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We argue that discreteness at the Planck scale (naturally expected to arise from quantum gravity)
might manifest in the form of minute violations of energy-momentum conservation of the matter
degrees of freedom when described in terms of (idealized) smooth fields on a smooth spacetime. In
the context of applications to cosmology such ‘energy diffusion’ from the low energy matter degrees
of freedom to the discrete structures underlying spacetime leads to the emergence of an effective dark
energy term in Einstein’s equations. We estimate this effect using a (relational) hypothesis about
the materialization of discreteness in quantum gravity which is motivated by the strict observational
constraints supporting the validity of Lorentz invariance at low energies. The predictions coming
from simple dimensional analysis yield a cosmological constant of the order of magnitude of the
observed value without fine tuning.

PACS numbers: 98.80.Es, 04.50.Kd, 03.65.Ta

The discovery that the universe is undergoing an accel-
erated expansion [1, 2] is the source of one of the greatest
puzzles of our present understanding of cosmology which
goes under the name of the dark energy problem. While
the assumption of the presence of a cosmological constant
Λ remains the most successful phenomenological model,
naive theoretical reasoning predicts a value for Λ that is
either 120 orders of magnitude to big, or is strictly van-
ishing when a protective symmetry principle is at play
[3]. It would be desirable to have a concrete fundamen-
tal calculation leading clearly to Λobs ≈ 1.19 10−52 m−2,
the value indicated by observations [4].

A recent work [5] proposed a framework where viola-
tions of energy momentum conservation produce a dark
energy contribution. The key result of that work was
to characterize the effective framework where violations
of energy conservation are made compatible with general
relativity. As an illustration we applied it to two models,
previously considered in the literature, that propose such
violations. However, none of these two could be taken as
truly realistic. On the one hand, the cosmological time at
which the effects would start was not intrinsically defined
by the models, and, on the other hand, the strength of
the violations of energy conservation were encoded in a
phenomenological adjustable parameter with no explicit
link to fundamental constants. Therefore, while these ex-
amples were illustrative of the idea that small violations
can accumulate and contribute non negligibly to Λ, they
could not be used to predict its value.

In this paper we bridge this gap by proposing a mecha-
nism to generate Λ and the quantitative estimates based
entirely on known fundamental features of the physics in-
volved. The origin of the cosmological term, we suggest,
is to be found in the microscopic structure of spacetime
and its interaction with matter. We will work under the
hypothesis that discreteness of geometry and Lorentz in-

variance at low energies are fundamental aspects of quan-
tum gravity. Based on these two fundamental features we
propose a phenomenological model for quantum-gravity-
induced violations of energy conservation depending only
on the fundamental constants G, c, ~ and a few parame-
ters of the standard model (SM). We show that our sim-
ple proposal resolves the two limitations of the previous
examples and predicts a contribution to the cosmological
constant of the correct order of magnitude.

One of the most important constraints on the form of
quantum discreteness at Planck scales comes from the ob-
served validity of Lorentz invariance at QFT scales. As
shown in [6, 7] this rules out the simple atomistic view of
a spacetime foam selecting a preferred ‘rest-frame’ at the
Planck scale. This result, which severely constrains phe-
nomenological ideas, is corroborated by a large collection
of empirical evidence [8]. A more subtle theoretical char-
acterization of space-time discreteness at Planck’s scale
is necessary.

We think that the key for understanding Planckian
discreteness lies in the relational nature of physics partly
uncovered by Einstein’s theory of gravity [9]. In gen-
eral relativity, geometry can only be probed by the mat-
ter degrees of freedom. The metric has a clear physical
meaning only when rulers and clocks are introduced 1.
More precisely, the construction of observables (diffeo-
morphism invariant quantities) requires the use of rela-
tional notions involving a mixture of geometric and mat-

1 For example modified gravity models can be presented in the Jor-
dan or Einstein frames [10]. Thus physics can be described using
different notions of geometry, yet at the end ‘physical geometry’
is identified with the one where ‘free particles follow geodesics’.
Before the introduction of such test degrees of freedom the iden-
tification of physical geometry is meaningless.
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ter degrees of freedom. The difficulty of actually defining
such quantities is, in fact, one of the most severe tech-
nical problems in formal approaches to quantum gravity.
In our view such relational perspective is essential for
understanding discreteness at the Planck scale 2.

We are thus rejecting the notion of a spacetime foam
acting as an empty arena where matter, if there placed,
would reveal its preexisting features. Quantum discrete-
ness should arise primarily via the interactions of gravity
with those other degrees of freedom, which by their na-
ture, are able to select a preferential rest-frame where the
fundamental scale `p acquires an invariant meaning. In
other words, within the relational approach we are advo-
cating, it is clear that, in order to be directly sensitive to
the discreteness scale `p, the probing degrees of freedom
must themselves carry their intrinsic scale. Thus mass-
less (scale-invariant) fields are ruled out as leading probes
of discreteness simply because they cannot be associated
with any local notion of rest frame, and thus, of a fun-
damental length scale. This argument identifies massive
fields as the natural candidates for probes of spacetime
discreteness. Such discreteness must be thus thought as
becoming relevant, or as ‘awaken’, by the interactions of
gravity with such scale-invariance-breaking fields. The
immediate possibility arising from such considerations
(and framed in a phenomenological perspective) is that
low energy quantum field theoretical excitations of mas-
sive fields could interact with the underlying quantum
gravity microstructure and exchange ‘energy’ 3 with it 4.

In order to study the phenomenological implications of
these ideas one needs a ‘mean field’ or macroscopic de-
scription of the quantity parametrizing the phenomenon.
An obvious choice is the trace of the energy-momentum
tensor T—which for a fluid in thermal equilibrium is sim-
ply given by T = ρ− 3P—which signals the breaking of
conformal invariance, and hence, the presence of massive
degrees of freedom. Via Einstein’s equations T is related
to the scalar curvature R = −8πGT. Therefore, the
presence of massive fields (suitable probes of discreteness
according to our rationale) is geometrically captured by
a non trivial R.

The effect on the propagation of massive fields must

2 A concrete scenario illustrating the idea is the deparametrization
of gravity using dust or other suitable (massive) matter degrees of
freedom. In these models discreteness of geometry at the Planck
scale realizes upon quantization in relational observables involv-
ing matter and geometry [11, 12]. Such approach is certainly
simplistic because the matter ‘rulers’ are not properly quantized
but illustrates the spirit of our view.

3 It seems clear that the notion of energy as understood in the
context of metric description of spacetime will have to be super-
seded by a more fundamental notion appropriate to the discrete
language in which QG would be framed at the fundamental level.

4 Some ideas with similar conceptual underpinning have been ex-
plored in the context of laboratory searches for quantum gravity
phenomenology [13–15]. For a discussion of the implications for
the information problem in black hole evaporation see [16, 17].

be realized in a deviation from the geodesic motion of
free particles due to a ‘friction-like’ force encoding the
noisy interaction with the underlying spacetime granu-
larity. As argued in the previous paragraphs, the force
must be proportional to R. In addition, the force should
depend on the mass m, the 4-velocity uµ, the spin sµ

of the classical particle (the only intrinsic features defin-
ing a particle), and a time-like unit vector ξµ specifying
the local frame defined by the matter that curves space-
time. For instance, in cosmology ξ = ∂t is naturally
associated with the time-arrow of the co-moving cosmic
fluid. In addition, and according to our preceding argu-
ments, the force should be proportional to the particle’s
mass, endowing it with a characteristic length scale: the
Compton wave-length. Dimensional analysis gives an es-
sentially unique expression which is compatible with the
above requirements 5,

uµ∇µuν = −α m

m2
p

sign(s · ξ)R sν , (1)

where α > 0 is a dimensionless coupling6.
The factor sign(s · ξ) makes the force genuinely

friction-like. This is apparent when one considers the
change of the mechanical energy of the particle E ≡
−muνξν (defined in the frame defined by ξµ) along the
particles world-line, namely

Ė ≡ −muµ∇µ(uνξν)

= −αm
2

m2
p

|(s · ξ)|R−muµuν∇(µξν). (2)

The last term in (2) encodes the standard change of E
associated to the non-Killing character of ξµ. The first
term on the right encodes the friction that damps out
any motion with respect to ξµ. Energy is lost into the
fundamental granularity until uµ = ξµ and the particle
is at rest with the cosmological fluid, and thus Ė = 0.

5 Higher curvature corrections could be added, but these are highly
suppressed by the Planck scale and are thus negligible for the
central point of this letter.

6 There is a remarkable formal similarity of equation (1) with oth-
ers arising in well understood situations. We have the Mathisson-
Papapetrou-Dixon equations [18] describing the dynamics of ide-
alized extended objects in GR,

uν∇νPµ = −
1

2
Rµνρσu

νSρσ ,

where uµ represents the 4-velocity of the object, Pµ its 4-
momentum, Sρσ its spin and Rµνρσ is the Riemann tensor.
Moreover, we note that the characterization of WKB-trajectories
of the Dirac theory on a pseudo-Riemannian geometry [19], to
lowest order in ~, is given by

uν∇ν(muµ) = −
1

2
R̃µνρσu

ν〈Sρσ〉+ O(~2).

The previous is equivalent to (1) if one considers an effec-
tive R̃µνρσ ∝ m2/m2

p sign(s · ξ)Rεµνρσ taken to encode a pure

torsion-related structure as R̃[µνρ]σ 6= 0 (from the first Bianchi
identities).
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Consistency of (1) and the conservation s · s and the
condition s · p = 0 leads to the following equation for the
spin

uµ∇µsν = −α m

m2
p

sign(s · ξ)R (s · s)uν . (3)

We will not directly use this equation here but it is impor-
tant due to its potential phenomenological implications.

In this respect, it is also important to point out that
the violations of the equivalence principle and Lorentz in-
variance implied by (1) and (3) can be readily checked not
to be in conflict with well known observational bounds
by many orders of magnitude [20] for α ∼ O(1). A simple
indication comes from comparison of the value of R at
the electro weak (EW) transition in cosmology (a regime
where our effects will be important) to that associated
with, say, the gravitational effect of a piece of lead: this
gives Rlead

REW
∼ 10−24.

Coming back to the main argument, the diffusion of en-
ergy for a single particle, induced by (1), implies the lack
of energy-momentum conservation for a fluid constituted
by an ensemble of such particles (we will compute this
below). However, violations of energy-momentum con-
servation are incompatible with general covariance and
hence with the standard general relativity description
of gravity. Fortunately, there is a simple relaxation of
general covariance (originally studied by Einstein) from
full coordinate invariance down to spacetime volume pre-
serving coordinate transformations. Such modification—
which we only take as an effective low energy description
of a (in a suitable sense) general covariant fundamental
physics—is called unimodular gravity (UG), and its field
equations are just the trace-free part of the standard Ein-
stein’s equations

Rµν −
1

4
Rgµν = 8πG

(
Tµν −

1

4
Tgµν

)
. (4)

Defining Jµ ≡ (8πG)∇νTνµ, assuming UG integrability
dJ = 0 , and using Bianchi identities, one obtains [5]

Rµν −
1

2
Rgµν +

[
Λ0 +

∫
`

J

]
︸ ︷︷ ︸

Λ

gµν = 8πGTµν , (5)

where Λ0 is a constant of integration, and ` is a one-
dimensional path from some reference event. Thus, the
energy-violation current J is the source of a term in Ein-
steins equations satisfying the dark energy equation of
state. Moreover, in UG the vacuum energy does not grav-
itate [3, 21] resolving the tension previously mentioned
between quantum field theory and cosmology [22].

Now we compute Jν ≡ 8πG∇µTµν as implied by (1).
For a particle species i (the interactions between different
species are neglected here as their effect lead only to very
small corrections) one has Ti

µν
7

7 There is a subtle point that ought to be noted here: this part of

Ti
µν(x) ≡

∫
pµpν f

i(x, p, sr)DpDsr, (6)

where f i(x, p, sr) encodes the particle distribution in
phase space with sr denoting the value of the spin of
the particle in its rest frame, Dp = δ(p2 + m2)dp4, and
Dsr is the standard measure on the sphere of the spin di-
rections. Simple kinetic theory allows to express ∇µTi

µν

as (see equation 2.113 in [23])

∇µTi
µν

Ti
= −

∫
miFνf

i(x, p, sr)DpDsr
m2
i

∫
f i(x, p, sr)DpDsr

(7)

= α
mi

m2
p

R

∫ [
sνs0
|s0|

]
f i(x, p, sr)DpDsr∫

f i(x, p, sr)DpDsr

where 0-components refer to the time direction ξµ. As-
suming thermal equilibrium at temperature T , and ig-
noring the negligible additional effects of the force on the
distribution, we have f i(x, p, sr) = f iT (p) where the later
is the standard Boltzmann distribution. In the relativis-
tic regime T � m one has 8

Jν ≡ (8πG)∇µTµν = 4πα
T

m2
p

R

[
8πG

∑
i

|si|Ti

]
ξν ,

≈ −2πα~
T

m2
p

R2ξν (8)

where in the last line we write an approximation valid
for the case where a single |s| = ~/2 fermion species
dominates. This approximation will be useful in the ap-
plication of the formula to cosmology.

We now focus on the effects of (8) in the dynamics of
the early universe when its macroscopic geometry is well
approximated by the flat FLRW metric9

ds2 = −dt2 + a(t)2d~x2, (9)

the calculation is carried out by considering a space-time region
small enough to be covered by Riemann normal coordinates (i.e.
a local inertial frame) in such a way that the standard effects
of curvature can be neglected. The region is however large in
comparison with the Planck scale so that the energy diffusion
effects, the non standard influence of R in our model, are encoded
in the friction force underlying (1).

8 Isotropy of the equilibrium configuration implies that only the
0−component of the equations is non trivial. Then the result
follows first from the fact that∫

|s0|Dsr =
2πp|s|
m

∫
| cos(θ)| sin(θ)dθ =

2πp|s|
m

,

where p2 ≡ ~p · ~p, and the factor p/m comes from the boost
relating the comoving frame to the rest frame of the particle.
The next step is∫ [ 2πp|s|

m

]
fT (p)Dp∫

fT (p)Dp
= 4π|s|

T

m

[
1 + O

(
log
(m
T

) m2

T 2

)]
.

9 Note that the unimodular condition can be expressed in coordi-
nate free language by the requirement that the volume form εabcd
derived from the metric must match a certain predetermined 4-
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and where the local frame ξ = ∂t is identified with co-
moving observers. As only massive particles with spin are
subjected to the frictional force (1), the diffusion mech-
anism in cosmology starts when such particles first ap-
peared. According to the standard model—whose valid-
ity is assumed from the end of inflation—this corresponds
to the electro-weak (EW) transition time. We further as-
sume that a protective symmetry enforces Λ0 = 0 (see for
instance [24, 25]).

We are now ready to estimate the effective cosmolog-
ical constant predicted by our model. Using (5), and (8)
one gets

Λ =
2πα~
m2
p

t0∫
tew

[8πG(ρ− 3P )]
2
T dt, (10)

with t0 the present time. It is convenient to change the
integration variable in (10) from co-moving time t to tem-
perature T given the essentially direct relation between
the two quantities. During the relevant period the mat-
ter fields are assumed to be in thermal equilibrium. The
density of the universe, during radiation domination10

is given by, ρ = π2g∗T
4/(30~3) where g∗ ≈ 100 is the

effective degeneracy factor for the temperatures of inter-
est [26]. Taking into account that temperature scales like
a−1, using Friedman equation, and H(a) = ȧ/a, one gets,

dT

T
= −da

a
= −

√
8πG

3

π2g∗T 4

30~3︸ ︷︷ ︸
H(a)

dt. (11)

We will now focus just on the leading contributions. In
the ultra-relativistic regime standard thermodynamics
leads to the expression

ρ− 3P ≈ m2
tT

2

2~3
, (12)

where mt is the top mass. Replacing the leading term in
(12) and (11) into (10) one gets

Λ ≈ 16α

√
5π3

g∗

m4
tTew

3

m5
p~2

ε(Tew), (13)

where

ε(Tew) = − 3

T 3
c

Tend∫
Tew

(
1− T 2

T 2
ew

)2

T 2dT (14)

form eabcd. It is only when one uses coordinates adapted to the
latter (which always exist), that the condition can be expressed
as the requirement that

√
−g = 1 which is clearly a coordinate

dependent expression.
10 The assumption of radiation domination is appropriate here as

the contributions to the effect in question come mainly from the
early times close to tew where R is the largest.

is a dimensionless correction factor that takes into ac-
count the temperature dependence of the quark mass
during the EW-transition, namely m2

t (T ) = m2
t (1 −

T 2/T 2
ew). The end temperature Tend is the one satis-

fying 2mt(Tend) = Tend when the top quark’s abundance
decreases dramatically. The contribution of other fields
in the standard model, as well as those tied to simple
dark matter models such as WIMPS will not affect the
order of magnitude of the estimate 11. We note that
aside from the correction factor, ε(T ) ≈ 10−3—10−4

in the range of interest, equation (13) could have been
guessed from dimensional analysis. After substitution of
the different quantities involved and taking for example
Tew ≈ 100 GeV [27, 28], and adding the gauge boson
contributions (not included in (13)) we find

Λ ≈ 4αΛobs (15)

where Λobs is the observed value of the cosmological con-
stant. For other values of Tew see Figure 1 where we plot
the value of the dimensionless coupling α needed to fit
the observed values as a function of Tew. These results
are an order of magnitude estimate; a refined calculation
would require detailed considerations of the dynamics of
the electro-weak transition. However, such details are
not expected to modify our result in essential ways.

85 90 95 100
Tew (GeV)

0.4

0.8

1.2

1.6

α

Figure 1: The value of the phenomenological parameter α, see
eq. (1), that fits the observed value of Λobs as a function of
the EW transition scale Tew in GeV. The contributions from
the massive gauge bosons of the standard model have been
included.

We believe that our proposal has important implica-
tions of various types. At the theoretical level it provides
a novel view that could reconcile Planckian discreteness
and Lorentz invariance and gives possibly valuable in-

11 Massive gauge bosons do not change the order of magnitude
estimate, as mZ/mt ≈ 1/2 and gZW±/gtt̄ = 3/4. In (13) this
leads to a factor (3/4)2(1/2)4 times 2 as the spin of the bosons
is twice that of the fermions, i.e. their contributions is about 7%
of that coming from top-quark. From (8) one can work out the
precise corrections which are included in Figure 1.
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sights guiding the search for a theory of quantum grav-
ity. At the empirical level our analysis opens a new path
for searches of new physical manifestations of the grav-
ity/quantum interface.

Concerning the later, we note that one might use (8)
to estimate the amount of energy loss in local experi-
ments. Presently (neglecting the cosmic expansion), we
find ρ̇ ≈ −α(ρ/ρwater)

210−70g/(cm3s) where ρwater is the
density of sea water. The amount of energy produced
is maximal at the EW transition when the density of
the universe ρ(Tew) ≈ 1025g/cm3, and corresponds to
ρ̇(z∗) + 3ρH(a) ≈ −α 10−20g/(cm3s). Such a minuscule
level of energy loss cannot have significant effects on the
matter dynamics, and thus would be very hard, but not
impossible to detect. Nevertheless, we have seen that
such small energy losses can explain the observed late
time acceleration of the expansion rate of our universe.

Finally, as the model links ρ and its evolution with
the present value of the cosmological constant, and ρ di-
rectly enters in the computation of the structure forma-

tion leading to galaxies, stars and eventually humans,
this framework opens, in principle, a path that might
help in addressing the longly debated ‘coincidence prob-
lem’ [26].
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