥ s+(Q) +

∑

k: ck>0 dimHk. This is what we do next.
Assume as usual that c1, . . . , cm+ > 0 and cm++1, . . . , cm < 0. Recall that B+ =

(B1, . . . , Bm+) and set B− = (Bm++1, . . . , Bm) and H+ = H1×· · ·×Hm+ , H− = Hm++1×
· · · ×Hm. The condition (4.13) is equivalent to

|C|1/2BB∗|C|1/2 ≥
(

IdH+

−IdH−

)

.

Introducing B̃k = |ck|1/2Bk for k = 1, . . . , m and defining B̃+ and B̃− correspondingly,
the above condition can be rewritten as

(

−IdH+ + B̃+B̃
∗
+ B̃+B̃

∗
−

B̃−B̃
∗
+ IdH− + B̃−B̃

∗
−

)

≥ 0. (4.14)

Since the upper-left corner of the above matrix is semi-definite positive, we know that
B̃+B̃

∗
+ is positive definite and hence B̃+ is surjective, so does B+. Moreover, from

Lemma 4.3(i) we get that (4.14) is equivalent to

B̃+

(
IdH + B̃∗

−B̃−

)−1
B̃∗

+ ≥ IdH+ ,

which in view of the identity Q = IdH − B̃∗
+B̃+ + B̃∗

−B̃− implies

B̃∗
+B̃+

(
B̃∗

+B̃+ +Q
)−1

B̃∗
+B̃+ ≥ B̃∗

+B̃+.

Thanks to the lemma below we conclude that s+(Q) ≤ dim ker B̃+, which coincides with

the dimension condition (2.5) since dim ker B̃+ = dimH − dimH+ due to surjectivity of

B̃+.

Lemma 4.9. Let A,B be real symmetric matrices of size d such that A ≥ 0 and A+B > 0.
If A(A+B)−1A ≥ A then s+(B) ≤ dim kerA.

Proof. Observe that the statement of this lemma is invariant under congruency (i.e. under
replacing A with C∗AC and B with C∗BC). Since A + B > 0 there exists an invertible
matrix such that C∗(A + B)C and C∗AC are both diagonal. By subtraction we get
that C∗BC is diagonal too. Hence, we may assume without loss of generality that A =
diag

(
(ai)

d
i=1

)
and B = diag

(
(bi)

d
i=1

)
with for all i, ai ≥ 0 and ai + bi > 0. The hypothesis

A(A + B)−1A ≥ A reads as a2i /(ai + bi) ≥ ai, which is equivalent to 0 ≥ aibi, for all i.
Since ai ≥ 0, we may deduce that for all i

bi > 0 =⇒ ai = 0.

The matrices being diagonal, this implication means that s+(B) ≤ dim kerA. �

Let us also comment on the Lebesgue version of the inverse Brascamp-Lieb inequal-
ities presented in [25] as Theorem 2(ii). Applying suitable linear transformation in the
Euclidean spaces H and H1, . . . , Hm one can formulate that result as follows:



40 FRANCK BARTHE AND PAWE L WOLFF

Theorem 4.10 ([25, Theorem 2(ii)]). In the settings of Theorem 4.8, if

dimH =

m∑

k=1

ck dimHk (4.15)

and BB∗ ≥ C−1 then for any non-negative integrable functions fk ∈ Hk → [0,∞),
∫

H

m∏

k=1

f ck
k (Bkx) dx ≥

m∏

k=1

(∫

Hk

fk

)ck
. (4.16)

Let us explain how to reprove this results from what we already did, and settle a question
on existence of cases of equalities that was left open in [25]. Recall that BB∗ ≥ C−1 is
equivalent to (4.14) and implies that B+ (equivalently B̃+) is surjective. There are two
possible cases:

Case 1: B+ (equivalently B̃+) is injective. In this case we can apply Lemma 4.3(ii) to get

that (4.14) is equivalent to B̃∗
+B̃+ − B̃∗

−B̃− ≥ IdH or simply
m∑

k=1

ckB
∗
kBk ≥ IdH . (4.17)

Using the BkB
∗
k = IdHk

and (4.15) we see the maps on both sides of the above
inequality have the same trace. Hence there must be equality in (4.17), i.e. the geo-
metric condition (4.2) holds. In particular for the functions fk(x) = exp(−π|x|2)
we get equality in (4.16). The decomposition of the identity also allows to deduce
(4.16) from Theorem 4.13 applied to the functions fk(·) exp(| · |2/2).

Case 2: B+ has a non-trivial kernel. Since B+ is surjective and Q = 0, we are in the
degenerate case 0.1 of the case analysis made in Subsection 2.5, in which the left-
hand side of (4.16) is always infinite and thus (4.16) does not admit extremizers.

5. Dual form of inverse Brascamp-Lieb inequalities

The transportation technique that we have used in Section 3 in order to prove inverse
Brascamp-Lieb inequalities follows the one used by the first named author in [11]. In this
reference, the method is actually proved to establish two inequalities:

• The classical multilinear Brascamp-Lieb inequality, of the form
∫

H

m∏

i=0

fi(Bix)cidx ≤ CBL

m∏

i=0

(∫

Hi

fi

)ci

,

• The “dual” Brascamp-Lieb inequality,
∫ ∗

H

sup
∑

i ciB
∗
i xi=x

m∏

i=0

fi(xi)
cidx ≥ CDBL

m∏

i=0

(∫

Hi

fi

)ci

.

For both inequalities, the optimal constant is obtained by inspecting centered Gaussian
functions. Also the only relevant indices are ci ∈ (0, 1]. Moreover it is possible to introduce
a kernel by fixing c0 = 1 and f0 to be a specific Gaussian functions, and then to consider
the best constant for arbitrary non-negative integrable functions f1, . . . , fm.

Let us reproduce the proof of Theorem 2.9 of the inverse Brascamp Lieb inequality
∫

H

m+1∏

i=0

fi(Bix)cidx ≥ CIBL

m+1∏

i=0

(∫

Hi

fi

)ci

,

but choosing the functions g1, . . . , gm to be arbitrary (we omit here to repeat the regularity
and support assumptions, that can be achieved by approximation. Recall that c0 = 1 =
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−cm+1 and that f0, g0, fm+1, gm+1 are specific Gaussian functions, which model Gaussian
kernels). With our notation,

J(f1, . . . , fm) =

∫

H
e−π〈Q+B0x,B0x〉+π〈Q−Bm+1x,Bm+1x〉

∏m
k=1 fk(Bkx)ckdx

∏m
k=1

(∫

Hk
fk

)ck .

In view of (3.30) we also set (∗ standing for inner integral):

K(g1, . . . , gm) =

∫

∗,H
inf∑ ckB

∗
kyk=y e

−π〈Q−1
+ y0,y0〉+π〈Q−1

− ym+1,ym+1〉
∏m

k=1 gk(yk)ckdy
∏m

k=1

(∫

Hk
gk

)ck .

The above transportation argument, up to (3.30) yields J(f1, . . . , fm) ≥ D−1K(g1, . . . , gm)
for all functions, hence inf J ≥ D−1 supK. However, we have seen in (2.3) that infCG J =

D− 1
2 . The conclusion of the argument after (3.30) can be rephrased as supCG K = D

1
2 .

Therefore √
D = D inf

CG
J ≥ D inf J ≥ supK ≥ sup

CG
K =

√
D.

In particular supK = supCG K. This means that under the non-degeneracy hypothesis
of Theorem 2.9, the best constant in the following inequality (which can be called dual
inverse Brascamp-Lieb) is obtained by inspecting centered Gaussian functions only: for
all g1, . . . , gm,

∫

∗,H

inf
∑

ckB
∗
kyk=y

m+1∏

k=0

gk(yk)
ckdy ≤ CDIBL

m∏

k=1

(∫

Hk

gk

)ck

.

Let us state the simplest examples of these four inequalities: no kernel, two functions, all
maps being the identity: for all f, g : Rn → R+ with

∫
f ∈ (0,+∞):

If λ ∈ (0, 1),
∫

f(x)λg(x)1−λdx ≤
(∫

f

)λ(∫

g

)1−λ

≤
∫ ∗

sup
λa+(1−λ)b=x

f(a)λg(b)1−λ dx

If λ ∈ R \ [0, 1],
∫

f(x)λg(x)1−λdx ≥
(∫

f

)λ(∫

g

)1−λ

≥
∫

∗

inf
λa+(1−λ)b=x

f(a)λg(b)1−λ dx

The reader has recognized the inequalities of Hölder, Prékopa-Leindler and the inverse
Hölder inequality. The fourth inequality seems novel. In this very simple situation, the
inequalities for λ ∈ R \ [0, 1] can be deduced from the ones for λ ∈ (0, 1) by rearranging
the terms.

6. Interpolation

We have proved that the best constant in inverse Brascamp-Lieb inequalities can be
computed using centered Gaussian functions, apart from some degenerate situations. In
the rest of the paper, we address the question of positivity of this optimal constant. More
precisely, given a quadratic form Q and the geometric data B = (Bk)

m
k=1, our aim is to

characterize exponents c = (c)mk=1 for which a non-trivial inverse Brascamp-Lieb inequality
holds, meaning inf JQ,B,c > 0 where

JQ,B,c(f1, . . . , fm) =

∫

H
e−Q(x)

∏m
i=k f

ck
k (Bkx) dx

∏m
k=1

(∫

Hk
fk

)ck .
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The analogous question for direct Brascamp-Lieb inequality was solved in full generality
by Bennett, Carbery, Christ and Tao [15, 16]. They gave a description of the set F of
exponents c for which sup JQ,B,c < +∞. It turns out that this set F is convex, which is
a simple instance of interpolation of Lebesgue spaces. Actually, this may be proved by
mere application of the Cauchy-Schwarz inequality: if t ∈ [0, 1],

∫

e−Q

m∏

k=1

f
tck+(1−t)dk
k ◦Bk ≤

(
∫

e−Q

m∏

k=1

f ck
k ◦Bk

)t(∫

e−Q

m∏

k=1

f dk
k ◦Bk

)1−t

≤ (sup JQ,B,c)
t(sup JQ,B,d)

1−t
m∏

k=1

(∫

Hk

fk

)tck+(1−t)dk

.

In the setting of inverse inequalities, we did not find a simple interpolation argument
as above. Nevertheless the convexity of the set of non-trivial exponents is still valid,
provided one prescribes their signs.

Proposition 6.1. Let 0 ≤ m+ ≤ m, linear surjective maps Bk : H → Hk, 1 ≤ k ≤ m
and a quadratic form Q : H → R. Assume that Q is positive definite on kerB+ and

dimH ≥ s+(Q) +
m+
∑

i=1

dimHi.

Let c, d ∈ (0,+∞)m
+ × (−∞, 0]m−m+

satisfy inf JQ,B,c > 0 and inf JQ,B,d > 0. Then for
any t ∈ [0, 1],

inf JQ,B,tc+(1−t)d > 0.

Proof. We use Theorem 2.9 (the infimum of J can be computed on centered Gaussians)
and the explicit calculations on centered Gaussian functions of Subsection 2.2. Let Q be
a self-adjoint linear map such that for all x ∈ H , Q(x) = π〈x,Qx〉. Let

P = PQ,B,m+ =
{
x ∈ (0,+∞)m

+ × (−∞, 0]m−m+

; inf JQ,B,x > 0
}

denote the set of exponents with prescribed signs, for which a non-trivial inequality holds.
Given c ∈ (0,+∞)m

+ × (−∞, 0]m−m+
, Equation (2.3) ensures that c ∈ P if and only if

sup
Ak>0

det

((

Q+
∑

k ckB
∗
kAkBk

)

+

)

∏

k(detAk)ck
< +∞.

where the supremum is on k-tuples of definite positive self-adjoint operators Ak on Hk

and for a self-adjoint operator A we denote

(A)+ =

{

A if A is positive semi-definite,

0 otherwise.
(6.1)

When ck 6= 0 (which is true at least for k ≤ m+), we make a change of variables
Mk = |ck|Ak (which is still positive definite). Hence c ∈ P is equivalent to

sup
Mk>0

det

((

Q+
∑

i≤m+ B∗
iMiBi −

∑

j>m+; cj 6=0B
∗
jMjBj

)

+

)

∏

k(detMk)ck
< +∞. (6.2)

We claim that the latter is equivalent to

sup
Mk>0

det

((

Q+
∑

i≤m+ B∗
iMiBi −

∑

j>m+ B∗
jMjBj

)

+

)

∏

k(detMk)ck
< +∞. (6.3)
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The fact that (6.2) implies (6.3) is easy: A 7→ (A)+ is a non-decreasing map on self-adjoint
operators and the operator in the determinant of (6.3) differs from the one of (6.2) by
additional negative definite terms.

To show that (6.3) implies (6.2), it is sufficient to let Mj > 0 tend to 0 for all indices
j > n such that cj = 0 (hence (detMj)

cj = 1). This requires continuity properties of the
numerator. Observe that A 7→ (A)+ is not continuous (if A is not positive definite but is
semi-definite positive, then (A)+ = A but for ε > 0, A− εId is not positive semi-definite,
so that limε→0+(A− εId)+ = 0). Fortunately, we may conclude by using the continuity of
A 7→ det(A+) (which is easy to verify: let (An) be self-adjoint operators tending to A. If
A is positive definite, then so is An for n large enough, and continuity of the determinant
allows to conclude. If there is v 6= 0 with 〈Av, v〉 < 0 then this is eventually true for
An and (A)+ = (An)+ = 0. If A is semi-definite positive but not definite positive, then
detA = 0. If An is not positive definite then det(An)+ = 0, while if An is positive definite
then det(An)+ = detAn tends to detA = 0 when n increases).

We are ready to show the convexity of P. Let c, d ∈ P. Using that (6.3) characterizes
membership to P, we know that there exists Kc and Kd in R+ such that for all Mk > 0,

det





(

Q+
∑

i≤m+

B∗
iMiBi −

∑

j>m+

B∗
jMjBj

)

+





is upper bounded by Kc

∏

k(detMk)ck and by Kd

∏

k(detMk)dk . Therefore, for any t ∈
[0, 1],

det





(

Q +
∑

i≤m+

B∗
iMiBi −

∑

j>m+

B∗
jMjBj

)

+



 ≤ Kt
cK

1−t
d

∏

k

(detMk)tck+(1−t)dk .

The above arguments show that this implies that tc+(1−t)d ∈ P. Hence P is convex. �

7. Positivity in the rank one case

We study the positivity of the optimal constant in inverse Brascamp-Lieb inequalities,
when for all k = 1, . . . , m, dimHk = 1, in terms of the coefficients (ck)mk=1. In this case
a very complete solution can be given, based on a rather straightforward argument. For
concreteness, we may identify each Hk with R, and we may find non-zero vectors uk ∈ H
such that Bkx = 〈x, uk〉 for all x ∈ H . As before, we consider exponents with prescribed
signs: given m+ ≤ m the first m+ coefficients are positive, while the other ones are
non-positive. In addition, we work under the hypotheses of Theorem 2.9.

For two integers k, l let [[k, l]] = {k, k + 1, . . . , l} and ]]k, l]] = {k + 1, k + 2, . . . , l}.

7.1. No kernel. We start with the case when Q = 0. In the present setting, the hypothe-
ses of Theorem 2.9 simply mean that the map B+ is one-to-one, that is (u1, . . . , um+) is

a basis of H (which can be identified to Rm+
). For every family (fk)mk=1 of non-negative

integrable functions on R with positive integrals, the functional of interest is

Ju,c(f1, . . . , fm) =

∫

H

∏m
k=1 fk

(
〈x, uk〉

)ckdx
∏m

k=1

(∫

R
fk
)ck ·

Theorem 7.1. Let m ≥ m+ ≥ 1 and u1, . . . um be non-zero vectors in H. Assume also
that (u1, . . . , um+) is a basis of H. For i ≤ m+ < j, we write that i ∼ j if uj has a
non-zero i-th coordinate in the latter basis. Consider the positivity domain

Pm+((uk)mk=1) =
{
c ∈ (0,+∞)m

+ × (−∞, 0]m−m+

; inf Ju,c > 0
}
.
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For any set S ⊆ [[1, m]], denote by 1S the vector in {0, 1}m with i-th coordinate equal to 1
if and only if i ∈ S. Then

Pm+((uk)
m
k=1) = 1[[1,m+]] + Pos

({
1{i} − 1{j}; i ∼ j

})

=
{

c ∈ [1,+∞)m
+ × (−∞, 0]m−m+

;
∑

k

ck = m+ and

for all S ⊂ [[1, m+]],
∑

i∈S

(ci − 1) ≤
∑

j; S∼j

|cj|
}

=
{

c ∈ [1,+∞)m
+ × (−∞, 0]m−m+

;
∑

k

ck = m+ and

for all T ⊂]]m+, m]],
∑

j∈T

|cj| ≤
∑

i; i∼T

(ci − 1)
}

,

where S ∼ j means that there exists i ∈ S with i ∼ j, and i ∼ T means that there exists
j ∈ T with i ∼ j, and Pos(A) is the positive hull of A.

The above description of Pm+((uk)) as a positive hull can be phrased in terms of mass
transportation. The following interpretation will be justified and applied in the course
of the proof: consider a bipartite graph G on the sets I = [[1, m+]] and J =]]m+, m]],
with an edge between i ∈ I and j ∈ J if i ∼ j (i.e. uj has a non-zero coordinate on ui,
when decomposed in the basis (u1, . . . , um+)). Then c ∈ Pm+((uk)) if and only if one can

transport the measure
∑m+

i=1(ci − 1)δi onto
∑m

j=1+m+ |cj|δj by moving the mass along the
graph G.

Proof. For shortness, we write P for the positivity domain Pm+((uk)
m
k=1).

First part: Let us start with c ∈ P and draw consequences of this fact. Since
inf J((uk),(ck)) > 0, in particular the infimum on centered Gaussian functions is positive.
Using the calculations of the previous section, this can be stated as follows: there exists
D < +∞ such that for all λ1, . . . , λm > 0, it holds

D
∏

k

λckk ≥ det

(
(∑

k

ckλk uk ⊗ uk

)

+

)

, (7.1)

where (·)+ is defined as in (6.1). Recall that (u⊗ u)(x) = 〈x, u〉u. Our goal is to extract
information on c from (7.1). Since it is pointless when the map inside the determinant is
non positive definite, we first look for values (λk) for which the inequality has a non-trivial
content.

It is convenient to work with (λk) satisfying the following inequality
∑

i≤m+

ciλi ui ⊗ ui ≥ 2
∑

j>m+

|cj|λj uj ⊗ uj. (7.2)

Indeed, when the above is satisfied and since A ≥ 2B implies A − B ≥ A/2, it follows
that

∑

k

ckλk uk ⊗ uk ≥
1

2

∑

i≤m+

ciλiui ⊗ ui.

The map on the right-hand side is positive definite, therefore we may deduce from (7.1)
that

2m+

D
∏

k

λckk ≥ det
( ∑

i≤m+

ciλi ui ⊗ ui

)

= det(u1, . . . , um+)2
∏

i≤m+

ciλi. (7.3)
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Keeping in mind that (7.2)=⇒ (7.3), let us provide numbers (λk) for which (7.2) is verified.
For j > m+, we denote by αi(j) the i-th coordinate of uj in the basis (u1, . . . , un). Observe
that by definition i ∼ j means αi(j) 6= 0. Hence for all j > m+,

uj =
∑

i; i∼j

αi(j)ui.

For any vector v ∈ H , by Cauchy-Schwarz,

〈v, uj〉2 ≤
(
∑

i; i∼j

αi(j)
2

)(
∑

i; i∼j

〈v, ui〉2
)

.

Set K := maxj

∑

i; i∼j αi(j)
2. We have proved that for j > m+,

uj ⊗ uj ≤ K
∑

i; i∼j

ui ⊗ ui.

Summing upon j > m+ and interchanging summations in j > m+ and in i ≤ m+ yield

2
∑

j>m+

|cj |λjuj ⊗ uj ≤ 2K
∑

i≤m+

(
∑

j; i∼j

|cj|λj
)

ui ⊗ ui. (7.4)

Let q ∈ R+ and let a ∈ Rm satisfy

i ∼ j =⇒ ai ≥ aj . (7.5)

Set K ′ := 2K maxi(
∑

j; i∼j |cj|)/ci, and

λj := eqaj for j > m+ and λi := K ′eqai for i ≤ m+.

Then Inequality (7.4) readily implies that for this choice of λ, (7.2) is verified. As we have
already seen, this implies that (7.3) applies and gives

2m+

D
( ∏

i≤m+

(K ′)ci
)

eq
∑

k akck ≥ det(u1, . . . , um+)2
( ∏

i≤m+

(ciK
′)
)

eq
∑

i≤m+ ai .

For q tending to +∞ the last inequality implies that
∑

k akck ≥ ∑

i≤m+ ai. Recall that
this was proved assuming (7.5) (and that c is in the positivity domain of the functional
J). Summarizing, for c in the positivity domain, and all a ∈ Rm,

(i ∼ j =⇒ ai ≥ aj) =⇒
∑

i≤m+

(ci − 1)ai ≥
∑

j>m+

|cj |aj. (7.6)

Let us draw some consequences of this property of coefficients c in the positivity domain,
by making appropriate choices for a:

• Choosing vectors a with all equal coordinates gives
∑

k ck = m+, known as the
homogeneity condition.

• For any i ∈ [[1, m+]], we may choose a = 1{i} and get ci ≥ 1.
• For T ⊂]]m+, m]], we may define a vector a as follows: aj = 1 for j ∈ T , aj = 0

for j ∈]]m+, m]] \ T , and for i ∈ [[1, m+]], set ai = 1 if i ∼ T and ai = 0 otherwise.
It is plain that i ∼ j =⇒ ai ≥ aj , so this vector is admissible and we can deduce
that

∑

j∈T |cj| ≤
∑

i; i∼T (ci − 1).

• In a symmetric way, for S ⊂ [[1, m+]], we may define an admissible vector a as
follows: for i ≤ m+, ai = −1 if i ∈ S and ai = 0 otherwise; for j > m+,
aj = −1 if S ∼ j and aj = 0 otherwise. Plugging this vector in (7.6) yields
∑

i∈S(ci − 1) ≤∑j; S∼j |cj|.
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Next give a dual interpretation of (7.6) (where the right-hand side inequality is taken
in the form

∑

k ckak ≥ ∑

i≤m+ ai): for every vector a ∈ Rm, if for all i ≤ m+ < j such
that i ∼ j, it holds 〈a, 1{i} − 1{j}〉 ≥ 0, then 〈a, c− 1[[1,m+]]〉 ≥ 0. Equivalently, no linear
hyperplane can separate the vector c− 1[[1,m+]] from the family of vectors (1{i} − 1{j})i∼j.
By the Hahn-Banach theorem, this implies that c − 1[[1,m+]] belongs to the convex cone
generated by the vectors (1{i} − 1{j})i∼j . This concludes the first part of the proof.

Second part: let us show that 1[[1,m+]] +Pos((1{i}−1{j})i∼j) is included in the positivity
domain P of the functional J . Since Proposition 6.1 ensures that P is convex, it is
enough to show that for all i ≤ m+ < j such that i ∼ j, it contains the half-line
1[[1,m+]] + R+(1{i} − 1{j}).

Let us start with observing that 1[[1,m+]] ∈ P. Indeed, for all measurable fk : R → R+,
by the change of variables yi := 〈x, ui〉, i ∈ [[1, m+]] and Fubini’s theorem

∫

H

m+
∏

i=1

fi(〈x, ui〉) dx = | det((ui)
m+

i=1)|−1

∫

Rm+

m+
∏

i=1

fi(yi) dy = | det((ui)
m+

i=1)|−1
m+
∏

i=1

∫

R

fi.

Another basic ingredient, which is actually the simplest instance of the reverse inequalities
we are investigating, is the reverse Hölder inequality: for ε ≥ 0 and f, g non-negative
measurable functions on R,

∫

f 1+εg−ε ≥
(∫

f

)1+ε(∫

g

)−ε

.

We are ready to show that for i0 ∼ j, 1[[1,m+]] + R+(1{i0} − 1{j}) ⊂ P. Let ε ≥ 0. Then,
using that uj =

∑

i αi(j)ui with αi0(j) 6= 0, changing variables by yi := 〈x, ui〉, i ∈ [[1, m+]]
as above

∫

H

( ∏

i∈[[1,m+]]\{i0}

fi(〈x, ui〉)
)

fi0(〈x, ui0〉)1+εfj(〈x, uj〉)−εdx

=

∫

H

( ∏

i∈[[1,m+]]\{i0}

fi(〈x, ui〉)
)

fi0(〈x, ui0〉)1+εfj
( ∑

i≤m+

αi(j)〈x, ui〉
)−ε

dx

= | det((ui)
m+

i=1)|−1

∫

Rm+

( ∏

i∈[[1,m+]]\{i0}

fi(yi)
)

fi0(yi0)
1+εfj

( ∑

i≤m+

αi(j)yi
)−ε

dy.

Applying inverse Hölder in the variable yi0 and using αi0(j) 6= 0, we deduce that for any
(yi)i∈[[1,m+]]\{i0}

∫

R

fi0(yi0)
1+εfj

( ∑

i≤m+

αi(j)yi
)−ε

dyi0 ≥
(∫

fi0

)1+ε(
1

αi0(j)

∫

fj

)−ε

Plugging this estimate in the latter integral over Rn we arrive at
∫

H

( ∏

i∈[[1,m+]]\{i0}

fi(〈x, ui〉)
)

fi0(〈x, ui0〉)1+εfj(〈x, uj〉)−εdx

≥ | det((ui)
m+

i=1)|−1αi0(j)
−ε

∏

i∈[[1,m+]]\{i0}

(∫

fi

)

×
(∫

fi0

)1+ε(∫

fj

)−ε

.

This inequality proves that 1[[1,m+]] + ε(1{i0} − 1{j}) ∈ P.

Third part: Our final task is to show that the descriptions of P is terms of inequalities
coincides with the one in terms of positive hull. This can be done “by hands,” but we
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present a neat argument in terms of transportation plans. We have shown that c ∈ P is
equivalent to c− 1[[1,m+]] ∈ Pos((1{i} − 1{j})i∼j). The latter is equivalent to the existence
of non-negative coefficients (γi,j)i∼j such that c − 1[[1,m+]] =

∑

i∼j γi,j(1{i} − 1{j}), or in
coordinates:

for i ≤ m+, ci − 1 =
∑

j; i∼j

γi,j,

for j > m+, |cj| =
∑

i; i∼j

γi,j.

This can be interpreted as a coupling, or transportation plan between measures: γi,j
represents the amount of mass which is transported from i to j, and such a shipping is
allowed only if i ∼ j. Therefore c belongs to P if and only if it is possible to transport the
measure

∑

i≤m+(ci−1)δi to the measure
∑

j>m+ |cj |δj (or vice-versa), while carrying mass
only between points which are in relation for ∼. This questions of existence of transport
with constraints is well know. Its solution is given in the following classical lemma and
it allows to complete the proof. Observe that the indices i ≤ m+ and j > m+ play
symmetric role for the transportation problem, which leads to two different description
of P in terms of inequalities. �

Lemma 7.2. Let I and J be disjoint finite sets. Let E ⊂ I×J and consider the bipartite
graph (I, J ;E). Let (αi)i∈I and (βj)j∈J be non-negative numbers. Then there exists a
transportation plan along the graph between

∑

i∈I αiδi and
∑

j∈J βiδi if and only if:

∑

i∈I

αi =
∑

j∈J

βj and for all S ⊂ I;
∑

i∈S

αi ≤
∑

j; S∼j

βj . (7.7)

Proof. The condition means that the origin and target measures have same total mass,
and that the mass of any subset of the origin set is not larger than the mass for the target
measure of the set of its neighbors.

Showing that the existence of a transport plan implies the above inequalities is straight-
forward, and actually not the direction we need for the previous theorem, so we omit it.

Assume that (7.7) is verified. Let us build a weighted graph G by enriching (I, J ;E)
as follows: we assign to every existing edge (i ∼ j) a weight w := 1 +

∑

i∈I αi; we also
add a vertex A and connect it to each i ∈ I with a weight αi on the edge; eventually we
add another vertex B and connect to each j ∈ J with a weight βi.

Our goal is to show that the maximal flow between A and B is equal to
∑

i∈I αi (which
means that all the mass from I can be transported to B along the graph, and since
∑

i αi =
∑

j βj all the target mass is reached). By the Max flow-Min cut theorem (see

e.g. [40]), it is enough to show that the minimal weight of a cut separating A and B is
equal to

∑

i∈I αi (with corresponds to cutting all the edges incident to A).
Let us study a minimal cut. First, since the edges between I and J have weight

w >
∑

i∈I αi, they are not in a minimal cut. Such a cut is thus as follows: there are
subsets S ⊂ I and T ⊂ J such that Sc = I \S and T c = J \T are not connected, and one
cuts the edges between A and I and the ones between B and J . The weight of this cut is

∑

i∈S

αi +
∑

j∈T

βj.

Our goal is to bound this weight from below as follows,
∑

i∈S

αi +
∑

j∈T

βj ≥
∑

i∈I

αi.
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This is equivalent, after canceling the terms appearing twice, to
∑

i∈Sc αi ≤ ∑

j∈T βj .

This is indeed true: by hypothesis
∑

i∈Sc αi ≤
∑

j; Sc∼j βj . But since Sc and T c are not

connected, Sc ∼ j implies that j ∈ T , and the latter sum is at most
∑

j∈T βj, as claimed.
�

7.2. With a kernel. Here we consider in addition a kernel e−Q, with the restriction that
s+(Q), s−(Q) ≤ 1. As above we work under the assumptions Q| kerB+ positive definite

and dimH ≥ s+(Q) +
∑m+

i=1 dimHi, for which a convenient equivalent form is given in
Lemma 3.1. In our setting, they can be rephrased as follows (we introduce a small twist
with respect to the decomposition in the lemma, namely a dilation which allows for a
more concrete decomposition): there are vectors u0, um+1 ∈ H such that for all x ∈ H ,

Q(x) = π〈x, u0〉2 − π〈x, um+1〉2.
Note that these two vectors may be equal to zero (e.g. if Q is non-positive, u0 = 0).
Moreover setting B0x = 〈x, u0〉 and Bm+1x = 〈x, um+1〉, we know that kerB+ ⊂ kerBm+1

and that B0+ : H → B0H × B1H × · · · × Bm+H is one to one. The former is equivalent

to
⋂m+

i=1 u
⊥
i ⊂ u⊥m+1, that is

um+1 ∈ vect{u1, . . . , um+}, (7.8)

while the latter means that:

• either u0 = 0 and (u1, . . . , um+) is a basis of H ,
• or (u0, u1, . . . , um+) is a basis of H .

In any of the above cases, we denote by U the corresponding basis of H . Given i ∈ I =
[[0, m+]] and j ∈ J =]]m+, m + 1]], we write i ∼ j if uj, once decomposed in the basis U,
has a positive coordinate on the vector ui of the basis. This relation creates a bipartite
graph G on I and J . Note that m + 1 is an isolated vertex of the graph when um+1 = 0,
and so is 0 when u0 = 0. The functional of interest is

JQ,(uk)
m
k=1,c

(f1, . . . , fm) =

∫

H
e−π〈x,u0〉2+π〈x,um+1〉2

∏m
k=1 fk

(
〈x, uk〉

)ckdx
∏m

k=1

(∫

R
fk
)ck ·

Now comes a description of its positivity domain

Pm+(Q, (uk)mk=1) =
{
c ∈ (0,+∞)m

+ × (−∞, 0]m−m+

; inf JQ,(uk)
m
k=1,c

> 0
}
.

Theorem 7.3. With the above notation and hypotheses,

Pm+(Q, (uk)mk=1) = 1[[1,m+]] + Pos
({

1{i}; i ∼ m+ 1
}
∪
{
− 1{j}; 0 ∼ j

}

∪
{
1{i} − 1{j}; 1 ≤ i ∼ j ≤ m

})

=
{

c ∈ [1,+∞)m
+ × (−∞, 0]m−m+

;

for all S ⊂ [[1, m+]] withS 6∼ m+ 1,
∑

i∈S

(ci − 1) ≤
∑

j; S∼j

|cj|,

and for all T ⊂]]m+, m]] with 0 6∼ T,
∑

j∈T

|cj| ≤
∑

i; i∼T

(ci − 1)
}

,

= ProjR[[1,m]]

(
P1+m+

(
u0, u1, . . . , um, um+1

))
.

Let us comment on this statement before proving it. The notation of the last line, involv-
ing a projection and an extended use of the notation of the positivity domain in the case
of no kernel (if u0 or um+1 is zero, just discard it), means the following: inf JQ,(uk)

m
k=1,c

> 0
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if and only if there exists c0 ≥ 1 and cm+1 ≤ 0 and ε > 0 such that for all fk : R → R+

(k = 0, 1, . . . , m+ 1) integrable and with positive integral:
∫

H

f0(〈x, u0〉)c0fm+1(〈x, um+1〉)cm+1

m∏

k=1

fk
(
〈x, uk〉

)ckdx ≥ ε

m+1∏

k=0

(∫

Hk

fk

)ck

·

Here Hk is the image of H by x 7→ 〈x, uk〉. If for instance u0 = 0 then H0 = {0} and the
term f0(0) =

∫

H0
f0 > 0 appears on both sides, and can be discarded. In other words, the

positivity of the constant in the inequality with kernel can be deduced from an inequality
without kernel, by specifying one or two functions to be Gaussian.

The description of the positivity domain as a positive convex hull can also be interpreted
in terms of a transportation problem: c is in the positivity domain if and only if one can

transport the measure
∑m+

i=1(ci−1)δi to
∑m

j=1+m+ |cj|δj along the bipartite graph G defined
above, with the help of a source at 0 and of a sink at m + 1.

Proof of Theorem 7.3. The strategy is the same as for Theorem 7.1, so we only explain
the changes. We simply write P for the positivity domain. Let us denote by P1, P2 and
P3 the three sets appearing in the claim (in the same order).

Let c ∈ P. By Theorem 2.9 and Gaussian calculations, there exists D > 0 such that
for all λ1, . . . , λm,

D
∏

k

λckk ≥ det

(
(m+1∑

k=0

ckλk uk ⊗ uk

)

+

)

, (7.9)

where we have set c0 = 1, cm+1 = −1, λ0 = λm+1 = 1 in order to include the terms
coming from the kernel. Our first task is to infer that for every a ∈ R[[0,m+1]] satisfying
a0 = am+1 = 0,

(i ∼ j =⇒ ai ≥ aj) =⇒
∑

i≤m+

(ci − 1)ai ≥
∑

j>m+

|cj |aj. (7.10)

To do this we look for numbers bk such that for all q ≥ 0, Inequality (7.2) is verified
for λk = λk(q) = bke

qak . Letting q tend to infinity in the determinant inequality then
yields (7.10). The main changes in the argument come from the “boundary” conditions
λ0(q) = λm+1(q) = 1 which force a0 = am+1 = 0 and b0 = bm+1 = 1. The strategy
is again to choose the λk such that (7.4) holds. Observe that (7.4) is verified when for
all i ≤ m+, 2K

∑

j; i∼j |cj|λj ≤ ciλi. Setting M := max
(
1, 2K(m + 1)

)
, we get that a

sufficient condition to ensure the latter is to have:

i ∼ j =⇒ M |cj |λj ≤ ciλi.

As already mentioned, we look for λk = bke
qak and a verifies i ∼ j =⇒ ai ≥ aj . Hence it

is enough to choose b such that

i ∼ j =⇒M |cj |bj ≤ cibi. (7.11)

Recall that c0b0 = |cm+1|bm+1 = 1 so the latter inequality may fail, but thanks to (7.8)
0 6∼ m + 1. Eventually, if we choose (bk) such that bi = M/ci for i ∈ [[1, m+]] and
|cj|bj ≤ 1/M for j ∈]]m+, m]], then (7.11) is verified. Thus c ∈ P implies (7.10). Using
the Hahn-Banach Theorem, (7.10) means c ∈ P1. So we have proved that P ⊂ P1.

Next we show that P1 ⊂ P2 by drawing consequences of (7.10);

• For any i ∈ [[1, m+]], we may choose a = 1{i} and get ci ≥ 1.
• For T ⊂]]m+, m]] with 0 6∼ T we may define a vector a as follows: aj = 1 for j ∈ T ,
ai = 1 if i ∼ T and ak = 0 otherwise. It readily verifies the hypothesis of (7.10),
so we can deduce that

∑

j∈T |cj| ≤
∑

i; i∼T (ci − 1).
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• In a symmetric way, for S ⊂ [[1, m+]] with S 6∼ m+ 1 we may define an admissible
vector a as follows: ai = −1 is i ∈ S; aj = −1 if S ∼ j and ak = 0 otherwise. This
implies

∑

i∈S(ci − 1) ≤∑j; S∼j |cj|.
Now we prove that P2 ⊂ P3. Let c ∈ P2, and set αi = ci−1 for 1 ≤ i ≤ m+ and βj = |cj|

form+ < j ≤ m. Let us consider the bipartite graph G̃ on I = [[0, m+]] and J =]]m+, m+1]]
obtained by adding to G an edge between 0 and m + 1. Let us choose two numbers α0

and βm+1 such that
∑

i∈I αi =
∑

j∈J βj and α0, βm+1 >
∑

i∈[[1,m+]] αi +
∑

j∈]]m+,m]] βj .

Let us show that it is possible to transport along G̃ the measure
∑

i∈I αiδi to
∑

j∈J βjδj ,
by application of Lemma 7.2. The equality of masses holds by construction. It remains to
prove that for every S ⊂ I,

∑

i∈S αi ≤
∑

j∈N(S) βj , where N(S) denotes the set of vertices

which are connected to S in G̃. Let us consider several cases

• If 0 6∈ S and S 6∼ m+1 then the inequality comes from the hypothesis that c ∈ P2.
• If 0 6∈ S and S ∼ m + 1, the inequality holds simply because the term βm+1 is

larger than
∑m+

i=1 αi ≥
∑

i∈S αi.
• If 0 ∈ S, then by construction m+ 1 ∈ N(S). Our aim is to show that

∑

i∈S αi ≤∑

j∈N(S) βj . Subtracting from the equality of masses condition shows that the

inequality is equivalent to
∑

i∈I\S αi ≥ ∑

j∈J\N(S) βj . Define T := J \ N(S).

Observe that T ⊂]]m+, m]] since m+1 ∈ N(S). Moreover by construction N(T ) ⊂
I \S does not contain 0 as S does. So the fact that c ∈ P2 ensures that

∑

j∈T βj ≤∑

i∈N(T ) αi. Since N(T ) ⊂ I \ S we obtain
∑

i∈I\S αi ≥
∑

j∈J\N(S) βj as needed.

By Lemma 7.2 there is a transport along G̃. It may ship an amount γ of mass between the
vertices 0 and m+ 1. If we remove this amount from the initial mass at these two points,
we get two distributions which admit a transport which does not use the edge between
0 and m + 1. In other words if we set c0 = 1 + α0 − γ ≥ 1 and cm+1 = −(βm+1 − γ) ≤
0, we have shown that there is a transportation plan along G from

∑m+

i=0(ci − 1)δi to
∑m+1

j=1+m+ |cj|δj . According to Theorem 7.1 and its interpretation in terms of transport,

this means that (c0, c1, . . . , cm+1) is in the positivity domain P1+m+(u0, u1, . . . , um+1) of
an inverse Brascamp-Lieb inequality without kernel (but with more functions).

So starting from c = (c1, . . . , cm) ∈ P2 we have expressed it as the projection of a vector
(c0, c1, . . . , cm+1) in P1+m+(u0, u1, . . . , um+1). This concludes the proof of P2 ⊂ P3. The
particular cases when u0 (or um+1) is zero is also treated by this argument because in this
case 0 is isolated in G and thus it is not involved in the transport.

The inclusion P3 ⊂ P is immediate. It c ∈ P3, then by Theorem 7.1 there exists c0 > 0,
cm+1 ≤ 0 and ε > 0 such that for all non-negative integrable functions fk, k = 0, . . . , m+1,

∫

H

f0(〈x, u0〉)c0fm+1(〈x, um+1〉)cm+1

m∏

k=1

fk
(
〈x, uk〉

)ckdx ≥ ε

m+1∏

k=0

(∫

Hk

fk

)ck

·

It remains to choose adequate Gaussian functions f0 and fm+1 so that

f0(〈x, u0〉)c0fm+1(〈x, um+1〉)cm+1 ≤ e−π〈x,u0〉2+π〈x,um+1〉2 = e−Q(x)

to get a non-trivial inequality for the initial functional. It is possible to achieve equality
when cm+1 < 0; we use an inequality in case cm+1 = 0. �

8. Positivity condition in the general case

We turn to a positivity condition in the general case. Let 0 ≤ m+ ≤ m and for
k = 0, . . . , m + 1, let Bk : H → Hk be a surjective linear map. Recall that B+ denotes

the map (B1, . . . , Bm+) : H → H1×· · ·×Hm+ . With this notation, kerB+ =
⋂m+

k=1 kerBk.
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Similarly we define B0+ = (B0, B1, . . . Bm+) : H → H0 × · · · × Hm+ . Recall also the
non-degeneracy conditions (2.4) and (2.5), which we assume from now on.

8.1. Recursive structure of the problem. Any linear subspace V ⊆ H , together with
the quotient space H/V , yields a split of H , i.e. the following sequence is exact

0 −−−→ V
i−−−→ H

π−−−→ H/V −−−→ 0,

where i : V → H is the natural embedding and π : H → H/V is the natural quotient map.
Next, for each k = 0, . . . , m+ 1 denote

Vk = BkV.

We consider a split of Hk induced from the split of H by the map Bk, namely

0 −−−→ Vk
ik−−−→ Hk

πk−−−→ Hk/Vk −−−→ 0,

together with surjective linear maps bk : V → Vk and βk : H/V → Hk/Vk defined such that
the diagram

0 −−−→ V
i−−−→ H

π−−−→ H/V −−−→ 0


ybk



yBk



yβk

0 −−−→ Vk
ik−−−→ Hk

πk−−−→ Hk/Vk −−−→ 0

commutes. In other words, bk is the restriction of Bk to V , while βk is the quotient of Bk

by V , which can be defined explicitly by

βk(x + V ) = Bkx + Vk.

Similarly as for the maps Bk we consider the maps

b+ = (b1, . . . , bm+) : V → V1 × · · · × Vm+ ,

b0+ = (b0, b1, . . . , bm+) : V → V0 × V1 × · · · × Vm+ ,

β+ = (β1, . . . , βm+) : H/V → H1/V1 × · · · × Hm+/Vm+ ,

β0+ = (β0, β1, . . . , βm+) : H/V → H0/V0 × H1/V1 × · · · × Hm+/Vm+ .

In the sequel, the above construction of restriction and quotient of maps will be applied
recursively to V and the maps bk : V → Vk as well as to H/V and the maps βk : H/V → Hk/Vk.

Note a simple fact concerning the kernel of a quotient map.

Lemma 8.1. Let B : H → H ′ be a linear map (not necessarily surjective), V ⊆ H be a
subspace and denote V ′ = BV . Consider the map β : H/V → H′/V ′ defined as a quotient of
B, i.e. β(x+ V ) = Bx+ V ′. Then its kernel verifies

π−1(ker β) = V + kerB, (8.1)

where π : H → H/V is the canonical projection.

Proof. The inclusions V ⊆ π−1(ker β) and kerB ⊆ π−1(ker β) are obvious. For the other
inclusion, if x ∈ π−1(ker β), i.e. Bx ∈ V ′ = BV , then there exists v ∈ V such that
Bx = Bv and hence x = v + (x− v) ∈ V + kerB. �

The following notion will be crucial:

Definition 8.2. Given the maps Bk : H → Hk for k = 0, 1, . . . , m+ and a linear subspace
V ⊂ H , we call the split 0 −−−→ V −−−→ H −−−→ H/V −−−→ 0 admissible for (H,B)
if the map b0+ is a linear isomorphism. For shortness we also say that V is an admissible
subspace, and omit to mention (H,B) when there is no ambiguity.
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The next lemma tells that Condition (3.1) is inherited by subspaces and quotients
induced by admissible splits.

Lemma 8.3. Suppose here that the map B0+ is a linear isomorphism and consider a split
0 −−−→ V −−−→ H −−−→ H/V −−−→ 0. Then the map b0+ is injective and the map
β0+ is surjective. Moreover, the following assertions are equivalent:

(i) the split is admissible (i.e. the map b0+ is a linear isomorphism),
(i’) the map b0+ is surjective,

(ii) dimV =
∑m+

i=0 dimBiV ,
(iii) the map β0+ is a linear isomorphism,
(iii’) the map β0+ is injective,

(iv)
⋂m+

i=0(V + kerBi) = V .

Proof. Since B0+ : H → H0 × · · · × Hm+ is a linear isomorphism, it is clear that its
restriction b0+ : V → V0 × · · · × Vm+ is injective (recall the notation Vk = BkV ). Hence
(i) ⇐⇒ (i’). The fact that B0+ is onto also ensures that its quotient β0+ : H/V →
H0/V0 × · · · × Hm+/Vm+ is surjective. Hence (iii) ⇐⇒ (iii’).

Next we use the basic fact that a linear map between finite dimensional vector spaces
L : X → Y is bijective if and only if dimX = dimY and L is injective (which is also
equivalent to dimX = dim Y and L is surjective). This directly yields (i) ⇐⇒ (ii).

Since B0+ is an isomorphism, it holds dimH =
∑m+

i=0 dimHi. Therefore, by subtraction,
(ii) is equivalent to

dim H/V =
m+
∑

i=0

dim Hi/Vi.

Since β0+ is automatically surjective, we deduce that (ii) ⇐⇒ (iii).
It remains to show that (iii’) ⇐⇒ (iv). To do this, we start with observing that

π−1(ker β0+) = π−1
(m+
⋂

i=0

ker βi

)

=
m+
⋂

i=0

π−1(ker βi) =
m+
⋂

i=0

(V + kerBi),

where the last equality comes from (8.1). Taking the preimage w.r.t. the surjective map π
gives that ker β0+ = {0} is equivalent to π−1(ker β0+) = V . The equivalence (iii’) ⇐⇒ (iv)
follows from the above formula. �

Eventually, we show that Condition (3.2) is inherited by the maps induced by admissible
splits.

Lemma 8.4. Consider a linear subspace V ⊂ H and the corresponding split. Suppose
kerB+ ⊆ kerBm+1. Then

(i) ker b+ ⊆ ker bm+1,
(ii) if b+ is surjective then ker β+ ⊆ ker βm+1.

Proof. (i) This part is obvious since ker b+ = V ∩ kerB+ and similarly for ker bm+1.
(ii) By Lemma 8.1

π−1(ker βm+1) = V + kerBm+1.

Applying Lemma 8.1 once again, this time to the map B := B+ and the subspaces V ⊆ H
and V ′ = B+V ⊆ H ′ := H1 × · · · × Hm+ we obtain that the map β : H/V → H′/V ′ being
the quotient of B satisfies

π−1(ker β) = V + kerB.
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Since b+ is surjective, i.e. V ′ = B1V × · · · × Bm+V , the map β+ coincides with ϕ ◦ β,
where ϕ : H′/V ′ = H1 × · · · ×Hm+/B1V × · · · ×Bm+V → H1/B1V × · · · × Hm+/Bm+V is the natural
isomorphism, hence ker β and ker β+ coincide. Therefore,

π−1(ker β+) = V + kerB+

and using the hypothesis kerB+ ⊆ kerBm+1 we obtain

π−1(ker β+) ⊆ V + kerBm+1 = π−1(ker βm+1).

To conclude, it remains to apply the surjective map π.
�

Corollary 8.5. Suppose the map B0+ is a linear isomorphism and kerB+ ⊆ kerBm+1.
If a split 0 −−−→ V −−−→ H −−−→ H/V −−−→ 0 is admissible then

(i) b0+ is a linear isomorphism and ker b+ ⊆ ker bm+1,
(ii) β0+ is a linear isomorphism and ker β+ ⊆ ker βm+1.

Proof. This is a direct consequence of Lemma 8.4 and of the equivalent forms of the
admissibility property given in Lemma 8.3. �

8.2. Formulation of the characterization result. Recall 0 ≤ m+ ≤ m. In addition
to the linear surjective maps Bk : H → Hk, k = 0, . . . , m + 1, we consider real numbers
c0 = 1, c1, . . . , cm+ > 0, cm++1, . . . , cm ≤ 0 and cm+1 = −1. In this context, for any
positive definite quadratic forms Q+ : H0 → R and Q− : Hm+1 → R, define a functional
JQ+,Q− acting on non-negative integrable functions fk : Hk → R (k = 1, . . . , m) satisfying
∫

Hk
fk > 0:

JQ+,Q−(f1, . . . , fm) =

∫

H

∏m+1
k=0 f

ck
k (Bkx) dx

∏m
k=1

( ∫

Hk
fk

)ck , (8.2)

where

f0 = e−Q+ and fm+1 = e−Q−. (8.3)

Assuming (3.1) and (3.2), the condition defined below turns out to be equivalent to the
positivity of the infimum of JQ+,Q− over all functions f1, . . . , fm.

Definition 8.6. We say that H together with the maps Bk and the exponents ck (k =
0, . . . , m+ 1) satisfies Condition (C) if for every admissible split

0 −−−→ V −−−→ H −−−→ H/V −−−→ 0,

the following two conditions are satisfied:

(i) if bm+1 is a trivial map (i.e. V ⊆ kerBm+1 thus Vm+1 = {0}) then V is a super-
critical subspace of H , i.e.

dimV ≥
m∑

k=1

ck dimVk;

(ii) if β0 is a trivial map (i.e. B0V = B0H thus H0/V0 = {0}) then H/V is a subcritical
quotient of H , i.e.

dim H/V ≤
m∑

k=1

ck dim Hk/Vk.

Later on we will also use a similar notion which we call criticality :
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Definition 8.7. Suppose V ⊂ H induces an admissible split. We say that V is a critical
subspace of H if

bm+1 is trivial and dimV =
m∑

k=1

ck dimVk.

Similarly, we say that H/V is a critical quotient of H if

β0 is trivial and dim H/V =

m∑

k=1

ck dim Hk/Vk.

Theorem 8.8. In the setting described above, suppose that (3.1) and (3.2) hold.

(i) If for some positive definite quadratic forms Q+ : H0 → R and Q− : Hm+1 → R,

inf
f1,...,fm

JQ+,Q−(f1, . . . , fm) > 0

then (H,B, c) satisfies Condition (C).
(ii) If (H,B, c) satisfies Condition (C) then for all positive definite quadratic forms

Q+ and Q−,
inf

f1,...,fm
JQ+,Q−(f1, . . . , fm) > 0.

The above theorem easily implies the characterization of positivity of the functional
J , for which we present now an intrinsic formulation (in terms of Q only, and not of its
decomposition involving B0, Bm+1).

Theorem 8.9. Consider the functional J as defined in (1.3) along with a quadratic
form Q : H → R, surjective linear maps Bk : H → Hk (k = 1, . . . , m) and exponents
c1, . . . , cm+ > 0, cm++1, . . . , cm ≤ 0. Suppose the non-degeneracy condition (2.4) and (2.5)
hold. Then inf J > 0 if and only if for every subspace V ⊆ H such that

dim
(
V ∩ (kerB+)⊥Q

)
=

m+
∑

i=1

dimBiV, (8.4)

the following two implications hold true:

(i) if V ⊆ radQ + kerB+ then

dim V ≥
m∑

k=1

ck dimBkV ;

(ii) if V + (kerB+)⊥Q = H then

dimH − dimV ≤
m∑

k=1

ck(dimHk − dimBkV ).

Remark 8.10. When no kernel is involved (i.e. Q = 0) we recover, in a slightly different
form, the condition of Theorem 1.5 from the introduction. To see the connection, observe
that (i) for V = H and (ii) for V = {0} yield dimH =

∑m
k=1 ck dimHk. Then, it is clear

that the inequalities in (i) and (ii) are equivalent.

Proof of Theorem 8.9. First we construct the maps B0 : H → H0 and Bm+1 : H → Hm+1

as in the proof of the implication (1) =⇒ (2) from Lemma 3.1. Recall from that proof
that

kerB0 = H
⊥Q

0 = (kerB+)⊥Q

and
kerBm+1 = radQ + kerB+.
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Next, we apply Theorem 8.8, and reformulate it in terms of the quadratic form Q as
follows. By (3.1) and Lemma 8.3, a subspace V ⊂ H is admissible if and only if

dimV =

m+
∑

i=0

dimBiV.

The last equation is equivalent to (8.4), thanks to the following relation

dimB0V = dimV − dim(V ∩ kerB0) = dimV − dim
(
V ∩ (kerB+)⊥Q

)
.

Finally note that the following equivalences hold true:

V ⊆ kerBm+1 ⇐⇒ V ⊆ radQ + kerB+,

B0V = B0H ⇐⇒ V + kerB0 = H ⇐⇒ V + (kerB+)⊥Q = H.

�

Eventually, let us note that Lemma 8.3 (i) ⇐⇒ (iv) shows that (8.4) is equivalent to

(
V + (kerB+)⊥Q

)
∩

m+
⋂

i=1

(V + kerBi) = V.

8.3. Useful notation for the proof of Theorem 8.8. Consider any split

0 −−−→ V −−−→ H −−−→ H/V −−−→ 0.

We fix any linear injective maps

j : H/V → H,

jk : Hk/Vk → Hk for k = 0, . . . , m+ 1

such that j (respectively jk) composed with the canonical quotient map H → H/V (resp.
Hk → Hk/Vk) is the identity on H/V (resp. Hk/Vk). For example, j can be chosen so that its
range is the orthogonal complement of V in H (and similarly jk).

For any x ∈ V and y ∈ H/V we write

Bk(x+ j(y)) = Bkx +Bkj(y) = bkx+ ρky + jk(βky),

where

ρky = Bkj(y) − jk(βky) : H/V → Vk.

To see that ρk has range in Vk, compose it with the quotient map πk : Hk → Hk/Vk to see
that πkρk(y) = πkBkj(y) − βkπj(y) = (πkBk − βkπ)(j(y)) = 0, by definition of βk.

Fix any positive definite quadratic forms Q+ on H0 and Q− on Hm+1 and thus fix f0
and fm+1 as in (8.3). Next, let fk : Hk → R (k = 1, 2, . . . , m) be non-negative, integrable
functions with

∫

Hk
fk > 0. By identifying each function fk : Hk → R (for k = 0, 1, . . . , m+

1) with a function fk : Vk × Hk/Vk → R and using Fubini theorem we rewrite (8.2) as

JQ+,Q−(f1, . . . , fm) = C

∫

H/V

∫

V

∏m+1
k=0 f

ck
k (bkx + ρky, βky) dx dy

∏m
k=1

(∫

Hk/Vk

∫

Vk
fk(x, y) dx dy

)ck , (8.5)

where C ∈ (0,+∞) is a constant resulting from changes of variables V × H/V ∋ (x, y) 7→
x + j(y) ∈ H and Vk × Hk/Vk ∋ (x, y) 7→ x + jk(y) ∈ Hk (for k = 1, . . . , m). (If j and jk
are chosen according to Euclidean structures of H and Hk as in the example mentioned
above, then C = 1. However, in what follows the exact value of C has no importance).
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8.4. Necessity of Condition (C). Here we prove the first assertion of Theorem 8.8.

Proof of Theorem 8.8, part (i). Recall the discussion from Section 8.3. Assume that the
subspace V is admissible and that we choose the functions f1, . . . , fm+ so that they are
bounded of compact support and the functions fm++1, . . . , fm which are strictly positive
with polynomial decay at infinity.

First consider the case V ⊆ kerBm+1 (i.e. Vm+1 = {0} and thus bm+1 and ρm+1 are
trivial). We aim at showing that V is a supercritical subspace of H . To this end, for any
R ∈ [1,∞), set

f
(R)
k (x, y) = fk(x/R, y) for k = 1, . . . , m.

By the hypothesis, for all R ≥ 1, JQ+,Q−(f
(R)
1 , . . . , f

(R)
m ) is uniformly bounded from below

by a positive constant. On the other hand, using (8.5) for (f
(R)
1 , . . . , f

(R)
m ) and rescaling

the variables of integration x in the numerator and the denominator (i.e. replacing x with
Rx) gives

JQ+,Q−(f
(R)
1 , . . . , f (R)

m ) = C × RdimV−
∑m

k=1 ck dimVk

×
∫

H/V

∫

V
f0(Rb0x + ρ0y, β0y)f−1

m+1(0, βm+1y)
∏m

k=1 f
ck
k (bkx+ 1

R
ρky, βky) dx dy

∏m
k=1

(∫

Hk/Vk

∫

Vk
fk(x, y) dx dy

)ck .
(8.6)

Now it is enough to show that the double integral in the numerator is uniformly bounded
from above as R → ∞. Doing so, the positive lower bound on the l.h.s. of (8.6) im-
plies that RdimV−

∑m
k=1 ck dimVk is bounded away from 0 as R → ∞ and thus dimV −

∑m
k=1 ck dim Vk ≥ 0.
Due to our choice of the functions fk, for k = 1, . . . , m+,

suppfk ⊆ Fk ×Gk,

for some compact, star-shaped sets Fk ⊆ Vk and Gk ⊆ Hk/Vk (by star-shaped we mean
that if x is in a set then so does λx for any λ ∈ [0, 1]).

Thanks to the assumption (3.1) and the admissibility of the split of H , the maps b0+
and β0+ are linear isomorphisms (see Lemma 8.3).

Observe that we can restrict the domain of the outer integral in the numerator of (8.6)
to the set

G := β−1
+ (G1 × · · · ×Gm+) ⊆ H/V ,

because outside G the terms f ck
k with k ∈ {1, . . . , m+} make the integrand vanish. Al-

though G is not necessarily compact, this allows us to bound the exponentially large term
f−1
m+1 in (8.6). Indeed, the first assertion of Corollary 8.5(ii) is

ker β+ ⊆ ker βm+1,

hence by Lemma 3.3, βm+1(G) is a compact subset of Hm+1/Vm+1 and thus we can bound
from above the integrand by replacing f−1

m+1 with

σ := sup
{0}×βm+1(G)

f−1
m+1 <∞.

In order to deal with the terms f ck
k for k ∈ {m+ + 1, . . . , m} that grow (at most)

polynomially at infinity, we take advantage of the exponential decay of f0. In order to
use a compactness argument we decompose f0 into slices. Namely, note that for some
compact, star-shaped sets F0 ⊆ V0, G0 ⊆ H0/V0, which depend on Q+ and the map j0 only,
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we have

f0(x0, y0) =

∫ 1

0

1{(x,y)∈V0×H0/V0 : exp(−Q+(x+j0y))≥u}(x0, y0) du

=

∫ ∞

0

te−t2/21{(x,y)∈V0×H0/V0 : exp(−Q+(x+j0y))≥exp(−t2/2)}(x0, y0) dt

=

∫ ∞

0

te−t2/21{(x,y)∈V0×H0/V0 : Q+(x+j0y)≤t2/2}(x0, y0) dt

≤
∫ ∞

0

te−t2/21tF0(x0)1tG0(y0) dt

for all (x0, y0) ∈ V0 × H0/V0. Using Fubini, we can thus bound the numerator of (8.6) by

σ

∫ ∞

0

te−t2/2

∫

H/V

∫

V

1tF0(Rb0x+ ρ0y)1tG0(β0y)

m∏

k=1

f ck
k

(

bkx +
1

R
ρky, βky

)

dx dy dt. (8.7)

Now we argue that for some polynomials p and q, for any t > 0 and all R ≥ 1, the
integrand of the double integral w.r.t x and y in (8.7) is bounded from above by q(t) and
is supported in a compact set of measure at most p(t).

To this end, fix any R ≥ 1 and t > 0. The integrand in question vanishes if y is outside
the set β−1

0+(tG0 ×G1 × · · · ×Gm+). Clearly we have

β−1
0+(tG0 ×G1 × · · · ×Gm+) ⊆ (t+ 1)β−1

0+(G0 ×G1 × · · · ×Gm+).

Since β0+ is an isomorphism, the set

G = β−1
0+(G0 ×G1 × · · · ×Gm+)

is a compact (and star-shaped) subset of H/V . Thus we can restrict the domain of inte-
gration w.r.t. y to (t + 1)G.

Next, fix y ∈ (t+ 1)G and R ≥ 1. Take any x ∈ V such that

Rb0x + ρ0y ∈ tF0,

bkx+
1

R
ρky ∈ Fk for all k = 1, . . . , m+

(otherwise the integrand is zero). Then we have

b0x ∈ t

R
F0 +

(

− 1

R
ρ0((t+ 1)G)

)

⊆ (t+ 1)(F0 + ρ0(−G)),

bkx ∈ Fk +
(

− 1

R
ρk((t+ 1)G)

)

⊆ (t + 1)(Fk + ρk(−G)) for k = 1, . . . , m+,

where the inclusion follows from the fact that F0, F1, . . . , Fm+ and −G are star-shaped.
Consider compact sets

F̃k = Fk + ρk(−G) ⊆ Vk, for k = 0, 1, . . . , m+.

Put

F = b−1
0+(F̃0 × F̃1 × · · · × F̃m+).

Clearly x ∈ (t + 1)F for all y ∈ (t + 1)G and all R ≥ 1 and hence one can restrict the
integral w.r.t. x to the domain (t+1)F which is compact, because b0+ is an isomorphism.
Therefore we have shown that for all R ≥ 1, the domain of the double integral in (8.7)
can be restricted to the compact set (t+ 1)(F×G). Moreover, the measure of this set is
a polynomial function of t.
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Now we proceed with bounding the integrand inside (t + 1)(F × G). The functions
f1, . . . , fm+ are bounded, so we may focus on the terms involving fk for k ∈ {m++1, . . .m}.
Set

Fk = bk(F) + ρk(G),

Gk = βk(G)
(8.8)

for k = m+ + 1, . . . , m. Then for all (x, y) ∈ (t + 1)(F × G), all R ≥ 1 and k =
m+ + 1, . . . , m,

bkx +
1

R
ρky ∈ bk

(
(t + 1)F

)
+

1

R
ρk
(
(t + 1)G

)
⊆ (t+ 1)Fk

since G is star-shaped, and, of course,

βky ∈ (t + 1)Gk.

Therefore the integrand can be bounded from above by

m+
∏

k=1

(

sup
Hk

fk

)ck ×
m∏

k=m++1

(

sup
(t+1)(Fk×Gk)

f−1
k

)−ck
,

where the first product is finite by boundedness of the functions f1, . . . , fm+ and the
second product is bounded by a polynomial in t due to polynomial decay of the functions
fm++1, . . . , fm. Consequently, (8.6) is upper bounded independently of R, as claimed.

Now we pass to the case when B0V = B0H (i.e. H0/V0 = {0} and thus β0 is trivial).
Using a similar reasoning to the one used in the first case, we will show that H/V is a
subcritical quotient of H . For any r ∈ (0, 1] set

f
(r)
k (x, y) = fk(x, y/r) for k = 1, . . . , m.

We apply (8.5) for (f
(r)
1 , . . . , f

(r)
m ) and then we rescale the variables y in the numerator

and the denominator (i.e. we replace y with ry in all integrals with respect to y). We get

JQ+,Q−(f
(r)
1 , . . . , f (r)

m ) = C × rdim
H/V−

∑m
k=1 ck dimHk/Vk

×
∫

H/V

∫

V
f0(b0x + rρ0y, 0)f−1

m+1(bm+1x+ rρm+1y, rβm+1y)
∏m

k=1 f
ck
k (bkx + rρky, βky) dx dy

∏m
k=1

(∫

Hk/Vk

∫

Vk
fk(x, y) dx dy

)ck .

(8.9)

As before, it is enough to show that the double integral in the numerator is uniformly
bounded from above as r → 0.

First we deal with the term f−1
m+1. The map β0+ is a linear isomorphism, and since the

map β0 is trivial, also the map β+ is an isomorphism. Therefore, the set

G := β−1
+ (G1 × · · · ×Gm+) ⊆ H/V

to which we can restrict the integral w.r.t. y in (8.9) is compact (and star-shaped). Now,
fix any y ∈ G and take any x ∈ V such that bkx+ rρky ∈ Fk for all k = 1, . . . , m+. Then
we have

bkx ∈ Fk +
(
− rρk(G)

)
⊆ Fk + ρk(−G) := F̃k

and the sets F̃k ⊆ Vk are compact and star-shaped. Put

F = b−1
+ (F̃1 × · · · × F̃m+) ⊆ V.
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The set F is not necessarily compact, but the first assertion of Corollary 8.5 says that
ker b+ ⊆ ker bm+1 and hence by Lemma 3.3, bm+1(F ) is a compact subset of Vm+1. There-
fore for all r ∈ (0, 1] we have the bound

f−1
m+1(bm+1x+ rρm+1y, rβm+1y) ≤ sup

(bm+1(F )+ρm+1(G))×G

f−1
m+1 <∞.

In order to deal with the terms f ck
k for k ∈ {m+ + 1, . . . , m} we decompose f0(·, 0) into

slices. Namely, defining the compact, star-shaped set F0 = {x ∈ V0 : Q+(x) ≤ 1/2}, we
have that for all x0 ∈ V0 = H0,

f0(x0, 0) =

∫ 1

0

1{x∈V0 : exp(−Q+(x))≥u}(x0) du

=

∫ ∞

0

te−t2/21{x∈V0 : exp(−Q+(x))≥exp(−t2/2)}(x0) dt

=

∫ ∞

0

te−t2/21tF0(x0) dt.

Using Fubini, we can thus bound the numerator of (8.9) by a constant (our bound on the
terms involving f−1

m+1) times

∫ ∞

0

te−t2/2

∫

H/V

∫

V

1tF0(b0x + rρ0y)
m∏

k=1

f ck
k (bkx+ rρky, βky) dx dy dt. (8.10)

As discussed above, the domain of the integration w.r.t. y can be restricted to the
compact set G ⊆ H/V . Now fix t > 0, y ∈ G and r ∈ (0, 1]. Suppose that x ∈ V is such
that the integrand in (8.10) does not vanish. Then we must have

b0x + rρ0y ∈ tF0,

bkx + rρky ∈ Fk for k = 1, . . . , m+,

which implies

b0x ∈ tF0 +
(
− rρ0(G)

)
⊆ (t+ 1)(F0 + ρ0(−G)) =: (t+ 1)F̃0,

bkx ∈ Fk +
(
− rρk(G)

)
⊆ Fk + ρk(−G) =: F̃k for k = 1, . . . , m+.

Set

F = b−1
0+(F̃0 × F̃1 × · · · × F̃m+).

Clearly F is a compact (b0+ is an isomorphism), star-shaped subset of V and x ∈ (t+1)F.
Finally define the sets Fk and Gk for k = m++1, . . . , m as in (8.8). Then for all (x, y) ∈

((t+ 1)F)×G and all r ∈ (0, 1], the arguments of the functions fk for k = m+ + 1, . . . , m
are in

(
(t+ 1)Fk

)
×Gk and therefore the integrand can be bounded from above by

m+
∏

k=1

(

sup
Hk

fk

)ck
×

m∏

k=m++1

(

sup
((t+1)Fk)×Gk

f−1
k

)−ck
.

We conclude as in the first case. �

8.5. Sufficiency of Condition (C). The inductive proof of the second part of Theo-
rem 8.8 relies on the following lemma. It shows that under (3.1), if one of the components
of an admissible split (the subspace or the quotient) is critical, then Condition (C) is
inherited by both components of the split.
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Lemma 8.11 (Inheritance of Condition (C) through a critical split). Suppose H together
with the maps Bk and the exponents ck satisfy Condition (C) and

0 −−−→ V −−−→ H −−−→ H/V −−−→ 0

is an admissible split. If V is a critical subspace of H or H/V is a critical quotient of H
then V with the maps bk and the exponents ck, as well as H/V with the maps βk and the
exponents ck satisfy Condition (C).

Proof. First we present the scheme of the proof:

Part I. We suppose that V is a critical subspace of H .
• Condition (C) for V :

– Subspace of V : supercriticality of a subspace U of V is inherited directly
from supercriticality of U as a subspace of H .

– Quotient of V : subcriticality of the quotient V/U of V follows from
criticality of V in H and supercriticality of U in V just proved.

• Condition (C) for H/V :
– Subspace of H/V : supercriticality of a subspace U of H/V follows from

supercriticality of a subspace Ũ = π−1(U) (where π : H → H/V is a
natural quotient map) in H and criticality of V in H .

– Quotient of H/V : subcriticality of the quotient H/V/U of H/V follows from
subcriticality of the quotient H/Ũ of H .

Part II. We suppose that H/V is a critical quotient of H . After dualizing, i.e. interchanging
subspaces with quotient and supercriticality with subcriticality, the arguments are
analogous to the ones from Part I.

• Condition (C) for H/V :
– Quotient of H/V : subcriticality of a quotient H/V/U of H/V is inherited di-

rectly from subcriticality of H/Ũ as a quotient of H , where Ũ = π−1(U).
– Subspace of H/V : supercriticality of the subspace U of H/V follows from

criticality of H/V in H and subcriticality of H/V/U in H/V just proved.
• Condition (C) for V :

– Quotient of V : subcriticality of a quotient V/U of V follows from sub-
criticality of a quotient H/U in H and criticality of H/V in H .

– Subspace of V : supercriticality of the subspace U of V follows from
supercriticality of the subspace U of H .

Next we give the arguments in details. In the first part we assume that V is a critical
subspace: V ⊆ kerBm+1, and thus the map bm+1 is trivial, and the following equality
holds

dimV =

m∑

k=1

ck dimBkV. (8.11)

Let us check Condition (C) for V equipped with the maps (bk) and the coefficients (ck) (for
shortness, we will write (V, b), since the coefficients c are the same for all sub-structures).

Suppose that
0 −−−→ U −−−→ V −−−→ V/U −−−→ 0

is an admissible split of (V, b). Since U ⊆ V = ker bm+1, we must check supercriticality of
U as a subspace of (V, b). The admissible split of (V, b) induced by U obviously leads to
an admissible split of (H,B). Moreover, U ⊆ V ⊆ kerBm+1, so that Condition (C) for
(H,B) yields

dimU ≥
m∑

k=1

ck dimBkU.
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Using BiU = biU , we conclude that U is a supercritical subspace of (V, b).
For the same U , V/U is a subcritical quotient of (V, b) (even regardless whether b0(U) =

b0(V ) or not) because V is a critical subspace of H and U is a supercritical subspace of
V (subtract the inequality dimU ≥∑m

k=1 ck dim bkU from (8.11)).

Now we check Condition (C) for (H/V , β). Suppose

0 −−−→ U −−−→ H/V −−−→ H/V/U −−−→ 0

is an admissible split of (H/V , β), which by Lemma 8.3 (i) ⇐⇒ (iv) means that

m+
⋂

i=0

(U + ker βi) = U.

Taking the preimage w.r.t. π : H → H/V we get

m+
⋂

i=0

(π−1(U) + V + kerBi) = π−1(U),

where we used (8.1) and the relation π−1(A + B) = π−1(A) + π−1(B) + ker π which is

valid for any linear surjective map. Denote Ũ = π−1(U). Of course Ũ contains V , hence
the above assertion means that

0 −−−→ Ũ −−−→ H −−−→ H/Ũ −−−→ 0

is an admissible split of (H,B) (again use Lemma 8.3 (i) ⇐⇒ (iv)).
We need to check supercriticality of U as a subspace of H/V whenever U ⊆ ker βm+1.

By criticality of V in H we have V ⊆ kerBm+1, which combined with the assertion
U ⊆ ker βm+1 and (8.1) yields

Ũ = π−1(U) ⊆ π−1(ker βm+1) = V + kerBm+1 = kerBm+1.

Applying Condition (C) for (H,B), we know that:

dim Ũ ≥
m∑

k=1

ck dimBkŨ .

If we subtract from the last inequality the relationship (8.11) corresponding to criticality
of V in (H,B), we get the supercriticality of U in (H/V , β). Indeed, up to isomorphism

U ≈ Ũ/V and βkU ≈ BkŨ/BkV , (8.12)

as one readily checks by considering the ranges and kernels of the maps π : Ũ → U and
φ : BkŨ → BkH/BkV defined by φ(x) = x +BkV .

Now we check subcriticality of the quotient H/V/U of H/V whenever β0(U) = β0(H/V ), i.e.
U + ker β0 = H/V . Notice that using (8.1), we have

H = π−1(U + ker β0) = Ũ + V + kerB0 = Ũ + kerB0

(the last equality follows from the fact that V ⊆ Ũ), that is B0(Ũ) = B0(H). Therefore,
by Condition (C) for (H,B), the quotient H/Ũ must be subcritical in (H,B), that is

dim H/Ũ ≤
m∑

k=1

ck dim BkH/BkŨ.

Using again (8.12) together with the relation βkH/V = BkH/BkV , we may rewrite the above
inequality as

dim H/V/U ≤
m∑

k=1

ck dim βkH/V/βkU.
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In other words, H/V/U is a subcritical quotient of (H/V , β).

In the second part, suppose H/V is a critical quotient of (H,B). More specifically,
B0(V ) = B0(H), i.e. β0 is trivial, and

dim H/V =
m∑

k=1

ck dim BkH/BkV . (8.13)

The reasoning below is analogous to the first part after interchanging subspaces with
quotient and supercriticality with subcriticality.

We check Condition (C) for (H/V , β). Consider a split of H/V via its subspace U and
suppose this split is admissible. We need to check subcriticality of H/V/U in H/V whatever
U is, because β0 is trivial and so β0(U) = β0(H/V ) always holds. To this end, consider a
split of H via Ũ = π−1(U), which is admissible, as we already showed. Moreover,

B0(Ũ) ⊇ B0(V ) = B0(H),

so we can use subcriticality of H/Ũ in (H,B). From the latter, subcriticality of H/V/U in
(H/V , β) follows, as we have already explained.

For the same U , U is a supercritical subspace of H/V (regardless whether U ⊆ ker βm+1

or not), because H/V is a critical quotient of H and H/V/U is a subcriticial quotient of H/V
(write the corresponding equality and inequality relations and subtract them).

Next, we check Condition (C) for (V, b). Consider a split of V via a subspace U of V
which is admissible. We use an induced split of H via U , which is also admissible.

We need to check subcriticality of V/U in V whenever b0(U) = b0(V ). Since we know
that

B0(U) = b0(U) = b0(V ) = B0(V ) = B0(H)

(the last equality is due to criticality of H/V in H), we can use subcriticality of H/U in H .
Writing the corresponding inequality for dimensions and subtracting from it the equality
(8.11) related to criticality of H/V in (H,B), we get subcriticality of V/U in (V, b).

Finally we check supercriticality of U in (V, b) whenever U ⊆ ker bm+1. Since the latter
implies U ⊆ kerBm+1, we can invoke the fact that U is a supercritical subspace of H to
conclude. �

Our next result is about tensorization through a split. We say that (H,B, c) =
(
H, (Bk)m+1

k=0 , (ck)mk=1

)
admits the strong positivity property if for every positive definite

quadratic forms Q+ on H0 and Q− on Hm+1,

inf
(f1,...,fm)

∫

H
e−Q+(B0x)+Q−(Bm+1x)

∏m
k=1 f

ck
k (Bkx) dx

∏m
k=1

(∫

Hk
fk

)ck > 0.

Lemma 8.12 (Tensorization). Assume that (H,B) satisfies (3.1) and (3.2). Let V be a
linear subspace of H which induces an admissible split.
If (V, b, c) and (H/V , β, c) have the strong positivity property, then (H,B, c) has it too.

Proof. Fix any non-negative, integrable functions fk : Hk → R (k = 1, . . . , m) satisfying
∫

Hk
fk > 0. Set f0 = e−Q+ , fm+1 = e−Q−, c0 = 1 and cm+1 = −1. Our goal is to

bound from below the quantity JQ+,Q−(f1, . . . , fm) defined in (8.2) by a positive constant
(not depending on (f1, . . . , fm)). Recall the discussion from Section 8.3 and in particular
Formula (8.5). Our aim is to bound from below the quantity

I :=

∫

H/V

∫

V

m+1∏

k=0

f ck
k (bkx+ ρky, βky) dx dy, (8.14)
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by application of an inequality of inverse Brascamp-Lieb type on V and on H/V .
By Corollary 8.5, b0+ = (b0, b+) is surjective and ker b+ ⊆ ker bm+1. Hence, by

Lemma 2.6
V = ker b0 + ker b+ ⊆ ker b0 + ker bm+1 ⊆ V.

Using Lemma 2.6 once again, we obtain that (b0, bm+1) is surjective. This allows us to
remove the cross-terms from the Gaussian kernel: indeed for every y ∈ H/V , there exists
vy ∈ V such that b0vy = ρ0y and bm+1vy = ρm+1y. Using the translation invariance of
the Lebesgue measure on V , we apply the change of variable V ∋ x 7→ x− vy ∈ V to the
inner integral of (8.14), and get that it is equal to

∫

H/V

∫

V

f0(b0x, β0y)f−1
m+1(bm+1x, βm+1y)

m∏

k=1

f ck
k (bkx− bkvy + ρky, βky) dx dy. (8.15)

Next, we bound from below the Gaussian kernel by a product kernel. Since f0 =
exp(−Q+) where Q+ is viewed as a quadratic form on V0 × H0/V0, we can bound f0
from below by

f0(x0, y0) ≥ f0,V (x0)f0,H/V (y0),

where f0,V = exp(−Q+,V ) and f0,H/V = exp(−Q+,H/V ) for some positive definite quadratic
forms Q+,V : V0 → R and Q+,H0/V0

: H/V → R.
For fm+1 we use a reverse bound, namely for some positive definite quadratic forms

Q−,V : Vm+1 → R and Q−,Hm+1/Vm+1
: H/V → R we have

f−1
m+1(x0, y0) ≥ f−1

m+1,V (x0)f
−1
m+1,H/V (y0),

where fm+1,V = exp(−Q−,V ) and fm+1,H/V = exp(−Q−,H/V ). Observe that we have used
here the fact that Q− is positive definite. We get that I from (8.14) is at least
∫

H/V

f0,H/V (β0y)f−1
m+1,H/V (βm+1y)

∫

V

f0,V (b0x)f−1
m+1,V (bm+1x)

m∏

k=1

f ck
k (bkx−bkvy+ρky, βky) dx dy.

By the strong positivity property for (V, b, c) there exists a constant CV > 0 such that for
all y ∈ H/V ,

∫

V

f0,V (b0x)f−1
m+1,V (bm+1x)

m∏

k=1

f ck
k (bkx− bkvy + ρky, βky) dx

≥ CV

m∏

k=1

(∫

Vk

fk(· − bkvy + ρky, βky)

)ck

= CV

m∏

k=1

(∫

Vk

fk(·, βky)

)ck

,

where the equality follows from translation invariance of the Lebesgue measure on each
Vk. Denoting fk,H/V (y) :=

∫

Vk
fk(·, y) for y ∈ Hk/Vk (k = 1, . . . , m), we obtain

I ≥ CV

∫

H/V

f0,H/V (β0y)f−1
m+1,H/V (βm+1y)

m∏

k=1

f ck
k,H/V (βky) dy. (8.16)

Now it remains to apply the strong positivity property for (H/V , β, c) and the functions
fk,H/V in order to get

I ≥ CVCH/V

m∏

k=1

(∫

Hk/Vk

fk,H/V

)ck

= CVCH/V

m∏

k=1

(∫

Hk/Vk

∫

Vk

fk(x, y) dx dy

)ck

for some constant CH/V > 0 (which depends on Q+,H/V and Q−,H/V ). �
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Proposition 8.13. Let 0 ≤ m+ ≤ m be integers and consider surjective maps Bk : H →
Hk for k = 0, 1, . . . , m + 1 and real numbers ck such that ck > 0 for k = 1, . . . , m+ and
ck ≤ 0 for k = m+ + 1, . . . , m. Assume that Conditions (3.1) and (C) hold. Then

• for all i = 1, . . . , m+, dimHi > 0 =⇒ ci ≥ 1
• if H is a critical subspace, then B0 = Bm+1 = 0.

Proof. Fix 1 ≤ i ≤ m+ such that dimHi > 0, i.e. kerBi 6= H . Consider V = kerBi and
a related split of H by V . Since clearly

m+
⋂

k=0

(V + kerBk) = V,

by Lemma 8.3, the split is admissible. Moreover, since B0+ is surjective, the map (B0, Bi)
is surjective too, hence Lemma 2.6 yields

H = kerB0 + kerBi = kerB0 + V,

i.e. B0V = B0H . Therefore we can use the fact that the quotient H/V of H is subcritical,
from which it follows that

dim H/V ≤
m∑

k=1

ck dim Hk/Vk ≤
m+
∑

k=1

ck dim Hk/Vk. (8.17)

For all 1 ≤ k ≤ m+ with k 6= i, the map (Bi, Bk) is surjective, hence again by Lemma 2.6,

H = kerBi + kerBk = V + kerBk,

which means that BkV = BkH , i.e. Hk/Vk = {0}. Thus (8.17) boils down to

dim H/V ≤ ci dim Hi/Vi.

Recall that Vi = BiV is reduced to {0} since by definition V = kerBi. Moreover

dim H/V = dimH − dim kerBi = dimBiH = dimHi,

so the last inequality can be rewritten as dimHi ≤ ci dimHi. Therefore ci ≥ 1 if dimHi >
0

The proof of the second item follows the same lines. Firstly, H is admissible by hy-
pothesis. Since it is assumed to be a critical subspace, we know that H ⊂ kerBm+1 hence
Bm+1 = 0, and that

dimH =
m∑

k=1

ck dimBkH.

We set V = kerB0. As above, we can check that V is admissible. Since V ⊂ H =
kerBm+1, it is a supercritical subspace thanks to Condition (C). Therefore, using the
above dimension equality, we get after subtraction

dim H/V ≤
m∑

k=1

ck dim BkH/BkV ≤
m+
∑

k=1

ck dim BkH/BkV (8.18)

again. Since B0+ is a bijection and V is admissible, we know by Lemma 8.3 that

dimH =
∑m+

i=0 dimBiH and dimV =
∑m+

i=0 dimBiV . Hence dim H/V =
∑m+

i=0 dim BiH/BiV .
Plugging this equality into (8.18) yields after rearranging

dim B0H/B0V ≤
m+
∑

i=1

(ci − 1) dim BiH/BiV . (8.19)
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Since B0+ is surjective, the map (B0, Bi) is surjective too for any 1 ≤ i ≤ m+. Hence
Lemma 2.6 yields H = kerB0 + kerBi = V + kerBi, which ensures that BiH = BiV .
Therefore, (8.19) becomes dim B0H/B0V ≤ 0. Recall that by definition B0V = {0}. We
can conclude that dimB0H = 0, that is B0 = 0. �

The next statements will help to initialize the inductive proof of Theorem 8.8 (ii).

Lemma 8.14. Assertion (ii) of Theorem 8.8 is true when dimH = 1.

Proof. The main tool here is the reverse Hölder inequality for several functions: Let
c1 ≥ 0 ≥ c2, . . . cm with

∑

k ck = 1 then
∫

Rd

∏

k

f ck
k ≥

∏

k

(∫

Rd

fk

)ck

(8.20)

holds for all integrable non-negative functions with
∫

Rd fk ∈ (0,+∞). This inequality
follows from its version for two functions applied with λ = c1 ≥ 1:

∫

Rd

∏

k

f ck
k ≥

(∫

f1

)c1
(
∫ m∏

j=2

f
cj

c2+···+cm

j

)c2+···+cm

,

and from the classical Hölder inequality applied to the second integral (observe that the
inner exponents sum up to 1 and are all non-negative, while the outer exponent c2+· · ·+cm
is non-positive).

Since dimH = 1 and for 1 ≤ k ≤ m, Bk : H → Hk is surjective and Hk is non-trivial,
it follows that the maps Bk, k ≥ 1 are bijections. Therefore we may reduce to the case
H = Hk = R and Bk = Id for 1 ≤ k ≤ m. In this simple setting, the only possible
subspaces V are 0 and R. The former is trivially admissible, while the latter is admissible
by hypothesis. Hence Condition (C) rewrites as:

• if R ⊂ kerBm+1 (i.e. Bm+1 = 0), then 1 ≥∑m
k=1 ck,

• if B0{0} = B0R (i.e. B0 = 0) then 1 ≤∑m
k=1 ck,

Also the hypothesis of bijectivity of (B0, B+) reduces to two cases: either B0 = 0, B+ = B1

and c1 ≥ 0 ≥ c2, . . . , cm, or B0 6= 0, B+ = 0 and 0 ≥ c1, . . . , cm.
In order to prove the lemma, we consider several cases:
Case 1: If B0 = Bm+1 = 0, then Condition (C) rewrites as

∑m
k=1 ck = 1. Moreover

there is no kernel and, as explained above c1 ≥ 0 ≥ c2, . . . , cm. The positivity of the
Brascamp-Lieb functional is a direct consequence of the reverse Hölder inequality (8.20).

Case 2: if B0 6= 0 and Bm+1 = 0, then 0 ≥ c1, . . . , cm and Condition (C) amounts to
1 ≥ ∑m

k=1 ck. We define c0 := 1 −∑m
k=1 ck ≥ 1 and we are ready to apply the inverse

Hölder inequality with m + 1 functions:
∫

e−Q+(B0x)
m∏

j=1

fj(x)cjdx ≥
(∫

e
− 1

c0
Q+(B0x)

)c0 m∏

j=1

(∫

fj

)cj

.

Case 3: if B0 = 0 and Bm+1 6= 0, then c1 ≥ 0 ≥ c2, . . . , cm and Condition (C) reads as
1 ≤∑m

k=1 ck (actually the inequality is strict. If it where an equality then H = R would
be a critical space, which is not compatible with Bm+1 6= 0 as explained by Proposition
8.13). We define cm+1 := 1 −∑m

k=1 ck < 0 and we apply the inverse Hölder inequality
with m+ 1 functions:

∫

eQ−(Bm+1x)

m∏

k=1

fk(x)ckdx ≥
(∫

e
1

cm+1
Q−(B0x)

)cm+1 m∏

k=1

(∫

fk

)ck

.
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Since cm+1 < 0 and Q− is positive definite, the first integral of the right-hand side term
is finite.

Case 4: B0 6= 0 and Bm+1 6= 0 does not happen. Indeed it implies that B+ = 0 but
then the condition kerB+ ⊂ kerBm+1 is violated. A more conceptual explanation is that
a quadratic form on R is either zero, definite positive or definite negative, so that the
above three cases cover all possibilities.

�

Lemma 8.15. Assertion (ii) of Theorem 8.8 is true when m = 2 and B0 = Bm+1 = 0.

Proof. Our goal is to prove the positivity of the Brascamp-Lieb functional for two functions
and no kernel. Our hypothesis is that B+ is bijective and that Condition (C) holds. Since
1 ≤ m+ ≤ m = 2 we can consider two cases:

Case 1: m = m+ = 2. Proposition 8.13 yields c1, c2 ≥ 1. Condition (C) ensures that H
is a critical space, hence

dimH = c1 dimH1 + c2 dimH2 ≥ dimH1 + dimH2 = dimH,

where the latter inequality comes from the fact that B+ = (B1, B2) : H → H1 ×H2 is a
linear isomorphism. The intermediate inequality cannot be strict, therefore c1 = c2 = 1.
The inverse Brascamp-Lieb inequality in this case follows from Fubini theorem, after
changing variables:

∫

H

f1(B1x)f2(B2x) dx = | det((B1, B2))|−1

∫

H1×H2

f1(y)f2(z) dy dz

= | det((B1, B2))|−1

∫

H1

f1

∫

H2

f2.

Case 2: m+ = 1 and therefore B1 is bijective. Any linear subspace is admissible in this
case (dimV = dimB1V ). Thus, for any subspace V , Condition (C) yields

dimV ≥ c1 dimB1V + c2 dimB2V = c1 dimV + c2 dimB2V,

and after rearranging the terms

(c1 − 1) dimV ≤ |c2| dimB2V.

Choosing V = kerB2, we get that (c1 − 1) dim kerB2 = 0.
Subcase 1: If kerB2 = 0, then B2 is an isomorphism. Since B1 is also an isomorphism,

the relation dimH = c1 dimH1 + c2 dimH2 implies c1 + c2 = 1. Recall that c1 ≥ 0 ≥ c2.
We can conclude with the inverse Hölder inequality:

∫

f1(B1x)c1f2(B2x)c2dx ≥
(∫

f1(B1x)dx

)c1 (∫

f2(B2x)dx

)c2

=

(

| detB1|−1

∫

H1

f1

)c1 (

| detB2|−1

∫

H2

f2

)c2

.

Subcase 2: c1 = 1. Using also that dimH = dimH1, the equality dimH = c1 dimH1 +
c2 dimH2 implies that c2 dimH2 = 0, hence c2 = 0. The inverse Brascamp-Lieb inequality
is trivial in this case:

∫
f1(B1x)dx = | detB1|−1

∫
f1.

�

Lemma 8.16. Assertion (ii) of Theorem 8.8 is true when m = 0 and when m = 1.

Proof. Since 0 ≤ m+ ≤ m ≤ 1, we consider three cases.
Case 0: when m+ = m = 0, i.e. there are no functions fk. By hypothesis Q is positive

definite. Condition (C) is empty. The conclusion holds as
∫
e−Q > 0.
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Case 1: when m+ = 0, c1 ≤ 0, B+ = 0 and by hypothesis B0 is a linear isomorphism.
Moreover the condition kerB+ ⊂ kerBm+1 implies that Bm+1 = 0. In this setting,
Condition (C) is empty. Indeed the inequality dimV ≥ c1 dimB1V is valid for every
subspace since c1 ≤ 0. In addition, B0 being and isomorphism, the only subspace V such
that B0V = B0H is H (and the quotient dimension condition is empty). Consequently,
our task is to show that

inf
f1

∫

H
e−Q+(B0x)f1(B1x)c1dx

(∫

H1
f1

)c1 > 0.

The case c1 = 0 is obvious since Q+ ◦ B0 is positive definite. Next, we assume that
c1 < 0. By definition B1 : H → H1 is surjective. We complete it to a bijective map
Φ : H → H1 × H̃ of the form Φ(x) = (B1(x), B̃(x)). Using the bijective change of
variables x = Φ−1(y, ỹ), there exits α ∈ (0,+∞) such that for any f1,

∫

H

e−Q+(B0x)f1(B1x)c1dx = α

∫

H1×H̃

e−Q+◦B0◦Φ−1(y,ỹ)f1(y)c1dydỹ.

There exists positive definite quadratic forms Q1 on H1 and Q̃ on H̃ such that for all
(y, ỹ),

Q+ ◦B0 ◦ Φ−1(y, ỹ) ≤ Q1(y) + Q̃(ỹ).

Therefore the latter integral is at most
∫

H̃

e−Q̃(ỹ)dỹ

∫

H1

e−Q1(y)f c1(y)dy ≥
(∫

H̃

e−Q̃(ỹ)dỹ

)

×
(∫

H1

e
− 1

1−c1
Q1(y)dy

)1−c1 (∫

H1

f1

)c1

,

where the latter inequality is a consequence of the inverse Hölder inequality.

Case 2: m+ = m = 1. In this case c1 ≥ 0, (B0, B1) is bijective and kerB+ = kerB1 ⊂
kerBm+1. We may assume that kerB1 6= H , otherwise H1 = {0} and we can discard the
function f1 and we are back to Case 0.

Condition (C) asserts that every admissible subspace V verifies:

• if V ⊂ kerBm+1 then dimV ≥ c1 dimB1V
• if B0V = B0H then dim H/V ≤ c1 dim B1H/B1V

Observe that the latter “quotient condition” boils down to c1 ≥ 1: Indeed by hypothesis
dimH = dimB0H + dimB1H , and V is admissible if and only if dim V = dimB0V +
dimB1V . Therefore, when V also satisfies that B0V = B0H , taking the difference of
the latter two dimension equalities yields dim H/V = dim B1H/B1V . Hence the condition
dim H/V ≤ c1 dim B1H/B1V becomes (c1 − 1) dim H/V ≥ 0 which can be an empty condition
(when H = V ) or equivalent to c1 ≥ 1 e.g. for V = kerB1 (see the argument of Proposition
8.13).

Given (B0, B1, Bm+1 = B2), the set C1 of indices c1 ≥ 0 satisfying Condition (C) is
clearly a closed convex subset of [1,+∞). Indeed, it is defined by the inequality c1 ≥ 1
and conditions of the form dim V ≥ c1 dimB1V (and there are finitely many of them
since the dimensions are bounded). Obviously 1 ∈ C1. For c1 = 1, the corresponding
Brascamp-Lieb inequality holds with a positive constant. Indeed for every non-negative
function f1,

∫

H

e−Q+(B0x)+Q−(B2x)f1(B1x) dx ≥
∫

H

e−Q+(B0x)f1(B1x) dx

= | det((B0, B1))|−1

∫

H0

e−Q+

∫

H1

f1,

where we have used the bijection (B0, B1) in order to change variables.
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Consider the subspace V = kerB0∩kerBm+1. Using our hypothesis kerB1 ⊂ kerBm+1,
we get that

V ⊂ (V + kerB0) ∩ (V + kerB1) ⊂ kerB0 ∩ kerBm+1 = V.

Hence, by (8.3), V ⊂ kerBm+1 is admissible. Consequently dimV = dimB0V+dimB1V =
dimB1V and any c1 ∈ C1 verifies dim V ≥ c1 dimB1V which can be rewritten as 0 ≥
(c1 − 1) dimB1V .

Subcase 1: if B1V 6= {0} then the latter inequality implies that c1 ≤ 1. We have shown
that C1 = {1} and we have established a non-trivial inverse Brascamp-Lieb inequality for
c1 = 1.

Subcase 2: if B1V = {0}. This condition can be rephrased as V ⊂ kerB1. From this,
we deduce that

V = kerB0 ∩ kerBm+1 ⊂ kerB0 ∩ kerB1 = {0},
where the last equality comes from the injectivity of (B0, B1). The latter is actually
bijective so that

kerB0 ⊕ kerB1 = H.

Since kerB1 ⊂ kerBm+1, and V = kerB0 ∩ kerBm+1 = {0}, we also have

kerB0 ⊕ kerBm+1 = H.

The previous two decompositions of H into direct sums, and the inclusion kerB1 ⊂
kerBm+1 imply that kerB1 = kerBm+1. Because of this equality, the subspace constraint
in Condition (C) is empty: indeed, if V ⊂ kerBm+1 = kerB1 then B1V = 0 and dimV ≥
c1 dimB1V = 0 is true. Therefore the set of numbers c1 verifying Condition (C) is [1,+∞)
and our task is to prove a non-trivial inverse Brascamp-Lieb inequality for all exponents
c1 ≥ 1. We have already dealt with c1 = 1, so we may restrict our attention to c1 > 1.
Observe that the equality kerB1 = kerBm+1 ensures the existence of a linear isomorphism
Ψ : H1 → Hm+1 such that Bm+1 = Ψ ◦B1. Thus for every non-negative function f1:

∫

H

e−Q+(B0x)−Q−(Bm+1x)f c1
1 (B1x) dx

=

∫

H

e−Q+(B0x)eQ−◦Ψ(B1x)f c1
1 (B1x) dx

= | det((B0, B1))|−1

∫

H0

e−Q+(y)

∫

H1

eQ−◦Ψ(z)f c1
1 (z)dz

≥ | det((B0, B1))|−1

∫

H0

e−Q+(y)

(∫

H1

e
1

1−c1
Q−◦Ψ(z)

dz

)1−c1 (∫

H1

f1

)c1

,

where we have used the change of variables (y, z) = (B0x,B1x) and the inverse Hölder
inequality. The proof is complete. �

Proof of Theorem 8.8 (ii). First of all, we can assume dimHk ≥ 1 for all k ∈ {1, . . . , m},
otherwise one can reduce the problem by discarding all functions fk for which dimHk = 0
while Condition (C) and the strong positivity property related to the reduced problem
remain equivalent to those related to the original problem.

Let D1 := [1,+∞)m
+ × (−∞, 0]m−m+ ⊆ Rm. Our main interest is in the following set:

C : =
{
c ∈ (0,+∞)m

+ × (−∞, 0]m−m+

; (H,B, c) satisfies Condition (C)
}

=
{
c ∈ D1; (H,B, c) satisfies Condition (C)

}
,

where the latter equality comes from Proposition 8.13. Since Condition (C) means that
the vector c verifies several closed linear inequalities, the second expression of C proves
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that it is closed and convex. More specifically, the triplet (H,B, c) satisfies Condition (C)
if and only if c belongs to all sets in the following two families:

• For any non-trivial subspace V ⊆ H which induces an admissible split and satisfies
V ⊆ kerBm+1 consider

SV =
{

x ∈ Rm :
m∑

k=1

xk dimBkV ≤ dimV
}

.

Typically, SV is a closed half-space of Rm, but it can happen that SV is the whole
Rm.

• Similarly, for any proper subspace V ( H which induces an admissible split and
satisfies B0V = B0H consider

S
H/V =

{

x ∈ Rm :

m∑

k=1

xk dim BkH/BkV ≥ dim H/V
}

.

The set SH/V is always a half-space of Rm, since at least for some 1 ≤ k ≤ m+,
BkV 6= BkH (otherwise for each k = 0, 1, . . . , m+, BkV = BkH , i.e. V + kerBk =
H , which by Lemma 8.3 would contradict admissibility of the split).

Even though there are infinitely many subspaces V , the coefficients dimBkV and dim BkH/BkV

take finitely many values. Hence there are finitely many different half-spaces in the above
families, and the set C is a closed convex polyhedron (which may be unbounded).

Since C is closed, it follows from its original definition that its boundary is covered by
the union of the affine hyperplanes in the following three families:

P = {∂SV : {0} 6= V ( H induces an admissible split and V ⊆ kerBm+1}
∪ {∂SH/V : {0} 6= V ( H induces an admissible split and B0V = B0H},

P0 = {∂SH} if Bm+1 = 0 or B0 = 0 (note that ∂SH = ∂SH) otherwise P0 = ∅ and

B =
{

{x ∈ Rm : xk = 0} : k = m+ + 1, . . . , m
}

.

Our aim is to show that c ∈ C (i.e. Condition (C)) implies the strong positivity property
for (H,B, c). We proceed by induction in (dimH,m) with a partial order on (n,m) ∈ Z2

+

given by (n1, m1) � (n2, m2) if and only if n1 ≤ n2 and m1 ≤ m2. The founding cases
are m ∈ {0, 1} with any dimH (this is treated in Lemma 8.16) and dimH = 1 with any
m ≥ 1 (see Lemma 8.14).

The induction step, in which dimH ≥ 2 and m ≥ 2, goes as follows. Take any vector
p = (p1, . . . , pm) ∈ Rm such that p1, . . . , pm+ > 0 and pm++1, . . . , pm < 0 and let b ∈ R be
a constant such that the affine hyperplane

P =
{

x ∈ Rm :
m∑

k=1

pkxk = b
}

contains c. Then D1 ∩ P is a compact subset of Rm and thus CP := C ∩ P is a compact
convex set (actually it is a compact convex polytope). In what follows, we restrict our
considerations to the hyperplane P .

Due the convexity property established in Proposition 6.1, it is enough to prove the
strong positivity property for the vectors of exponents being vertices of CP . Therefore
assume c is a vertex of CP . Consequently, c belongs to an intersection of P and some
m− 1 distinct affine hyperplanes from the family B ∪ P ∪ P0. Consider three cases:

Case 1. Among these m − 1 affine hyperplanes there is at least one which belongs to B.
This means that for some k ∈ {m+ + 1, . . . , m}, ck = 0. Then we can discard
the function fk and in this way reduce the number of functions considered from



70 FRANCK BARTHE AND PAWE L WOLFF

m to m − 1. Since neither Condition (C) nor the strong positivity property is
affected by this reduction (both assertions remain equivalent for the original and
the reduced problem), we are done by the induction hypothesis.

Case 2. Among these m − 1 affine hyperplanes there is at least one which belongs to P.
Hence for some {0} 6= V ( H , V is a critical subspace or H/V is a critical quotient
(this may happen only when dimH ≥ 2). Since both V and H/V have dimension
strictly smaller than dimH and thanks to Lemma 8.11, Condition (C) is satisfied
for (V, b, c) and (H/V , β, c), we can apply the induction hypothesis and get the
strong positivity property for (V, b, c) and (H/V , β, c). Now the strong positivity
property for (H,B, c) follows from Lemma 8.12.

Case 3. Neither Case 1 nor Case 2 holds, i.e. all m − 1 distinct affine hyperplanes are
in P0. This is possible only when m = 2 and P0 = {∂SH}, i.e. B0 or Bm+1

is trivial. Then c ∈ ∂SH ∩ P . If Bm+1 is trivial then H is a critical subspace
and Proposition 8.13 implies that B0 is also trivial and we can conclude using
Lemma 8.15. If B0 is trivial then H/{0} is a critical quotient, i.e.

dimH =

m∑

k=1

ck dimBkH. (8.21)

Condition (C) tells us that for every subspace V ⊆ H which induces an admissible
split, the quotient H/V is subcritical. Subtracting the corresponding inequality
from (8.21) gives that V satisfies

dim V ≥
m∑

k=1

ck dimBkV,

regardless whether V ⊆ kerBm+1 or not. Therefore Condition (C) for our problem
implies Condition (C) which corresponds to the problem with the same vector of
exponents c and the same maps B0, . . . , Bm and with Bm+1 = 0. Lemma 8.15
ensures the strong positivity property for the modified problem which in turn
clearly implies the strong positivity property for the original problem.

�
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