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Expansion Planning of Distribution Networks by 

Heuristic Algorithms 

Abstract- The existing distribution networks are growing 
with complexity more and more, due to the gradual increase of 

power demand and variation of loads. This paper describes 
several heuristic algorithms applied to the optimal configuration 
of loop distribution network. Configuration problems are too 

complicated and time consumed to be solved. These problems 
are basically large-scaled combinatorial optimization problems, 
because an urban distribution system is usually large in scale 

and contain numerous sectionalizing switches to be operated. It 
is, therefore, difficult to rapidly obtain an exact optimal solution 
on real system.   

Index Terms-- distribution power networks, heuristic 
algorithms, optimal configuration 

I. INTRODUCTION

In an urban distribution network the placement and 

installed power of loads, as well as for the supply sources, are 

known. Thus, the optimal routes of the branches have to be 

designed. 

The optimal configuration of the branches routes can be 

solved for different network stages:   

- a network area where the branches do not exist. The

placement and installed power of the loads are known. The 

objective is to find the optimal meshed or radial configuration 

of the new network. The network type (meshed or radial) is 

previously established using analyses that consider the load 

density and supply reliability. 

- there is an existing network, but new branches has to be

build. This branches are selected from a set of lines such that 

to obtain the best value of the considered objective function. 

Usually, the optimal configuration of a meshed network is 

obtained considering the minimization of branches total 

length. Thus, the investment in the new branches is minimal. 

The methods for the optimal configuration of meshed 

network consider the length of a branch between the points i 

and j as: 

- the effective distance between points i and j, calculated

using the coordinates of the points in a x0y coordinates 

system; 

- the product between the previous calculated distance and

a supra-unitary coefficient that considers the irregularities of 

land  

- the real distance determined on known branches routes.

The major part of the meshed networks have only one 

power source or with branches supplied by two power 

sources. The optimal configuration methods are different for 

the two types of meshed networks. 

The paper deals with heuristic algorithms developed for the 

optimal configuration of the meshed distribution systems. 

II. PROBLEM STATEMENT

The meshed networks are characterized by the fact that 

each of the supplied customers can receive electrical energy 

from two parts. Hence, the conductors of the meshed network 

must have constant section [1].  

For the networks with unique power source, if the loads 

and power source placements are known, a route must be 

determined. This route, starting from the bus-bars, has to 

cross one time at each load and return to the source. In this 

case, the route fulfils the condition to have minim length. The 

loads and the power source are considered as nodes of an 

unordered graph. Any two nodes are connected through an 

edge, the needed route corresponding to one of the (n-1)! 

possible loops that can be made between the graph nodes, n 

being the total number of graph nodes. In addition, a cost of 

the branch can be associated to each edge. The problem 

obtained has a mathematical model similar with the salesman 

problem [2]. 

For a meshed network with lines fed by two sources, a 

mesh between two different power buses is made. In this way, 

the reliability of customer supply is increased. 

The placement of the loads and power sources are known. 

The routes of the lines that connect the power sources 

crossing through the load buses, such that no load is not 

supplied and the total length of the routes has to be minimal. 

This problem is a combinatory optimization problem. This 

problem has been investigate through heuristic methods 93,4, 

5], genetic algorithms [6] and expert systems [7, 8]. 

The solution of this problem is obtained using two heuristic 

algorithms, MNB and MNB – 1, each of them with one 

variant.  

III. MATHEMATICAL MODELS

The not oriented connected graph G(V, E) defined by the 

set of vortices V and the set of edges E, is considered. 

Considering { }n1,...,i|vi
' ==V  the set of vortices associated
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to the customers and v0 the vortex associated to the power 

source, we obtain { }0v' ∪= VV .

We consider the degree of a vortex of the graph as the 

number of edges incident in this node. Let lij be the length of 

the edge between the vortices vi and vj. The mathematical 

model, with the objective function (1) and the constraints (2) 

- (5) will be:
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The restriction (2) verifies the fact that each load node is 

visited only one time. The constraint (3) sets that each graph 

node has a degree of 2 (3 edges incident in each node), and 

the constraint (4) avoids the appearance of loops that do not 

cross through the source node or have less than n+1 vortices. 

The solution of this problem can be obtained using 

heuristic methods, artificial intelligence techniques and 

optimization methods [9 – 13]. 

In [14] and [15] the “greedy” heuristic algorithm, which 

solves the salesman problem in a polynomial interval, is 

proposed. Thus, if (v0,v1,...,vk) is the link already created, 

then: 

- if{v0,v1,...,vk} = V, then the edge (vk,v0) is added and

the construction of the cycle is finished;

- if {v0,v1,...,vk} ≠ V, then the edge (vk,vk+1) with

minimum cost is added and for which vk+1∉

{v0,v1,...,vk}.

This heuristic algorithm fulfils the necessary condition to 

obtain a cycle starting from the vortex v0, crossing only one 

time through each of the other vortices and returning then in 

the vortex v0. A compromise is made: instead minimizing the 

cost of the cycle, at each step the minimum cost edge is 

chosen. 

For the incomplete graphs (there are pairs of vortices not 

connected through edges, due to natural field barriers), the 

algorithm can be applied setting to the inexistent edges cost 

values much greater than the costs of the existing edges. 

Afore presented algorithm can be applied for finding the 

meshed route of minimum length under the assumption that 

the source is balancing the demand. 

Reference [16] presents an application for setting the 

optimum routes for new branches for connecting to the 

existing meshed network 6 customers and an additional 

source. The final network will be meshed and has a minimum 

length. The solution is obtained using the solving method of 

the salesman problem described in [17] 

The mathematical model (6) – (10) can be applied for 

obtaining a meshed network with the form of a “moon 

flower”. The mathematical model is similar with the salesman 

problem [18].Thus, considering the source in the vortex v0, 

the determination of m distinct loops of minimum length is 

needed. Each vortex associated to the loads is crossed only 

one time 
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     Reference [19] considers in addition the assumption and 

notations: 

- all branches in a loop have the same length;

- for each loop k = 1,.., m the conductors have the

maximum capacity ak;

- the demand of each load is  bi, ∀ i = 1,…, n;

- the power of the source is D.

Also, the following conditions have to be fulfilled:

-

=

≤

m

1k

k

n

1=i

i ab  the total transmission capacity of the 

conductors in the m loops is at least equal with the total 

demand; 

- D b

n

1=i

i ≤  the source available power is at least equal

with the total demand. 

Considering the above presented assumptions and 

conditions, to the mathematical model (6) – (10) the 

constraint (11) can be added. Through this constraint the 

transmission capacity of the conductors in each loop is not 

exceeded.   
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The different salesman problems presented in [20] and the 

results obtained in [21 – 26] contribute to the elaboration of 

mathematical models that include: 

- the constraint of the loop length to a threshold value;

- the constraint of the number of customers placed along

the loop such that the total demand does not exceed a

threshold value;

- the determination of the optimum placement of the

power source.

IV. ALGORITHMS FOR OPTIMAL CONFIGURATION OF MESHED 

NETWORKS SUPPLIED BY MULTIPLE SOURCES 

Reference [27] proposes the MNB algorithm (Meshed 

Network Building) for the meshed network determination. 

The algorithm firstly establishes a tree scheme with minimal 

length of the investigated network. This scheme corresponds 

to the partial graph determined based on Prim algorithm [28]. 

From this scheme is obtained a meshed scheme through the 

use of minimum length branches. These braches makes 

possible the connection between terminal vortices connected 

at different power sources.  

The algorithm has been tested on a distribution network 

with 3 sources and 69 loads [29]. The branches longer than 4 

km were not considered. Under this assumption, from the 

2556 possible connection between the 72 vortices, only 246 

were considered. Fig. 1 shows the 246 possible branches.  

Fig. 2 shows the meshed network obtained applying the 

MNB algorithm. Some loads will be supplied in a radial 

configuration. 

A. Algorithm MNB – V

The heuristic algorithm MNB allows the determination of

the branches routes in a meshed network with branches 

supplied at both terminals. The algorithm has been modified 

to eliminate the possibility to supply customers in a radial 

configuration. Applying the new algorithm, MNB – V, a 

complete meshed network is obtained. 

  The first improvement deals with the terminal vortices of the 

final meshed network. Each of the terminal vortices is 

connected through possible edges (with length smaller than 

the 4km threshold) to the closest vortex, which can be a 

terminal vortex of not.  

Fig. 1. Graph associated to the 72 vortices network 

Fig.2. MNB final meshed network  

In this stage, the connection of more terminal vortices with 

one vortex (terminal or not) is not forbidden. 

The second improvement modifies the edges between two 

vortices with a degree larger than 3 (if one vortex has a 

degree lower than 3, edge’s elimination will lead to the 

reappearance of a terminal vortex and thus of a customer 

radial supplied).  

Fig. 3 shows the improved meshed network. No customer 

is supplied through radial branches. These radial branches 

increase the total length of the network. 

With respect to the network in Fig. 2, now there 4 more 

branches. Hence, the meshed network MNB – V has 79 

branches. 

B. Algorithm MNB – 1 

The algorithm repeatedly eliminates the edge with

maximum length that is incident in vortices with a degree of 

at least 3. The edges selected must fulfil the condition that, 

after their elimination, the vortices where the edges are 

incident remain connected with at least two different sources. 

In this way is avoided the configuration illustrated in Fig. 4, 

where some customers can be included in a loop radial 

supplied.   



Fig. 3. Meshed network MNB – V 

At limit, if in the meshed network each vortex (power 

source or load) will have a degree of 2, the network will be 

one loop along which the power sources and the loads will be 

placed.  

Hence, for ensuring the existence of at least this solution, 

the construction of a Hamiltonian cycle within the 

investigated graph can be achieved. The Hamiltonian cycle 

crosses one time in each vortex of the graph. This cycle does 

not have to be of minimum length [8]. References [8, 28, 30] 

reports the sufficient conditions such that in a graph exists a 

Hamiltonian cycle; the necessary conditions are not existing. 

In these conditions, within the MNB – 1 algorithm the 

constraint that each vortex of the graph must have a degree ≥ 

2 is imposed. 

With this constraint, at each vortex at least two edges are 

incident. Still, in specified situations, this constraint is not 

sufficient for the existance of a cycle within a graph. Fig. 5 

shows a graph where each vortex has a degree of at least 2, 

but where no Hamiltonian cycle can be constructed. 

 

 
Test

network
S

Branches that must 

not be eliminated

 S -  Source vortex 

Fig. 4. Loop that can be possibly radial supplied 

Fig. 5. Graph where no Hamiltonian cycle can be constructed  

The steps of the MNB – 1 are: 

Step1: In a Cartesian system x0y the placements of power 

sources and loads are presented. All the placements will 

define the vortices set V. 

Step 2. The distances between each two placements are 

calculated; 

Step 3: The edges with length smaller than the threshold 

are retained. The edges will define the set LR; 

 Step 4: The condition grad(vi) ≥ 2, ∀ vi∈V is evaluated. If 

the condition is not fulfilled, the algorithm stops; 

 Step 5: Two sets, LD and LE, are defined. The set LD 

contains the available branches. The set LR contains the 

eliminated branches. Initially, LD = LR and LE = ∅}; 

Step 6: As long as LD ≠ {∅}, are executed the operations: 

Step 6.1. The branch with maximum length is determined 

Lmax∈LD; 

Step 6.2: The incidence of Lmax at vortices with degree at 

least 3 is verified. If not, Lmax is declared unavailable, is 

excluded from LD and the algorithm returns to Step 6.1; 

Step 6.3: The construction, after eliminating Lmax, of a 

loop radial supplied (LRS) is verified. If not, the algorithm 

goes to Step 6.4. If yes, Lmax is declared unavailable, is 

excluded from LD and the algorithm returns to Step 6.1; 

Step 6.4: the branch Lmax, which is included in LE and 

excluded from LD, is eliminated. The degree of the vortex 

where Lmax is incident is decreased with 1; 

Step 7: The set LB of the branches that forms the meshed 

network is determined, LB = LR – LE. 

The flowchart of the MNB – 1 algorithm is shown in Fig. 

6. 

STA RT 

 

 

Determ inat ion 

possible branches

 

Degree [v] ≥  2

Card (LD) = 0

Determ inat ion 

 Lm ax ∈  LD 

 Degree [v(Lmax)] ≥ 3

 LD := LD - Lm ax

 LE := LE + Lm ax 

 Degree [v(Lmax)]  := Degree [v(Lm ax)] -1

 S TOP 

 YES

 YE S

 YES

 NO

 NO

 NO

B AR  Y ES NO

LB := LR - LE

Sel ect ion 

admi tted branches

Fig. 6. Flowchart of the MNB – 1 algorithm  



Fig. 7 illustrates the meshed network determined applying 

the MNB – 1 algorithm, using same inputs as for the MNB. 

The maximum admissible length of the branches is smaller 

than 3.25. The constraint that each vortex of the initial graph 

must have a degree at least of 2 is not fulfilled, thus there are 

customers radial supplied. 

This results is not a drawback of the used method, but is 

determined by the physical inexistence of some branches 

incident in the respective vortices.   

C. Algorithm  MNB – 1V 

In this algorithm an additional constraint has been

introduced. The elimination of the branches incident at the 

source vortices is forbidden until the construction of the 

meshed network is finished.  

In this way, the number of outputs from each power source 

increases, which leads to an increase of reliability supply of 

the customers. If local loops containing power source vortices 

are composed, in a later step the edges incident in vortices 

with degree ≥ 3 are eliminated. In Fig. 8 a local loop 

determined by the vortices S2, 30 and 70 is illustrated. The 

edge S2-70 can be eliminated without the risk for appearing 

customers radial supplied. 

Fig. 9 shows the meshed network obtained applying the 

MNB – 1V algorithm, using the same input data. 

V. APPLYING THE ALGORITHM TO THE EXISTING NETWORKS

The methods presented for the determination of new

meshed networks can be also applied for studying the 

development of the existing networks.  

The placements of all new and existing power sources, as 

well as of all new and existing customers, are known. 

Fig. 7. Meshed network MNB – 1  

                 S2 

 30 

70 

Fig. 8. Local loop 

Fig. 9. Meshed network MNB – 1V  

In first, all new possible branches that can be established is 

in network are calculated. From these new branches, the ones 

that cannot be realized due to natural obstacles or 

environmental barriers are eliminated. The branches already 

existing are considered of length zero.   

Any of the previously presented algorithms can be applied, 

in two cases: 

- none of the old branches is eliminated, even if

determine additional not essential loops;

- the elimination of the old branches, for obtaining a

final meshed network with smaller total length, is

allowed.

In addition, the problem of meshed network with total 

length minimum can be transformed in the problem of 

meshed network with minimum costs. Thus, the length lij of 

the new branch between the vortices i and j can be replaced in 

the problem with the product lij⋅kij, where kij is the average 

cost for conductor pulling per unit of length, between the 

vortices i and j.  

In this way, the different costs for realizing two different 

routes with same length, but in different environmental 

conditions, can be considered. 

In addition, studies regarding the influence of placement, or 

sources number, modification on network configuration can 

be conducted.  

VI. CONCLUSIONS

Table I reports the total lengths for the looped networks 

obtained with the four methods for the same set of data 

(coordinates of sources and consumers). It is also presented 

the value of minimum active power losses for the un-looped 

operation diagram of each network. 

The un-looped operation diagrams were determined using 

the SURF algorithm, which is presented in [19], whilst the 

entry data required were taken from [29].  

Analyzing the results repoted in Table I it is noted that the 

smallest value of active power losses for un-looped operating 

diagrams corresponds to the network with the highest value 

of total length of lines, with the largest number of branches 

and with the greatest number of loops. 



TABLE I 

RESULTS

Algorithm 

Total 

length 

[km] 

Active 

losses 

[kW] 

Number of 

branches 

Number 

of loops 

MNB 144.203 202.867 75 4 

MNB-V 158.430 194.386 79 8 

MNB-1 157.897 195.900 79 8 

MNB-1V 167.705 135.932 80 9 

It follows that establishing a network configuration must 

not be done according only to the total length of branches, 

namely the minimum cost of electric conductors. We must 

consider also the value of network losses as a component of 

operating expenses. 

The looped networks determined using the methods 

described in this paper can be also studied and in terms of 

consumers security of supply and damages. 

Algorithms presented may be useful in the design and 

study of urban power distribution network development, 

especially when integrated into computer applications for GIS 

(Geographic Information System). 
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