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ABSTRACT

This paper considers the blind separation of nonstationary
sources in the underdetermined case, in which we have
more sources than sensors. A recently proposed algo-
rithm applied time-frequency distributions (TFDs) to this
problem and gave good separation performances in the
case where sources were disjoint in the time-frequency
(TF) plane. However, in the non-disjoint case, the method
simply relied on the interpolation at the intersection TF
points implicitly performed by a TF synthesis algorithm,
instead of directly treating these points. In this paper, we
propose a new algorithm that combines the abovemen-
tioned method with subspace projection in order to ex-
plicitly treat non-disjoint sources. Another contribution
of this paper is the estimation of the mixing matrix in the
underdetermined case.

1. INTRODUCTION

Blind source separation (BSS) considers the recovery of
unobserved original sources from several mixtures which
are observed at the output of a set of sensors. Each mixture
contains a combination of the sources that is resulted from
the mixing medium between the sources and the sensors.
The term “blind” indicates that no a priori knowledge of
both the sources and the medium structure is available.
To compensate for this lack of information, the sources
are usually assumed to be statistically independent. BSS
has application in different areas, such as communication,
speech and image processing and biomedical engineer-
ing [1].

A challenging problem of BSS arises when there are
more sources than sensors; this is now referred to as un-
derdetermined blind sources separation (UBSS). A TF-
based UBSS algorithm has been recently proposed in [2]
to successfully separate nonstationary sources using TFDs.
This algorithm gave good performances when the sources
were disjoint in the TF plane. It also provided the separa-
tion of TF quasi-disjoint sources, that is the sources were
allowed to have a small degree of overlapping in the TF
plane.

However, the intersection TF points were not directly
treated. In particular, a point at the intersection of two
sources is clustered “by chance” to belong to one of the
sources. As a result, the source that has picked up this

point now has some information of the other source while
the later lost some information of its own. The lost infor-
mation can be fortunately recovered to some extent by the
interpolation at the intersection point using TF synthesis.
However, for the other source, there is an interference at
this point, hence the separation performance may degrade
if no treatment is provided for this. The more the number
of intersection points not to be treated, the worse the inter-
polation result and the interference would become, hence
the worse the final separating performance.

In this paper, we propose another algorithm that com-
bines the above TF-UBSS algorithm with subspace pro-
jection, offering an explicit treatment of the intersection
points. The main assumption used in this algorithm is that
the number of sources simultaneously present at any in-
tersection point must be smaller than the total number of
sensors.

2. DATA MODEL AND ASSUMPTIONS

Let N -dimensional vector s(t) = [s1(t), . . . , sN (t)]T rep-
resent N nonstationary source signals. The source signals
are transmitted through a medium so that an array of M
linear sensors picks up a set of mixed signals represented
by an M -dimensional vector x(t) = [x1(t), . . . , xM (t)]T .
Consider the instantaneous mixing model, as given by:

x(t) = As(t) + w(t), (1)

where A = [a1, . . . , aN ] is the mixing matrix and w(t) =
[w1(t), . . . , wM (t)]T is the observation noise vector. The
goal of BSS is to recover s(t) from x(t). When M < N ,
the problem becomes UBSS. In this case, we assume that
any M column vectors of A are linearly independent.

In [2], sources are assumed to be disjoint in the TF
plane; that is, for any pair of two sources s1(t) and s2(t)
whose TF signatures are denoted by Ω1 and Ω2 respec-
tively, we have Ω1 ∩ Ω2 6= ∅. The notion of TF disjoint is
illustrated in Fig.1-a.

In this paper, we relax the above assumption by al-
lowing the sources to be generally non-disjoint, but limit-
ing the degree of disjoint to the following two conditions.
First, there are at most (M − 1) sources present at any
TF point. This allows us to apply the subspace projection
approach for the source TFDs estimation, to be shown in
Section 4. Second, for each source signal, there exists a



�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

tim
e

Time-frequency disjoint

Ω2

Ω1

ffrequency

t

(a)

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

tim
e

Time-frequency non-disjoint

Ω2Ω1

ffrequency

t

(b)

Fig. 1. (a)–TF disjoint, (b) TF non-disjoint

region in the TF plane where the source exists alone; in
other words, the energy of the other sources are negligi-
ble at the TF points within the considered region. This is
needed for the estimation of the mixture matrix, also to be
shown in Section 4. In the case the latter condition is not
satisfied, one can always estimate the mixing matrix using
algebraic [6] or other approaches. The TF non-disjoint is
illustrated in Fig.1-b.

3. SOURCE SEPARATION USING TFD

In this section, we briefly review the TF-UBSS method
proposed in [2]. This method uses the spatial TFD (STFD)
that is defined in [3] by the following:

Dxx(t, f) =
+∞∑

l=−∞

+∞∑

k=−∞
φ(k, l)·

x(t + k + l)xH(t + k − l)e−j4πfl, (2)

where φ(k, l) is the TFD time–lag kernel and the super-
script (H) denotes the complex conjugate transpose oper-
ator. The matrix Dxx(t, f) varies with respect to t and f .
When evaluated at a particular TF point, its (i, j)-element
has the value of the cross-TFD of xi(t) and xj(t) at this
point.

Applying (2) to the linear data model in (1), while as-
suming that the additive noise is not present, leads to the
following expression:

Dxx(t, f) = ADss(t, f)AH , (3)

where Dxx(t, f) is now the mixture STFD matrix and
Dss(t, f) is the source STFD matrix. After computing the
above mixture STFD matrix (we did use here the Wigner-
Ville distribution (WVD) or the Modified-WVD (MWVD)
[4]) and using noise thresholding, one proceeds then to the
selection of auto-source TF points; these are the points at
each of which only one source is active. This selection is
done following the procedure in [7].

The structure of the mixture STFD is as such: at an
auto-source TF point, there is only one value not equal to
zero among its diagonal elements. Therefore, if all sources
are disjoint in the TF plane then, for all TF points belong
to the TF signature Ωi of a source si(t), we have

Dxx(t, f) = Dsisi(t, f)aiaH
i , (4)

where Dsisi(t, f) is the TFD of si(t). In [6], ai represents
the principal eigenvector of Dxx(t, f) and Dsisi(t, f) is

(up to a constant) the corresponding eigenvalue, or equiv-
alently the trace value, of Dxx(t, f). Therefore, all the
auto-source points that belong to one particular source
must have the same spatial direction. In other words, if
we cluster these points into classes corresponding to dif-
ferent spatial directions, then these classes represent the
individual source signals.

Given the class Ci representing the source si(t), the
TFD estimate of si(t) is then computed (up to a constant
factor) by:

D̂sisi(t, f) =

=

{
trace{Dwvd

xx (ta, fa)}, ∀(ta, fa) ∈ Ci

0, otherwise
. (5)

Having obtained the source TFD estimates D̂sisi , we then
use an adequate source synthesis procedure to estimate the
source waveform si(t). The recovery of the source wave-
form from its TFD is made possible thanks to the follow-
ing inversion property of the WVD [4]

x(t) =
1

x∗(0)

∫ ∞

−∞
ρwvd

x (
t

2
, f) ej2πft df , (6)

which implies that the signal can be reconstructed to within
a complex exponential constant ejα = x∗(0)/|x(0)| given
that |x(0)| 6= 0. The method in [2] uses the synthesis al-
gorithm that is proposed in [5]. This algorithm recovers
the source waveform from its WVD estimates.

In brief, the TF-UBSS algorithm in [2] can be summa-
rized in the following four steps:

Tab.1: TF-UBSS algorithm

S1: STFD computation and noise thresholding
S2: Auto–source TF point selection
S3: Clustering and source TFD estimation
S4: Source signal synthesis

4. TF-UBSS USING SUBSPACE PROJECTION

As explained in the introduction, the TF-UBSS method
reviewed in Section 3 did not treat the intersection points
properly in the case where the sources are non-disjoined
in the TF plane. We propose here to use an appropriate
subspace projection to estimate the TFDs of the individ-
ual sources from the selected auto-source points, under the
assumption that there are at most (M − 1) sources simul-
taneously present at any given point.

In particular, consider an auto-term point (ta, fa) at
which sources si1 , . . . , siI contribute (I < M ) and define
s̃ = [si1 , . . . , siI ]

T and Ã = [ai1 , . . . ,aiI ]
T . We have

then
Dxx(ta, fa) = ÃDeses(ta, fa)ÃH (7)

and consequently (assumed that Deses(ta, fa) is of full rank)

Range(Dxx(ta, fa)) = Range(Ã).



Let us now assume that A is known (or already estimated),
and proceed with the estimation of the source TFDs. One
can obtain information about contributing sources at this
point by observing that:

{
P⊥eAaij = 0, for j = 1, . . . , I

P⊥eAai 6= 0, otherwise
.

Above, P⊥eA represents the orthogonal projection matrix
onto the noise subspace of Dxx(ta, fa) and can be com-
puted by

P⊥eA = I−VVH (8)

where V is the matrix of the I principal singular eigen-
vectors of Dxx(ta, fa). In practice, to take into account
estimation noise, one detects the I column vectors of Ã
as the vectors of A corresponding to the I smallest values
of the set {‖P⊥eAai‖} where i = 1, . . . , N . Once Ã is ob-
tained, we estimate the TFDs of I sources at point (ta, fa)
as the diagonal entries of:

Ã#Dxx(ta, fa)
(
Ã#

)H

≈ Deses(ta, fa). (9)

In the estimation of source TFDs above, we have as-
sumed that A had been known a priori or already been es-
timated. Along with other existing methods, we propose
here a method to estimate A by using the assumption that
for each source signal si there exists a TF region Ri where

Dxx(t, f) = Dsisi(t, f)aiaH
i , ∀(t, f) ∈ Ri.

Based on that observation we estimate A as follows.

• First, detect the TF points belonging to the region
R =

⋃N
i=1 Ri using the test criterion

(t, f) ∈ R iff
∣∣∣∣
λmax{Dxx(t, f)}
trace{Dxx(t, f)} − 1

∣∣∣∣ < ε,

where ε is a small threshold value (typically ε ≤
0.1) and λmax{Dxx(t, f)} denotes the maximum
eigenvalue of Dxx(t, f).

• Then, for each point (t, f ) in R, estimate the vector
â(t, f) as the principal eigenvector of Dxx(t, f).

• Finally, cluster the set of vectors {â(t, f)}, where
(t, f) ∈ R, into N classes1 using any vector clus-
tering technique existing in the literature [8]. In this
paper, we have used the algorithm k-means. The
column vectors of A are estimated as the N cen-
troids of the N clusters.

Table 2 presents a summary of the subspace projection
based TF-UBSS algorithm.

1There exist techniques that perform both the clustering and the es-
timation of the number of classes. For simplicity, we assumed here the
number of sources known.

Tab.2: subspace-based TF-UBSS algorithm

S1: STFD computation and noise thresholding
S2: Auto–source TF point selection
S3: Selection of rank-1 STFD matrices and com-
putation of their respective principal eigenvectors
S4: Clustering of the previous set of vectors and
estimation of column vectors of A as the centroid
points
S5: For all auto-source TF point, perform the sub-
space based TFD estimation
S6: Source signal synthesis

5. SIMULATION RESULTS

In the simulation, we use a uniform linear array of M = 3
sensors having half wavelength spacing. It receives sig-
nals from N = 4 independent linear frequency-modulated
sources, each has 256 samples, in the presence of additive
Gaussian noise where the SNR=20 dB.

The effect of cross-terms on the WVD representation
of one the mixture (as shown in Fig.2-(a)) was reduced
by using MWVD (as shown in Fig.2-(b)). Fig.2-(d) dis-
plays the auto-source TF points using MWVD. Fig.2-(c)
re-displays these points but with the TFD values extracted
from the WVD in Fig.2-(a); these TFD values will be used
for TFD estimation.
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(b) mixture (MWVD)
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(c) source TF points (WVD)
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(d) source TF points (MWVD)

Fig. 2. TFD choices and auto-source selection.

We compare the algorithm proposed in [2] (now re-
ferred to as cluster-based TF-UBSS) with the algorithm
proposed in this paper, now referred to as subspace based
TF-UBSS. Note that Fig.3-(b,e,h,k) show the estimated
source TFDs using the cluster-based algorithm, whereas
Fig.3-(c,f,i,l) are those obtained by the subspace based al-
gorithm.

From Fig.3-(b,e), we can see that the intersection points
between source s1(t) and source s2(t) were picked up by
source s2(t) by the cluster-based algorithm. On the other
hand, using the subspace-based algorithm, the intersection
points have been redistributed to the two sources (Fig.3-
(c,f)).

In Fig.4, we provide a statistical evaluation of the per-
formance gain we observed in the previous experiment.



For that, we run Nr = 500 Monte Carlo trials with the
same sources but random noise realization at each trial.
The quality of source extraction is measured by the fol-
lowing normalize MSE

MSE =
1

Nr

Nr∑
r=1

‖ŝr − s‖2
‖s‖2 ,

where ŝr represents the estimate of the sources at the r-th
trial. Note that for comparison we remove the scalar and
permutation indeterminacies. Even though the considered
sources are almost disjoint in the TF domain, we observe
an improvement of the separation method thanks to sub-
space projection. We expect this improvement to be more
significant if the sources have larger intersection region in
TF plane.
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(a) Ws1 (t, f)
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(b) Ŵs1 (cluster)
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(c) Ŵs1 (subspace)
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(d) Ws2 (t, f)
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(e) Ŵs2 (cluster)
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(f) Ŵs2 (subspace)
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(g) Ws3 (t, f)
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(h) Ŵs3 (cluster)
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(i) Ŵs3 (subspace)
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(j) Ws1 (t, f)
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(k) Ŵs4 (cluster)
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(l) Ŵs4 (subspace)

Fig. 3. TFD estimation.

6. CONCLUSION

This paper introduces a new approach for blind separation
of non-disjoint and nonstationary sources using TFDs. The
proposed method can separate more sources than sensors
and provides, in the case of non-disjoint sources, a better
separation quality than the method proposed in [2]. This
method is based on a vector clustering procedure that es-
timates the mixing matrix A, and subspace projection to
separate the sources at the intersection points in the TF
plane.
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