
HAL Id: hal-01771627
https://hal.science/hal-01771627

Submitted on 19 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blind separation of audio sources using modal
decomposition

Abdeldjalil Aissa El Bey, Karim Abed-Meraim, Yves Grenier

To cite this version:
Abdeldjalil Aissa El Bey, Karim Abed-Meraim, Yves Grenier. Blind separation of audio sources using
modal decomposition. Eighth International Symposium on Signal Processing and Its Applications
(ISSPA), Aug 2005, Sydney, Australia. �10.1109/ISSPA.2005.1580972�. �hal-01771627�

https://hal.science/hal-01771627
https://hal.archives-ouvertes.fr


BLIND SEPARATION OF AUDIO SOURCES USING MODAL DECOMPOSITION

A. Aı̈ssa-El-Bey, K. Abed-Meraim and Y. Grenier

ENST-Paris, 46 rue Barrault 75634, Paris Cedex 13, France
{elbey, abed, grenier}@tsi.enst.fr

ABSTRACT

This paper introduces new algorithms for the blind separa-
tion of audio sources using modal decomposition. Indeed,
audio signals and, in particular, musical signals can be
well approximated by a sum of damped sinusoidal (modal)
components. Based on this representation, we propose a
two steps approach consisting of a signal analysis (extrac-
tion of the modal components) followed by a signal syn-
thesis (pairing of the components belonging to the same
source) using vector clustering. For the signal analysis,
two algorithms are considered and compared: namely the
EMD (Empirical Mode Decomposition) algorithm and a
parametric estimation algorithm using ESPRIT technique.
A major advantage of the proposed method resides in its
ability to separate more sources than sensors. Simulation
results are given to compare and assess the performances
of the proposed algorithms.

1. INTRODUCTION

The problem of blind source separation consists of finding
independent source signals from their observed mixtures
without a priori knowledge on the actual mixing matrix.
The source separation problem is of interest in various ap-
plications [1] such as the localization and tracking of tar-
gets using radars and sonars, separation of speakers (prob-
lem known as “cocktail party”), detection and separation
in multiple access communication systems, independent
components analysis of biomedical signals (EEG or ECG),
multispectral astronomical images etc.
This problem has been intensively studied in the litera-
ture and many effective solutions have been proposed so
far [1]. Nevertheless, the underdetermined case where the
number of sources is greater than the number of sensors
(observations) remains relatively poorly treated, and its
resolution is one of the open problems of blind source sep-
aration. In the case of non-stationary signals (including
the audio signals), certain solutions using time-frequency
analysis of the observations exist for the underdetermined
case [6, 7]. In this paper, we propose an alternative ap-
proach using modal decomposition of the received signals
[2, 3]. More precisely we propose to decompose a sup-
posed locally periodic signal which is not necessarily har-
monic in the Fourier sense into its various modes. The au-
dio signals and more particularly the musical signals can
be modeled by a sum of damped sinusoids [8] and hence
are well suited for our separation approach. We propose

here to exploit this last property for the separation of audio
sources by means of modal decomposition.

2. DATA MODEL

The blind source separation model assumes the existence
of N independent signals s1(t), . . . , sN (t) and M obser-
vations x1(t), . . . , xM (t) that represent the mixtures. These
mixtures are supposed linear and instantaneous, i.e.

xi(t) =
N∑

j=1

aijsj(t) i = 1, . . . , M (1)

This can be represented compactly by the mixing equation

x(t) = As(t) (2)

where s(t) def= [s1(t), . . . , sN (t)]T is a N × 1 column
vector collecting the source signals, vector x(t) similarly
collects the M observed signals, and the M × N mix-
ing matrix A def= [a1, . . . ,aN ] with ai = [a1i, . . . , aMi]T

contains the mixture coefficients. We will suppose that for
any pair (i, j) with i 6= j, the vectors ai and aj are lin-
early independent.
The source signals are supposed to be decomposable in a
sum of modal components cj

i (t), i.e:

si(t) =
li∑

j=1

cj
i (t) t = 0, . . . , T − 1 (3)

The usual source independence assumption is replaced here
by a quasi-orthogonality assumption of the modal compo-
nents, i.e.

〈cj
i |cj′

i′ 〉
‖cj

i‖‖cj′
i′ ‖

≈ 0 for (i, j) 6= (i′, j′) (4)

where

〈cj
i |cj′

i′ 〉
def=

T−1∑
t=0

cj
i (t)c

j′

i′ (t)
∗ (5)

and
‖cj

i‖2 = 〈cj
i |cj

i 〉 (6)

Remark: Assumption (4) may be restrictive in certain ap-
plications. However, it can be relaxed in such a way to
allow common modal components to different sources as
shown in [11].



3. SEPARATION USING MODAL
DECOMPOSITION

Based on the previous model, we propose an approach in
two steps consisting of:

• An analysis step: in this step, one applies an algo-
rithm of modal decomposition to each sensor out-
put in order to extract all the harmonic components
from them. We compare, for this modal compo-
nents extraction two decomposition algorithms that
are the EMD (Empirical Mode Decomposition) al-
gorithm introduced in [2, 3] and a parametric algo-
rithm which estimates the parameters of the modal
components modeled as damped sinusoids.

• A synthesis step: in this step we group together the
modal components corresponding to the same source
in order to reconstitute the original signal. This is
done by observing that all modal components of
a given source signal ’live’ in the same spatial di-
rection. Therefore, the proposed clustering method
is based on the component’s direction evaluated by
correlation of the extracted (component) signal with
the observed antenna signal.

3.1. Signal analysis using EMD

A new nonlinear technique, referred to as Empirical Mode
Decomposition (EMD), has recently been introduced by
N.E. Huang et al. for representing non-stationary signals
as sum of zero-mean AM-FM components [2]. The start-
ing point of the EMD is to consider oscillations in signals
at a very local level. Given a signal z(t), the EMD algo-
rithm can be summarized as follows [3]:

1. Identify all extrema of z(t).

2. Interpolate between minima (resp. maxima), end-
ing up with some envelope emin(t) (resp. emax(t)).

3. Compute the mean m(t) = (emin(t)+emax(t))/2.

4. Extract the detail d(t) = z(t)−m(t).

5. Iterate on the residual m(t).

By applying EMD algorithm to the ith mixture signal xi

which is written as xi(t) =
N∑

j=1

aijsj(t) =
N∑

j=1

lj∑
k=1

aijc
k
j (t)

one obtains estimates ĉk
j (t) of components ck

j (t).

3.2. Parametric signal analysis

In this section we present an alternative solution for sig-
nal analysis. For that, we represent the source signal and
hence the observations as sum of damped sinusoids:

xk(t) = <
{

L∑

l=1

αl,kzt
l

}
(7)

where αl,k represents the complex amplitude and zl =
edl+iωl is the lth pole where dl is the negative damping

factor and ωl is the angular-frequency. <(·) represents the
real part of a complex entity.
For the extraction of the modal components, we propose
to use the ESPRIT-like (Estimation of Signal Parameters
via Rotation Invariance Technique) technique that esti-
mates the poles of the signals by exploiting the row-shifting
invariance property of the D×(T−D) data Hankel matrix
[H(xk)]n1n2

def= xk(n1 +n2), D being a window parame-
ter chosen in the range T/3 ≤ D ≤ 2T/3.
We use of Kung’s algorithm given in [5] that can be sum-
marized in the following steps:

1. Form the data Hankel matrix H(xk).

2. Estimate the 2L-dimensional signal subspace U(L) =
[u1 . . .u2L] ofH(xk) by means of the SVD (u1 . . .u2L

are the principal left singular vectors of H(xk)).

3. Solve (in the least squares sense) the shift invari-
ance equation

U(L)
↓ Ψ = U(L)

↑ ⇔ Ψ = U(L)#
↓ U(L)

↑ (8)

where Ψ = Φ∆Φ−1, Φ being a non-singular 2L ×
2L matrix and ∆ = diag(z1, z

∗
1 , . . . , zL, z∗L). ()#

denotes the pseudo-inversion operation and arrows
↓ and ↑ denote respectively the last and the first row-
deleting operator.

4. Estimate the poles as the eigenvalues of matrix Ψ.

5. Estimate the complex amplitudes by solving the least
squares fitting criterion

min
α
‖xk − Zα‖2 ⇔ α = Z#xk (9)

where xk = [xk(0) . . . xk(T − 1)]T is the observa-
tion vector, Z is a Vandermonde matrix constructed
from the estimated poles and α is the vector of com-
plex amplitudes.

3.3. Signal synthesis using vector clustering

For the synthesis of the source signals one observes that
thanks to the quasi-orthogonality assumption, one has:

〈x|cj
i 〉

‖cj
i‖2

def=
1

‖cj
i‖2



〈x1|cj

i 〉
...

〈xM |cj
i 〉


 ≈ ai

where ai represents the ith column vector of A. We can
then associate each component ĉk

j to a space direction (vec-
tor column of A) that is estimated by

âk
j =

〈x|ĉk
j 〉

‖ĉk
j ‖2

Two components of a same source signal are associated to
the same column vector of A, Therefore, we propose to
gather these components by clustering the vectors âk

j into
N classes. One will be able to rebuild the initial sources
up to a constant by adding the various components within
a same class.



3.4. Source pairing and selection

Let us notice, that by applying the approach described pre-
viously (analysis plus synthesis) to all the antenna out-
puts x1(t), · · · , xM (t), we obtain M estimates of each
source signal. The estimation quality of a given source
signal varies significantly from one sensor to another. In-
deed, it depends strongly on the matrix coefficients and, in
particular, on the signal to interference ratio (SIR) of the
desired source. Consequently, we propose a blind selec-
tion method to choose a ’good’ estimate among the M we
have for each source signal. For that, we need first to pair
the source estimates together. This is done by associating
each source signal extracted from the first sensor to the
(M −1) signals extracted from the (M −1) other sensors
that are maximally correlated with it. The correlation fac-
tor of two signals s1 and s2 is evaluated by 〈s1|s2〉

‖s1‖‖s2‖ .
Once, the source pairing achieved, we propose to select
the source estimate of maximal energy, i.e.

ŝi(t) = max
j
{Ej

i =
T−1∑
t=0

|ŝj
i (t)|2, j = 1, · · · ,M} (10)

where Ej
i represents the energy of the ith source extracted

from the jth sensor. One can consider other methods of
selection based on the dispersion around the centroid of
each class, the number of components of each source es-
timate, etc.

3.5. Discussion

We provide here some comments to get more insight onto
the proposed separation method:

• Over-determined case: In that case, one is able to
separate the sources by left inversion of matrix A.
The latter can be estimated from the centroids of
the N clustering classes (i.e., the centroid of the ith

class represent the estimate of the ith column of A).

• Estimation of the number of sources: This is a dif-
ficult and challenging task in the underdetermined
case. Few approaches exist based on multi-dimensional
tensor decomposition [9] or based on the clustering
with joint estimation of the number of classes [4].
However, these methods are very sensitive to noise,
to the source amplitude dynamic and to the condi-
tioning of matrix A. In this paper, we assume the
number of sources known (or correctly estimated).

• Number of modal components: In the parametric ap-
proach, we have to choose the number of modal
components L needed to well approximate the au-
dio signal. Indeed, small values of L lead to poor
signal representation while large value of L increases
the computational cost. In fact, L depends on the
’signal complexity’ and in general musical signals
require less components (for a good modeling) than
speech signals. In section 4 we illustrate the effect
of the value of L on the separation quality.

• Hybrid separation approach: It is most probably that
the separation quality can be improved using sig-
nal analysis in conjonction with spatial filtering. In-
deed, it has been observed that the separation qual-
ity depends strongly on the mixture coefficients. Spa-
tial filtering can be used to improve the SIR for a
desired source signal and consequently its extrac-
tion quality. This will be the focus of a future work.

4. SIMULATION

We present here some simulation results to illustrate the
performance of our blind separation algorithms. For that,
we consider a uniform linear array with M = 3 sensors re-
ceiving the signals from N = 4 audio sources (except for
the third experiment where N varies in the range [2,6]).
The angles of arrival of the sources are chosen randomly.
The sample size is set to T = 5000 samples (the signals
are sampled at a rate of 44.1kHz). The observed signals
are corrupted by an additive white noise of covariance σ2I
(σ2 being the noise power). The separation quality is mea-
sured by the normalized mean squares estimation errors
(NMSE) of the sources evaluated over 100 Monte-Carlo
runs. The plots represent the averaged NMSE over the
N sources. In figure 1, we compare the separation per-
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Fig. 1. NMSE versus SNR

formance obtained by our algorithm using EMD and the
parametric technique with L = 30. As a reference, we
plot also the NMSE obtained by pseudo-inversion of ma-
trix A [10] (assumed exactly known). It is observed that
both EMD and parametric based separation provide bet-
ter results than those obtained by pseudo-inversion of the
exact mixing matrix. The plots in figure 2 illustrate the ef-
fect of the number of components L chosen to model the
audio-signal. Too small or too large values of L degrade
the performance of the method. In other words, it existe
an optimal choice of L that depend on the signal type. In
figure 3, we present the separation performance loss that
we have when the number of sources increases from 2 to
6 in the noiseless case. For N = 2 and N = 3 (over-
determined case) we estimate the sources by left inversion
of the estimate of matrix A. In the underdetermined case,
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the EMD and parametric based algorithms present similar
performances.

5. CONCLUSION

This paper introduces a new blind separation method for
audio-type sources using modal decomposition. The pro-
posed method can separate more sources than sensors and
provides, in that case, a better separation quality than the
one obtained by pseudo-inversion of the mixture matrix
(even if it is known exactly). For the signal analysis step
of the proposed method, two algorithms are used and com-
pared using respectively the EMD and the ESPRIT-like
technique for the estimation of the poles of the modal
components modeled as damped sinusoids.
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