Ben Tarak 
  
T Ben Zineb 
  
Bouraoui 
  
M Gannoun 
  
M Laroussi Hellara 
  
C Bouby 
  
T Bouraoui 
email: tarak.bouraoui@gmail.com
  
LGM Enim 
  
  
Numerical simulation of the force generated by a superelastic NiTi orthodontic archwire during tooth alignment phase: Comparison between different constitutive models

Keywords: NiTi, Superelasticity, Orthodontic archwire, Finite elements, Numerical simulation, Phenomenological models

 

Introduction

The orthodontic archwires are used to align and correct a mis-positioned tooth. The archwire applies a load that causes the dental displacement. The choice of an archwire depends conventionally on its capacity to induce an adapted and continuum loading after fixation, making possible for the tooth position to be corrected.

NiTi Shape Memory Alloys (SMAs) have been highly considered in the orthodontic field since their introduction by Andersean (1971). In fact, they have very interesting properties such as an excellent corrosion resistance, a high biocompatibility with human natural system, a low elasticity modulus and an important elastic force delivery range [START_REF] Their | Transformation characteristics and related deformation behavior in orthodontic NiTi wire[END_REF].

Within the last decade, many new NiTi orthodontic wires have been introduced. Some of them possess the superelasticity property. This property enables the SMA to recover large inelastic strains (about 10 %) due to a reversible thermoelastic martensitic transformation (Andersean et al 1971).

The introduction of NiTi archwires has revolutionized the orthodontic field. They generate during the unloading step low constant forces over a wider range of displacements than the traditional wires [START_REF] Aghili | Evaluation of the effect of three mouthwashes on the mechanical properties and surfaces morphology of several orthodontic wires: an in vitro study[END_REF][START_REF] Miura | The superelastic property of the Japanese NiTi SMA wire for use in orthodontics[END_REF].

Therefore, the main challenge is to overcome the difficulty to determine the optimal orthodontic arches due to the large number of the involved factors in the oral cavity [START_REF] Tanne | Three-finite element analysis for stress in the periodontal tissue by orthodontic forces Am[END_REF]. Moreover, the information on the forces exerted by the archwire on the tooth in a dental brace is of a high importance for the orthodontists and patients. In this way, it will be possible for clinicians to adjust the wires placed in the mouth in order to guarantee an adequate exerted force allowing to align the teeth quickly and painlessly for the patient. Indeed, efficient tooth movement depends on several physiological and mechanical conditions correlated with the alveolar bone response [START_REF] Schneider | Numerical experiments on long-time orthodontic tooth movement[END_REF]. A numerical study thereby seems to be a powerful tool in order to identify the optimal orthodontic force for a particular clinic situation. Hence, the main challenge is the finite element numerical simulation of the complex response of the system NiTi archwire and teeth in order to accurately predict the needed force for the teeth position correction [START_REF] Segner | Properties of superelastic wires and their relevance to orthodontic treatement[END_REF].

Actually, there is a limited number of studies that numerically investigated orthodontic loads in literature [START_REF] Rudolf | Forces measurements on teeth using fixed orthodontic systems Vobnotechnicki[END_REF]. Most of the studies predicting the orthodontic force at several applied deflections focused on the comparison of different commercial wires [START_REF] Bourauel | An experiment apparatus for the simulation of three dimensional movements in orthodontics[END_REF][START_REF] Lombardo | Load-deflection characteristics and force level of nickel titanium initial archwires[END_REF]. [START_REF] Aghili | Load deflection characteristics of Nickel Titanium initial Archwires[END_REF] performed the load-deflection of three wire designs and concluded that the type of archwire and brackets significantly affected the load level. This work aimed to present a comparison between models to accurately predict the load level for different displacements during the dental treatment. The main objective is to investigate the ability of each model to predict the magnitude of the generated force by orthodontic wires under different prescribed conditions, temperatures and alveolar bone stiffness.

This investigation attempts to approximate clinical conditions in a deflection test of loading and unloading upon a given dental configuration. In the first part is presented a characterization of the SMA allowing to identify the material parameters of the three considered constitutive models. These three constitutive models are then adopted to simulate the orthodontic load. Finally, the influence of the temperature and the bone stiffness on the load level has been investigated.

Material characterization and constitutive models

Material

The studied archwire is processed with a Ti50.8-Ni48.2 SMA and has a 0.64 x 0.46 mm² rectangular cross section as in [START_REF] Gamaoun | Effect of hydrogen on the tensile strength of aged Ni-Ti superelastic alloy[END_REF] study. This commercial SMA is marketed in a pre-formed archwire shape for orthodontic applications.

Experimental characterization

In order to investigate the superelastic behavior and to identify the mechanical properties of the SMA, tensile tests have been carried out, at constant temperature of 35°C on lengths of 40 mm of the archwire specimens were tested under uniaxial tension. The mechanical behavior has been characterized under a tensile machine LLOYD INSTRUMENTS , LR5KPlus Series with a maximum loading cell of 20 kN. The specimen has been charged at a strain rate of 6.66 10 -3 s -1 to a maximum strain of 7%. The obtained results have been post-treated with the software "NEXYGEN".

Figure 1.

Tensile behavior of Ni50.8Ti48.2 at 35°C loaded with a 6.66 E -3 s -1 strain rate to 7 % of strain.

The NiTi SMA exhibits a superelastic behavior at the oral temperature 35°C as shown in Figure 1.

This figure shows that the stress-strain curve exhibits four different behaviors. Loading starting from point A leads to an elastic response of the SMA initially in the austenitic state with an elastic modulus EA up to B where the transformation to martensite occurs at a yield stress σMs. Then a pseudo-plateau BC is observed corresponding to an increase in strain with a quasi-constant stress. At point C the material is fully martensitic at a Mf stress. The slope CD represents the elastic response of martensite.

At point D the material is still fully martensitic. During the unloading, the slope DE corresponds to the elasticity of the martensite with an elastic modulus EM. The reverse transformation occurs slightly before point E, corresponding to a yield stress σAs. Between E and F, the reverse transformation is activated, with a hysteresis H, induced by unloading. Finally, an elastic unloading between F and A occurs at a Af stress level. The corresponding set of material parameters is identified within this tensile test is presented in Table 1. During the orthodontic treatment, the tooth movement is acted by the applied loading delivered by the orthodontic wire during the unloading. Hence, the SMA is loaded at s without the activation of the martensitic transformation. If the loading is at a stress state between s andf, the unloading curve goes down then the stress level decreases till Af. In fact, the inner loops appear when the forward transformation ceases before reaching the complete fully martensitic phase (loading to 7% in figure 2). The formulation of the inner loops was considered based on the major hysteresis cycle. Many developed models were able to describe the inner loops feature [START_REF] Muller | On the size of the hysteresis in pseudoelasticity[END_REF][START_REF] Gillet | Calculation of pseudoelastic elements using a nonsymmetrical thermomechanical transformation criterion and associated rules[END_REF][START_REF] Peultier | Macroscopic constitutive law of shape memory alloy thermomechanical behavior. Application to structure computation by[END_REF][START_REF] Bouvet | A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings[END_REF]. This means that the unloading curve does not necessary intersect the diagonal of the complete hysteresis, this depends on the considered formulation. In the case of orthodontic wire application, the knowledge of only partial loops may be significant to determinate a response. Those wires could be also subjected to loading and unloading cycles at different loading amplitudes to deliver constant forces over tooth aligning and movement [START_REF] Miura | The superelastic property of the Japanese NiTi SMA wire for use in orthodontics[END_REF].

Figure 2 illustrates the inner loop feature at different strain unloading levels and is comparable to many experimental tests such as Dolce and Cordane (2001). In clinics, the interest of this property is to quantify the real corresponding load for different tooth displacement of the loaded SMA wire could be achieved in the plateau without reaching the end of the martensitic transformation. The unloading curve seems following the elastic part of the reverse transformation until reaching the diagonal of complete cycle and keeps coming down linearly. The unloading pseudo-plateau takes place at a higher stress value than the complete reverse transformation yield stress. In consequence, it is important to evaluate as accurately as possible the orthodontic applied loading by taking into account the effect of the inner loops.

Figure 2. Experimental inner loops behavior of a NiTi virgin wire at 2%, 3%, 5% and 7% of strains with ε̇= 6.66 -3 -1 .

In addition to tensile test, a Differential Scanning Calorimetric (DSC) test was carried out in order to identify the forward and reverse start and finish temperatures (Ms, Mf, As and Af). This measure was obtained during a heating-cooling cycle between -100˚C and 100˚C. The DSC test results are shown in Figure 3. The transformation temperatures are identified by plotting the tangents to different peaks (see Figure 3). It is worth noting that the SE SMA is at the austenitic state at the oral (35 °C) and room (25°C) temperatures. We note that the heating curve presents the R-phase transformation. 

Constitutive models

In the literature there are many proposed approaches to define the thermomechanical constitutive laws for shape memory alloys. Usually, these approaches can predict the superelastic and the shape memory effect behaviors. They are also able to describe other effects such as the detwinning of the martensite, the asymmetric responses in tension and compression and the inner cycles (Cisse et al 2016). Some researchers classified models into (i) micro-macro models that describe the behavior of each single grain and derive the polycrystalline macroscopic effective behavior using a scale transition technique as self-consistent or Mori-Tanaka techniques, and (ii) phenomenological models that directly represent the material behavior at the macroscopic scale, starting from the evolution of internal variables defined at the macro-scale (Cisse et al 2016).

In order to predict, by finite element, the induced force during the inner loop behavior, three models developed within the framework of phenomenological thermomechanics with internal variables were considered. The first behavior model was proposed by [START_REF] Lagoudas | thermodynamical constitutive model for shape memory materials[END_REF] and it is available in an open source. The second behavior model was developed by [START_REF] Auricchio | A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems[END_REF]. It is an improved version the model of [START_REF] Souza | Three-dimensional model for solids undergoing stressinduced phase transformations[END_REF] and it is already available in the finite element code Abaqus. The third model was developed by [START_REF] Chemisky | Constitutive model for shape memory SMAs including phase transformation, martensitic reorientation and twins accommodation[END_REF] and implemented in Abaqus via the UMAT subroutine.

The [START_REF] Lagoudas | thermodynamical constitutive model for shape memory materials[END_REF] and [START_REF] Chemisky | Constitutive model for shape memory SMAs including phase transformation, martensitic reorientation and twins accommodation[END_REF] models are based on the expression of Gibbs free energy whereas the model of [START_REF] Auricchio | A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems[END_REF] is derived from Helmotz free energy expression. Table 2 presents a brief sum up of the different properties reproduced by the three models involved in this study.  tr is the martensitic transformation strain,  is the volume fraction of martensite, the  twin is the mean strain induced twining martensite and g t is the transformation hardening-like energy.

To test the model's capabilities to predict the main features of NiTi SMAs which are the superelasticity (SE) and the inner loops, several uniaxial stress-strain have been processed under stress control will be described.

For that end, finite element model with a three-dimensional unit cube (1 mm × 1 mm × 1 mm) subjected to uniaxial loading-unloading cycle in tension at a constant temperature-is considered. The cube consists in a single eight-node brick finite element (labeled C3D8 in Abaqus finite element code).

The material parameters of each model are identified from experimental uniaxial stress strain curves (Figure 1).

The cube is constrained with symmetry conditions correlated with a uniaxial loading test. The numerical test is made in two steps:

-Step 1: application of a displacement (strain) of 0.07 mm along z direction in the nodes corresponding to the free face of the cube;

-Step 2: release of the displacement condition to recover the strain;

Table 3, Table 4 and Table 5 show the corresponding set of material parameters used for each adopted model which have been identified within the experimental tests. Figure 4 shows the numerical and the experimental stress-strain curves at a constant temperature of 35 °C for a 40 mm samples, cutted in an orthodontic wire. This figure shows that at a temperature above Af, superelastic effect is ideally replicated and a complete strain recovery is obtained during the unloading end. A good accordance between experiments and simulations is obtained for the three models, as they can reproduce the main characteristics (SE) of the studied SMA. Moreover, we could observe that the strain is composed of elastic part and inelastic reversible one up to 7 %. We observe that the unloading pseudo-plateau during the reverse transformation takes place at a lower stress level about (120-160) MPa, whereas the loading pseudo-plateau is about (320-340) MPa.

In order to check that these three models are able to predict the hysteretic internal loops behavior of SMA, a tensile load was applied to a strain of 1% then followed by fully unloading and then a higher reloading up to 3%, 5%, and 6.5% or 7 % are applied followed by a fully unloading.

The stress-strain curves obtained from this cyclic loading test are shown in Figure 5. Some points to notice are that the model of Chemisky et al ( 2011) is capable to reproduce the property of internal hysteresis loops. The stress at the unloading plateau decreases with the increase of the displacement amplitude. Whereas, [START_REF] Lagoudas | thermodynamical constitutive model for shape memory materials[END_REF] and [START_REF] Auricchio | A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems[END_REF] models do not allow the description of this effect observed experimentally (see Figure 2).

We could remark also that from applying strain of 1% to 3% the curves pass through the same loading points confirming the effect of return point memory [START_REF] Chemisky | Constitutive model for shape memory SMAs including phase transformation, martensitic reorientation and twins accommodation[END_REF].

The general shape of the mechanical response by [START_REF] Chemisky | Constitutive model for shape memory SMAs including phase transformation, martensitic reorientation and twins accommodation[END_REF] model is more allied to experimental curve with a slight slope in loading and unloading plateaus. In fact, this model predicts the inner loops feature whereas this effect is less considered in [START_REF] Lagoudas | thermodynamical constitutive model for shape memory materials[END_REF] and [START_REF] Auricchio | A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems[END_REF] models (Figure 5). Some applications of the SE give advantages in working on the total transformation such as the coupling sleeves (TiNi aerospace), however, an arch in the mouth can be unloaded across the pseudo-plateau of forward transformation without completing the total transformation. The unloading of the archwire depends on the distance of the irregular dentition. Once the wire is bent at a given strain, it is the unloading force which produces the tooth movement.

The exhibited force during the reverse transformation permits to evaluate the orthodontic effect. This model is then more reliable to determinate the orthodontic load values during deflections in mm increments.

The next section details to the numerical simulation by finite element method of the generated loading by a SE NiTi orthodontic archwire.

3. Finite element simulation of the orthodontic loading caused by an SE NiTi archwire in a fixed appliance

Numerical simulation of the orthodontic load in free recovery

As described below in Figure 6, the numerical configuration studied in this part is extracted from the total dental brace. We propose a SE NiTi wire to be inserted into the slot of a bracket bonded to a tooth.

The applied displacement is of a 2 mm, 4 mm and 6 mm on a 0.46 x 0.64 mm² cross section wire with a 0.67 x 0.67 mm² bracket slot section. The bending test simulates the wire stimulation on the teeth in the oral cavity. Deflections are chosen in order to compare our results with other studies [START_REF] Wilkinson | Load-deflection characteristics of superelastic nickel-titanium orthodontic wires[END_REF], Parvizi and Rock 2003[START_REF] Arghavani | A 3-D phenomenological constitutive model for shape memory SMAs under multiaxial loadings[END_REF][START_REF] Lombardo | Load-deflection characteristics and force level of nickel titanium initial archwires[END_REF]. As aforementioned, the objective of performing this simulation is to numerically predict the orthodontic force applied by the orthodontic archwire on the bracket. This force will be subsequently able to cause the dental displacement.

A loading-unloading test is simulated at the oral temperature 35°C under displacement control. The simulation is performed using quadratic hexahedral elements (C3D20). A convergence analysis is one made to choose the optimal elements size by considering the load-displacement response as the convergence criteria. A bias mesh was added to refine the mesh.

The tooth and the metal bracket are modeled like a unique deformable body (see Figure 8). Contact elements permit the interaction between the parts. It is desirable that the wire moves into the bracket with a minimum of friction. A friction coefficient of 0.3 was taken from the literature [START_REF] Noda | Frictional property of orthodontic wires-evaluation by static frictional coefficients[END_REF].

(a) The studied mispositioned teeth configuration.

(b) Boundary conditions and load applied to the three-dimensional orthodontic wire. Figure 6 shows the rectangular cross section a x b mm² wire and the applied boundary conditions. In order to simplify the model, we consider the smallest dental unit with a straight portion of the archwire inserted in a molar, a premolar and a canine. The b1 and b3 indications designate the two fixed brackets on the molar and the canine, the b2 indicates the mis-positioned tooth that was removed of a distance d from its appropriate position. The material parameters of the three considered models are identified from the tensile tests and listed in Tables 3 to 5. In particular it is observed in Figure 7 (c) the inner loop feature description. In fact, the curves being deflected at different controlled strains have the same activation curve. Whereas, through deactivation curve, the response has showed a different unloading curves which depend on the applied deflection.

The deactivation curve (Figure 7) indicates the load generated by wire to displace the tooth to its selfposition. Those results imply that the archwire doesn't exert the same load level with different deflections. Thus, if the wire in each mispositioned dental configuration is working on a point of this pseudo-plateau, the treatment would be more effective to dental movement.

In consequence, the wire deflected from 2 mm to 6 mm reproducibly can generate a constant force to large misaligned teeth. Therefore, it permits to keep a same archwire for a long period of treatment.

According to those considerations when orthodontists deactivate a wire to a 2 mm of deflection from its initial 4 mm or 6 mm bracket position, they obtain a load lower than the one activating the same wire to 2 mm. Figure 8 (a) presents the martensitic volume fraction distribution in the superelastic wire upon 2 mm and 4 mm of loading step at 35 °C. First, we note that some regions are totally transformed to martensite indicating magnitude values around 1. These regions are located where the arc is bent and respect the boundary conditions. In the other areas, the values are near to 0 magnitudes where the material is at the austenite state. Between the 1 and 0 values are the zones where a partially transformed martensite-austenite occurs. Second, we note that the three models show different volume fraction of martensite distributions. This could be resulted by the existing differences in the three formulations (Table 1). The load-defection curves displayed in Figure 10 with a 2 mm of deflection at 35 °C show an approximate agreement in the response between the three considered models. This agreement is in decrease as the deflection increase (Figure 9, Figure 7).

We move on at the next section to investigate the orthodontic level in a strain recovery. We will simulate the effect of the alveolar bone as an obstacle to the dental

Numerical simulation of the orthodontic load in a strain recovery

A numerical study was carried out to predict the orthodontic load exerted by the wire when we modulate the bone as an important component in the dental brace.

The wire is subjected to this thermomechanical loading: i) Activation: applying a displacement along Z axis on the contact wire between wire and bracket;

while we define a constant temperature 35 °C;

ii) Deactivation: inactivation of the imposed displacement, the surfaces extremities were clamped (Ux=Uy=Uz=0);

In a second step of tests, the model was modified in order to take into consideration the insertion of the tooth into the bone. The alveolar bone is considered as an obstacle to the tooth to return to its appropriate position, modulated by n springs of stiffness Ki, i=1…n with n is the number of nodes in contact with the bone (see Figure 6). Numerical simulations on Abaqus software permit the determination of approached values of the bone stiffness with values in [0.016 N/mm-2 N/mm]. We varied the bone stiffness values in order to verify their effect on the load level. Figure 11 and Figure 12 summarize the effect of the alveolar bone stiffness to resist to a dental displacement. The tooth movement is clamped as the stiffness increases. For instance, if the stiffness valued 1.6 N/mm, the wire didn't reach the deactivation plateau, which means that the wire is nonfunctional for the considered treatment situation. Hence an increase in the wire section could enhance the dental correction. Figure 13 shows that the increase in the cross section of the wire induces the reverse martensitic transformation despite the load increase. In consequence, a higher cross section wire induces more reverse transformation and consequently increases the dental displacement range. This is explained by the higher formed martensite volume fraction which leads to the elevation of the stored energy and hence induces the reverse transformation [START_REF] Garrec | Evolution of flexural rigidity according to the crosssectional dimension of a superelastic nickel titanium orthodontic wires[END_REF]. Clinically, the practitioner should choose wisely the section of the used orthodontic wire to ensure an adequate treatment.

Figure 14 displays the load-deflection curve recorded at 6 mm of displacement; the point A labels the activation of the wire to 2 mm with almost loading level of 9 N. In point B, the wire is loaded to 6 mm as shows the displacement U distribution, the loading level is about 16 N. When the archwire is unloaded, the bone with 0.16 N/mm of stiffness represents an obstacle and the deflection is blocked at 3.3 mm from the proper distance in point C and therefore the wire could not recover its initial position. The SMA displays advantages if the archwire working area is on the plateau and not in the austenite linear phase.

Figure 14 shows as well that patients who expose very irregular mis-positioned dental configuration offer the advantage to have a 'soft' treatment, below this deflection the SMA will behave as a conventional elastic behavior. In the next section, we will determinate the effect of the temperature alterations on the orthodontic load.

Numerical simulation of orthodontic load and final tooth displacement: temperature effect

The human oral temperature approximates 35 °C but many factors usually could affect the oral temperature including the ingestion of cold or hot substances, external temperature and humidity, smoking and whether the mouth is open or closed (Moore et al 1993).

The load-deflection behavior of a NiTi SE archwire has been examined in the bending configuration over the temperature range [8 °C-50 °C]. This chosen range is correlated with the investigation of Moore et al (1993) that recorded 24 hours intra-oral temperature. In this investigation we kept constant tooth stiffness at 0.16 N/mm. The selected temperatures to carry out the study were 8 °C, 25 °C, 35 °C, and 50 °C. N/mm stiffness (Figure 8). In comparaison with the load-deflection response of the wire in the simplified configuration described in Figure 6, the plateau region extent, gradient of tooth displacement to the proper position and the load values varried. Therefore, the load depends on the orthodontic configuration, [START_REF] Wilkinson | Load-deflection characteristics of superelastic nickel-titanium orthodontic wires[END_REF] shows that the load depends on the design of test configuration. Rergardless of the bone stiffness, the force value increases with temperature increasing. These phenomenon are explained reffering to clausius-clapeyron diagramm which gives a linear relationship between T and . These results confirm those reported by [START_REF] Ijima | Mechanical behavior at different temperatures and stresses for superelastic nickel-titanium orthodontic wires having different transformation temperatures dent[END_REF]. Table 6 summarizes the orthodontic forces which are predicted with a 3 mm and 6 mm applied deflections at 8 °C, 35 °C, and 50 °C. These values demonstrated that the increase in temperature increases the orthodontic generated load and induced more martensitic transformation. Otherwise, 7), it may be due to the difference in model design. 15 we could extract more information about the influence of the temperature on the orthodontic load and the distance traveled by the tooth to recover its appropriate position. According to [START_REF] Khier | Bending properties of superelastic and non superelastic nickel-titanium orthodontic wires[END_REF], the wire is in austenite phase, the deflection causes the martensitic transformation and generates the stress induced martensite (SIM), the SIM is formed in the stressed areas in the wire (Figure 8 (a)), where is engaged to brackets bounded to mis-positioned tooth. When we keep a constant temperature, the martensite permits to wire to be more pliable. Therefore, forces will decrease in needed zones. After tooth movement to its appropriate position, the wire self-restores by the austenitic phase. When the temperature increases above the oral temperature, the SE SMA exhibits higher load in deactivation to transform to austenite. The temperature at which an appeared permanent strain could correspond to a stable SIM and the transformation is then impossible [START_REF] Ferreira | Nickel-titanium SMAs: A systematic review Dental Press[END_REF][START_REF] Tonner | The characteristics of superelastic NiTi wires in three-point bending. Part I: The effect of temperature Eu[END_REF].

These elevations or decreases in temperature lead to a variable range of forces with consequent painful or relaxation sensations that could affect the effectiveness of treatment. According to the previous numerical simulation results, we could affirm the interest role of the numerical simulations in the orthodontic load estimations. The considered models were lead to different results depending on the considered formulation, because they neglect some physical aspects of the superelastic behavior (Cisse et al 2016).

The numerical simulation of an orthodontic archwire in physiological conditions is intricate because not only the tooth/bracket configurations and the reaction of the bone stiffness are complicated to represent [START_REF] Shiva | Load-deflection and surface properties of coated and conventional superelastic orthodontic archwires in conventional and metal-insert ceramic brackets[END_REF], but also the consequence of the temperature alterations at mouth due to different taken food or drinks should be considered.

Conclusions

In this paper, we present a comparative numerical simulation of three different SMA constitutive models in order to simulate by finite element method mainly a 0.64 x 0.46 mm² cross section wire response. The three considered models had successfully reproduced the SE behavior of the NiTi archwire. The loading curve represents the force that is required to insert the wire in the bracket bounded to a misaligned tooth. This force is usually measured at the last deflection of the loading curve. Whereas, this unloading curve represents the force delivered to correct this misalignment.

Usually this deactivation load is measured in several deflection points during the therapy. We notice that the load-deflection curves show different performances depending on the constitutive model.

This difference may be due to the considered features and modeled approaches.

In addition, the SE numerical simulations highlight the sensitivity of the mechanical response to the temperature. Actually, the temperature change induces the martensitic transformation which modifies the placed force on tooth. Hence, the wire in a mouth is influenced by the temperature alterations.

Moreover, the numerical results show that under a critical temperature the SE behavior does not present any deactivation plateau.

Moreover, the numerical investigations show that the bone stiffness is an important parameter in the measure of the orthodontic load generated by the wire to correct a misaligned tooth. Under certain conditions, this stiffness can be an obstacle to the tooth proper position displacement.

Additionally, the rectangular archwire with a larger cross section displays an advantage to induce the reverse transformation and therefore to imply the tooth movement which is controversial to [START_REF] Khier | Bending properties of superelastic and non superelastic nickel-titanium orthodontic wires[END_REF] results. Indeed, a high cross section wire risks to generate a higher level of the orthodontic force which could be not permissible to the biological tissue. However, a low applied force level could be insufficient to cause the tooth movement. The obtained numerical simulations show that the increase in deflection, which corresponds to the degree of the tooth irregularity, leads to a reduction of the orthodontic load in correction phase.

We obtained through the analyzed numerical simulations that the force level is within the acceptable values to be exerted by an archwire but isn't in the desired force range [0.05 N-1 N] [START_REF] Rudolf | Forces measurements on teeth using fixed orthodontic systems Vobnotechnicki[END_REF]. This cross section is therefore oversized. The numerical simulations show that the force exerted continuously and at constant level could influence the bone remodeling and exhibits more attention to restrict the load at a desired limit. On the basis of those simulations, we could recommend the orthodontists to advice their patients to decrease the temperature in order to decrease the force level. This can be performed by drinking fresh drinks when a certain discomfort is felt.

Actually, these numerical simulations are to be used as a decision-help tool in favor of the orthodontist to define the optimal archwire cross section dimensions depending on the needed correction and the operative temperature range.

  The abbreviations labeled on the graph indicate the martensite start and finish transformation temperatures respectively Ms and Mf characterizing the forward transformation. As and Af indicate austenite start and finish temperatures characterizing the reverse transformation.
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 3 Figure 3. NiTi as-received archwire DSC curves.

  bd and br are defined to describe respectively the slopes of direct and reverse martensitic transormations in the (,T) curve. rf is the internal loops amplitude coefficient, F is the yield stress of the reorientation process start and Hf denotes the pseudo-hardening coefficient of the martensitic transformation. rf, Fand Hf are taken from experiments done by[START_REF] Lachiguer | Modeling of hydrogen effect on the superelastic behavior of NiTi shape memory SMA wires Smart[END_REF].

  :  is the stress at the forward transformation start in tension,  is the stress at the forward transformation end,  is the stress at the reverse start transformation,  is the stress at the reverse transformation end and  𝐶 : is the stress at the forward transformation start in compression.The model proposed by Auricchio is simpler in terms of number of parameters and reproducing features.
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 4 Figure 4. NiTi uniaxial tensile tests reproducing using Lagoudas and Boyd (1996), Auricchio and Petrini (2004) and Chemisky et al (2011) models and confrontation with the experimental curve at 35 °C.

( a )Figure 5 .

 a5 Figure 5. Modeled stress-strain tensile curves of NiTi orthodontic wires after four loading cycles at 1 %, 3 %, 5 % and 7% of strain with (a): Lagoudas and Boyd (1996) model, (b): Auricchio and Petrini (2004) model and (c): Chemisky et al (2011) model.
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 6 Figure 6. The studied malocclusion configuration.
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 77 Figure7compares the load-deflections curves of the three considered models for different deflections at 35 °C. As it depicted, since the tested temperatures are greater than Af (T>Af), the strain is fully recovered after a total unloading which reflects the superelastic behavior.

( a )Figure 8 .

 a8 Figure 8. Martensite volume fraction distribution (a) and strain distribution on the archwire (b) at the end of the loading step at 35°C simulated by[START_REF] Lagoudas | thermodynamical constitutive model for shape memory materials[END_REF] model,[START_REF] Auricchio | A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems[END_REF] and[START_REF] Chemisky | Constitutive model for shape memory SMAs including phase transformation, martensitic reorientation and twins accommodation[END_REF] models.

Figure 8

 8 Figure 8 (b) shows the maximum strain distribution Emax of the wire during the loading step at 35 °C.The zones with high values (red zones) around the regions of contact with brackets are under tension and areas between teeth in blue are in compression which is in concordance with the martensitic fraction distribution.

Figure 9

 9 Figure 9 compares the load generated by a 0.64 x 0.46 mm² cross section SMA wire recorded by the three considered models at 2 mm, 4 mm and 6 mm of deflection. Finite element simulations with the three models lead to a range load average values at 2 4 mm and 6 mm of deflection from 2.7 N to 3.7 N which is within the range of the normalized orthodontic load values [0.15 N-5 N] (Rock and Wilson 1988). The numerical force levels obtained by Lagoudas and Auricchio models are quasi constant for the imposed deflections. Whereas, the force amplitude delivered with Chemisky model simulations is decreased at 6mm of deflection.
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 9 Figure9. Graph of the orthodontic load values at 2 mm, 4 mm and 6 mm for Chemisky et al[START_REF] Lagoudas | thermodynamical constitutive model for shape memory materials[END_REF] and[START_REF] Auricchio | A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems[END_REF] models at 35°C.

Figure 10 .

 10 Figure 10. Load-deflection curves of 2 mm-imposed deflection for Chemisky et al (2011),[START_REF] Lagoudas | thermodynamical constitutive model for shape memory materials[END_REF] and[START_REF] Auricchio | A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems[END_REF] models at 35 °C.

Figure 11 Figure 11 .

 1111 Figure11shows that the tooth displacement is blocked as closer to the initial position as the bone stiffness value decreased. Those simulations are reproduced by Auricchio and Lagoudas models to gain the cost of simulation using the configuration shown at Figure8as we will determinate mainly the effect of bone stiffness on the orthodontic load.

Figure 12 .

 12 Figure 12. Load-deflection curves response to 0.16 N/mm alveolar bone stiffness at 35 °C with the variation of the number of contact with bone using (a) Auricchio model and (b) Lagoudas model

( a )Figure 13 .

 a13 Figure 13. The effect of the rectangular cross section wire on the orthodontic load (a) the simple configuration (b) the assembled tooth/arc configuration

Figure 15 (Figure 15 .

 1515 Figure 15(a), 15(b) and 15(c) represent respectively the load-deflection responses to 9 mm of deflection (figure 16,[START_REF] Burstone | Force systems from an ideal arch[END_REF]. The models exhibit similar response against the temperature variations: the stress at loading and unloading plateaus increase as the temperature increases. The wire is loaded with 9 mm of deflection at the oral temperature, during the unloading step the temperature is increased to 50 °C or decreased to 8 °C. Obtained numerical response leads to the following features: i) the orthodontic force delivered during the unloading of archwire increased

Figure 15

 15 Figure 15 (b) reproduces the wire as a beam resited to springs reactions and the figure 16 considers the wire assembled in a configuration closely ressembled to a clinical configuration. This result implies that considering the wire as a beam in the numerical study a little bit-underestimates the orthodontic loads.

Figure 16 .

 16 Figure 16. Effect of temperature on the deactivation plateau the load-deflection curve of the NiTi SE wire deflected at 9 mm (Auricchio and Petrini model 2004).

  

  

  

  

Table 1 .

 1 Experimental material parameters

	335	390	120	105	5.18	36000	25000

Ms (MPa) Mf (MPa) As (MPa) Af (MPa) H (%) EA (MPa) EM (MPa)

Table 2 .

 2 Summary of aspects reproduced by considered models.

		Lagoudas and Boyd	Auricchio and	Chemisky et al 2011
		1996	Petrini 2004	
	Elastic modulus of A	EA≠EM	EA≠EM	EA=EM
	and M			
	Twinned martensite	Yes	Yes	Yes
	Detwinned martensite Asymmetry tension-compression Inner loops Cycling Variables of control	No No No No T, σ	No Yes Yes No T, ε	Yes Yes Yes No T, σ
	Internal variables	 tr , g t , 	 tr	,  tr ,  twin
	Large deformation Anisotropic behavior	No No	No No	No No

Table 3 .

 3 Lagoudas UMAT material properties.  is the Poisson ratio, is the thermal expansion coefficient, H or  𝑚𝑎𝑥 is the maximum transformation strain. si (i=A or M) are the coefficient of stress influence or the slopes of direct and reverse martensitic transormation in the (,T) curve[START_REF] Lagoudas | thermodynamical constitutive model for shape memory materials[END_REF] :

	EA EM   max tr =H Ms f As Af sA sM	36000 MPa 25000 MPa 0.33 22.10 -6 K -1 5.2 % 5 °C -1 °C 3 °C 17 °C -0.44 MPa.C -1 -0.17 MPa.C -1
	Accordingly, s M = -where Ttest is the temperature of the superelastic test. 𝜎𝐴 𝑒 -H ; s A = -	𝜎𝑀 𝑇 𝑒 -𝐴 H

Table 4 .

 4 Chemisky UMAT material properties.

		EA=EM    max tr =H  tracmax TFA  c m max TFA bd br Af Ms rf F Hf	36000 MPa 0.33 22.10 -6 C -1 5.2 % 0.04 0.04 4.2 MPa.C -1 1.7 MPa.C -1 17 °C 5 °C 0.6 100 MPa 4 MPa
	where  𝑎𝑐𝑚𝑎𝑥 𝐴	and  𝑐 𝑚 𝑚𝑎𝑥 𝐴	are respectively the maximum transformation strain and the maximum
	strain of auto-accommodate martensite.

Table 5 .

 5 Auricchio UMAT material properties.

	EA	33000 MPa
	EM	25000 MPa
		0.33
	max tr	5.2 %
	sA	0.44 MPa.C -1
		335 MPa
		390 MPa
	T0	35 °C
	sM	0.17

Table 7

 7 

	presents the distance covered by the tooth generated by the same imposed deflections with a
	0.16 N/mm alveolar bone stiffness.
	Compared to Ben Naceur et al (2014), the 0.64 x 0.46 mm² wire delivers for 2 mm deflection control

at 35 °C we present approximately close load values at activation and deactivation (Figure

Table 6 .

 6 Load values (N) at 6 mm and 3 mm deactivation points of an archwire being activated to 9 mm, the bone stiffness is 0.16 N/mm at 8 °C, 35 °C, 50 °C.

	35 °C 50 °C 8 °C	Lagoudas and Boyd (1996) model 3 mm 6 mm 3.95 3.90 5.14 5.24---	Auricchio et Petrini (2004) 3 mm 6 mm 7.32 5.24 7.30 5.12 7.92 4.90	Chemisky et al (2011) 3 mm 6 mm -3.28 4.94 4.74 2.72 -
	Referring to Figure			

Table 7 .

 7 Distance covered by the tooth when it is unloaded of 9 mm deflection at different 50 °C, 35 °C and 8 °C temperatures. The alveolar bone stiffness is 0.16 N/mm.

	Model	Lagoudas and Boyed	Auricchio and Petrini	Chemisky et al (2011)
			(1996)			(2004)				
	Temperature (°C)	50°C 35°C	8°C	50°C 35°C	8°C	50°C 35°C	8°C
	Displacement of tooth (mm)	6.35	4.65	1.83	7.15	6.05	5.87	5.27	4.77	2.95

In Perspectives, an experimental study would be useful to validate these findings. Due to the relatively large intra-and inter-oral conditions, other tests on different sample sizes and compositions are required within different test temperatures.