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Abstract For each n ≥ 1, let {Xin, i � 1} be independent copies of a nonnegative
continuous stochastic process Xn = (Xn(s))s∈S indexed by a compact metric space
S. We are interested in the process of partial maxima M̃n(t, s) = max{Xin(s), 1 �
i � [nt]}, t ≥ 0, s ∈ S, where the brackets [ · ] denote the integer part. Under a
regular variation condition on the sequence of processes Xn, we prove that the par-
tial maxima process M̃n weakly converges to a superextremal process M̃ as n → ∞.
We use a point process approach based on the convergence of empirical measures.
Properties of the limit process are investigated: we characterize its finite-dimensional
distributions, prove that it satisfies an homogeneous Markov property, and show
in some cases that it is max-stable and self-similar. Convergence of further order
statistics is also considered. We illustrate our results on the class of log-normal pro-
cesses in connection with some recent results on the extremes of Gaussian processes
established by Kabluchko.
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1 Introduction

A classical problem in extreme value theory (EVT) is to determine the asymptotic
behavior of the maximum of independent and identically distributed (i.i.d.) random
variables (Zi)i≥1. What are the assumptions that ensure the weak convergence of the
rescaled maximum

max
1≤i≤n

Zi − bn

an

, an > 0, bn ∈ R,

and what are the possible limit distributions? These questions were at the basis of the
development of EVT and found their answers in the Theorem by Fisher and Tippett
(1928) characterizing all the max-stable distributions and in the description of their
domain of attraction by Gnedenko (1943) and de Haan (1970). Another stimulating
point of view developped by Lamperti (1964) is to introduce a time variable and
consider the asymptotic behavior of the partial maxima

max
1≤i≤[nt]

Zi − bn

an

, t ≥ 0.

The corresponding limit process is known as an extremal process: it is a pure jump
Markov process which is also max-stable, see Resnick (1975).

Since then, EVT has known many developments. Among several other directions,
the extension of the theory to multivariate and spatial settings is particularly impor-
tant, as well as the statistical issues raised by the applications on real data sets. For
excellent reviews of such developments, the reader is invited to refer to the monogra-
phies by Resnick (2008), de Haan and Ferreira (2006) or Beirlant et al. (2004) and
the references therein.

Our purpose here is to focus on the functional framework and investigate the
asymptotic behavior of the partial maxima processes based on a doubly infinite array
of independent random processes. Let S be a compact metric space and, for each
n ≥ 1, let {Xin, i � 1} be independent copies of a sample continuous stochastic
process (Xn(s))s∈S . Without loss of generality, we will always suppose that Xn is
non-negative (otherwise consider X′

n(s) = eXn(s)) and we denote by C+ = C
+
(S)

be the set of non-negative continuous functions on S. We are mainly interested in the
process of pointwise maxima

Mn(s) = max{Xin(s), 1 � i � n}, s ∈ S, (1)

and the process of partial maxima

M̃n(t, s) = max{Xin(s), 1 � i � [nt]}, t ≥ 0, s ∈ S. (2)

We use the convention that the maximum over an empty set is equal to 0, so
M̃n(0, s) ≡ 0. Clearly, we also have M̃n(1, s) = Mn(s). In this framework, the
parameter s ∈ S is thought as a space parameter and t ∈ [0, +∞) as a time variable.

Our approach relies on the convergence of the following empirical measures

βn =
n∑

i=1

δXin
and β̃n =

∑
i≥1

δ(Xin,i/n) (3)
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onC+ andC+ ×[0, +∞) respectively, where δa denotes the Dirac measure at point
a. The maxima processes Mn and M̃n can be written as functionals of the empirical
measure βn and β̃n respectively. We will prove the continuity of the underlying func-
tionals and then use the Continuous Mapping Theorem to deduce convergence of the
maxima processes from convergence of empirical measures.

Connections between EVT and point processes are well known. In the case when
the underlying state space is locally compact, the following result holds (see Propo-
sition 3.21 in Resnick (2008)): if nP[Xn ∈ · ] vaguely converges to some measure μ,
the empirical measures βn and β̃n converge to Poisson random measures with inten-
sity μ and μ ⊗ � respectively, � being the Lebesgue measure on [0, +∞). However,
in our framework the state space C+ is not locally compact and we need a suit-
able generalization of the above result. To this aim, we follow the approach by Davis
and Mikosch (2008) based on the notion of boundedly finite measures and �-weak
convergence detailed by Daley and Vere-Jones in Daley and Vere-Jones (2003).

The paper is organized as follows. In Section 2, we introduce the technical mate-
rial needed on boundedly finite measures, �-weak convergence and convergence of
empirical measures. Our main result is the convergence of the partial maxima pro-
cess M̃n which is stated and proved in Section 3. Then, in Section 4, we investigate
some properties of the limit process M̃ , known as a superextremal process. A brief
extension of our results to further order statistics is considered in Section 5. The last
section is devoted to an application of our results to the class of log-normal processes,
based on a recent work by Kabluchko (2011) on the extremes of Gaussian processes.

2 Preliminaries on boundedly finite measures and point processes

In this section, we present general results on boundedly finite measures and point
processes that will be useful in the sequel. The reader should refer to Appendix 2.6 in
Daley and Vere-Jones (2003) or to Section 2 of Davis and Mikosch (2008). This has
also close connections with the theory of regular variation, see Hult and Lindskog
(2005) and Hult and Lindskog (2006).

2.1 Boundedly finite measures

Let (E, d) be a complete separable metric space and E the Borel σ -algebra of E.
We denote by Mb(E) the set of all finite measures on (E, E). A sequence of finite
measures {μn, n � 1} is said to converge weakly to μ ∈ Mb(E) if and only if∫

f dμn → ∫
f dμ for all bounded continuous function f onE. We writeμn

w→ μ to
denote weak convergence. It is well known that this notion of convergence is metrized
by the Prokhorov metric

p(μ1, μ2) = inf{ε > 0; ∀A ∈ E, μ1(A) � μ2(A
ε) + ε and μ2(A) � μ1(A

ε) + ε}

where Aε = {x ∈ E; ∃a ∈ A, d(a, x) < ε} is the ε-neighborhood of A. Endowed
with this metric, Mb(E) is a complete separable metric space.
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A measure μ on (E, E) is called boundedly finite if it assigns finite measure to
bounded sets, i.e. μ(B) < ∞ for all bounded B ∈ E . Let M

�
b(E) be the set of all

boundedly finite measures μ on (E, E). A sequence of boundedly finite measures
(μn)n≥1 is said to converge �-weakly toμ ∈ M

�
b(E) if and only if

∫
f dμn → ∫

f dμ

for all bounded continuous function f on E with bounded support. There exists a
metric p� on M

�
b(E) that makes M

�
b(E) a complete and separable metric space and

such that convergence in the metric sense coincides with �-weak convergence. Such
a metric can be constructed as follows. Fix an origin e0 ∈ E and, for r > 0, let
B̄r = {x ∈ E; d(x, e0) ≤ r} be the closed ball of center e0 and radius r . For any
μ1, μ2 ∈ M

�
b(E), let μ(r)

1 and μ
(r)
2 be the restriction of μ1 and μ2 to B̄r . Note that μ1

and μ2 are finite measures on B̄r and denote by pr the Prokhorov metric on Mb(B̄r ).
Define

p�(μ1, μ2) =
∫ ∞

0
e−r pr(μ

(r)
1 , μ

(r)
2 )

1 + pr(μ
(r)
1 , μ

(r)
2 )

dr.

There are several equivalent characterizations of �-weak convergence, see Daley
and Vere-Jones (2003) Proposition A2.6.II. Let (μn)n≥1 and μ be boundedly finite
measures on E, the following statements are equivalent:

i)
∫

f dμn → ∫
f dμ for all f bounded continuous real valued function on E

with bounded support;
ii) p�(μn, μ) → 0;
iii) there exist a sequence rk ↗ +∞ such that, for all k � 1, μ(rk)

n
w→ μ(rk);

iv) μn(B) → μ(B) for all bounded B ∈ E such that μ(∂B) = 0.

We write μn
w�→ μ to denote �-weak convergence.

A boundedly finite point measure on E is a measure μ of the form

μ =
∑
i∈I

δxi

with {xi, i ∈ I } a finite or countable family of points in E such that any bounded
set B ⊆ E contains at most a finite number of the xi’s. The set of boundedly finite
point measures on E is denoted by M

�

(b,p)(E). It is a closed subset of M
�
b(E) and

hence is complete and separable when endowed with the induced metric (see Daley
and Vere-Jones (2008) Proposition 9.1.IV and Lemma 9.1.V).

The following characterization of �-weak convergence of boundedly finite point
measures will be useful.

Lemma 2.1 Let {μn = ∑
i δxn

i
, n � 1} and μ = ∑

i δxi
be elements of M

�

(b,p)(E).

Then μn
w�→ μ if and only if there exist some sequence rk ↗ +∞ such that for all

k ≥ 1, there exist N � 0 and m � 0 such that

∀n � N, μ(rk)
n =

m∑
i=1

δ
x

n,k
i

and μ(rk) =
m∑

i=1

δxk
i
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for some {xn,k
i , xk

i ; 1 ≤ i ≤ m, n ≥ N} in B̄rk such that x
n,k
i → xk

i , where μ
(rk)
n

and μ(rk) are the restrictions of μn and μ to B̄rk and the x
n,k
i ’s and xk

i ’s are suitable
relabellings of the points falling in B̄rk .

This Lemma is in fact an extension of Proposition 3.13 in Resnick (2008) where
vague convergence of locally finite point measures on a locally compact metric space
is considered. Extension of the proof in the setting of boundedly finite point measures
on a complete and separable metric space is straightforward.

2.2 Convergence of the empirical measures

Let (	,F,P) be a probability space. A boundedly finite point process on E is a
measurable mapping N : 	 → M

�

(b,p)(E). A typical example of boundedly finite

point process on E is a Poisson point process 
ν with intensity ν ∈ M
�
b(E). We will

also consider the following empirical point processes βn and β̃n defined by Eq. 3,
where, for each n ≥ 1, {Xin, i ≥ 1} are independent copies of an E-valued random
variable Xn. The random variable βn is a finite point process on E, while β̃n is a
boundedly finite point process on Ẽ = E × [0, +∞) endowed with the metric

d̃((x1, u1), (x2, u2)) = d(x1, x2) + |u2 − u1|, x1, x2 ∈ E, u1, u2 ∈ [0, +∞).

The following Proposition will play a key role in the sequel.

Proposition 2.2 The following statements are equivalent, where the limits are taken
as n → ∞:

i) nP[Xn ∈ · ] w�→ ν;

ii) βn
d→ 
ν with 
ν a Poisson point process on E with intensity ν and

d→
standing for convergence in distribution inM�

(b,p)(E).

iii) β̃n ⇒ 
̃ν with 
̃ν a Poisson point process on E×[0, +∞) with intensity ν⊗�,

� being the Lebesgue measure on [0, +∞), and
d→ standing for convergence in

distribution in M
�

(b,p)(E × [0, +∞)).

The proof of this Proposition follows by an adaptation of Proposition 3.21 in
Resnick (2008) which states a similar result in the case of a locally compact state
space and in terms of vague convergence. As noticed by Davis and Mikosch (2008),
the proof remains valid for a complete separable metric space E if we change vague
convergence by �-weak convergence. See also Theorem 4.3 in Davydov et al. (2008).

In the terminology of Hult and Lindskog (2005) and Hult and Lindskog (2006),
the condition i) in Proposition 2.2 means that the sequence Xn is regularly varying.
A particularly important case is when E is endowed with a strucure of cone, i.e. a
multiplication by positive scalars. If there exists a sequence (an)n≥1 of positive reals
such that

nP[a−1
n X ∈ · ] w�→ ν
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for some nonzero ν ∈ M
�
b(E), then the random variable X is said to be regularly

varying. Under some technical assumptions on the structure of the convex cone E

(e.g. continuity properties of the multiplication), the limit measure ν is proved to be
homogeneous of order −α < 0, i.e.

ν(λA) = λ−αν(A), λ > 0, A ∈ E .

Furthermore, the sequence an is regularly varying with index 1/α. In this framework,
if {Xi, i ≥ 1} are i.i.d. copies of a regularly varying random variables X, then the
triangular array Xin = a−1

n Xi satisfies condition i) since

nP[X1n ∈ · ] = nP[a−1
n X ∈ · ] w�→ ν.

3 Extremes of independent stochastic processes

We go back to our original problem where the Xin’s are non negative continuous
processes on S. We endow the set C+ = C

+
(S) of non negative continuous func-

tions on S with the uniform norm ‖x‖ = sups∈S |x(s)|, x ∈ C
+. Recall that S is

assumed to be a compact metric space and hence (C
+
, ‖ · ‖) is a complete separable

metric space. It turns out that, when working with maxima, the uniform metric is not
adapted, mainly because sets such as {x ∈ C

+; ‖x‖ ≥ ε} are not bounded for this
metric. For this reason, following the seminal work of de Haan and Lin (2001), we
introduce C

+
0 = (0, +∞] × SC+ where SC+ = {x ∈ C

+ : ‖x‖∞ = 1} is the unit
sphere. We define the metric

d((r1, s1), (r2, s2)) = |1/r1 − 1/r2| + ‖s1 − s2‖, (r1, s1), (r2, s2) ∈ C
+
0 .

The metric space (C
+
0 , d) is complete and separable as the product of the complete

and separable metric spaces (0, +∞] (with distance |1/r1 − 1/r2|) and SC+ . The
polar decomposition defined onC+

0 = C
+ \ {0} by

T :
{
C

+
0 → (0, ∞) × SC+
x �→ (‖x‖, x/‖x‖) .

is an homeomorphism and we identify in the sequel C+
0 and (0, +∞) × SC+ . In this

metric, a subset B ofC+
0 is bounded if and only if it is bounded away from zero, i.e.

included in a set of the form {x ∈ C
+; ‖x‖ ≥ ε} for some ε > 0.

3.1 Spatial maximum process

For the sake of clarity, we present first our results for the spatial maximum pro-
cess Mn defined by Eq. 1. The following theorem is a natural extension of Theorem
2.4 from de Haan and Lin (2001) where Xin = n−1Xi is obtained from an i.i.d.
sequence of continuous (or càd-làg) processes (Xi)i≥1 and the limit maximum pro-
cess M is simple max-stable. In our triangular array setting, we obtain in the limit a
max-infinitely divisible process. We recall that a random element ξ ofC(S) is called
max-infinitely divisible if for every n ≥ 1, there exists independent and identically
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distributed elements ξ1n, . . . , ξnn inC(S) such that ξ
d= ∨n

i=1ξin where
d= stands for

equality in distribution(see Giné et al. (1990) or Kabluchko and Stoev (Preprint)).

Theorem 3.1 Assume that for each n ≥ 1, {Xin, i ≥ 1} are i.i.d. copies of a nonneg-
ative continuous stochastic processXn. Then the following statements are equivalent,
where the limits are taken as n → ∞:

i) (Mn(s))s∈S
d→ (M(s))s∈S where the limiting process M is assumed to satisfy

the condition

essinf‖M‖ := inf{y > 0; P(‖M‖ > y) < 1} ≡ 0 (4)

and
d→ stands for convergence in distribution inC+

(S);

ii) nP[Xn ∈ · ] w�→ ν in M
�
b(C

+
0 ) with ν(C

+
0 \C+

0 ) = 0;

iii) βn
d→ 
ν with 
ν a Poisson point process on C+

0 with intensity ν and
d→

standing for convergence in distribution in M
�

(b,p)(C
+
0 ).

Furthermore, M is a max-infinitely divisible process with exponent measure ν, i.e. it
admits the representation

M(s)
d= sup

i≥1
Yi(s), s ∈ S, (5)

where
∑

i≥1 δYi
is a Poisson point process onC+

0 with intensity ν, and the exponent
measure ν is uniquely determined by the relations

P[M(s1) ≤ y1, . . . , M(sk) ≤ yk]
= exp

(
−ν{f ∈ C

+
0 ; f (si) > yi for some i = 1, . . . , k}

)
(6)

for all k ≥ 1, s1, . . . , sk ∈ S and y1, . . . , yk > 0.

Remark 3.2 The normalisation condition (4) might be stronger than necessary but
is required in the proof. Since P[‖Mn‖ ≤ y] = P[‖Xn‖ ≤ y]n, condition (4) is
fulfilled as soon as

sup
n≥1

nP[‖Xn‖ > y] < ∞ for all y > 0.

Giné et al consider the weaker condition essinfM(s) ≡ 0 and prove that every con-
tinuous max-infinitely divisible process M satisfying this weaker condition admits
a Poisson point process representation (5). This weak condition is not restrictive
because if b(s) = essinfM(s) is not identically equal to 0, one can consider

M(s) − b(s). It remains here an open question whether the convergence Mn
d→ M

with essinfM(s) ≡ 0 implies essinf‖M‖ = 0 or not.

Remark 3.3 Working on the space C(S) of continuous functions is important in
Theorem 3.1. The case of the space of càd-làg functions D[0, 1] endowed with the
Skorokhod J1 topology is studied by Gentric (2008). He shows that regular variation
does not always imply convergence of the partial maxima process. This is related
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to the fact that the operation (f, g) �→ max(f, g) is not continuous on D[0, 1]. We
believe that the good framework to work with non-continuous process is the space of
semi-continuous functions as is the seminal work by Giné et al. (1990). For the sake
of simplicity, we do not consider this general framework here.

For the proof of Theorem 3.1, note that the equivalence ii)⇔ iii) is a straightfor-
ward application of Proposition 2.2. For the implication i)⇒ ii), we follows the lines
of the proof of Theorem 2.4 in de Haan and Lin (2001). Finally, for the implica-
tion ii)⇒ i) we will need the following Lemma. With a slight abuse of notation, we
define

M
�

(b,p)(C
+
0 ) = {μ ∈ M

�

(b,p)(C
+
0 ) : μ(C

+
0 \C+

0 ) = 0}.
Note M

�

(b,p)(C
+
0 ) is an open subset of M

�

(b,p)(C
+
0 ).

Lemma 3.4 The mapping θ : M
�

(b,p)(C
+
0 ) → C

+ defined by θ(0) ≡ 0 and

θ
(∑

i∈I

δxi

)
=

(
s �→ sup{xi(s); i ∈ I }

)

is well-defined and continuous.

Proof of Theorem 3.1 Proof of ii)⇒ i): Under the assumption nP[Xn ∈ · ] w�→ ν,
we know from Proposition 2.2 that the empirical measure βn defined by Eq. 3 con-

verges in distribution in M(b,p)(C
+
0 ) to a Poisson point process 
ν with intensity

ν. The assumption ν(C
+
0 \ C+

0 ) ensures that 
ν lies almost surely in M(b,p)(C
+
0 ).

Noting that Mn = θ(βn) with θ continuous (cf Lemma 3.4), the continuous mapping

Theorem (see e.g. Theorem 5.1 in Billingsley (1968)) entails θ(βn)
d→ θ(
ν). This

proves the convergence Mn
r→ M with M = θ(
ν), i.e. i) holds together with the

representation (5). The normalisation condition (4) is easily checked since

P[‖M‖ > y] = 1 − exp
(
−ν{f ∈ C

+
0 ; ‖f ‖ > y}

)
< 1

for all y > 0.
Proof of i)⇒ ii): this is a direct adaptation of the proof of Theorem 2.4 in de Haan

and Lin (2001) and we give only the main lines. We use the notation νn = nP[Xn ∈ ·]
and we want to prove νn converges in M

�
b(C

+
0 ). The starting point is the convergence

Mn
d→ M which entails for all k ≥ 1, s1, . . . , sk ∈ S and y1, . . . , yk > 0 continuity

points

P[Mn(s1) ≤ y1, . . . , Mn(sk) ≤ yk] → P[M(s1) ≤ y1, . . . , M(sk) ≤ yk]. (7)

Setting
As1,y1,...,sk,yk

= {f ∈ C
+
0 ; f (si) ≤ yi, i = 1, . . . , k},
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we have

P[Mn(s1) ≤ y1, . . . , Mn(sk) ≤ yk] = P[Xn(s1) ≤ y1, . . . , Xn(sk) ≤ yk]n

=
(
1 − 1

n
νn(A

c
s1,y1,...,sk,yk

)

)n

and we deduce from Eq. 7 that

lim
n→∞ νn(A

c
s1,y1,...,sk,yk

) = lim
n→+∞ − logP[Mn(s1) ≤ y1, . . . , Mn(sk) ≤ yk]

= − logP[M(s1) ≤ y1, . . . , M(sk) ≤ yk]
:= ν(Ac

s1,y1,...,sk,yk
).

This last quantity is finite thanks to the normalisation condition (4). This shows that
if the limit ν exists, it is necessarily given by Eq. 6. To prove the existence of the

limit, one needs to show that the sequence νn is tight in M
�
b(C

+
0 ). This implies that

the relations (4) define a measure ν ∈ M
�
b(C

+
0 ) and that νn

w�→ ν as n → ∞.
Tightness of the sequence νn is the purpose of Lemma 3.2 in de Haan and Lin

(2001). The proof there assumes that Mn
d→ M in Skohorod space with the limit M

simple max-stable. Here we consider convergence in C+
(S) (which simplifies the

proof thanks to simpler tightness criterion) but we do not assume max-stability of
the limit. A close inspection of the proof reveals that max-stability is not needed but
only that

− logP(‖M‖ ≤ y) < ∞ for all y > 0

and that is the reason why we require the normalization condition (4).

Proof of Lemma 3.4

• First, we show that the mapping θ is well defined. This is not obvious since the
pointwise supremum of a countable family of functions is not necessarily finite
nor continuous.

Let μ ∈ M
�

(b,p)(C
+
0 ). For ε > 0, define μ(ε) as the restriction of μ to the set

B̄ε = [ε,∞] × SC and θε = θ(μ(ε)). Since B̄ε is bounded for the metric d, the
point measure μ(ε) has only a finite number of atoms and therefore θ(μ(ε)) is the
maximum of a finite number of non negative continuous functions and is hence
a non negative continuous function.

Furthermore, for all s ∈ S, |θ(μ(ε))(s)−θ(μ)(s)| � ε. So θ(μ) is the uniform
limit as ε → 0 of the continuous functions θε(μ), and hence θ(μ) ∈ C

+ and
satisfies

‖θ(μ(ε)) − θ(μ)‖ � ε. (8)

• Second, we show that the mapping θ is continuous.
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Let {μn = ∑
i∈In

δxn
i
, n � 1} be a sequence of measures in M

�

(b,p)(C
+
0 )

converging to μ = ∑
i∈I δxi

. For all ε > 0, there exists ε′ < ε, N � 0 and
m � 0 such that

∀n � N, μ(ε′)
n =

m∑
i=1

δ
xnε′
i

and μ(ε′) =
m∑

i=1

δ
xε′
i

with xnε′
i , xε′

i ∈ B̄ε′
and xnε′

i → xε′
i as n → ∞. Clearly, this implies that θ(μ

(ε′)
n )

converges in C+ to θ(μ(ε′)) as n → ∞. Hence there exists an integer n0 such

that ‖θ(μ
(ε′)
n ) − θ(μ(ε′))‖ ≤ ε for all n ≥ n0. Then, thanks to Eq. 8, we obtain

for n ≥ n0

‖θ(μn)−θ(μ)‖ ≤ ‖θ(μn)−θ(μ(ε′)
n )‖+‖θ(μ(ε′)

n )−θ(μ(ε′))‖+‖θ(μ(ε′))−θ(μ))‖ ≤ 3ε.

This proves that θ(μn) → θ(μ) as n → ∞ and that the mapping θ is continuous.

3.2 Spatio-temporal maximum process

We consider now convergence of the space-time process M̃n defined by Eq. 2. For
fixed t ≥ 0, the space process s �→ M̃n(t, s) is sample continuous and non negative,
i.e. a random elements of C+. Furthermore, the time process t �→ M̃n(t, ·) can be
seen as a C+-valued càd-làg process on [0, +∞); it is indeed constant on intervals
of the form [k/n, k/n + 1/n), k ∈ N. Hence, we will consider the process M̃n as
a random element of the Skohorod space D([0, +∞),C

+
) endowed with the J1-

topology (see for example Ethier and Kurtz (1986) for the definition and properties
of Skohorod space).

Theorem 3.5 Assume that nP[Xn ∈ · ] w�→ ν in M
�
b(C

+
0 ) and that ν(C

+
0 \ C+

0 ) =
0. Then, the process M̃n weakly converges in D([0, +∞),C

+
) as n → ∞ to the

superextremal process M̃ defined by

M̃(t, s) = sup{Yi(s)1[Ti ,+∞)(t); i ≥ 1}, t > 0, s ∈ S, (9)

where 
̃ν = ∑
i≥1 δ(Yi ,Ti ) is a Poisson point process onC

+
0 ×[0, +∞) with intensity

ν ⊗ �.

For the proof, we will need the following analog of Lemma 3.4 in the space-time

framework. Let M�
b,p(C

+
0 × [0, +∞)) be the subset of measures μ ∈ M

�

(b,p)(C
+
0 ×

[0, +∞)) such that μ((C
+
0 \C+

0 ) × [0, +∞)) = 0 and define

C̃ =
{
μ ∈ M

�

(b,p)(C
+
0 × [0, +∞)); μ(C

+
0 × {t}) ≤ 1 for all t ≥ 0

}
.

In other words, a measure μ = ∑
i∈I δ(xi ,ti ) belongs to C̃ if and only if ri < +∞ for

all i ∈ I and the ui’s are pairwise distinct.
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Lemma 3.6 The mapping θ̃ : M
�

(b,p)(C
+
0 × [0, +∞)) → D([0, +∞),C

+
) defined

by θ̃ (0) ≡ 0 and

θ̃
( ∑

i∈I

δ(xi ,ti )

)
=

(
(t, s) �→ sup{xi(s)1[ti ,+∞)(t); i ∈ I }

)

is well defined and continuous on C̃.

Proof of Lemma 3.6
The proof is similar to the proof of Lemma 3.4 and we give only the main lines.

• First we show that θ̃ is well defined. Recall thatC
+
0 × [0, +∞) is endowed with

the metric

d̃((r1, s1, t1), (r2, s2, t2)) = d((r1, s1), (r2, s2)) + |t2 − t1|.
Let μ ∈ M

�

(b,p)(C
+
0 × [0, +∞)). For ε > 0 and M > 0, let μ(ε,M) be its

restriction to B̄ε,M = [ε, +∞] × SC+ × [0, M]. Since B̄ε,M is bounded, μ(ε,M)

has only a finite number of atoms and we easily check that θ̃ (μ(ε,M)) belongs to
D([0, +∞),C

+
). Furthermore, for t < M and s ∈ S,

|θ̃ (μ(ε,M))(t, s) − θ̃ (μ)(t, s)| ≤ ε

so that θ̃ (μ(ε,M)) converges uniformly on [0, M] × T to θ̃ (μ) as ε → 0. The
constant M being arbitrary, this implies that θ̃ (μ) ∈ D([0, +∞),C

+
) and that

the application θ̃ is well defined. It also holds that

sup
(t,s)∈[0,M]×S

|θ̃ (μ(ε,M))(t, s) − θ̃ (μ)(t, s)| ≤ ε. (10)

• Next, we show that θ̃ is continuous on C̃.
Let {μn = ∑

i∈In
δ(xn

i ,tni ); n � 1} be a sequence of M
�

(b,p)(C
+
0 × [0, +∞))

converging to μ = ∑
i∈I δ(xi ,ti ) ∈ C̃. For all ε > 0 and M > 0, there exist

ε′ < ε, M ′ > M , N ≥ 1 and some m ≥ 1, such that

∀n � N, μ(ε′,M ′)
n =

m∑
i=1

δ(xn
i ,tni ) and μ(ε′,M ′) =

m∑
i=1

δ(xi ,ti )

with xn
i → xi and tni → ti as n → ∞. The condition μ ∈ C̃ ensures that

the ti’s are pairwise distinct and we can suppose without loss of generality that
t1 < · · · < tm. We then also have, for large enough n, tn1 < · · · < tnm. Define δM ′

the metric associated with the J1-topology onD([0, M ′],C+
) by

δM ′(x, y) = inf
λ

sup
(t,s)∈[0,M ′]×S

|x(λt, s) − x(t, s)|

where the infinimum is taken over the set of non-decreasing homeomorphisms
λ of [0, M ′]. Since for large n the ti’s and the tni ’s are in the same relative
order, there exists a non-decreasing homeomorphism λn

M ′ of [0, M ′] such that



208 F. Eyi-Minko, C. Dombry

λn
M ′(tni ) = ti for all 1 ≤ i ≤ m. We then have

δM ′(θ̃(μ(ε′,M ′)
n ), θ̃ (μ(ε′,M ′)))

≤ δM ′(θ̃(μn)), θ̃ (μ(ε′,M ′)
n )) + δM ′(θ̃(μ(ε′,M ′)

n ), θ̃ (μ(ε′,M ′)))

+δM ′(θ̃(μ(ε′,M ′)), θ̃ (μ))

≤ sup
(t,s)∈[0,M ′]×S

| max
1≤i≤m

(xn
i (·)1[λn

M′ tni ,+∞)(t)) − max
1≤i≤m

(xi(·)1[ti ,+∞)(t))|

= max
1≤i≤m

‖xn
i − xi‖

→ 0 as n → ∞.

Hence, for sufficiently large n, δM ′(θ̃(μ
(ε′,M ′)
n ), θ̃ (μ(ε′,M ′))) ≤ ε and thanks to

Eq. 10, this entails

δM ′(θ̃ (μn)), θ̃ (μ))

≤ δM ′(θ̃ (μn)), θ̃ (μ(ε′,M ′)
n )) + δM ′(θ̃ (μ(ε′,M ′)

n ), θ̃ (μ(ε′,M ′)))

+δM ′(θ̃(μ(ε′,M ′)), θ̃ (μ))

≤ 3ε.

Since M ′ is arbitrary large and ε arbitrary small, this proves the convergence
θ̃ (μn) to θ̃ (μ) inD([0, +∞),C

+
).

Proof of Theorem 3.5
The proof is very similar to the proof of Theorem 3.1. Note that M̃n = θ̃ (β̃n)

where β̃n is defined by Eq. 3. According to Proposition 2.2, the empirical measure

β̃n weakly converges in M(b,p)(C
+
0 × [0, +∞)) to a Poisson point process 
̃ν with

intensity ν⊗�. The assumption ν(C
+
0 \C+

0 ) and the fact that the Lebesgue measure �

has no atoms ensure that 
̃μ lies almost surely in C̃. From Lemma 3.6, the mapping
θ̃ is continuous on C̃, so that the Continuous Mapping Theorem implies θ̃ (β̃n) ⇒
θ̃ (
̃ν) which is equivalent to M̃n ⇒ M̃ .

4 Properties of the limit process

In this section, we give some properties of the limiting process M̃ defined by Eq. 9
in Theorem 3.5. These results extend the classical theory on extremal processes (see
Dwass 1964, 1966, 1974, Tiago de Oliveira 1968, Resnick and Rubinovitch 1973,
Resnick 1975 ...) from a univariate or multivariate setting to a functional frame-
work. Note also the work by Resnick and Roy (1994) in a functionnal setting with
applications to the dynamic continuous choice problem.

First, we characterize the finite dimensional distributions of M̃ . We use vectorial
notations: for l ≥ 1, s = (s1, . . . , sl) ∈ Sl , y = (y1, . . . , yl) ∈ [0, +∞)l and t > 0,
we write M̃(t, s) ≤ y if and only if M̃(t, si) ≤ yi for all i ∈ {1, . . . , l}.
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Proposition 4.1 For k � 1, 0 = t0 < t1 < · · · < tk , s ∈ Sl and y1, . . . , yk ∈
[0, +∞)l , it holds

P

[
M̃(t1, s) � y1, ..., M̃(tk, s) � yk

]
=

k∏
i=1

exp[−(tj − tj−1)ν(Aj )]

with Aj = {f ∈ C
+
0 ; ∃i ∈ 1, . . . , l, f (si) ≥ mink≥j yk,i}.

Proof of Proposition 4.1
Let j ∈ {1, . . . , k}. Note that M̃(tj , s) � yj if and only if 
̃ν doesn’t intersect the

set

Bj = {(f, t) ∈ C
+
0 × [0, +∞); t ≤ tj and ∃i ∈ {1, · · · l} f (si) > yj,i}

So, we have

P

[
M̃(t1, s) � y1, ..., M̃(tk, s) � yk

]
= P

[

̃ν ∩ (∪k

j=1Bj ) = ∅]
= exp[−(ν ⊗ �)(∪k

j=1Bj )].
The Bj ’s are not pairwise disjoint. To compute the measure (ν ⊗ �)(∪k

j=1Bj ), we
observe that

∪k
j=1Bj = ∪k

j=1([tj−1, tj ) × Aj) ∪ ({tk} × Ak)

where the sets in the right hand side are pairwise disjoint. From this, we deduce

(ν ⊗ �)(∪k
j=1Bj ) =

k∑
j=1

(tj − tj−1)ν(Aj ).

This proves the Proposition.

Next we prove that the process t �→ M̃(t, ·) is a C+
(S)-valued homogeneous

Markov process and consider its sample path properties. Let Ft be the σ -algebra
generated by {M̃(t ′, s); t ′ ∈ [0, t], s ∈ S}. The symbol ∨ stands for pointwise
maximum.

Proposition 4.2 • (Markov property) For each t ≥ 0, the conditional distribution
of (M̃(t+h, ·))h≥0 givenFt is equal to the distribution of (M̃(t, ·)∨M̃ ′(h, ·))h≥0
where M̃ ′ is an independent copy of M̃ .

• (regularity) TheC+
(S)-valued process t �→ M̃(t, ·) is a pure jump process with

finitely many jumps in each interval [t1, t2], 0 < t1 < t2.

The first point of the proposition states that the process t �→ M̃(t, ·) has “inde-
pendent and stationary increments” with respect to the maximum: for 0 = t0 < t1 <

· · · < tk , the distribution of (M̃(ti , ·))1≤i≤k is equal to the distribution of(
∨i

j=1M̃
j (tj − tj−1, ·)

)
1≤i≤k

,

where M̃1, . . . , M̃k are i.i.d. copies of M̃ . This property is similar to the property of
independence and stationarity of increments (with respect to the addition) of Lévy
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processes. For a fixed point s ∈ S, the process {M(t, s), t ≥ 0} is known as an
extremal process (see Proposition 4.7 of Resnick (2008)).

Proof of Proposition 4.2

• Consider the decomposition 
̃ν = 
̃
[0,t]
ν ∪ 
̃

(t,∞)
ν where


̃[0,t]
ν = 
̃ν ∩ (C

+
0 × [0, t]) and 
̃(t,∞)

ν = 
̃ν ∩ (C
+
0 × (t,∞)).

By the independence properties of the Poisson point process, 
̃
[0,t]
ν and 
̃

(t,∞)
ν

are independent. Furthermore,

M̃(t + h, ·) = sup{x(·)1[u,+∞)(t + h); (x, u) ∈ 
̃[0,t]
ν }

∨ sup{x(·)1[u,+∞)(t + h); (x, u) ∈ 
̃(t,∞)
ν }

and the two terms in the r.h.s. are independent. It is easily seen that the first term
is equal to M̃(t, ·), and that the invariance of the Lebesgue measure � implies
that the second term has the same distribution as M̃(h, ·).

• The definition (9) implies that conditionally on M̃(t1, ·), the evolution of the
process M̃(t, ·) for t ∈ [t1, t2] depends only on the points


̃ν ∩ {(x, t) ∈ C
+
0 × [t1, t2]; x(s) > M̃(t1, s) for some s ∈ S}.

Each of this point may give rise to a jump of M̃(t, ·) in [t1, t2]. The result fol-
lows since the number of such points follows a Poisson distribution and is hence
finite.

In the particular case when the measure ν is homogeneous of order −α < 0, the
process M̃ enjoys further interesting properties.

Proposition 4.3 Suppose ν is homogeneous with index −α < 0. Then:

• M̃ is max-stable with index α > 0, i.e. if M̃1, . . . , M̃n are independent copies of
M̃ , the maximum ∨n

i=1M̃
i has the same law as n1/αM̃;

• M̃ is self-similar with index 1/α, i.e. for all c > 0, the rescaled process
(M̃(ct, ·))t≥0 has the same distribution as (c1/αM̃(ct, ·))t≥0

Proof of Proposition 4.3
We check that the the two processes have the same finite dimensional distributions.

To this aim, we use Proposition 4.1 and the notations of the proposition.
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• Let M̃1, . . . , M̃n be independent copies of M̃ . By Proposition 4.1 and the
homogeneity of ν,

P
[

∨n
i=1 M̃i(tj , s) � yj , ∀j ∈ {1, . . . , k}

]
= P

[
M̃(tj , s) � yj , ∀j ∈ {1, . . . , k}

]n

=
k∏

i=1

exp[−(tj − tj−1)ν(Aj )]n

=
k∏

i=1

exp[−(tj − tj−1)ν(n−1/αAj )]

= P
[
n1/αM̃(tj , s) � yj , ∀j ∈ {1, . . . , k}

]
.

This proves the max-stability.
• Similarly, the self-similarity is proven as follows:

P
[
M̃(ctj , s) � yj , ∀j ∈ {1, . . . , k}

]
=

k∏
i=1

exp[−c(tj − tj−1)ν(Aj )]

=
k∏

i=1

exp[−(tj − tj−1)ν(c−1/αAj )]

= P
[
c1/αM̃(tj , s) � yj , ∀j ∈ {1, . . . , k}

]
.

5 Convergence of order statistics

The point process approach for extremes is powerful: the convergence of the empiri-
cal measure βn entails not only the convergence of the maxima Mn but also of all the
order statistics, and a similar result hold for the space-time version of these processes.

For 1 ≤ r ≤ n and s ∈ S, define Mr
n(s) as the r-th largest value among

X1n(s), . . . , Xnn(s). Note M1
n(s) = Mn(s) is simply the maximum. For r > n, we

use the convention Mr
n(s) = 0. The process Mr

n = (Mr
n(s))t∈S is refered to as the r-

th order statistic of the sample {X1n, . . . , X1n}. Similarly, for r ≥ 1, s ∈ S and t ≥ 0
define M̃r

n(t, s) as the r-th largest value among X1n(s), . . . , X[nt]n(s) with the con-
vention M̃r

n(t, s) = 0 if r > [nt]. An alternative definition in terms of the empirical
measure β̃n is given by

M̃r
n(t, s) = sup{y ≥ 0; β̃n(B

y
t,s) ≥ r}

with B
y
t,s = {(f, u) ∈ C

+
0 × [0, +∞); f (s) ≥ y, u ≤ t} and the convention that the

supremum over an empty set is equal to zero.
With these notations, we can strengthen Theorem 3.5 as follows.
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Theorem 5.1 Assume that nP[Xn ∈ · ] w�→ ν in M
�
b(C

+
0 ) and that ν(C

+
0 \C+

0 ) = 0.

Then, for each r ≥ 1, the vector of order statistics (M̃1
n, . . . , M̃r

n) weakly converges
inD([0, +∞), (C

+
)r ) as n → ∞ to (M̃1, . . . , M̃r ) defined by

M̃j (t, s) = sup{y ≥ 0; 
̃ν ∩ B
y
t,s ≥ r}, 1 ≤ j ≤ r, t ≥ 0, s ∈ S,

with 
̃ν a Poisson point process onC+
0 × [0, +∞) with intensity ν ⊗ �.

The limit process M̃j corresponds to the r-th space-time order statistic associated
to the point process 
̃ν .

Proof of Theorem 5.1
Using once again Proposition 2.2 and the Continuous Mapping Theorem, it is

enough to prove the following generalization of Lemma 3.6: the mapping

θ̃ r : M
�

(b,p)(C
+
0 × [0, +∞)) → D([0, +∞), (C

+
)r )

defined by θ̃ (0) ≡ 0 and

θ̃ (β)(u, t) = (sup{y ≥ 0; β̃(B
y
u,t ) ≥ j})1≤j≤r

is well defined and continuous on C̃. The proof is very similar to the proof of Lemma
3.6 and the details are omitted for the sake of brevity.

6 An application to maxima of Gaussian processes

In geostatistics, Gaussian processes are often used as spatial models. In the finite-
dimensional setting, the asymptotic behavior of the maxima of Gaussian random
vectors was first investigated by Hüsler and Reiss (1989). Recently, Kabluchko et al.
(2009) and Kabluchko (2011) consider the functional setting and prove convergence
of the maxima of i.i.d. centered Gaussian processes under suitable conditions on their
covariance structure. The family of Brown-Resnick processes has quickly become a
popular model for spatial extremes due to its simple characterization by a negative
definite functions. Our purpose here is to revisit their results and apply the present
framework: we put the emphasis on regular variations and point processes. In the
sequel, we follow the approach by Kabluchko, see Theorems 2 and 6 in Kabluchko
(2011).

We suppose that (S, d) is a compact metric space satisfying the entropy condition∫ 1

0
(logN(ε))1/2dε < ∞,

where N(ε) is the smallest number of balls of radius ε needed to cover S.
Let Zn = {Zn(s); s ∈ S}, n ≥ 1, be a sequence of continuous zero-mean unit-

variance Gaussian processes with covariance function

rn(s1, s2) = E[Zn(s1)Zn(s2)], s1, s2 ∈ S.
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Define the scaling sequence

bn = (2 log n)1/2 − (2 log n)−1/2((1/2) log log n + log(2
√

π)), n ≥ 1 (11)

and the rescaled process

Yn(s) = bn(Zn(s) − bn), s ∈ S.

We consider the log-normal process

Xn(s) = exp Yn(s), s ∈ S.

The following theorem provides a non trivial example of Gaussian random fields
satisfying condition ii) in Theorem 3.1. Thanks to the equivalence i)⇔ ii), it essen-
tially follows from the convergence of maxima due to Kabluchko (2011) . Since
convergence of point process is conceptually at a higher level than convergence of

maxima, we wish to provide here a direct proof of the �-convergence νn
w�→ ν with-

out considering convergence of maxima Mn
d→ M . To this aim, we use a criterion

for �-convergence due to Hult and Lindskog (2006).

Theorem 6.1 Fix s0 ∈ S and suppose that:

i) Uniformly in s1, s2 ∈ S :

�(s1, s2) = lim
n→∞ 4 log n(1 − rn(s1, s2)) ∈ [0, ∞). (12)

ii) For all s1, s2 ∈ S, there exists C > 0 such that

sup
n�1

log n(1 − rn(s1, s2)) � Cd(s1, s2). (13)

Then,

nP[Xn ∈ · ] w�−→ ν(·) in M
�
b(C

+
0 ),

where

ν(A) =
∫ ∞

0
P[weW(·)− 1

2�(s0,·) ∈ A]w−2dw, A ⊆ C
+
0 Borel set,

and {W(s), s ∈ S} a centered Gaussian process such that W(s0) = 0 and with
incremental variance �.

Following (Kabluchko et al. 2009; Kabluchko 2011), we define Yw
n the process

Yn conditioned by Yn(s0) = w and we note μw
n (s) = E[Yw

n (s)]. We will need the
following two Lemmas.

Lemma 6.2 Under conditions i) and ii) of Theorem 6.1, the family {Yw
n ; n ≥ 1} is

tight inC(S) for all fixed ω ∈ R, as well as the family {Yw
n − μw

n ; w ∈ R, n ≥ 1}.

Lemma 6.2 follows from the proof of Theorem 6 in Kabluchko (2011) (see also
the proof of Theorem 17 in Kabluchko et al. (2009)). Details are omitted here.
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Lemma 6.3 Under condition i) of Theorem 6.1, the following convergence in the
sense of finite dimensional distributions holds: as n → ∞,

{Yw
n (t), s ∈ S} f.d.d.−→ {w + W(s) − 1

2
�(s, s0), s ∈ S}

with W defined in Theorem 6.1.

Proof of Lemma 6.3
Standard computations for Gaussian processes entails that Yw

n is a Gaussian
process with mean and covariance

μw
n (s) = wrn(s, s0) + b2n(rn(s, s0) − 1), (14)

Cov[Yw
n (s1), Y

w
n (s2)] = b2n (rn(s1, s2) − rn(s1, s0)rn(s2, s0)) . (15)

Under assumption i), it holds

lim
n→∞ μw

n (s) = w − 1

2
�(s, s0)

and

lim
n→∞Cov[Yw

n (s1), Y
w
n (s2)] = 1

2
(�(s1, s0) + �(s2, s0) − �(s1, s2)).

This implies that lim
n→∞Var(Yw

n (s2)−Yw
n (s1)) = �(s1, s2) and proves the Lemma.

Proof of Theorem 6.1

Our proof relies on the following criterion for �-convergence in C
+
0 by Hult and

Lindskog (2006). According to (Hult and Lindskog 2006, Theorem 4.4), it is enough
to prove that:

i) for every r > 0, sup
n≥1

nP[sups∈S Xn(s) > r] < ∞;

ii) for every ε > 0, lim
δ→0

sup
n≥1

nP[ωXn(δ) � ε] = 0, where ωf (δ) = sup{|f (s1) −
f (s2)|; s1, s2 ∈ T , d(s1, s2) ≤ δ} denotes the modulus of continuity of f ∈
C(S);

iii) nP[Xn ∈ · ] → ν in the sense of finite-dimensional convergence.

These three points are proven below. At several places, we will use that the scal-
ing sequence bn defined by Eq. 11 satisfies

√
2πbne

b2n/2 ∼ n as n → ∞. As a

consequence, the sequence
n√

2πbne
b2n/2

is bounded by some constant M > 0.
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• Proof of i): Let r > 0 and r̃ = ln r . We have

nP[sup
s∈S

Xn(s) > r] = nP[sup
s∈S

Yn(s) > r̃]

= n√
2πbne

b2n/2

∫
R

e−w−w2/2b2nP[sup
s∈S

Yw
n (s) > r̃]dw

≤ M

∫
R

e−w
P[sup

s∈S

Yw
n (s) > r̃]dw,

so that

sup
n≥1

nP[sup
s∈S

Xn(s) > r] ≤ M

∫
R

e−w sup
n≥1

P[sup
s∈S

Yw
n (s) > r̃]dw. (16)

First, we have
∫ +∞

0
e−w sup

n≥1
P[sup

s∈S

Yw
n (s) > r̃]dw �

∫ +∞

0
e−wdw < ∞. (17)

By tightness of the family {Yw
n − μw

n ; w ∈ R, n ≥ 1} (see Lemma 6.2), there
exists c1 > 0 such that for all n ≥ 1 and w ∈ R,

P[sup
s∈S

(Yw
n (s) − μw

n (s)) > c1] <
1

2
.

Furthermore, Eqs. 14–15 and assumption ii) of Theorem 6.1 together imply that
there are some c2, c3 > 0 and n0 ≥ 1 such that for all n ≥ n0 and all w < 0,

sup
s∈S

μw
n (s) � 1

2
w + c2, and sup

s∈S

Var[Yw
n (s)] � c23.

Applying Borell’s inequality (see Theorem D.1 in Piterbarg (1996)), we obtain

P[sup
s∈S

Yw
n (s) > r̃] < 2ψ

(
− r̃ − w/2 − c1 − c2

c3

) ≤ 2e
−(

r̃−w/2−c1−c2
c3

)2

, w < 0,

where ψ is the tail of the standard Gaussian distribution. Consequently,

∫ 0

−∞
e−w sup

n≥n0

P[sup
s∈S

Yw
n (s) > r̃]dw < 2

∫ 0

−∞
e−we

−(
r̃−w/2−c1−c2

c3
)2

dw < ∞.

(18)
Eqs. 17 and 18 together imply∫

R

e−w sup
n≥1

P[sup
s∈S

Yw
n (s) > r̃]dw < ∞. (19)

In view of Eq. 16, this proves i).
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• Proof of ii): For δ > 0, we have

sup
n≥1

nP[ωXn(δ) � ε] = sup
n≥1

n√
2πbne

b2n/2

∫
R

e
−w− w2

2b2n P[ω
eYw

n
(δ) � ε]dw

≤ M

∫
R

e−w sup
n≥1

P[ω
eYw

n
(δ) � ε]dw.

We will apply Lebesgue dominated convergence Theorem to prove that this has
limit zero as δ → 0. Lemma 6.2 implies that for every fixed w, the sequence
{eYw

n ; n � 1} is tight so that

lim
δ→0

e−w sup
n≥1

P[ω
eYw

n
(δ) � ε] = 0.

It remains to prove a suitable domination condition: since δ �→ P[ω
eYw

n
(δ) � ε]

is a nondecreasing function, it is enough to prove that for some δ0 > 0
∫
R

e−w sup
n≥1

P[ω
eYw

n
(δ0) � ε]dw < ∞.

Since ω
eYw

n
(δ0) ≤ exp[supt∈T Yw

n (t)], we have
e−w sup

n≥1
P[ω

eYw
n

(δ0) � ε] � e−w sup
n≥1

P[sup
t∈T

Yw
n (t) � ln ε].

Equation 19 with r̃ = ln ε provides the required domination condition.
• Proof of iii): We have to prove that for all set A ⊆ C

+
0 of the form

A = {f ∈ C+
0 ; ∃j ∈ [[1, k]], f (sj ) > xk}, k ≥ 1, s1, . . . , sk ∈ S, x1, . . . , xk ∈ (0, +∞),

it holds

lim
n→∞ nP[Xn ∈ A] = ν(A).

Letting yj = ln xj , we have

nP[Xn ∈ A] = nP[∃j ∈ [[1, k]], Xn(sj ) > xj ]
= nP[∃j ∈ [[1, k]], Yn(sj ) > yj ]

= n√
2πbne

b2n/2

∫
R

e
−w− w2

2b2n P[∃j ∈ [[1, k]], Yw
n (sj ) > yj ]dw

∼
∫
R

e
−w− w2

2b2n P[∃j ∈ [[1, k]], Yw
n (sj ) > yj ]dw.

We will apply once again Lebesgue’s dominated convergence Theorem. Lemma
6.3 entails

P[∃j ∈ [[1, k]], Yw
n (sj ) > yj ] → P[∃j ∈ [[1, k]], w+W(sj )−1

2
�(sj , s0) > yj ],
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so that we expect

nP[Xn ∈ A] →
∫
R

e−w
P[∃j ∈ [[1, k]], w + W(sj ) − 1

2
�(sj , s0) > yj ]dw

=
∫ ∞

0
P[∃j ∈ [[1, k]], weW(sj )− 1

2�(sj ,s0) > xj ]w−2dw

= ν(A).

We are left to prove a suitable domination condition: for all n ≥ 1, we have

e
−w− w2

2b2n P[∃j ∈ [[1, k]], Yw
n (sj ) > yj ] ≤ e−w sup

n≥1
P[sup

s∈S

Yw
n (s) > r̃]

with r̃ = min1≤j≤k yj . Equation 19 yields the required domination condition.
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