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Abstract

The BDB-1 deep-inclined borehole was drilled at the Mont Terri rock laboratory 

(Switzerland) and enabled to acquire relevant data on porewater composition through the 

Opalinus Clay (OPA) and its bounding formations. Petrophysical measurements were carried 

out and included water content, water accessible porosity and grain density determination. 

Mobile anion profiles were obtained by aqueous leaching and out diffusion experiments 

performed on drillcore samples, and revealed to be consistent with previous studies carried 

out at the rock laboratory level. Diffusive properties were also investigated using three 

experimental setups: parallelepiped out diffusion, radial diffusion and through diffusion. 

These transport parameters were used as a priori values in a Monte Carlo Markov Chain 

inversion modelling approach to interpret the chloride profile in the Opalinus Clay. Based on 

a Peclet number analysis, a purely diffusive scenario enabled specifying the 

paleohydrogeological evolution of the Mont Terri site from the folding of the Jura Mountains 

and transport parameters.
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1 Introduction

The Swiss National Co-operative for the Disposai of Radioactive Waste (Nagra) selected the 

Opalinus Clay (OPA) as a potential host rock suitable for deep geological repository of high- 

level radioactive waste and long-lived-intermediate-level waste. The evaluation of the 

confinement properties of this formation has been ongoing since 1996 in the Mont Terri rock 

laboratory, which is located in the Jura Mountains in north-western Switzerland. An overview 

of the safety aspects covered by this international research program and its contribution to the 

understanding of argillaceous formation behaviour was given by Bossart et al. (2017).

Solute transport is considered to be dominated by diffusion in compacted claystones due to 

their low permeability (Patriarche et al., 2004b; Sellin and Leupin, 2014). Limited water flow 

in these formations make standard sampling of porewater non applicable. Unconventional 

extraction processes based on physical or chemical extraction were developed and include 

centrifugation, squeezing, leaching, advective displacement and diffusive equilibration (Sachi 

et al., 2001). Natural tracer profiles across argillaceous formations give information on fluid 

flow and transport properties, as they result from a long-term exchange between the aquitard 

and the bounding aquifers porewaters (Mazurek et al., 2011; Bensenouci et al., 2013). The 

example of the Opalinus Clay was studied through the interpretation of several natural tracers 

(Cl-, ô H and He) profiles by Mazurek et al. (2011). This study concluded that a purely 

diffusive transport model could explain the present profiles and proposed values for activation 

times of the Opalinus Clay bounding aquifers and initial chlorinity. However, the mainly 

diffusive mass transport behavior was tested by means of a sensitivity test on advection using 

plausible but not based on global driving forces (pressure, temperature, salinity gradients) 

Darcy's velocity values and no corresponding Peclet number calculation were made. In 

addition, only a single value of the diffusion coefficient was applied to the stratigraphic 

column and no uncertainties were associated with the fitting parameters.
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At the end of 2014 and in the framework of the Deep Borehole experiment (DB), a 247.5 m 

long 45° downward inclined borehole named BDB-1 was drilled through the Opalinus Clay 

and the bounding formations. The aim of the experiment is to develop and validate a 

methodology for assessing the confinement properties of a thick argillaceous unit using the 

Opalinus Clay as an example. In this framework, mobile anion profiles were acquired by 

leaching and out diffusion experiments and diffusive transport parameters (effective diffusion 

coefficients and accessible porosities) were also identified by radial and through diffusion 

experimental setups.

This paper présents an exhaustive and self-consistent acquisition of transport parameters and 

natural tracer profiles in the hydraulically undisturbed zone crossed by the BDB-1 borehole. 

The chloride profile was interpreted by means of a purely diffusive 1D numerical model. The 

assumption of purely diffusive mass transport phenomena was verified by estimating the 

Peclet number including osmotic processes in the advection term. A bayesian inversion based 

on effective diffusion coefficients, initial value of the chloride concentration and two 

exhumation and thus hydraulic activation times for the two bounding aquifers (10 parameters) 

allowed to evaluate the best fit parameter sets and their uncertainties not evaluated so far. 

Obtaining a relevant interpretation of the chloride profile is crucial for water flow and flow 

characterisation. Hence, overpressures (pore pressure exceeding the hydrostatic or 

surrounding aquifer ones) were recognised in the Opalinus Clay and assumed so far to be 

remnant from its burial history (Mazurek et al., 2002). The influence of osmotic phenomena 

(water flow due to salinity or temperature gradients) on this pressure anomaly has not been 

investigated yet and depends strongly on the porewater composition. Therefore, 

understanding the salinity profile and its transient geological evolution across the formation is 

a necessary prerequisite for further transient interpretation of pressure profile (Gonçalvès et 

al., 2004).
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2 Geological setting

Figure 1: Geological cross-section of the Mont Terri anticline. Location of the rock laboratory 

is indicated by a white line. The BDB-1 deep borehole, represented by a thick black line, 

crosses the lower part of the Dogger aquifer, the entire Opalinus Clay formation and the upper 

part of the Liassic marls (adapted from Nussbaum et al., 2017).

The Opalinus Clay at the Mont Terri site is an overconsolidated claystone of Aalenian- 

Toarcian age, overlain by 800 m of Middle to Late Jurassic limestones, marls and shales, and 

underlain by 400 m of Early Jurassic to Triassic marls and limestones, dolomites and 

anhydrites (Figure 1). The thickness of the Opalinus Clay in the Mont Terri anticline varies 

between 130 m in the BDB-1 borehole and 160 m at rock laboratory level, depending on the 

tectonic contribution. This corresponds to a sedimentary thickness of about 120 m, when 

corrected for tectonic overthrusting. The Opalinus Clay reached a burial depth of 1350 m 

about 120 Ma ago during early Cretaceous, which resulted in a maximum temperature of 80- 

90°C (Mazurek et al. 2006).
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A period of marine régression occurred between 100 and 40 Ma, leading to a subaerial 

exposure of the top of the Malm limestone. Starting about 40 Ma, the rifting of the Rhine 

Graben affected Northern Switzerland, resulting in considerable subsidence of the area in the 

mid-Tertiary, which brought the Opalinus Clay sequence back to about 500 m depth. 

According to Clauer et al. (2017), two sea invasions into the Mont Terri area took place 

during Priabonian (37 to 34 Ma) and during the Rupelian (34 to 28 Ma). Mazurek et al. 

(2017) proposed that the Malm limestones, represented by the Baershwil Formation, acted as 

a fresh-water boundary that induced a decrease of the Opalinus Clay porewater salinity to half 

the original value at the end of the Paleogene (23 Ma). Partial evaporation potentially 

occurred in the Chattian/Aquitanian and afterwards, brines would have diffused in the 

underlying formation, resulting in a salinity increase in the Opalinus Clay before Late Alpine 

folding during the late Miocene to Pliocene (about 12 to 3 Ma) that formed the Folded Jura. 

Erosion exposed the core of the Mont Terri anticline between 6 and 2.5 Ma, and activated the 

Middle Jurassic limestones aquifer (overlying the Opalinus Clay), causing a porewater 

flushing. Similarly, infiltration to the Early Jurassic limestones would have started in the 

Quaternary, between 0.5 and 0.2 Ma ago (Pearson et al., 2003, Mazurek et al., 2011).

Three main facies were identified within the Opalinus Clay (Blaesi et al., 1991): a shaly facies 

in the lower part of the sequence, a thin carbonate-rich sandy facies in the middle part of the 

formation, and a sandy facies interstratified with shaly facies in the upper sequence. The shaly 

facies mineral composition includes 27-78% of clay minerals (illite, chlorite, kaolinite and 

illite-smectite mixed layers), 4-29% of carbonates, 10-32% of quartz, and accessory feldspars, 

pyrite and organic matter (Bossart and Thury, 2008).

Several minor tectonic faults and a larger fault zone called “Main Fault” can be observed in 

the Opalinus Clay (Nussbaum et al., 2011). Nagra’s investigations in deep boreholes at 

Riniken, Weiach, Schafisheim and Benken revealed that the tectonically disturbed zones are
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hydraulically similar to the undeformed matrix (Johns et al. 1994; Gautschi 2001a). This 

conclusion was also confirmed by hydraulic investigation in the BDB-1 borehole at Mont 

Terri (Yu et al., 2017).

3 Material and methods

3.1 Sampling

The stratigraphic sequence crossed by the BDB-1 borehole is presented in Figure 2 and is 

described in detail in Hostettler et al. (2017). The Opalinus Clay section was drilled with air 

as drilling fluid. Drilling was immediately followed by the installation of a multipacker 

system (Fierz and Rosli, 2014) with pressure and temperature sensors. The borehole was 

entirely cored for lithostratigraphic, petrophysical, mineralogical and geochemical studies. 

Cores sent for analysis were sampled every 10 m along the borehole. Their préservation was 

ensured by nitrogen flushing and sealing after vacuum with plastic foil in aluminum coated 

plastic bags, in order to avoid further evaporation and contact with the atmosphere.
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Figure 2: Lithostratigraphy of the formations crossed by BDB-1 borehole (adapted from 

Hostettler et al., 2017) and approximative location of the studied samples represented by red 

crosses.

3.2 Petrophysical characterisation

Determination of petrophysical parameters (water contents, porosity, apparent density, degree 

of saturation etc.) were performed in laboratory on representative elementary volume samples 

taken from the central part of the cores. Water contents were determined by weighing before 

and after oven-drying at 105 °C until mass stabilization. Density and degree of saturation

were calculated based on Archimede’s principle after sample immersion into kerdane (de-
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aromatized hydrocarbide), following the experimental protocol first proposed by Monnier et 

al. (1973) and adapted to Tournemire and Mont Terri argillites (Matray et al., 2007; Matray 

and Mori, 2010). Grain density was evaluated using a helium pycnometer (Micromeritics 

Accupyc II 1340) on oven-dried samples.

3.3 Aqueous leaching

Leaching consists in diluting pore water solutes contained in a powdered rock sample into a 

leaching solution (Sachi et al. 2001, Koroleva et al. 2011). Samples were crushed, sieved (< 

100 pm) and placed together with deionised water at solid/liquid ratio of 1:2 in centrifuge 

vessels. The procedure took place under controlled atmospheric condition in a glove box (N2 

atmosphere). Centrifuge tubes were placed in a hermetic glass jar and stirred out of the glove 

box using an end-over-end agitator during 2 hours. Then, samples were centrifuged at 10,000 

rpm for 15 minutes and placed again inside the glovebox to be filtered with 0.22 pm syringe 

filter. Leachates were analysed by liquid ion chromatography using a Metrohm 861 Advanced 

Compact IC with an accuracy of 10%.

3.4 Diffusion experiments

Schematic views of the alternative experimental setups used to characterise the Opalinus Clay

are shown in Figure 3.

Out diffusion Radial diffusion Through diffusion

Plug

Test 
solution 
Slotted 

steel casing
Cuboid
sample

Steel plug
Test solution 
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part
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reservoir
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Sample holder reservoir

T
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Figure 3: Schematic views of the diffusion cells used in this study to characterise the Opalinus 

Clay diffusive properties.

3.4.1 In and out-diffusion

In parallelepiped configuration, an out diffusion experiment consists in immersing a cubic- 

shaped sample into a synthetic solution and sampling the solution until reaching diffusive 

equilibrium. The method has been employed on argillite from Tournemire rock laboratory 

(France) by Patriarche (2004a) and enables the estimation of halide concentrations in 

porewater, as well as pore diffusion coefficient of the tested samples. Eighteen samples 

measuring about 5 cm wide were prepared with a diamond wire saw. They were constrained 

by placing a metallic grid, after being coated with epoxy resin on four faces to impose a single 

diffusion direction (perpendicular or parallel to the bedding). Test solutions were prepared to 

present a similar ionic strength to the porewater one, based on chloride contents obtained by 

leaching experiments.

A radial diffusion experiment consists in diffusive equilibrium between pore water contained 

in a drillcore and a test solution with known composition placed in an axial drilled reservoir 

(Van der Kamp et al. 1996, Savoye et al. 2006a and 2006b). A total of ten samples were 

prepared, each consisting of a core portion cut with a circular saw with a diameter of 10.2 cm 

or 8.5 cm and a length between 6.7 and 10 cm. A 24 mm diameter reservoir was drilled with a 

drill press in each sample, in which was inserted a 22 mm outer diameter copper tube with 

horizontal slots in order to prevent sample swelling. A 18 mm diameter 

polytetrafluoroethylene (PTFE) rod was also placed in the reservoir to minimise the solution 

volume used for the experiment and the time required to reach diffusive equilibrium. 

Solutions were analysed for anions (Cl-, SO4 - and Br-) by ionic chromatography using a 

DIONEX ICS-1000, and for stable isotopes (18O and 2H) using a Las Gatos Research LWIA-
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224IEP. The analytical uncertainties of these analysis are ± 5-10 % for anions, ± 1 %% for H 

and ± 0.6 % for 18O.

3.4.2 Through diffusion

Through diffusion cells consisted of a polypropylene sample holder, two polypropylene 

reservoirs for liquid phase (upstream and downstream, with respective capacities of 180 mL 

and 90 mL), two supporting grids and two sampling openings. Six cylindrical samples of 

approximatively 10 mm thickness and 30 mm diameter were prepared from core samples by 

sawing with a diamond wire saw. These samples were confined between porous polyether 

ether ketone (PEEK) grids in order to control clay mineral swelling and the assembly was 

fixed to the sample holder using Sikadur® epoxy adhesive. After a resaturation phase with 

synthetic porewater, the solutions were replaced with fresh ones and the upstream reservoir 

added with conservative radioactive tracers (HTO and 36Cl-). The flux of radioactive species 

between the reservoirs was monitored as a function of time by liquid scintillation using a 

Packard Tri-carb 3100 TR counter. The accuracy of activity measurement is estimated at 

6.4% for HTO and 3.5% for 36Cl-.

3.4.3 Modelling of the diffusion experiments

Parallelepiped out diffusion and through diffusion experiments were modelled numerically 

using the chemistry-transport coupled model code HYTEC (Van der Lee et al. 2003), which is 

based on finite volumes method. In purely diffusive system and for mobile components, the 

transport equation writes:

dci
œ ~dt = diV ^DeV (1)

where ci is the total concentration of component i, o [-] is the diffusion accessible porosity for 

mobile components, and De [m2 s-1] is the effective diffusion coefficient with De = oDp, 

where Dp is the pore diffusion coefficient accounting for the tortuosity of the porous media.
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For radial diffusion experiments, a numerical inversion of the semi-analytical solution given 

by Novakowski and Van der Kamp (1996) and Savoye et al. (2006b) was applied using 

Mathematica 5.2©.

3.5 Markov Chain Monte Carlo inversion approach

The chloride profile acquired on samples from the BDB-1 borehole was interpreted using a 

finite difference numerical resolution of the transport equation (1). This numerical treatment, 

which includes a statistical inversion process using a Markov Chain Monte Carlo (MCMC) 

algorithm (Metropolis), was implemented using Python . MCMC methods are probabilistic 

sampling techniques for Bayesian parameter estimation and uncertainty quantification. The 

basic principle consists in an oriented random walk exploration of the parameter space in 

order to avoid large time-consuming and even unrealistic systematic (using regular steps) 

sampling of parameters sets that allow reproducing the chloride profile. Each selected 

parameters set throughout the random walk is introduced in direct transport simulations. 

Therefore, these algorithms generate a sequence of model parameter sets and compare the 

model-based predictions to a given set of observed measurements (Tarantola, 2005; Gallagher 

et al. 2009; Petersen et al. 2014). The model parameters are constrained to minimise the misfit 

between simulated (simi) and measured values (obst), represented here by the mean squared 

error function S(m):

S(m) = ( obst - sirrii)2 (2)

i

where n is the number of measurements and m(m1^mn) is the vector of model parameters.

The random walk is based on sorted values in the a priori probability density function (pdf) 

p(m) of each parameter while the forward modelling identifies a set of parameters allowing a 

good agreement between simulated and observed chloride values. This set of successful
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245

parameters samples the a posteriori joint pdf o(m) which describes the updated parameters 

distribution (after forward modelling and data comparison) yielding the best simulations. 

Then, marginal pdfs have to be identified for each parameter to estimate e.g., its mean value 

and associated uncertainty. A complex mathematical treatment is required to assess rigorously 

the marginal pdf of each parameter. Alternatively, the marginal distributions can be simply 

identified by a statistical treatment of all the parameters samples that satisfy an acceptance 

criterion (fraction of best simulations, misfit threshold). For the sake of simplicity, the 

marginal pdf were identified using the second alternative approach.

Let’s now consider a current step of the MCMC algorithm characterised by a position mi of 

the random walk in the parameter space, and a potentially new position mj created by means 

of a random perturbation of mi. The acceptance of the displacement from a former parameter 

set mi to the posterior one mj follows the probabilistic rule (probability of acceptance P):

P
1 if 5(wtj) > S(m.j)
L(m/ A 5\ , N_j=exp(__) i/S(m,)<SW (3)

where L(m) is the likelihood function defined by :

S(m)
L(rri) = k x e â~ (4)

where k is a normative constant that ensures that the integral of o(m) over the parameter space 

equals 1, a is a convergence parameter to be set here by trial and error, and exp(-AS/o) = 

exp(-(S(mj)-S(mi))/a).

The first option in equation (3) just states that if the displacement yields a lower error between 

the direct model results and the observations, the displacement is accepted. The second one 

states that an unfavourable displacement can be accepted in order to leave local minimum 

values of the objective function and to explore other regions of the parameter space. This

13
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misfits. After a first convergence stage of the method, which consists in reaching the regions 

of the parameter space where the error is minimum, the MCMC algorithm provides a set of 

accepted parameters which allow the best simulations.

4 Results and discussion

4.1 Transport parameters

4.1.1 Porosities

Porosity values obtained from petrophysical analysis and diffusion experiments are reported 

in Figure 4.

a) Water-accessible porosity 
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Figure 4: a) Water accessible porosity acquired by oven-drying at 105°C of BDB-1 borehole 

samples and b) accessible porosity to anions (Cl-, Br-), radioactive tracers (HTO, 36Cl-) and
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3 18stable water isotopes ( H, O) determined by laboratory-scale diffusion experiments. Values 

framed by a dashed line are probably overestimated due to swelling or microcracks.

The mean water accessible porosity determined by density measurements is 13.0% in the 

Opalinus Clay, with a lower average porosity of 12.0% in the sandy facies compared to the 

shaly facies, which shows a mean porosity of 13.5%. These values are lower than the mean 

value of 18% suggested by previous studies performed at the Mont Terri tunnel level (Bossart 

et al. 2017). The Passwang Formation presents slightly lower porosity values ranging between 

8.1% and 14.6% with a mean value of 12.2%. The Hauptrogenstein is characterised by the 

lowest porosity with a mean value of 3.9%.

Except for the carbonate-rich sandy facies, porosity values obtained by radial diffusion for

stable water isotopes in the Opalinus Clay (up to 22 %) are higher than the values obtained by

density measurements (maximum value of 15 %). Sample preparation steps, such as drilling,

may have brought additional porosity by creating microcracks. Values obtained for H and 

18O are globally comparable and the anion exclusion (ratio of anion to water accessible 

porosities) is in the range of 51 % to 55 % in the OPA shaly facies and between 45 % and 

51 % in the sandy facies. These results are consistent with the ratio of 55%, which was chosen 

in out diffusion experiments to calculate anion contents in porewater and based on literature 

data (Pearson et al. 2003). Chloride and bromide diffusion accessible porosities are also 

comparable with values ranging between 6 % and 12 % and a best estimate at 8%.

4.1.2 Diffusion coefficients

Deduced from radial diffusion experiments, chloride and bromide effective diffusion

coefficient parallel to the bedding are in the order of 4.0 x 10" m s" in the Opalinus Clay,

which is in good agreement with the range of 1.7 x 10-11 to 4.5 x 10-11 m2 s"1 for bromide and

1.8 x 10-11 to 6.8 x 10-11 m2 s"1 for chloride reported in previous studies (Bossart et al. 2011).

Reasonable values from 3.0 x 10"11 to 1.1 x 10"10 m2 s"1 are obtained for stable water isotopes.
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Values obtained by through diffusion experiments are also in good agreement with literature 

data. In the Opalinus Clay shaly facies, values of 9.6 x 10-11 m2 s-1 for tritium and 1.4 x 10-11 

m2 s-1 for 36Cl are obtained parallel to the bedding. In the sandy facies, simulations give 1.9 x 

10- m s- for tritium and 5.1 x 10- m s- for Cl perpendicular to the bedding (Figure 5). 

Due to experimental artefacts linked to sample préparation, only three out of the six through 

diffusion cells provided relevant data.

Alternative formula for the anion exclusion ratio is given by Jacquier et al. (2013) and writes:

Pn =
De[HTO]/De[36Cl~]

(5)a D0[HTO]/D0[36Cl~]

where De [m2 s-1] is the effective diffusion coefficient and D0 [m2 s-1] is the diffusion 

coefficient in free water, equal to 2.008 x 10-9 m2 s-1 for HTO and 1.771 x 10-9 m2 s-1 for Cl- at 

25°C (Mills and Lobo, 1989).

Using equation (5), the diffusion anion exclusion deduced from through diffusion experiment 

is equal to 5.9 in the Opalinus Clay shaly facies, and 3.2 in the sandy facies.

The diffusion anisotropy ratio is the ratio between the effective diffusion coefficients parallel 

and perpendicular to the bedding. Based on out diffusion experiments, a low anisotropy ratio 

of 2.4 was estimated for chloride effective diffusion coefficient in the Opalinus Clay sandy 

facies, which is lower than the value of 4 reported by Van Loon et al. (2004) on a shaly facies 

sample. Anisotropy of diffusive parameters could not be determined in the shaly facies due to 

sample cracking and other unloading artefacts.
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4.2 Anion profiles

Chloride, bromide and sulphate profiles acquired by leaching and out diffusion experiments 

on BDB-1 samples are presented in Figure 6 and confirm the vertical variability of porewater 

composition along the stratigraphic column.
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Figure 6: Chloride, bromide and sulphate profiles acquired along BDB-1 borehole by leaching 

experiments and out diffusion tests.

Chloride and bromide values obtained by aqueous leaching are systematically higher 

compared to out diffusion results. Higher values of halides given by aqueous leaching 

compared to out diffusion are likely due to mineral dissolution or release of elements initially 

contained in inaccessible porosity. However, the two methods reveal similar curved profiles 

with increasing chlorinity towards the basal part of the Opalinus Clay (up to 16.1 g L-1 from 

leaching experiments). Out diffusion experiments give a range between 2.1 ± 0.3 g L-1 and 

14.4 ± 1.0 g L-1 for chloride contents with maximum concentrations found in the basal shaly 

facies of the Opalinus Clay. The sulphate profile along BDB-1 borehole also shows an 

increasing trend with depth, but even when extraction was performed under anoxic conditions, 

oxidation had a major effect on measured concentrations. Artificial increase of sulphate 

contents can be induced by artefacts linked to experimental procedures: pyrite oxidation 

during the sample preparation or equilibration process, and dissolution of sulphate-bearing 

minerals such as gypsum or celestite (Pearson et al., 2003; Wersin et al., 2013). Previous 

studies conducted at the tunnel level also concluded to a maximum value ranging from 13.6 to 

14.4 g L-1 for chloride content, found at the limit between the Opalinus Clay and the 

Staffelegg Formation (Pearson et al. 2003). The halide concentration ratios are consistent with 

a marine origin of the Opalinus Clay porewater.

4.3 Chloride profile modelling

4.3.1 Modelling assumptions and scenario

Although the predominant character of diffusion among other transport processes in low 

permeability formations is generally claimed, such assumption, which greatly simplifies 

transport numerical calculations, must be verified using the Peclet number (Soler, 2001):
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where q [m s-1] is the spécifie discharge (Darcy's velocity), L [m] is a characteristic distance 

for transport, here taken to be the formation half thickness, and De [m s- ] is the effective 

diffusion coefficient. It is classically stated that for Pe < 1, diffusion dominates over advection 

and advection is dominant over chemical diffusion if Pe > 1. However, in their discussion of 

transport phenomena in low permeability environments, Huysmans and Dassargues (2005) 

show that for Peclet numbers (Eq. 6) as high as 10, numerically simulated salinity profiles 

considering advection and diffusion or diffusion alone only differed by 10% pointing to a 

negligible advective contribution. Consequently, one can consider that below a value of 10 for 

Pe, diffusion models are sufficiently accurate for salinity profile interpretations.

The Opalinus Clay formation is characterized by maximum pressures (or hydraulic head h) 

and chlorinity values within the formation yielding corresponding differences with the 

surrounding aquifers of at least 5 bars (Ah = 50 m) and Ac = 0.42 mol L-1 respectively. A 

monotonic cross-formational temperature difference of 8°C per 100 m is also observed.

Considering that osmotic processes are at work in the Opalinus Clay, the 1D Darcy’s velocity 

accounting for osmotic terms can be expressed as (Gonçalvès et al., 2015):

dh vRTecKdc eT dT
q = ~ K— +------- --- -----------K— (7)

oz pg oz pg oz

where K [m s-1] is the cross-formational hydraulic conductivity, z is the axis perpendicular to 

the bedding, h [m] is the hydraulic head, p is the porewater density [kg m- ], g [9.81 m s- ] is 

the gravitational acceleration, £c[-] and sT [Pa K-1] are respectively the chemical osmotic 

efficiency and the thermo-osmotic coefficient, v is the number of dissociated species for a salt 

(e.g. 2 for NaCl), R [8.32 m Pa K- mol- ] is the gas constant, T [K] is the temperature, and c
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[mol m- ] is the chloride concentration. Note that for this first-order calculation, no gravity 

effect due to salinity is considered enabling the use of the hydraulic head h.

The first term in the right-hand side of Equation (7) is related to purely darcian fluid flow, the 

second and third terms to the chemical and thermal osmosis, i.e. fluid flow driven by salinity 

and temperature gradients. The petrophysical parameters of the Opalinus clay together with 

the thermo-osmotic model by Gonçalvès et al. (2015) points to a negligible thermo-osmotic 

term here. For the two remaining terms, simple gradients given by àh/L and àc/L can be 

introduced in Eqs (6) and (7). Peclet calculations require equivalent transport parameters 

(harmonic means across the formation, perpendicular to the bedding). Using the data of this 

study and of Yu et al. (2017), a harmonic mean of 10- m s- and 1.85 x 10- m s- is found 

for De and K. Using these values for an equivalent NaCl (v = 2) system and sc between 0.036 

and 0.081 (Noy et al., 2004) yields a Peclet number of between 0.6 and 0.8. It can thus be 

concluded that transport is likely dominated by diffusion for the Opalinus Clay. Therefore, 

mass transport calculations can be made by solving Equation (1) using a simple and robust 

finite difference numerical scheme.

The paleohydrogeological evolution was chosen accordingly to the conclusions of Bossart

and Wermeille (2003), who constrained the erosion and thus the exhumation of the Dogger

limestone overlying the Opalinus Clay between 10.5 and 1.2 Ma (time t0 hereafter). At that

time, the subsequent rapid flushing of the Dogger limestone pore water by meteoritic water

brought the salinity to zero which constitutes a boundary condition for the transport model.

The activation of the Liassic limestone aquifer underlying the Opalinus Clay occurred

between 0.5 and 0.2 Ma (time tj). A plausible range between 14 and 23 g L-1 was chosen for

the initial chlorinity C0 prior to the Jura Mountains folding (Mazurek et al., 2011). Cross-

formational diffusive transport parameters, namely effective diffusion coefficient and

diffusion accessible porosity, were deduced from laboratory experiments carried out on BDB-
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1 samples and described in section 5.1. Exhumation times t0 and t1 together with the initial 

chlorinity are used for boundary and initial conditions definition of the 1D diffusion model. 

At initial time t0, the chlorinity is set to C0 within the Opalinus clay, the upper and lower 

concentration boundary conditions are 0 and C0, respectively. Then, when the simulation time 

reaches t1, the lower boundary condition is set to zero. These boundary conditions allow 

simulating diverging diffusive mass transport from the Opalinus Clay towards first the upper 

aquifer alone then towards both aquifers. The model takes into accounts 7 formations showing 

different properties listed in Table 1.

4.3.2 Modelling results

The parameters to be calibrated must be chosen carefully since for more than 10 parameters, 

implementing MCMC methods becomes hazardous (large time- and cpu-consuming, 

convergence issues). However, under the assumption of purely diffusive mass transport, since 

the porosity intrinsically appears (De = uDp) in both sides of Equation (1), this parameter 

does not impact calculated chlorinity profiles which are only controlled by the pore diffusion 

coefficient. Therefore, porosity was not considered in our inverse modelling and was kept 

constant for each formation. From a practical standpoint, the calibrated parameters were the 

cross-formational effective diffusion coefficient for each of the 7 formations De (in fact Dp 

since rn is fixed, see above), t0, t1 and C0 which are all considered uncertain. Uniform a priori 

distributions were considered for these 10 parameters using lower and upper boundaries 

described in Section 4.3.1 for t0, t1 and C0, and boundaries encompassing the measurements 

for the 7 formation De values (see Table 1)

In the course of the MCMC inversion process involving 10 parameters (a priori values in 

Table 1), the misfit function reached a plateau after about 2000 iterations for 100000 

performed iterations (Figure A.1, Appendix A). Only about 800 random moves were accepted,
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indicating a relatively low number of parameter sets that fit the experimental data. The sets of 

parameters leading to the 5% lower misfit values were used to establish the a posteriori 

marginal distributions of the ten parameters shown in Fig 2.A of Appendix A. Both 

multimodal and unimodal distributions are obtained. Multimodal distributions were fitted by 

gaussian mixture distributions, all unimodal variables were fitted by a gaussian model except 

for C0 that is described by a log normal distribution (see Appendix A). Mean values and 95% 

confidence intervals for each parameters were calculated using the fitted distributions (see 

Table 1). For multimodal distributions, the weights and means of each fitted normal 

distribution component are used to calculate an "overall mean" for a given parameter as the 

weighted average of the mean values (see Appendix A). Therefore, the relative importance of 

each gaussian distribution within the gaussian mixture is respected. Note that the low number 

of sampled values in the parameter space is likely a limitation for the a posteriori marginal 

pdfs identification method described in Section 3.5. However, taking more samples (40% of 

accepted displacements) yields the same type of marginal distributions but with slightly 

different statistical parameters and a larger misfit when the mean parameters values are used 

in a direct simulation.

Table 1: Input parameters and associated uncertainties involved in the MCMC inversion 

process. Accessible porosities and formation thicknesses were kept constant. CI stands for 

Confidence Interval.

De [m2/s] (x 10'-11)

Formation Thickness
[m]

œ
[vol.%]

Measurements A priori A posteriori 
Mean

and 95% CI

Passwang Formation 69 7.5
De7: 0.817 

± 0.2
[10-1-20] 2.66

[1.51; 4.81]
OPA - 
Sandy facies 29 6.9

De6: 7.38 
± 4.36

[10-1-20] 6.55
[3.92; 11.61]

OPA - 
Shaly facies 35 7.6

De5: 0.597 
± 0.2

[10-1-20] 0.30
[0.18; 0.41]

OPA - 14 5.4 De4: 2.71 [10-1-20] 1.91
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Sandy facies ± 1.9 [0.59; 4.12]

OPA -
Carbonate-rich Sandy facies

6 6.8
De3: 2.04 

± 0.68
[10-1-20] 2.91

[0.39; 4.84]

OPA - 
Shaly facies

47 7.7
De2 : 3.56 

± 1.42
[10-1-20] 0.33

[0.04; 0.62]

Staffelegg Formation 63 4.5
Def 0.451 

± 0.132
[10-1-20] 0.59

[0.15; 1.04]

Parameter Value Range

A priori A posteriori

Activation time [Ma]

Dogger aquifer 
(upper boundary)

-5 [-10.5; -1.2]
-4.54

[-6.77; 1.7]

Lias aquifer 
(lower boundary)

-0.25 [-0.5;-0.2]
-0.24

[-0.3; -0.2]

Initial chlorinity [g L-1] 19 [14;23]
19

[17.3; 22]

As shown in Figure 7a, the simulation of diffusion for chloride matches fairly well the 

experimental data considering the mean a posteriori values for the parameters (Table 1). 

Except for two diffusion coefficients values (Passwang Formation and Opalinus Clay basal 

shaly facies), the fitted parameters are highly consistent with the measurements and 

exhumation time expectations (Figure 7b). The misfit for diffusion coefficients can be due to 

an imperfect mechanical confining of the Opalinus Clay sample leading to an overestimation 

of the measured De for the Opalinus Clay shaly facies. On the other hand, the Passwang 

Formation is more heterogeneous compared to the different facies of the Opalinus Clay. 

Lithostratigraphic investigation carried out by Hostettler et al. (2017) on BDB-1 drillcores 

showed that this formation exhibits variable lithology (silty to fine sandy marls, quartz sand 

and biodetrital sandy limestones, ferruginous limestones, iron oolithic marls and limestones). 

The number of samples investigated in laboratory-scale diffusion experiments was likely 

insufficient to reflect this variability in the present study.
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Figure 7: Comparison between a) experimental and simulated chloride profile obtained with 

the mean a posteriori values for the parameters and b) experimental and fitted diffusion 

coefficients, error bars represent 95% confidence interval.

The modelling results are globally consistent with previous studies carried out at the Mont 

Terri rock laboratory. A lower equivalent effective diffusion coefficient for anions of 4.6 x

12 i10" m2 s" was used in Mazurek et al. (2011) for the Opalinus Clay and the directly adjacent

formations, whereas different diffusion coefficient values were considered for each unit along 

446 the rock sequence in the present study. A higher cross-formational equivalent diffusion

12 icoefficient of 6.3 x 10" m2 s" for the Opalinus Clay explains the shorter time obtained for 

the adjacent aquifers activation in comparison with the study of Mazurek et al.(2011): 4.5 Ma 

compared to 6 Ma for the upper aquifer and 0.246 Ma compared to 0.5 Ma for the lower 

aquifer. However, the activation age at -4.54 Ma proposed here is close to one of the major 

morpho-tectonic event proposed by Kuhlemann and Rahn (2013) at -4.2 Ma.

5 Conclusions

An integrated study from BDB-1 borehole samples characterisation on the Opalinus Clay 

transport capabilities and transport modelling was performed. Petrophysical analysis enabled
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the acquisition of water accessible porosity, grain density and water contents along the rock 

sequence. Out diffusion and aqueous leaching techniques were used to obtain chloride 

concentrations of porewater in the Opalinus Clay and its bounding formations. Effective 

diffusion coefficients and diffusion accessible porosities were also investigated by radial 

diffusion and through diffusion experiments.

The measured chloride contents are in good agreement with previous investigation performed 

at the Mont Terri tunnel level, and show an asymmetric bell-shaped trend increasing to a high 

chloride concentration of 14.4 g L"1 towards the bottom of the Opalinus Clay. Moreover, 

chloride to bromide ratios reflect a marine signature in the clay rock. The chloride profile 

suggests a diffusive exchange between the argillaceous formation and the adjacent aquifers, 

with deferred activation times of the fresh"water sources linked to the surface erosion of the 

geological formations. This scenario was implemented in a Monte Carlo Markov Chain 

algorithm, which enabled to assess the best fitting set of parameters (initial chloride content, 

aquifer activation times and diffusion coefficients) and associated confidence intervals 

explaining the present-day chloride profile. Experimental and simulated data are comparable 

for respective diffusion times of 4.54 Ma and 0.246 Ma between the Opalinus Clay and the 

Dogger (overlying) and Liassic (underlying) limestones.

The present study confirms the paleohydrogeological evolution of the Mont Terri site from 

the folding of the Jura Mountains. This scenario is fundamental to constrain our future 

transient modelling of the overpressure regime observed in the Opalinus Clay to fully 

characterise transport processes in this formation.
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Appendix A

The convergence of the MCMC approach is characterised by a sharp decrease of the misfit 

function value from almost 7 to 1.5 on average after 2000 iterations (almost 200 accepted 

movements) of the random walk as shown in Figure A. 1.

Figure A.1: Misfit function as a function of the number of accepted displacements in the 

MCMC algorithm.

The sets of parameters leading to the 5% lower misfit values (errors lower than 0.7) were used 

to establish the a posteriori marginal distributions (Figure A.2).
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490 Figure A.2: A posteriori distributions (pdfs) for each parameter of the diffusion model.
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4
5 492 histograms results from the MCMC approach (Section 3.5). In red, the fitted theoretical
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and Lognormal: t1)

Multimodal distributions were fitted by gaussian mixture distributions:

a G (jl ! ,a± ) + p G (jl 2 ,a2 ) + Y G (i 3 ^3 ) (A-1)

where G(pi} are Gaussian distributions and a, fi, and y are the respective weights. The

fitted distribution parameters are listed in Table A.1.

11 2 1Table A.1: Parameters of fitted pdf with effective diffusion coefficients De [x 10" m s" ], 

activation times t0 and t1 [Ma], and initial chloride concentration C0 [g L"1].

Variable a P Y F1 O1 b2 O2 b3 O3

t0 0.32 0.56 0.12 -6.45 -3.95 -1.78 0.19 0.22 0.10
Log(-p) 1 0 0 -0.61 0.04 - - - -

C0 0.37 0.63 0 17.48 19.87 1.22 0.09 - -
De1 1 0 0 0.60 0.22 - - - -
De2 1 0 0 0.33 0.14 - - - -
De3 0.16 0.3 0.54 0.48 1.74 4.33 0.08 0.08 0.3
De4 0.53 0.47 0 0.75 3.18 0.57 0.10 - -
De5 1 0 0 0.3 0.06 - - - -
De6 0.67 0.33 0 4.91 9.83 1.24 0.55 - -
De7 0.58 0.22 0.2 1.86 3.08 4.58 0.14 1.19 0.14
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