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Abstract

In this paper we study a phase transition model for vehicular traffic flows. Two phases are taken into

account, according to whether the traffic is light or heavy. We assume that the two phases have a non-empty

intersection, the so called metastable phase. The model is given by the Lighthill-Whitham-Richards model

in the free-flow phase and by the Aw-Rascle-Zhang model in the congested phase. In particular, we study

the existence of solutions to Cauchy problems satisfying a local point constraint on the density flux. We

prove that if the constraint F is higher than the minimal flux f−

c
of the metastable phase, then constrained

Cauchy problems with initial data of bounded total variation admit globally defined solutions. We also

provide sufficient conditions on the initial data that guarantee the global existence of solutions also in the

case F < f−

c
. These results are obtained by applying the wave-front tracking technique.
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1 Introduction

In this paper we study one of the constrained phase transition models of hyperbolic conservation laws introduced
in [12]. The application of such model is, for instance, the modelling of vehicular traffic along a road with
pointlike inhomogeneities characterized by limited capacity, such as speed bumps, construction sites, tollbooths,
etc.

The model considers two different phases corresponding to the congested phase Ωc and the free-flow phase
Ωf . The model is given by a 2 × 2 system of conservation laws in the congested phase, coupled with a scalar
conservation law in the free-flow phase. The coupling is achieved via phase transitions, namely discontinuities
between two states belonging to different phases and satisfying the Rankine-Hugoniot conditions.

The first two-phase model has been proposed by Colombo in [9]. The motivation stems from experimental
data, according to which the density flux represented in the fundamental diagram is one-dimensional for high
velocities, while it covers a two-dimensional domain for low velocities, see [9, Figure 1.1]. For this reason, it is
reasonable to describe the dynamics in the congested regime with a 2× 2 system of conservation laws and those
in the free regime with a scalar conservation law.

Later, Goatin proposed in [16] a two-phase model obtained by coupling the ARZ model by Aw, Rascle and
Zhang [4,21] for the congested phase Ωc, with the LWR model by Lighthill, Whitham and Richards [18,19] for
the free-flow phase Ωf . We recall that this model has been recently generalized in [5].

Both the models introduced in [9] and [16] assume that Ωc∩Ωf = ∅. The first two-phase model that considers
a metastable phase Ωc ∩ Ωf 6= ∅ has been introduced in [7]. We also recall that, differently from [5, 16], for
the models in [7, 9] the density flux function vanishes at a maximal density, whose inverse corresponds to the
average length of the vehicles. Here we consider the case Ωc ∩ Ωf 6= ∅. For this reason, in order to ensure the
well-posedness of the Cauchy problems, see [9, Remark 2], we also assume that Ωf is characterized by a unique
value of the velocity, V . At last, we consider an heterogeneous traffic with vehicles having different lengths and
allow the density flux function to vanish at different densities.

These two-phase models have been recently generalized in [6,12] by considering Riemann problems, namely
Cauchy problems for piecewise constant initial data with a single jump, coupled with a constraint on the density
flux, so that at the interface x = 0 the density flux of the solution must be lower than a given constant quantity
F . This condition is referred to as unilateral point constraint and can be thought of as a pointwise bottleneck
at x = 0 that hinders the density flow, see [20] and the references therein. In vehicular traffic, a point constraint
accounts for inhomogeneities of the road and models, for instance, the presence of a toll gate across which the
flow of the vehicles cannot exceed its capacity F .
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In the case in which no constraint conditions are enforced, existence results for the Cauchy problems for the
above mentioned two-phase transition models have already been established, see [5, 7, 11, 16]. In the present
paper, we focus on the constrained version proposed in [12] for the model introduced in [5] and prove an
existence result for constrained Cauchy problems. More precisely, we use the Riemann solvers established in [5]
and [12] in a wave-front tracking scheme and prove that the obtained approximate solution un converges (up
to a subsequence) to a globally defined solution of the constrained Cauchy problem with general BV-initial
data, at least in the case F ≥ f−

c , where the threshold value f−
c is the minimal density flux of the metastable

phase, see Figure 1. At last, in the case F < f−
c we give sufficient conditions on the initial data that ensure the

convergence of un to a globally defined solution of the constrained Cauchy problem.
The paper is organized as follows. In the next section we introduce the notations used throughout the paper,

the model, the definitions of solutions to the unconstrained and constrained Cauchy problems, the main result
in Theorem 2.2 and at last the Riemann solvers for the unconstrained and constrained Riemann problems. In
Section 3 we apply the model to reproduce the traffic across a toll gate. Finally, in the last section we defer the
technical proofs.

2 Notations, definitions and main result

In this section we state the main assumptions on the parameters, collect useful notations, see Figure 1, give the
definition of solutions, state the main result in Theorem 2.2 and at last introduce the Riemann solvers.
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Figure 1: Notations.

2.1 Notations

Denote by ρ ≥ 0 and v ≥ 0 the density and the velocity of the vehicles, respectively. Let u
.
= (ρ, v) and

f(u)
.
= v ρ be the density flux. If V > 0 is the unique velocity in the free-flow phase Ωf and ρ+ is the maximal

density in Ωf , then
Ωf

.
=

{
u ∈ R

2
+ : ρ ≤ ρ+, v = V

}
,

where R+
.
= [0,∞). If the velocity V is reached in the congested phase Ωc for densities ranging in [ρ−, ρ+] ⊂

(0,∞), then
Ωc

.
=

{
u ∈ R

2
+ : v ≤ V, w− ≤ v + p(ρ) ≤ w+

}
,

where w± .
= p(ρ±) + V . Above p ∈ C2((0,∞);R) is an anticipation factor, which takes into account drivers’

reactions to the state of traffic in front of them. We assume that

p(0) = 0, p′(ρ) > 0, 2 p′(ρ) + p′′(ρ) ρ > 0 for every ρ > 0. (1)

Typical choices for p are p(ρ)
.
= ργ with γ > 0, see [4], and p(ρ)

.
= Vref ln(ρ/ρmax) with Vref > 0 and ρmax > 0,

see [16].
Let f±

c
.
= V ρ± and R

.
= p−1(w+) > 0 be the maximal density (in the congested phase). Let

Ω
.
= Ωf ∪ Ωc, Ω−

f
.
=

{
u ∈ Ωf : ρ ∈ [0, ρ−)

}
, Ω+

f
.
=

{
u ∈ Ωf : ρ ∈ [ρ−, ρ+]

}
, Ω−

c
.
= Ωc \ Ω+

f .

Notice that Ωf ∩ Ωc = Ω+
f . We assume that

v < p′(ρ) ρ for every (ρ, v) ∈ Ωc. (2)
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The (extended) Lagrangian marker w : Ω → [w− − 1, w+] is defined by

w(u)
.
=







v + p(ρ) if u ∈ Ωc,

w− − 1 +
ρ

ρ−
if u ∈ Ω−

f .

Let W : Ω → [w−, w+] be defined by
W(u)

.
= max{w−, w(u)}.

The 2 × 2 system of conservation laws describing the traffic in the congested phase has two characteristic
families of Lax curves. In the (ρ, f)-plane the Lax curves in Ωc of the first and second characteristic families
passing through ū = (ρ̄, v̄) ∈ Ωc are respectively described by the graphs of the maps

[
p−1

(
w(ū)− V

)
, p−1

(
w(ū)

)]
∋ ρ 7→ Lw(ū)(ρ)

.
= f

(
ρ, w(ū)− p(ρ)

)
,

[
p−1(w− − v̄), p−1(w+ − v̄)

]
∋ ρ 7→ v̄ ρ.

Remark 2.1. Conditions (1) and (2) ensure that for any w ∈ [w−, w+] the map ρ 7→ Lw(ρ) = (w − p(ρ)) ρ
is strictly concave and strictly decreasing in [p−1(w − V ), p−1(w)]. Indeed, for any w ∈ [w−, w+] and ρ ∈
[p−1(w − V ), p−1(w)], we have that (ρ, w − p(ρ)) ∈ Ωc and therefore

L
′
w(ρ) = w − p(ρ)− p′(ρ) ρ < 0, L

′′
w(ρ) = −2 p(ρ)− p′′(ρ) ρ < 0.

If for instance p(ρ)
.
= Vref ln(ρ/ρmax) with Vref > 0 and ρmax > 0, then p′(ρ) ρ = Vref and (2) is equivalent to

require V < Vref , while (1) is trivial. If for instance p(ρ)
.
= ργ with γ > 0, then Ωc = {u ∈ R

2
+ : v ≤ V, w−−v ≤

ργ ≤ w+ − v} and therefore

min
u∈Ωc

(
p′(ρ) ρ− v

)
= min

u∈Ωc

(
γ ργ − v

)
= γ w− − (γ + 1)V,

hence (2) is equivalent to require (γ + 1)V < γ w−, while (1) is trivial.

We introduce the following functions, see Figure 1:

ω : Ωc → Ω+
f , u = ω(ū) ⇐⇒

{

w(u) = w(ū),

v = V,

v
± : Ω → Ωc, u± = v

±(ū) ⇐⇒
{

w(u±) = w±,

v± = v̄,

u∗ : Ω
2 → Ωc, u∗ = u∗(uℓ, ur) ⇐⇒

{

w(u∗) = W(uℓ),

v∗ = vr,

Λ:
{
(uℓ, ur) ∈ Ω2 : ρℓ 6= ρr

}
→ R, Λ(uℓ, ur)

.
=

f(ur)− f(uℓ)

ρr − ρℓ
.

Notice that:

• the point ω(ū) is the intersection of the Lax curve of the first characteristic family passing through ū and
Ω+

f , namely the Lax curve of the second characteristic family passing through (0, V );

• for any w ∈ [w−, w+] the point (p−1(w), 0) is the intersection of the Lax curve of the first characteristic family
corresponding to w and the segment {(ρ, v) ∈ Ωc : v = 0}, namely the Lax curve of the second characteristic
family passing through (p−1(w±), 0);

• the point v±(ū) is the intersection of the Lax curve of the second characteristic family passing through ū and
{u ∈ Ωc : w(u) = w±}, namely the Lax curve of the first characteristic family passing through (p−1(w±), 0);

• for any uℓ, ur ∈ Ωc the point u∗(uℓ, ur) is the intersection between the Lax curve of the first characteristic
family passing through uℓ and the Lax curve of the second characteristic family passing through ur;

• Λ(uℓ, ur) is the speed of a discontinuity (uℓ, ur), that in the (ρ, f)-coordinates coincides with the slope of the
segment connecting uℓ and ur.

Observe that by definition v±(ū) = u∗((p
−1(w±), 0), ū) and ω(ū) = u∗(ū, (0, V )).

We denote by R and RF the Riemann solver and the constrained Riemann solver introduced in [5] and [12],
respectively, see Section 2.3 for more details.
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2.2 The constrained Cauchy problem

We study the constrained Cauchy problem for the phase transition model

Free-flow






u ∈ Ωf ,

ρt + (ρ V )x = 0,

v = V,

Congested flow






u ∈ Ωc,

ρt + (ρ v)x = 0,
(
ρ w(u)

)

t
+
(
ρ w(u) v

)

x
= 0,

(3)

with initial datum
u(0, x) = uo(x) (4)

and local point constraint on the density flux at x = 0

f
(
u(t, 0±)

)
≤ F, (5)

where F ∈ [0, f+
c ] is a given constant quantity. To this aim we apply the wave-front tracking algorithm, which

is based on the definition of the Riemann solvers defined in the next sections.
Introduce, see Figure 2, v±F ∈ [0, V ] and wF ∈ [w− − 1, w+] defined by the following conditions:

if F = f+
c : v+F

.
= V, v−F

.
= V, wF

.
= w+,

if F ∈ [f−
c , f+

c ) : v+F
.
= V, v−F + p(F/v−F ) = w+, wF

.
= p (F/V ) + V,

if F ∈ (0, f−
c ) : v+F + p(F/v+F ) = w−, v−F + p(F/v−F ) = w+, wF

.
= w− − 1 +

F

f−
c
,

if F = 0 : v+F
.
= 0, v−F

.
= 0, wF

.
= w− − 1.

vV

w−

wF

w− − 1

w+
w

v−F

v+F

ρ ρR

v−F

v+F

f

F

Figure 2: Geometrical meaning of wF , v
±
F and ΞF in the case F ∈ (0, f−

c ). The curve in the figure on the left
is the graph of ΞF , which corresponds to the horizontal solid segment in the figure on the right.

For any F ∈ (0, f+
c ), let ΞF : [v−F , v

+
F ] → [w−, w+] be given by ΞF (v)

.
= v + p(F/v), see Figure 2. Notice

that ΞF is strictly decreasing because by (2)

(
F

v
, v

)

∈ Ωc ⇒ Ξ′
F (v) = 1− p′

(
F

v

)
F

v2
< 0,

moreover it is strictly convex because by (1)

Ξ′′
F (v) =

[

2 p′
(
F

v

)

+ p′′
(
F

v

)
F

v

]
F

v3
> 0.

The notion of solution to Cauchy problem (3), (4) necessarily involves both the notions of solution to the
Cauchy problems for LWR and ARZ models, that have to be combined by defining which phase transitions
are admissible, see [5]. Since the characteristic field corresponding to the free phase is linearly degenerate, a
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discontinuity between states in Ωf is entropic if and only if it satisfies the corresponding Rankine-Hugoniot
condition, namely its speed of propagation is V . For this reason we consider only the entropy-entropy flux pair

E
k(u)

.
=







0 if v ≥ k,
ρ

p−1
(
W(u)− k

) − 1 if v < k, Q
k(u)

.
=







0 if v ≥ k,
f(u)

p−1
(
W(u)− k

) − k if v < k,

for u ∈ Ω and k ∈ [0, V ], which is obtained by adapting the entropy-entropy flux pair introduced in [1] for the
ARZ model.

Definition 2.1. Let uo ∈ BV(R; Ω). We say that u ∈ L∞∞∞((0,∞);BV(R; Ω))∩C0(R+;L
111
loc

(R; Ω)) is a solution
to Cauchy problem (3), (4) if the following holds:

(S.1) Condition (4) holds for a.e. x ∈ R, namely

u(0, x) = uo(x) for a.e. x ∈ R.

(S.2) For any φ ∈ C∞
c ((0,∞)× R;R) we have

∫ ∞

0

∫

R

(
ρ φt + f(u)φx

)
(

1
W(u)

)

dxdt =

(
0
0

)

.

(S.3) For any k ∈ [0, V ] and φ ∈ C∞
c ((0,∞)× R;R) such that φ ≥ 0 we have

∫ ∞

0

∫

R

(
E
k(u)φt + Q

k(u)φx

)
dxdt ≥ 0.

We recall the existence result proved in [5, Theorem 2.8].

Theorem 2.1. Cauchy problem (3), (4) with initial datum uo ∈ L111 ∩ BV(R; Ω) admits a solution u in the
sense of Definition 2.1; moreover there exist two constants Co and Lo such that for any t, s ≥ 0

TV
(
u(t)

)
≤ TV(uo), ‖u(t)‖

L∞∞∞(R;Ω) ≤ Co, ‖u(t)− u(s)‖
L111(R;Ω) ≤ Lo |t− s|.

In the following definition we introduce the notion of solution to constrained Cauchy problem (3), (4), (5),
which is obtained by adapting that introduced in Definition 2.1 for Cauchy problem (3), (4).

Definition 2.2. Let uo ∈ BV(R; Ω). We say that u ∈ L∞∞∞ ((0,∞);BV(R; Ω)) ∩ C0
(
R+;L

111
loc

(R; Ω)
)
is a

solution to constrained Cauchy problem (3), (4), (5) if the following holds:

(CS.1) Condition (4) holds for a.e. x ∈ R, namely

u(0, x) = uo(x) for a.e. x ∈ R.

(CS.2) For any φ ∈ C∞
c ((0,∞)× R;R) we have

∫ ∞

0

∫

R

(
ρ φt + f(u)φx

)
dxdt = 0 (6)

and if φ(·, 0) ≡ 0 then
∫ ∞

0

∫

R

(
ρ φt + f(u)φx

)
W(u) dxdt = 0. (7)

(CS.3) For any k ∈ [0, V ] and φ ∈ C∞
c ((0,∞)× R;R) such that φ(·, 0) ≡ 0 and φ ≥ 0 we have

∫ ∞

0

∫

R

(
E
k(u)φt + Q

k(u)φx

)
dxdt ≥ 0. (8)

(CS.4) Condition (5) holds for a.e. t > 0, namely

f
(
u(t, 0±)

)
≤ F for a.e. t > 0.

In the following proposition we state which discontinuities are admissible for the solutions to (3), (4), (5).
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Proposition 2.1. Let u be a solution of constrained Cauchy problem (3), (4), (5) in the sense of Definition 2.2.
Then u has the following properties:

• Any discontinuity δ(t) of x 7→ u(t, x) satisfies the first Rankine-Hugoniot jump condition

[

ρ
(
t, δ(t)+

)
− ρ

(
t, δ(t)−

)]

δ̇(t) = f
(
u(t, δ(t)+)

)
− f

(
u(t, δ(t)−)

)
, (9)

and if δ(t) 6= 0, then it satisfies also the second Rankine-Hugoniot jump condition

[

ρ
(
t, δ(t)+

)
W

(

u
(
t, δ(t)+

))

− ρ
(
t, δ(t)−

)
W

(

u
(
t, δ(t)−

))]

δ̇(t)

= f
(

u
(
t, δ(t)+

))

W

(

u
(
t, δ(t)+

))

− f
(

u
(
t, δ(t)−

))

W

(

u
(
t, δ(t)−

))

. (10)

• Any discontinuity of u away from the constraint is classical, i.e. it satisfies the Lax entropy inequalities.

• Non-classical discontinuities of u may occur only at the constraint location x = 0, and in this case the
(density) flux at x = 0 does not exceed the maximal flux F allowed by the constraint.

Proof. These properties follow directly from (CS.2), (CS.3) and (CS.4). Let us just underline that (9), (10)
are equivalent to

[

v(t, 0+)− δ̇(t)
]

ρ(t, 0+) =
[

v(t, 0−)− δ̇(t)
]

ρ(t, 0−),
[

W
(
u(t, 0+)

)
− W

(
u(t, 0−)

)][

v(t, 0−)− δ̇(t)
]

ρ(t, 0−) = 0.

In particular phase transitions and shocks are admissible because for them W(u(t, 0+)) = W(u(t, 0−)), while the
contact discontinuities are admissible because for them δ̇(t) = v(t, 0±).

Remark 2.2. Differently from any solution to Cauchy problem (3), (4), a solution u to constrained Cauchy
problem (3), (4), (5) does not satisfy in general the second Rankine-Hugoniot condition (10) along x = 0

ρ(t, 0−) W
(
u(t, 0−)

)
v(t, 0−) = ρ(t, 0+) W

(
u(t, 0+)

)
v(t, 0+) for a.e. t > 0.

Indeed the (extended) linearized momentum ρ W(u) is conserved across (classical) shocks and phase transitions,
but in general it is not conserved across non-classical shocks even if they are between states in Ωc. As a
consequence, a solution to (3), (4), (5) taking values in Ωc is not necessarily a weak solution to the 2× 2 system
of conservation laws in (3) for the congested flow. For this reason in (7) (and then also in (8)) we consider
test functions φ such that φ(·, 0) ≡ 0.

This is in the same spirit of the solutions considered in [6, 12–15] for traffic through locations with reduced
capacity. However, with this choice for the test functions in (7) and (8) we loose the possibility to better
characterize the (density) flux at x = 0 associated to non-classical shocks. In fact, differently from what is proved
in [10] for the LWR model and in [3] for the ARZ model, we cannot ensure that the flux of the non-classical
shocks of any solution is equal to the maximal flux F allowed by the constraint. Nevertheless, in Section 4.4
we can give sufficient conditions ensuring that the solutions constructed with our wave-front tracking algorithm
have this property, see Proposition 4.4.

Let [w−− 1, w+] ∋ w 7→ û(w,F ) = (r̂(w,F ), v̂(w,F )) ∈ Ωc and [0, V ] ∋ v 7→ ǔ(v, F ) = (ř(v, F ), v̌(v, F )) ∈ Ω
be defined in the (v, w)-coordinates by, see Figures 3 and 4,

v̂(w,F )
.
=







Ξ−1
F (w) if w > max{w−, wF },

v+F if wF < w ≤ w−,

V if w ≤ wF ,

ŵ(w,F )
.
=







w if w > max{w−, wF },
w− if wF < w ≤ w−,

wF if w ≤ wF ,

(11a)

v̌(v, F )
.
=







V if v > v+F ,

v if v ∈ [v−F , v
+
F ],

v−F if v < v−F ,

w̌(v, F )
.
=







wF if v > v+F ,

ΞF (v) if v ∈ [v−F , v
+
F ],

w+ if v < v−F ,

(11b)

where ŵ
.
= w ◦ û and w̌

.
= w ◦ ǔ.
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v

V = v+F

w−

wF

w− − 1

w+
w

v−F

ρ w− wFw− − 1 w+

v̂

v−F

V

w

w− wFw− − 1

w+

ŵ

w

wF

w+

ρ

v

V

V

v̌

v−F

v−F

w̌

wF

w+

ρ

vv−F

Figure 3: Geometrical meaning of û and ǔ defined in (11) in the case F ∈ (f−
c , f+

c ).

Remark 2.3. Notice that
f
(
û(w,F )

)
= f

(
ǔ(v, F )

)
= F.

Moreover, w 7→ û(w,F ) and v 7→ ǔ(v, F ) are continuous if and only if F ≥ f−
c , and in this case they are

Lipschitz continuous. On the other hand, if F < f−
c , then w 7→ û(w,F ) and v 7→ ǔ(v, F ) are only left-

continuous. Moreover ŵ(w,F ) ≥ w and v̌(v, F ) ≥ v. At last, w 7→ ŵ(w,F ) and v 7→ v̌(v, F ) are non-decreasing,
while w 7→ v̂(w,F ) and v 7→ w̌(v, F ) are non-increasing.

Denote by TV+ and TV− the positive and negative total variations, respectively. For any u : R → Ω let

Υ̂(u)
.
= TV+

(

v̂
(
w(u), F

)
; (−∞, 0)

)

+TV−

(

ŵ
(
w(u), F

)
; (−∞, 0)

)

, (12a)

Υ̌(u)
.
= TV+

(

v̌(v, F ); (0,∞)
)

+TV−

(

w̌(v, F ); (0,∞)
)

. (12b)

For any u ∈ Ω and k ∈ [0, V ] let

N
k
F (u)

.
=







f(u)

[

k

F
− 1

p−1
(
W(u)− k

)

]

+

if F 6= 0,

k if F = 0,

[w]+
.
=

{

w if w > 0,

0 otherwise.

We are now in the position to state the main result of the paper.

Theorem 2.2. Let uo ∈ L111 ∩BV(R; Ω) and F ∈ [0, f+
c ] satisfy one of the following conditions:

(H.1) F ∈ [f−
c , f+

c ];

(H.2) F ∈ [0, f−
c ) and Υ̂(uo) + Υ̌(uo) is bounded.

Then the approximate solutions un constructed in Section 4.1 converge to a solution u ∈ C0(R+;BV(R; Ω)) of
constrained Cauchy problem (3), (4), (5) in the sense of Definition 2.2. Moreover for all t, s ∈ R+ the following
estimates hold

TV
(
u(t)

)
≤ Co

F , ‖u(t)− u(s)‖L111(R;Ω) ≤ Lo
F |t− s|, ‖u(t)‖L∞∞∞(R;Ω) ≤ R+ V, (13)
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vV

v+F
v−F

w−

wF
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ρ wF w−w− − 1 w+ w

v̂

v−F

v+F

V

wF w−w− − 1

w+ w

ŵ

wF

w−

w+

ρ

vVv+Fv−F

v̌
V

v−F

v+F

v

Vv+F

v−F

w̌

wF

w+

w−

ρ

Figure 4: Geometrical meaning of û and ǔ defined in (11) in the case F ∈ (0, f−
c ).

where Co
F and Lo

F are constants that depend on uo and F . Furthermore, non-classical discontinuities of u can
occur only at the constraint location x = 0, and if for any k ∈ [0, V ] and φ ∈ C∞

c ((0,∞)×R;R) such that φ ≥ 0
we have

lim
n→∞

∫ T

0

N
k
F

(
un(t, 0−)

)
φ(t, 0) dt =

∫ T

0

N
k
F

(
u(t, 0−)

)
φ(t, 0) dt, (14)

then the (density) flow at x = 0 is the maximal flow F allowed by the constraint.

As in [2,5,11], the proof of the above theorem is based on the wave-front tracking algorithm, see [8,17] and the
references therein. The details of the proof are deferred to Section 4.

Remark 2.4. If F ∈ [f−
c , f+

c ], then w 7→ û(w,F ) and v 7→ ǔ(v, F ) are Lipschitz continuous and therefore
Υ̂(uo) + Υ̂(uo) is obviously bounded if uo has bounded total variation.

2.3 The constrained Riemann problem

For completeness, we conclude this section by giving the definitions of the Riemann solversR andRF introduced
in [5] and [12], associated to Riemann problem (3), (15) and to constrained Riemann problem (3), (5), (15),
respectively, and used in Section 4 to prove Theorem 2.2.

We recall that Riemann problems for (3) are Cauchy problems with initial condition of the form

u(0, x) =

{

uℓ if x < 0,

ur if x > 0.
(15)

Definition 2.3. The Riemann solver R : Ω2 → L∞(R; Ω) associated to Riemann problem (3), (15) is defined
as follows.

(R.1) If uℓ, ur ∈ Ωf , then R[uℓ, ur] consists of a contact discontinuity (uℓ, ur) with speed of propagation V .

(R.2) If uℓ, ur ∈ Ωc, then R[uℓ, ur] consists of a 1-wave (uℓ, u∗(uℓ, ur)) and of a 2-contact discontinuity
(u∗(uℓ, ur), ur).
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(R.3) If uℓ ∈ Ω−
c and ur ∈ Ω−

f , then R[uℓ, ur] consists of a 1-rarefaction (uℓ, ω(uℓ)) and a contact discontinuity
(ω(uℓ), ur).

(R.4) If uℓ ∈ Ω−
f and ur ∈ Ω−

c , then R[uℓ, ur] consists of a phase transition (uℓ, v
−(ur)) and a 2-contact

discontinuity (v−(ur), ur).

Since (t, x) 7→ R[uℓ, ur](x/t) does not in general satisfy constraint condition (5), we introduce

D1
.
=

{
(uℓ, ur) ∈ Ω× Ω : f

(
R[uℓ, ur](t, 0±)

)
≤ F

}

=
{
(uℓ, ur) ∈ Ωf × Ωf : f(uℓ) ≤ F

}

∪
{
(uℓ, ur) ∈ Ωc × Ω : f

(
u∗(uℓ, ur)

)
≤ F

}

∪
{
(uℓ, ur) ∈ Ω−

f × Ω−
c : min

{
f(uℓ), f

(
v
−(ur)

)}
≤ F

}
,

D2
.
= Ω2 \ D1 and the constrained Riemann solver RF in the following

Definition 2.4. The constrained Riemann solver RF : Ω2 → L∞(R; Ω) associated to constrained Riemann
problem (3), (5), (15) is defined as

RF [uℓ, ur](x)
.
=







R[uℓ, ur](x) if (uℓ, ur) ∈ D1,
{

R[uℓ, ûℓ](x) if x < 0,

R[ǔr, ur](x) if x > 0,
if (uℓ, ur) ∈ D2,

where ûℓ
.
= û(w(uℓ), F ) ∈ Ωc and ǔr

.
= ǔ(vr , F ) ∈ Ω are defined by (11).

In Figure 5 we clarify the selection criterion (11) for ûℓ and ǔr. We point out that ûℓ and ǔr satisfy the following

ρ

f

F
ǔr

û1ℓ

û2ℓ

u1
ℓ

u2
ℓ

ur

ρ

f

F
ǔ2r

ǔ1r ûℓ

uℓ

u1
r

u2
r

ρ

f

F
ǔ2r

ǔ1r

ûℓ

uℓ

u1
r

u2
r

ρ

f

F

uℓ

ûℓ

ur

ǔr

Figure 5: The selection criterion (11) for ûℓ
.
= û(w(uℓ), F ) and ǔr

.
= ǔ(vr, F ) exploited in Definition 2.4 in the

case (uℓ, ur) ∈ D2 and F ∈ (0, f−
c ). In the first picture u1

ℓ , u
2
ℓ represent the left state in two different cases and

û1ℓ , û
2
ℓ are the corresponding ûℓ. Analogously in the second and third pictures for u1

r, u
2
r and ǔ1r, ǔ

2
r.

general properties.
If (uℓ, ur) ∈ D2, then w(uℓ) > w(ǔr) and vr > v̂ℓ.
If (uℓ, ur) ∈ D2 and uℓ ∈ Ω−

f , then w(ûℓ) = w−.
If (uℓ, ur) ∈ D2 and ur ∈ Ωf , then v̌r = V .
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It is easy to prove that (t, x) 7→ R[uℓ, ur](x/t) and (t, x) 7→ RF [uℓ, ur](x/t) are solutions to Riemann
problems (3), (15) and (3), (5), (15) in the sense of Definitions 2.1 and 2.2, respectively.

We recall that both R and RF are L1

loc
-continuous, see [12, Propositions 2 and 3].

3 Example

In this section we apply model (3), (4), (5) to simulate the traffic across, for instance, a toll gate located at
x = 0 and with capacity F . More specifically, let w− and w+ be the Lagrangian markers corresponding to
vehicles that are initially at rest in [xA, xB) and [xB , 0), respectively. The resulting initial condition is

uo(x)
.
=







uℓ if x ∈ [xA, xB),

ur if x ∈ [xB , 0),

u0 if x ∈ R \ [xA, 0),

where u0
.
= (0, V ), uℓ

.
= (p−1(w−), 0) and ur

.
= (p−1(w+), 0), see Figure 6.

ρu0 uℓ ur

u∗

ǔ ûrûℓ

f

F

x

t

A B
C

D E

F

G

H
I

L

u0

uℓ ur

ûr

u∗

ûℓ

ǔ

Figure 6: Notations used to describe the solution constructed in Section 3.

The resulting solution can be constructed by solving the Riemann problems corresponding to the disconti-
nuities of uo and by considering the interactions of the waves between themselves or with the point constraint
x = 0. We describe below the solution and its construction in more details. Let

ûℓ
.
= û(w−, F ), ûr

.
= û(w+, F ), ǔ

.
= ǔ(V, F ), u∗

.
= u∗(uℓ, ûr).

At x = 0 we apply RF and obtain a backward rarefaction R0(ur, ûr), a stationary non-classical shock NS0(ûr, ǔ)
and a forward contact discontinuity CD0(ǔ, u0), which moves with speed V . At x = xB we apply R and obtain a
stationary contact discontinuity CDB(uℓ, ur). Let C and E be the starting and final interaction points between
CDB and R0. During such interaction we have that CDB accelerates, while R0 crosses CDB and eventually
changes its values. After time t = tE we have that CDB moves with speed v̂r > 0 and interacts with NS0
at G. At G we apply RF and obtain a backward rarefaction RG(u∗, ûℓ) and a stationary non-classical shock
NSG(ûℓ, ǔ).

At x = xA we apply R and obtain a stationary phase transition PTA(u0, uℓ). Let D and F be the starting
and final interaction points between PTA and R0. During the time interval (tD, tF ) we have that PTA accelerates
and R0 starts to disappear. After time t = tF we have that PTA moves with speed v̂r > 0. Let H and I be the
starting and final interaction points between PTA and RG. Then, during the time interval (tH , tI) we have that
PTA accelerates and RG starts to disappear. After time t = tI we have that PTA moves with speed v̂ℓ > 0.
Finally, PTA interacts with NSG at L and then moves with speed V .

In Figure 7 we represent in different coordinates the quantitative evolution of the solution corresponding to
p(ρ)

.
= ρ2 and to the data

xA = −8, xB = −5, w− = 1, w+ = 6/5, V = 3/5, F =
√
3/5.

Such solution is obtained by the explicit analysis of the wave-fronts interactions with computer-assisted com-
putation of the interaction times and front slopes.

We finally observe that, once the overall picture of the solution is known, it is possible to express in a closed
form the time at which the last vehicle passes through x = 0, indeed tL = [(xB − xA) ρℓ − xB ρr]/F ≈ 24.4716.
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0 xH xB xA

ř

r̂ℓ

r̂r

ρℓ
ρr
tL

tH
tF
tD0

0
tD

tF

tH
tL

0

f∗

F

xA

xB

xH

0

(t, x) 7→ ρ(t, x) (t, x) 7→ f(t, x)

0
tD

tF

tH
tL

0

v̂r = v∗

v̂ℓ

w−

xA

xB
xH

0

tL

tG

0
w−

w+

xA

xB

0

(t, x) 7→ v(t, x) (t, x) 7→ w(t, x)

Figure 7: The solution constructed in Section 3. Above we let f∗ = f(u∗).

4 Proof of Theorem 2.2

In this section we prove Theorem 2.2. More precisely, in Section 4.1 we construct a grid Gn, approximate
Riemann solvers Rn, RF,n and an approximate solution un = (ρn, vn) to constrained Cauchy problem (3), (4),
(5). In Section 4.2 we prove that the approximate solution un is well defined globally in time by introducing a
non-increasing Temple functional Tn, which strictly decreases any time the number of the discontinuities of un

increases. In Section 4.3 we prove that un converges to u, which is a solution to (3), (4), (5) and satisfies the
estimates listed in (13). At last in Section 4.4 we consider the flux density of the non-classical shocks.

We choose to study the total variation in the (v, w)-coordinates rather than in the (ρ, v)-coordinates. This
choice is in fact convenient to describe the grid, the approximate Riemann solvers and ease the forthcoming
analysis, because the total variation of un in these coordinates does not increase after any interaction away from
x = 0. Furthermore, the entropy pairs in the (v, w)-coordinates are well defined, but in the (ρ, v)-coordinates
are multi-valued at the vacuum.

For simplicity we assume below that n ∈ N is sufficiently large. Moreover we simplify the notation by letting

wℓ
.
= w(uℓ), ûℓ

.
= û(wℓ, F ), ǔℓ

.
= ǔ(vℓ, F )

and so on, where û and ǔ are defined in (11).

4.1 The approximate solution

In this section we apply the wave-front tracking algorithm to construct an approximate solution un in the space
PC of piecewise constant functions taking finitely many values. To do so we introduce a grid Gn in Ω and
approximate Riemann solvers Rn, RF,n : Gn × Gn → PC(R;Gn).
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The grid

We introduce in Ω a grid Gn
.
= Ω ∩ P , see Figure 8, with P given in the (v, w)-coordinates by

(

∪M·2n

i=0

{
vi
})

×
(

∪N ·2n

i=0

{
wi

})

,

where M , N , vi and wi, are defined as follows:

w

v

w0

w4

w8

w12 w+

w−

wF

w− − 1

v4 v8 v12

v−F v+F V

ρ ρ

F

f

Figure 8: The grid Gn corresponding to F ∈ (0, f−
c ) and n = 2. The curve in the figure on the left is the support

of ΞF , which corresponds to (a portion of) the horizontal line in the figure on the right.

• If F = 0, then we let M = 1, N = 2,

wi .
=

{

w− − 1 + i 2−n if i ∈ {0, . . . , 2n} ,
w− + (i− 2n) 2−n (w+ − w−) if i ∈ {2n + 1, . . . , 2 · 2n} ,

and

vi
.
= i 2−n V if i ∈ {0, . . . , 2n} .

• If F ∈ (0, f−
c ), then we let M = 3, N = 3,

wi .
=







w− − 1 + i 2−n (wF − w− + 1) if i ∈ {0, . . . , 2n} ,
wF + (i− 2n) 2−n (w− − wF ) if i ∈ {2n + 1, . . . , 2 · 2n} ,
w− + (i− 2 · 2n) 2−n (w+ − w−) if i ∈ {2 · 2n + 1, . . . , 3 · 2n} ,

and

vi
.
=







i 2−n v−F if i ∈ {0, . . . , 2n} ,
Ξ−1
F (w4·2n−i) if i ∈ {2n + 1, . . . , 2 · 2n} ,

v+F + (i− 2 · 2n) 2−n (V − v+F ) if i ∈ {2 · 2n + 1, . . . , 3 · 2n} .

• If F ∈ [f−
c , f+

c ], then we let M = 2, N = 3,

wi .
=







w− − 1 + i 2−n if i ∈ {0, . . . , 2n} ,
w− + (i− 2n) 2−n (wF − w−) if i ∈ {2n + 1, . . . , 2 · 2n} ,
wF + (i− 2 · 2n) 2−n (w+ − wF ) if i ∈ {2 · 2n + 1, . . . , 3 · 2n} ,

and

vi
.
=

{

i 2−n v−F if i ∈ {0, . . . , 2n} ,
Ξ−1
F (w4·2n−i) if i ∈ {2n + 1, . . . , 2 · 2n} .

Notice that if F ∈ {f−
c , f+

c }, then not necessarily wi 6= wi+1.
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The approximate Riemann solvers

An approximate solution un ∈ PC(R;Gn) to (3), (4), (5) is constructed by applying the approximate Riemann
solversRn, RF,n : Gn×Gn → PC(R;Gn), which are obtained by approximating the rarefactions. More precisely,
for any (uℓ, ur) ∈ Gn × Gn such that wℓ = wr and vℓ = vh < vr = vh+k, we let

Rn[uℓ, ur](ξ)
.
=







uℓ if ξ ≤ Λ(uℓ, u1),

uj if Λ(uj−1, uj) < ξ ≤ Λ(uj, uj+1), 1 ≤ j ≤ k − 1,

ur if ξ > Λ(uk−1, ur),

where u0
.
= uℓ, uk

.
= ur and uj ∈ Gn is such that vj

.
= vh+j and wj = wℓ. The Riemann solver RF,n is defined

as follows:

1. If f (Rn[uℓ, ur](0±)) ≤ F , then RF,n[uℓ, ur]≡̇Rn[uℓ, ur].

2. If f (Rn[uℓ, ur](0±)) > F , then

RF,n[uℓ, ur](ξ)
.
=

{

Rn[uℓ, ûℓ](ξ) if ξ < 0,

Rn[ǔr, ur](ξ) if ξ ≥ 0.

The approximate solution

An approximate solution un ∈ PC(R+ ×R;Gn) to (3), (4), (5) can be constructed as follows. As a first step we
approximate the initial datum uo with uo

n ∈ PC(R;Gn) such that

‖von‖L∞∞∞ ≤ ‖vo‖L∞∞∞ , TV(von) ≤ TV(vo), lim
n→∞

‖von − vo‖L111
loc

= 0, Υ̂(uo
n) ≤ C Υ̂(uo),

‖won‖L∞∞∞ ≤ ‖wo‖L∞∞∞ , TV(won) ≤ TV(wo), lim
n→∞

‖won − w
o‖L111

loc

= 0, Υ̌(uo
n) ≤ C Υ̌(uo),

(16)

for a constant C. The approximate solution un is then obtained by gluing together the approximate solutions
computed by applying RF,n at x = 0 at time t = 0 and at any time a wave-front reaches x = 0, and by
applying Rn at any discontinuity of uo

n away from x = 0 or at any interaction between wave-fronts away from
x = 0. As usual, in order to extend the construction globally in time we have to ensure that only finitely many
interactions may occur in finite time. In Section 4.2 we prove that un(t, ·) is well defined for all t > 0 and
belongs to PC(R+ × R;Gn). Finally, in Section 4.3 we prove that un converges (up to a subsequence) in L111

loc

to a limit u, which results to be a constrained solution to (3), (4), (5) in the sense of Definition 2.2.

4.2 A priori estimates

In this section we prove the main a priori estimates on the sequence of approximate solutions (un)n. We prove
in Proposition 4.1 that un takes values in Gn and we estimate TV(un(t, ·)) uniformly in n and t. This together
with Proposition 4.2 guarantee that the number of interactions and the number of the discontinuities of un are
both bounded globally in time.

Observe that any Contact Discontinuity (CD) has non-negative speed (of propagation), any Shock (S) or
Rarefaction Shock (RS) has negative speed, all the Non-classical Shocks (NSs) are stationary and the speed of
all the possible Phase Transitions (PTs) ranges in the interval (−f−

c /(p−1(w−) − ρ−), V ). Below we say that
(uℓ, ur) is a null wave if uℓ = ur. Notice that if (uℓ, ur) is a PT then uℓ ∈ Ω−

f and ur ∈ Ω−
c , moreover if (uℓ, ur)

is a PT with wr > w− then ρℓ = 0.
Let un be an approximate solution. Let ♯(t) be the number of waves/discontinuities of un(t, ·) and introduce

Tn : R+ → R+ defined as

Tn(t) .
= TV

(
vn(t, ·)

)
+TV

(
wn(t, ·)

)
+ 2Υ̂n(t) + 2Υ̌n(t),

where Υ̂n(t)
.
= Υ̂(un(t, ·)) and Υ̌n(t

) .
= Υ̌(un(t, ·)). Conventionally, we assume that un is left continuous in

time, i.e. un(t, ·) ≡ un(t−, ·). Then also Tn is left continuous in time. By the monotonicity of w 7→ v̂(w),
w 7→ ŵ(w), v 7→ v̌(v), v 7→ w̌(v), see Remark 2.3, and the definitions of Υ̂ and Υ̌ given in (12), we have that

Υ̂n(t) = TV+

(

v̂
(
wn(t, ·)

)
; (−∞, 0)

)

+ TV−

(

ŵ
(
wn(t, ·)

)
; (−∞, 0)

)

=
∑

x∈CDn

{[
v̂
(
wn(t, x+)

)
− v̂

(
wn(t, x−)

)]

+
+
[
ŵ
(
wn(t, x−)

)
− ŵ

(
wn(t, x+)

)]

+

}

,
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Υ̌n(t) = TV+

(

v̌
(
vn(t, ·), F

)
; (0,∞)

)

+TV−

(

w̌
(
vn(t, ·), F

)
; (0,∞)

)

=
∑

x∈RSn

{[
v̌
(
vn(t, x+), F

)
− v̌

(
vn(t, x−), F

)]

+
+
[
w̌
(
vn(t, x−), F

)
− w̌

(
vn(t, x+), F

)]

+

}

,

where

CDn
.
=

{

x ∈ R :
(
un(t, x−), un(t, x+)

)
is a CD in x < 0 such that wn(t, x−) > max{wn(t, x+), wF }

}

,

RSn
.
=

{

x ∈ R :
(
un(t, x−), un(t, x+)

)
is a RS in x > 0 such that vn(t, x+) > max{vn(t, x−), v

−
F }

}

.

Let εn > 0 be the minimal (v, w)-distance between two points in the grid Gn, namely

εn
.
= min

u1, u2∈Gn

u1 6=u2

max
{

|v1 − v2|, |w(u1)− w(u2)|
}

.

The next proposition ensures that the number of discontinuities of un is uniformly bounded in time. More-
over, it gives uniform bounds on the total variation of the approximate solution, which allows us to use Helly’s
Theorem.

Proposition 4.1. For any fixed n ∈ N sufficiently large and uo
n ∈ PC(R;Gn), we have that:

(a) the map t 7→ Tn(t) is non-increasing and decreases by at least εn any time the number of waves increases;

(b) un(t, ·) ∈ PC(R;Gn) for all t > 0.

Proof. By construction for t > 0 sufficiently small un(t, ·) belongs to PC(R;Gn), more precisely it is piecewise
constant with jumps along a finite number of straight lines. If at time t > 0 an interaction occurs, namely two
waves meet or a wave reaches x = 0, then the involved waves may change speed or strength, while new waves
may be created. To prove that un(t, ·) belongs to PC(R;Gn) we have to provide an a priori upper bound for
the number of waves, which follows from (a).

Clearly, if at time t > 0 no interaction occurs then Tn(t) = Tn(t+). For this reason we consider below all
the possible interactions and distinguish the following main cases:

• a single wave reaches x = 0 and no NS is involved;

• a single wave reaches x = 0 and a NS is involved;

• two waves interact away from x = 0;

• two waves interact at x = 0 and no NS is involved;

• two waves interact at x = 0 and a NS is involved.

For completeness we estimate

∆TVv
.
= TV

(
vn(t+, ·)

)
− TV

(
vn(t, ·)

)
, ∆Υ̂n

.
= Υ̂n

(
wn(t+, ·)

)
− Υ̂n

(
wn(t, ·)

)
,

∆TVw
.
= TV

(
wn(t+, ·)

)
− TV

(
wn(t, ·)

)
, ∆Υ̌n

.
= Υ̌n

(
vn(t+, ·)

)
− Υ̌n

(
vn(t, ·)

)
,

and

∆♯
.
= ♯(t+)− ♯(t−), ∆Tn .

= Tn(t+)− Tn(t−).

For simplicity in the exposition, whenever a NS is involved we consider separately the cases F ∈ [f−
c , f+

c )
and F ∈ [0, f−

c ). Notice that w− > wF if and only if F < f−
c , or equivalently V 6= v+F . Notice also that if

F = f+
c then D2 = ∅, while if F = 0 then D1 = ∅. At last, notice that if F ∈ [f−

c , f+
c ) and (uℓ, ur) ∈ D2, then

ŵℓ = wℓ and v̌r = vr.

We start with the interaction estimates.

• If a wave (uℓ, ur) reaches x = 0, un(t, 0−) = un(t, 0+) and (uℓ, ur) ∈ D1, then the constraint has no influence
on the wave and 0 = ∆TVv = ∆TVw = ∆♯. Since any CD has non-negative speed, we have that ∆Υ̂n ≤ 0.
Since any RS has negative speed, we have that ∆Υ̌n ≤ 0. As a consequence ∆Tn ≤ 0.

• Assume that a wave (uℓ, ur) reaches x = 0, un(t, 0−) = un(t, 0+) and (uℓ, ur) ∈ D2.
If F ∈ [f−

c , f+
c ), then one of the following cases occurs:
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CD+
F
+
F
+
F (uℓ, ur) is a CD. In this case v̂r ≥ vℓ = vr = v̌r > v̂ℓ, wℓ = ŵℓ > w̌r ≥ ŵr ≥ wr and f(uℓ) > F ≥ f(ur).

RF,n[uℓ, ur] has at most three waves (uℓ, ûℓ), (ûℓ, ǔr) and (ǔr, ur) that are a S, a NS and a possibly null CD,
respectively. As a consequence

∆TVv = 2(vℓ − v̂ℓ) > 0, ∆Υ̂n = −[v̂r − v̂ℓ]+ − [ŵℓ − ŵr]+ < −(v̂r − v̂ℓ) < 0,

∆TVw = 0, ∆Υ̌n = 0,

therefore ∆♯ ∈ {1, 2} and ∆Tn < −2(v̂r − vℓ) ≤ 0.

RS+
F
+
F
+
F (uℓ, ur) is a RS. In this case vℓ = v̌ℓ < vr = v̌r, w̌r < wℓ = w̌ℓ = wr, f(uℓ) = F < f(ur) and uℓ, ur ∈ Ωc.

RF,n[uℓ, ur] has two waves (uℓ, ǔr) and (ǔr, ur) that are a NS and a CD, respectively. As a consequence

∆TVv = 0, ∆Υ̂n = 0,

∆TVw = 2(wℓ − w̌r) > 0, ∆Υ̌n = −[v̌r − v̌ℓ]+ − [w̌ℓ − w̌r]+ = −(vr − vℓ)− (wℓ − w̌r) < 0,

therefore ∆♯ = 1 and ∆Tn = −2(vr − vℓ) < 0.

If F ∈ [0, f−
c ), then one of the following cases occurs:

CD−
F
−
F
−
F (uℓ, ur) is a CD. In this case v̂r ≥ vℓ = vr = v̌r > v̂ℓ, ŵℓ ≥ wℓ > w̌r ≥ ŵr ≥ wr and f(uℓ) > F ≥ f(ur).

RF,n[uℓ, ur] has at most three waves (uℓ, ûℓ), (ûℓ, ǔr) and (ǔr, ur) that are a S or a PT, a NS and a possibly
null CD, respectively. As a consequence

∆TVv = 2(vℓ − v̂ℓ) > 0, ∆Υ̂n = −[v̂r − v̂ℓ]+ − [ŵℓ − ŵr]+ = −(v̂r − v̂ℓ)− (ŵℓ − ŵr) < 0,

∆TVw = 2(ŵℓ − wℓ) ≥ 0, ∆Υ̌n = 0,

therefore ∆♯ ∈ {1, 2} and ∆Tn = −2(v̂r − vℓ)− 2(wℓ − ŵr) < 0.

RS−
F
−
F
−
F (uℓ, ur) is a RS. In this case vℓ < vr ≤ v̌r, wF ≤ w̌r < wr = wℓ = w̌ℓ, f(uℓ) = F < f(ur) and uℓ, ur ∈ Ωc.

RF,n[uℓ, ur] has two waves (uℓ, ǔr) and (ǔr, ur) that are a NS and a PT or a CD, respectively. As a consequence

∆TVv = 2(v̌r − vr) ≥ 0, ∆Υ̂n = 0,

∆TVw = 2(wℓ − w̌r) > 0, ∆Υ̌n = −[v̌r − v̌ℓ]+ − [w̌ℓ − w̌r]+ = −(v̌r − vℓ)− (wℓ − w̌r) < 0,

therefore ∆♯ = 1 and ∆Tn = −2(vr−vℓ) < 0. Notice that v̌r > vr if and only if wℓ = wr = w− and vr > vℓ = v+F .

Assume that two waves (uℓ, um) and (um, ur) interact at time t > 0. Let u∗
.
= u∗(uℓ, ur). Notice that

u∗ = ur if and only if (uℓ, um) is a S or a RS, while u∗ = uℓ if and only if (uℓ, um) is a CD.

• If the interaction occurs at x 6= 0, then one of the following cases occurs:

CD-S (uℓ, um) is a CD and (um, ur) is a S. In this case vℓ = vm > vr = v∗, wm = wr, w∗ belongs to the closed
interval between wℓ and wr, W(uℓ) = W(u∗), wm = wr, f(um) > f(ur) and um, ur ∈ Ωc. Rn[uℓ, ur] has at most
two waves (uℓ, u∗) and (u∗, ur) that are respectively either a S and a CD, or a PT and a possibly null CD. As
a consequence 0 = ∆TVv = ∆TVw = ∆Υ̂n = ∆Υ̌n, therefore ∆♯ ≤ 0 and ∆Tn = 0.

CD-RS (uℓ, um) is a CD and (um, ur) is a RS. In this case vℓ = vm < vr = v∗, wℓ = w∗, wm = wr, f(uℓ) < f(u∗),
f(um) < f(ur) and uℓ, um, u∗, ur ∈ Ωc. Rn[uℓ, ur] has two waves (uℓ, u∗) and (u∗, ur) that are a RS and a CD,
respectively. As a consequence 0 = ∆TVv = ∆TVw = ∆Υ̂n = ∆Υ̌n, therefore ∆♯ = 0 and ∆Tn = 0.

CD-PT (uℓ, um) is a CD and (um, ur) is a PT. In this case vℓ = vm = V > vr = v∗, wm < w− ≤ wr, w∗ belongs
to the closed interval between wℓ and wr, uℓ ∈ Ωf , um ∈ Ω−

f and u∗, ur ∈ Ωc. Rn[uℓ, ur] has at most two waves
(uℓ, u∗) and (u∗, ur) that are either a PT or a S and a possibly null CD, respectively. As a consequence

∆TVv = 0, ∆Υ̂n ≤ 0,

∆TVw = |wℓ − wr| − (|wℓ − wm|+ |wm − wr|) ≤ 0, ∆Υ̌n = 0,

therefore ∆♯ ≤ 0 and ∆Tn ≤ 0.

S-S (uℓ, um) and (um, ur) are Ss. In this case vℓ > vm > vr, wℓ = wm = wr ≥ w− and uℓ, um, ur ∈ Ωc.
Rn[uℓ, ur] has one wave (uℓ, ur), which is a S. As a consequence 0 = ∆TVv = ∆TVw = ∆Υ̂n = ∆Υ̌n, therefore
∆♯ = −1 and ∆Tn = 0.
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S-RS (uℓ, um) is a S and (um, ur) is a RS. In this case vℓ > vr > vm, wℓ = wm = wr ≥ w− and uℓ, um, ur ∈ Ωc.
Rn[uℓ, ur] has one wave (uℓ, ur), which is a S. As a consequence

∆TVv = −2(vr − vm) < 0, ∆Υ̂n = 0,

∆TVw = 0, ∆Υ̌n ≤ 0,

therefore ∆♯ = −1 and ∆Tn < 0.

RS-S (uℓ, um) is a RS and (um, ur) is a S. In this case vm > vℓ > vr, wℓ = wm = wr ≥ w− and uℓ, um, ur ∈ Ωc.
Rn[uℓ, ur] has one wave (uℓ, ur), which is a S. As a consequence

∆TVv = −2(vm − vℓ) < 0, ∆Υ̂n = 0,

∆TVw = 0, ∆Υ̌n ≤ 0,

therefore ∆♯ = −1 and ∆Tn < 0.

PT-S (uℓ, um) is a PT and (um, ur) is a S. In this case vℓ = V > vm > vr, wℓ < w− ≤ wm = wr, uℓ ∈ Ω−
f and um,

ur ∈ Ωc. Rn[uℓ, ur] has one wave (uℓ, ur), which is a PT. As a consequence 0 = ∆TVv = ∆TVw = ∆Υ̂n = ∆Υ̌n,
therefore ∆♯ = −1 and ∆Tn = 0.

PT-RS (uℓ, um) is a PT and (um, ur) is a RS. In this case vℓ = V ≥ vr > vm, wℓ < w− ≤ wm = wr, uℓ ∈ Ω−
f

and um, ur ∈ Ωc. Rn[uℓ, ur] has one wave (uℓ, ur), which is either a PT or a CD. As a consequence

∆TVv = −2(vr − vm) < 0, ∆Υ̂n = 0,

∆TVw = 0, ∆Υ̌n ≤ 0,

therefore ∆♯ = −1 and ∆Tn < 0.

• If the interaction occurs at x = 0 and (uℓ, ur) ∈ D1, then one of the following cases occurs:

CD-S000 (uℓ, um) is a CD and (um, ur) is a S. In this case vℓ = vm > vr = v∗, wm = wr, w∗ belongs to the
closed interval between wℓ and wr, W(uℓ) = W(u∗), wm = wr, f(ur) < (um) ≤ F , min{f(uℓ), f(u∗)} ≤ F and um,
ur ∈ Ωc. RF,n[uℓ, ur] has at most two waves (uℓ, u∗) and (u∗, ur) that are respectively either a S and a CD, or

a PT and a possibly null CD. As a consequence ∆Υ̂n ≤ 0 = ∆TVv = ∆TVw = ∆Υ̌n, therefore ∆♯ ≤ 0 and
∆Tn ≤ 0.

CD-RS000 (uℓ, um) is a CD and (um, ur) is a RS. In this case vℓ = vm < vr, wm = wr, w∗ = wℓ, f(uℓ) < f(u∗),
f(um) < f(ur), max{f(um), f(u∗)} ≤ F and uℓ, um, u∗, ur ∈ Ωc. RF,n[uℓ, ur] has two waves (uℓ, u∗) and
(u∗, ur) that are a RS and a CD, respectively. As a consequence

∆TVv = 0, ∆Υ̂n ≤ 0,

∆TVw = 0, ∆Υ̌n ≤ 0,

therefore ∆♯ = 0 and ∆Tn ≤ 0.

CD-NS000 (uℓ, um) is a CD and (um, ur) is a NS. In this case v−F ≤ vℓ = vm < vr ≤ v+F , w
− ≤ wℓ ≤ wr < wm,

f(uℓ) < f(u∗) ≤ F = f(um) = f(ur) and uℓ, um, u∗, ur ∈ Ωc. RF,n[uℓ, ur] has a fan of RSs ranging from uℓ

to u∗ and a possibly null CD (u∗, ur). As a consequence ∆TVw = −2(wm − wr) < 0 = ∆TVv = ∆Υ̂n = ∆Υ̌n,
therefore ∆♯ ∈ [−1, 2n − 1] and ∆Tn < 0.

CD-PT000 (uℓ, um) is a CD and (um, ur) is a PT. In this case vℓ = vm = V > vr = v∗, wm < w− ≤ wr, w∗
belongs to the closed interval between wℓ and wr, min{f(uℓ), f(u∗)} ≤ F , max{f(um), f(ur)} ≤ F , uℓ ∈ Ωf ,
um ∈ Ω−

f and u∗, ur ∈ Ωc. RF,n[uℓ, ur] has at most two waves (uℓ, u∗) and (u∗, ur) that are either a PT or a S
and a possibly null CD, respectively. As a consequence

∆TVv = 0, ∆Υ̂n ≤ 0,

∆TVw = |wℓ − wr| − (|wℓ − wm|+ |wm − wr|) ≤ 0, ∆Υ̌n = 0,

therefore ∆♯ ∈ {−1, 0} and ∆Tn ≤ 0.

S-S000 (uℓ, um) and (um, ur) are Ss. In this case vℓ > vm > vr, wℓ = wm = wr ≥ w−, f(ur) < f(uℓ) ≤ F and uℓ,
um, ur ∈ Ωc. RF,n[uℓ, ur] has one wave (uℓ, ur), which is a S. As a consequence 0 = ∆TVv = ∆TVw = ∆Υ̂n =
∆Υ̌n, therefore ∆♯ = −1 and ∆Tn = 0.
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S-RS000 (uℓ, um) is a S and (um, ur) is a RS. In this case vℓ > vr > vm, wℓ = wm = wr ≥ w−, f(ur) < f(uℓ) ≤ F
and uℓ, um, ur ∈ Ωc. RF,n[uℓ, ur] has one wave (uℓ, ur), which is a S. As a consequence

∆TVv = −2(vr − vm) < 0, ∆Υ̂n = 0,

∆TVw = 0, ∆Υ̌n ≤ 0,

therefore ∆♯ = −1 and ∆Tn < 0.

RS-S000 (uℓ, um) is a RS and (um, ur) is a S. In this case vm > vℓ > vr, wℓ = wm = wr ≥ w−, f(ur) < f(uℓ) ≤ F
and uℓ, um, ur ∈ Ωc. RF,n[uℓ, ur] has one wave (uℓ, ur), which is a S. As a consequence

∆TVv = −2(vm − vℓ) < 0, ∆Υ̂n = 0,

∆TVw = 0, ∆Υ̌n ≤ 0,

therefore ∆♯ = −1 and ∆Tn < 0.

NS-S000 (uℓ, um) is a NS and (um, ur) is a S. In this case vm > vℓ ≥ vr = v∗, w∗ = wℓ > wm = wr ≥ w−,
f(uℓ) = f(um) = F > f(ur) and uℓ, um, ur ∈ Ωc. RF,n[uℓ, ur] has at most two waves (uℓ, u∗) and (u∗, ur) that

are a possibly null S and CD, respectively. As a consequence ∆TVv = −2(vm−vℓ) < 0 = ∆TVw = ∆Υ̂n = ∆Υ̌n,
therefore ∆♯ ∈ {−1, 0} and ∆Tn < 0.

NS-PT000 (uℓ, um) is a NS and (um, ur) is a PT. In this case vm = V > vℓ ≥ vr = v∗, wℓ = w∗ ≥ wr = w− > wm,
f−
c > f(uℓ) = f(um) = F > f(ur), f(u∗) ≤ F , uℓ, ur ∈ Ωc and um ∈ Ω−

f . RF,n[uℓ, ur] has at most two waves
(uℓ, u∗) and (u∗, ur) that are a possibly null S and a possibly null CD (but not both null), respectively. As a
consequence

∆TVv = −2(V − vℓ) < 0, ∆Υ̂n = 0,

∆TVw = −2(w− − wm) < 0, ∆Υ̌n = 0,

therefore ∆♯ ∈ {−1, 0} and ∆Tn < 0.

PT-S000 (uℓ, um) is a PT and (um, ur) is a S. In this case vℓ = V > vm > vr, wℓ < w− ≤ wm = wr, f(ur) <
f(um) ≤ max{f(uℓ), f(um)} ≤ F , uℓ ∈ Ω−

f and um, ur ∈ Ω−
c . RF,n[uℓ, ur] has one wave (uℓ, ur), which is a

PT. As a consequence 0 = ∆TVv = ∆TVw = ∆Υ̂n = ∆Υ̌n, therefore ∆♯ = −1 and ∆Tn = 0.

PT-RS000 (uℓ, um) is a PT and (um, ur) is a RS. In this case vℓ = V ≥ vr > vm, wℓ < w− ≤ wm = wr, uℓ ∈ Ω−
f

and um, ur ∈ Ωc. RF,n[uℓ, ur] has one wave (uℓ, ur), which is either a PT or a CD. As a consequence

∆TVv = −2(vr − vm) < 0, ∆Υ̂n = 0,

∆TVw = 0, ∆Υ̌n ≤ 0,

therefore ∆♯ = −1 and ∆Tn < 0.

PT-NS000 (uℓ, um) is a PT and (um, ur) is a NS. In this case vℓ = V ≥ vr > vm, wℓ < w− ≤ wr < wm,
f(uℓ) < f(um) = f(ur) = F , uℓ ∈ Ω−

f and um, ur ∈ Ωc. RF,n[uℓ, ur] has one wave (uℓ, ur), which is either a
CD or a PT. As a consequence

∆TVv = −2(vr − vm) < 0, ∆Υ̂n = 0,

∆TVw = −2(wm − wr) < 0, ∆Υ̌n = 0,

therefore ∆♯ = −1 and ∆Tn < 0.

• Assume that two waves (uℓ, um) and (um, ur) interact at x = 0 and (uℓ, ur) ∈ D2.
If F ∈ [f−

c , f+
c ), then one of the following cases occurs:

CD-S+
F
+
F
+
F (uℓ, um) is a CD and (um, ur) is a S. In this case v̂r ≥ vℓ = vm > vr = v̌r > v̂ℓ, wℓ = ŵℓ > w̌r > wm = wr,

wℓ > ŵr, f(uℓ) > f(u∗) > F ≥ f(um) > f(ur) and uℓ, um, ur ∈ Ωc. RF,n[uℓ, ur] has three waves (uℓ, ûℓ), (ûℓ, ǔr)
and (ǔr, ur), which are a S, a NS and a CD, respectively. As a consequence

∆TVv = 2(vr − v̂ℓ) > 0, ∆Υ̂n = −(v̂m − v̂ℓ)− (wℓ − ŵm) < 0,

∆TVw = 0, ∆Υ̌n = 0,

therefore ∆♯ = 1 and ∆Tn = −2(v̂r − vr)− 2(wℓ − ŵr) < 0.
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CD-RS+
F
+
F
+
F (uℓ, um) is a CD and (um, ur) is a RS. In this case v̂ℓ ≤ vℓ = vm = v̌m < vr = v̌r, v̂ℓ < v̂m,

wℓ = ŵℓ > ŵm ≥ wm = wr, w̌r < w̌m, f(um) < f(ur) ≤ f(uℓ) < f(u∗), f(um) ≤ F < f(u∗) and uℓ, um, ur ∈ Ωc.
RF,n[uℓ, ur] has at most three waves (uℓ, ûℓ), (ûℓ, ǔr) and (ǔr, ur), which are a possibly null S, a NS and a
possibly null CD, respectively. As a consequence

∆TVv = 2(vℓ − v̂ℓ) ≥ 0, ∆Υ̂n = −(v̂m − v̂ℓ)− (ŵℓ − ŵm) < −(v̂m − v̂ℓ) < 0,

∆TVw =

{
2(wr − w̌r) if f(um) = F
0 if f(um) < F

}

≥ 0, ∆Υ̌n = −(vr − vm)− (w̌m − w̌r) < −(w̌m − w̌r) < 0,

and therefore

∆♯ ∈ {−1, 0, 1}, ∆Tn < −2(v̂m − vℓ) +

{
0 if f(um) = F
−2(w̌m − w̌r) if f(um) < F

}

≤ 0.

CD-NS+
F
+
F
+
F (uℓ, um) is a CD and (um, ur) is a NS. In this case vℓ = vm < vr, wr < min{wℓ, wm}, wℓ 6= wm,

f(um) = f(ur) = F 6= f(uℓ) and uℓ, um ur ∈ Ωc.
If f(uℓ) < F , then RF,n[uℓ, ur] has a fan of RSs from uℓ to ûℓ and a NS (ûℓ, ur); as a consequence ∆TVw =

−2(wm − wℓ) < 0 = ∆TVv = ∆Υ̂n = ∆Υ̌n, therefore ∆♯ ∈ [0, 2n − 2] and ∆Tn = −2(wm − wℓ) < 0.
If f(uℓ) > F , then v̂ℓ < vℓ = vm = v̂m, ŵℓ = wℓ > wm = ŵm, RF,n[uℓ, ur] has a two waves (uℓ, ûℓ) and (ûℓ, ur),
that are a S and a NS, respectively; as a consequence

∆TVv = 2(vℓ − v̂ℓ) > 0, ∆Υ̂n = −(vℓ − v̂ℓ)− (wℓ − wm) < 0,

∆TVw = 0, ∆Υ̌n = 0,

therefore ∆♯ = 0 and ∆Tn = −2(wℓ − wm) < 0.

CD-PT+
F
+
F
+
F (uℓ, um) is a CD and (um, ur) is a PT. In this case wm < w− ≤ wF = ŵm < wℓ, vℓ = vm = v̂m = V >

vr = v̌r > v̂ℓ, wm < w− ≤ wr < w̌r < wℓ = ŵℓ, f(uℓ) > f(u∗) > F ≥ max{f(um), f(ur)}, uℓ ∈ Ω+
f , um ∈ Ω−

f and
ur ∈ Ωc. RF,n[uℓ, ur] has three waves (uℓ, ûℓ), (ûℓ, ǔr) and (ǔr, ur) that are a S, a NS and a CD, respectively.
As a consequence

∆TVv = 2(vr − v̂ℓ) > 0, ∆Υ̂n = −(V − v̂ℓ)− (wℓ − wF ) < 0,

∆TVw = −2(wr − wm) < 0, ∆Υ̌n = 0,

therefore ∆♯ = 1 and ∆Tn < −2(V − vr)− 2(wℓ − wF ) < 0.

NS-S+
F
+
F
+
F (uℓ, um) is a NS and (um, ur) is a S. In this case vm > vr = v̌r > vℓ, wℓ > w̌r > wm = wr ≥ wF ≥ w−,

f(u∗) > F = f(uℓ) = f(um) > f(ur) and uℓ, um, ur ∈ Ωc. RF,n[uℓ, ur] has two waves (uℓ, ǔr) and (ǔr, ur)

that are a NS and a CD, respectively. As a consequence ∆TVv = −2(vm − vr) < 0 = ∆TVw = ∆Υ̂n = ∆Υ̌n,
therefore ∆♯ = 0 and ∆Tn = −2(vm − vr) < 0.

NS-RS+
F
+
F
+
F (uℓ, um) is a NS and (um, ur) is a RS. In this case vℓ < vm = v̌m < vr = v̌r, wℓ > wm = w̌m = wr > w̌r,

f(u∗) > f(ur) > F = f(uℓ) = f(um) and uℓ, um, ur ∈ Ωc. RF,n[uℓ, ur] has two waves (uℓ, ǔr) and (ǔr, ur) that
are a NS and a CD, respectively. As a consequence

∆TVv = 0, ∆Υ̂n = 0,

∆TVw = 2(wr − w̌r) > 0, ∆Υ̌n = −(vr − vm)− (wr − w̌r) < 0,

therefore ∆♯ = 0 and ∆Tn = −2(vr − vm) < 0.

If F ∈ [0, f−
c ), then one of the following cases occurs:

CD-S−
F
−
F
−
F (uℓ, um) is a CD and (um, ur) is a S. In this case v̂m ≥ vℓ = vm > vr = v̌r > v̂ℓ, wℓ = ŵℓ > w̌r > wm =

ŵm = wr ≥ w−, f(uℓ) > f(u∗) > F ≥ f(um) > f(ur) and uℓ, um, ur ∈ Ωc. RF,n[uℓ, ur] has three waves (uℓ, ûℓ),
(ûℓ, ǔr) and (ǔr, ur), which are a S, a NS and a CD, respectively. As a consequence

∆TVv = 2(vr − v̂ℓ) > 0, ∆Υ̂n = −(v̂m − v̂ℓ)− (wℓ − wm) < 0,

∆TVw = 0, ∆Υ̌n = 0,

therefore ∆♯ = 1 and ∆Tn = −2(v̂m − vr)− 2(wℓ − wm) < 0.
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CD-RS−
F
−
F
−
F (uℓ, um) is a CD and (um, ur) is a RS. In this case v̂ℓ ≤ vℓ = vm ≤ v̂m, vm = v̌m < vr ≤ v̌r,

wℓ = ŵℓ ≥ w̌m ≥ wm = wr ≥ w−, wℓ > wm, f(um) < f(ur) ≤ f(uℓ) < f(u∗), f(um) ≤ F < f(u∗) and uℓ, um,
ur ∈ Ωc. RF,n[uℓ, ur] has at most three waves (uℓ, ûℓ), (ûℓ, ǔr) and (ǔr, ur), which are a possibly null S, a NS
and a possibly null CD or PT, respectively. As a consequence

∆TVv = 2(vℓ − v̂ℓ) + 2(v̌r − vr) ≥ 0, ∆Υ̂n = −(v̂m − v̂ℓ)− (wℓ − wm) < 0,

∆TVw =

{
2(wr − w̌r) if f(um) = F
0 if f(um) < F

}

≥ 0, ∆Υ̌n = −(v̌r − vm)−
{
(wr − w̌r) if f(um) = F
(w̌m − w̌r) if f(um) < F

}

< 0,

and therefore

∆♯ ∈ {−1, 0, 1}, ∆Tn = −2(v̂m − vℓ)− 2(vr − vm)− 2(wℓ − wm)−
{
0 if f(um) = F
2(w̌m − w̌r) if f(um) < F

}

< 0.

CD-NS−
F
−
F
−
F (uℓ, um) is a CD and (um, ur) is a NS. In this case vℓ = vm = v̂m < vr, wr < min{wℓ, wm}, wℓ = ŵℓ,

wm = ŵm, f(um) = f(ur) = F 6= f(uℓ) and uℓ, um ∈ Ωc.
If f(uℓ) < F , then vr > v̂ℓ > vℓ = vm, wr < wℓ < wm and RF,n[uℓ, ur] has a fan of RSs from uℓ to ûℓ and a NS

(ûℓ, ur); as a consequence ∆TVw = −2(wm − wℓ) < 0 = ∆TVv = ∆Υ̂n = ∆Υ̌n, therefore ∆♯ ∈ [0, 2n − 2] and
∆Tn = −2(wm − wℓ) < 0.
If f(uℓ) > F , then vr > vℓ = vm = v̂m > v̂ℓ, wℓ > wm > wr and RF,n[uℓ, ur] has a two waves (uℓ, ûℓ) and
(ûℓ, ur), that are a S and a NS, respectively; as a consequence

∆TVv = 2(vℓ − v̂ℓ) > 0, ∆Υ̂n = −(vℓ − v̂ℓ)− (wℓ − wm) < 0,

∆TVw = 0, ∆Υ̌n = 0,

therefore ∆♯ = 0 and ∆Tn = −2(wℓ − wm) < 0.

CD-PT−
F
−
F
−
F (uℓ, um) is a CD and (um, ur) is a PT. In this case vℓ = vm = v̂m = V > vr = v̌r > v̂ℓ, wℓ = ŵℓ >

w̌r ≥ wr ≥ w− > wF = ŵm ≥ wm, f(uℓ) > f(u∗) > F ≥ max{f(um), f(ur)}, uℓ ∈ Ω+
f , um ∈ Ω−

f and ur ∈ Ωc.
RF,n[uℓ, ur] has at most three waves (uℓ, ûℓ), (ûℓ, ǔr) and (ǔr, ur) that are a S, a NS and a possibly null CD,
respectively. As a consequence

∆TVv = 2(vr − v̂ℓ) > 0, ∆Υ̂n = −(vm − v̂ℓ)− (wℓ − wF ) < 0,

∆TVw = −2(wr − wm) < 0, ∆Υ̌n = 0,

therefore ∆♯ ∈ {0, 1} and ∆Tn = −2(vm − vr)− 2(wr − wm)− 2(wℓ − wF ) < 0.

NS-S−
F
−
F
−
F (uℓ, um) is a NS and (um, ur) is a S. In this case vm > vr = v̌r > vℓ, wℓ > w̌r > wm = wr ≥ w−,

f(uℓ) = f(um) = F > f(ur) and uℓ, um, ur ∈ Ωc. RF,n[uℓ, ur] has two waves (uℓ, ǔr) and (ǔr, ur) that are a

NS and a CD, respectively. As a consequence ∆TVv = −2(vm − vr) < 0 = ∆TVw = ∆Υ̂n = ∆Υ̌n, therefore
∆♯ = 0 and ∆Tn = −2(vm − vr) < 0.

NS-RS−
F
−
F
−
F (uℓ, um) is a NS and (um, ur) is a RS. In this case vℓ < vm = v̌m < vr ≤ v̌r, wℓ > wm = w̌m = wr > w̌r,

f(ur) > F = f(uℓ) = f(um) and uℓ, um, ur ∈ Ωc. RF,n[uℓ, ur] has two waves (uℓ, ǔr) and (ǔr, ur) that are a
NS and either a PT or a CD, respectively. As a consequence

∆TVv = 2(v̌r − vr) ≥ 0, ∆Υ̂n = 0,

∆TVw = 2(wr − w̌r) > 0, ∆Υ̌n = −(v̌r − vm)− (wr − w̌r) < 0,

therefore ∆♯ = 0 and ∆Tn = −2(vr − vm) < 0. Notice that v̌r > vr if and only if wm = wr = w− and
v̌r = V > vr > vm = v+F .

NS-PT−
F
−
F
−
F (uℓ, um) is a NS and (um, ur) is a PT. In this case vm = V > vr = v̌r > vℓ, wℓ > w̌r > wr = w− > wm,

f(u∗) > f(uℓ) = f(um) = F > f(ur), uℓ, ur ∈ Ωc and um ∈ Ω−
f . RF,n[uℓ, ur] has two waves (uℓ, ǔr) and

(ǔr, ur) that are a NS and a CD, respectively. As a consequence

∆TVv = −2(V − vr) < 0, ∆Υ̂n = 0,

∆TVw = −2(w− − wm) < 0, ∆Υ̌n = 0,

therefore ∆♯ = 0 and ∆Tn = −2(V − vr)− 2(w− − wm) < 0.

This concludes the proof.
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Interaction Result ∆♯ ∆Tn
CD+

F (S,NS,CD), (S,NS) ∈ {1, 2} < 0

RS+F (NS,CD) = 1 < 0

CD−
F (S,NS,CD), (S,NS), (PT,NS,CD), (PT,NS) ∈ {1, 2} < 0

RS−F (NS,PT), (NS,CD) = 1 < 0

CD-S (S,CD), (PT,CD), PT ≤ 0 = 0

CD-RS (RS,CD) = 0 = 0

CD-PT (PT,CD), PT, (S,CD), S ≤ 0 ≤ 0

S-S S < 0 = 0

S-RS S < 0 < 0

RS-S S < 0 < 0

PT-S PT < 0 = 0

PT-RS PT, CD < 0 < 0

CD-S0 (S,CD), (PT,CD), PT ≤ 0 ≤ 0

CD-RS0 (RS,CD) = 0 ≤ 0

CD-NS0 (RSs,CD), RSs ∈ [−1, 2n − 1] < 0

CD-PT0 (PT,CD), PT, (S,CD), S ≤ 0 ≤ 0

S-S0 S < 0 = 0

S-RS0 S < 0 < 0

RS-S0 S < 0 < 0

NS-S0 (S,CD), CD ≤ 0 < 0

NS-PT0 (S,CD), S, CD ≤ 0 < 0

PT-S0 PT < 0 = 0

PT-RS0 PT, CD < 0 < 0

PT-NS0 CD, PT < 0 < 0

CD-S+F (S,NS,CD) = 1 < 0

CD-RS+F (S,NS,CD), (NS,CD), (S,NS), NS ∈ {−1, 0, 1} < 0

CD-NS+F (RSs,NS), (S,NS) ∈ [0, 2n − 2] < 0

CD-PT+
F (S,NS,CD) = 1 < 0

NS-S+F (NS,CD) = 0 < 0

NS-RS+F (NS,CD) = 0 < 0

CD-S−F (S,NS,CD) = 1 < 0

CD-RS−F (S,NS,CD), (S,NS,PT), (NS,CD), (NS,PT), (S,NS), NS ∈ {−1, 0, 1} < 0

CD-NS−F (RSs,NS), (S,NS) ∈ [0, 2n − 2] < 0

CD-PT−
F (S,NS,CD), (S,NS) ∈ {0, 1} < 0

NS-S−F (NS,CD) = 0 < 0

NS-RS−F (NS,PT), (NS,CD) = 0 < 0

NS-PT−
F (NS,CD) = 0 < 0

Table 1: An overview of the interactions considered in the proof of Proposition 4.1.
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In Table 1 we collect the most relevant possible interactions considered in the proof of Proposition 4.1 and
list the corresponding possible results in terms of wave types, ∆♯ and ∆Tn.

Beside the bound on the number of wave-fronts proved in Proposition 4.1, we need to bound also the number
of interactions. This is the aim of the next proposition, which together with Proposition 4.1 ensure the global
existence of un. We underline that for any interaction ∆♯ ≤ 2n − 1, see Table 1.

Proposition 4.2. For any fixed n ∈ N sufficiently large and uo
n ∈ PC(R;Gn), we have that the number of

interactions in (0,∞) is bounded. In particular un is globally defined.

Proof. From what we already show in the proof of Proposition 4.1, see Table 1, we deduce that

t 7→ 2n
Tn(t)
εn

+ ♯(t)

strictly decreases after any interaction, except the following cases.

A CD (uℓ, um) interacts with (um, ur) and one of the following conditions is satisfied:

• (um, ur) is a S and wℓ = w− − 1;

• (um, ur) is a S and w− − 1 < wℓ ≤ w− = wr;

• (um, ur) is a RS;

• (um, ur) is a PT and wℓ > w−.

(17)

For this reason it remains to bound the number of only the above type of interactions. We observe that the
number of waves of un do not change after interactions as in (17). This implies that the number of waves
is uniformly bounded. We also observe that any interaction as in (17) has exactly one incoming CD and
exactly one outgoing CD. Since no wave can reach any CD from the left (and then possibly have with it an
interaction as in (17)), we have that as long as a CD remains a CD (possible further interactions involving it
have to be taken into account), it can interact only once with another wave W (or with waves generated by
further interactions involving W), moreover in this case W is slower then such CD and is not another CD. Since
furthermore we already know that the number of waves is uniformly bounded, there can be only finitely many
interactions involving CDs. It is therefore now clear that also the number of the interactions described in (17)
is bounded.

4.3 Convergence

We first observe that
|ρℓ − ρr| ≤ L

(
|vℓ − vr|+ |wℓ − wr|

)

where L
.
= max{ρ−, ‖1/p′‖L∞∞∞([p−1(w−),p−1(w+)];R)} because

ρℓ,r =

{

p−1(wℓ,r − vℓ,r) if wℓ,r ∈ [w−, w+],

(wℓ,r + 1− w−) ρ− if wℓ,r ∈ [w− − 1, w−).

As a consequence TV(ρ) ≤ L (TV(v) + TV(w)), hence

TV(u) ≤ (1 + L)
(
TV(v) + TV(w)

)
.

Moreover, by Proposition 4.1 and (16) we have that for any t > 0

TV
(
vn(t, ·)

)
+TV

(
wn(t, ·)

)
≤ Tn(t) ≤ Tn(0) ≤ TV(vo) + TV(wo) + 2C

(

Υ̂(uo) + Υ̌(uo)
)

.

As a consequence TV(un) is bounded by

Co
F

.
= (1 + L)

[

TV(vo) + TV(wo) + 2C
(

Υ̂(uo) + Υ̌(uo)
)]

. (18)

Since uo
n takes values in Ω, for any t > 0 we have that also un(t, ·) takes values in Ω, hence

‖un(t, ·)‖L∞∞∞(R;Ω) ≤ R+ V.
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Moreover
‖un(t, ·)− un(s, ·)‖L111(R;Ω) ≤ Lo

F |t− s|, (19)

with Lo
F

.
= Co

F max{V,R p′(R)}. Indeed, if no interaction occurs for times between t and s, then

‖un(t, ·)− un(s, ·)‖L111(R;Ω) ≤
∑

i∈D(t)

∣
∣
∣(t− s) δ̇in(t)

(

ρn
(
t, δin(t)−

)
− ρn

(
t, δin(t)+

))
∣
∣
∣

+
∑

i∈D(t)

∣
∣
∣(t− s) δ̇in(t)

(

vn
(
t, δin(t)−

)
− vn

(
t, δin(t)+

))
∣
∣
∣ ≤ Lo

F |t− s|,

where δin(t) ∈ R, i ∈ D(t) ⊂ N, are the positions of the discontinuities of un(t, ·). The case when one or more
interactions take place for times between t and s is similar, because by the finite speed of propagation of the
waves the map t 7→ un(t, ·) is L111-continuous across interaction times.

Thus, by applying Helly’s Theorem, the approximate solutions (un)n converge (up to a subsequence) in
L111
loc

(R+×R; Ω) to a function u ∈ L∞∞∞(R+;BV(R; Ω))∩C0(R+;L
111
loc

(R; Ω)) and the limit satisfies the estimates
in (13).

Proposition 4.3. Let uo ∈ L111 ∩ BV(R; Ω) and F ∈ [0, f+
c ] satisfy (H.1) or (H.2). If u is a limit of the

approximate solutions (un)n constructed in Section 4.1, then u is a solution to constrained Cauchy problem (3),
(4), (5) in the sense of Definition 2.2.

Proof. We consider separately the conditions listed in Definition 2.2.

(CS.1) The initial condition (4) holds by (13), (19) and the L111
loc

-convergence of un to u.

(CS.2) We prove now (6), that is for any test function φ ∈ C∞
c ((0,∞)× R;R) we have

∫ ∞

0

∫

R

(

ρ φt + f(u)φx

)

dxdt = 0.

Choose T > 0 such that φ(t, x) = 0 whenever t ≥ T . Since un is uniformly bounded and f is uniformly
continuous on bounded sets, it is sufficient to prove that

∫ T

0

∫

R

(

ρn φt + f(un)φx

)

dxdt → 0. (20)

By the Green-Gauss formula the double integral above can be written as

∫ T

0

∑

i∈D(t)

(

δ̇in(t)∆ρin(t)−∆f i
n(t)

)

φ
(
t, δin(t)

)
dt,

where

∆ρin(t)
.
= ρn

(
t, δin(t)+

)
− ρn

(
t, δin(t)−

)
, ∆f i

n(t)
.
= f

(

un

(
t, δin(t)+

))

− f
(

un

(
t, δin(t)−

))

.

By construction any discontinuity of un(t, ·) satisfies the first Rankine-Hugoniot condition (9), therefore

δ̇in(t)∆ρin(t)−∆f i
n(t) = 0, i ∈ D(t),

and (20) is trivial.

The proof of (7) is analogous because by construction any discontinuity of un(t, ·) away from x = 0 satisfies
also the second Rankine-Hugoniot condition (10).

(CS.3) We prove now (8), namely that for any k ∈ [0, V ] and φ ∈ C∞
c ((0,∞)×R;R) such that φ(·, 0) ≡ 0 and

φ ≥ 0 we have
∫ ∞

0

∫

R

(

E
k(u)φt + Q

k(u)φx

)

dxdt ≥ 0,

where

E
k(u)

.
=







0 if v ≥ k,
ρ

p−1
(
W(u)− k

) − 1 if v < k, Q
k(u)

.
=







0 if v ≥ k,
f(u)

p−1
(
W(u)− k

) − k if v < k.
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Choose T > 0 such that φ(t, x) = 0 whenever t ≥ T . By the a.e. convergence of un to u and the uniform
continuity of Ek and Qk, it is sufficient to prove that

lim inf
n→∞

∫ T

0

∫

R

(

E
k(un)φt + Q

k(un)φx

)

dxdt ≥ 0. (21)

By the Green-Gauss formula the double integral above can be written as
∫ T

0

∑

i∈D(t)

(

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

)

φ
(
t, δin(t)

)
dt,

where

∆E
k,i
n (t)

.
= E

k
(

un

(
t, δin(t)+

))

− E
k
(

un

(
t, δin(t)−

))

, ∆Q
k,i
n (t)

.
= Q

k
(

un

(
t, δin(t)+

))

− Q
k
(

un

(
t, δin(t)−

))

.

To estimate the above integral we have to distinguish the following cases.

• If the ith discontinuity is a PT, then we let x
.
= δin(t) and observe that

ρn(t, x−) < min
{
ρn(t, x+), p

−1(w− − k)
}
, δ̇in(t) = Λ

(
un(t, x−), un(t, x+)

)
,

vn(t, x−) = V > vn(t, x+), W
(
un(t, x−)

)
= w− ≤ w

(
un(t, x+)

)
= W

(
un(t, x+)

)
,

hence

∆E
k,i
n (t) =







ρn(t, x+)

ρkn,+
− 1 if vn(t, x+) < k ≤ V,

0 if k ≤ vn(t, x+),

−∆Q
k,i
n (t) =







k − f
(
un(t, x+)

)

ρkn,+
if vn(t, x+) < k ≤ V,

0 if k ≤ vn(t, x+),

where ρkn,+
.
= p−1(w(un(t, x+))− k). If vn(t, x+) < k ≤ V , then

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

= Λ
(
un(t, x−), un(t, x+)

)

[

ρn(t, x+)

ρkn,+
− 1

]

+ k − f
(
un(t, x+)

)

ρkn,+

=

[

ρn(t, x+)

ρkn,+
− 1

]

︸ ︷︷ ︸
>0

[

Λ
(
un(t, x−), un(t, x+)

)
− Λ

(
(ρkn,+, k), un(t, x+)

)

]

︸ ︷︷ ︸
>0

> 0.

• If the ith discontinuity is a CD, then we let x
.
= δin(t) and observe that δ̇in(t) = vn(t, x−) = vn(t, x+) implies

that δ̇in(t)∆Ek,in (t)−∆Qk,in (t) = 0.

• If the ith discontinuity is a S, then we let x
.
= δin(t) and observe that

ρn(t, x−) < ρn(t, x+), f
(
un(t, x−)

)
> f

(
un(t, x+)

)
, δ̇in(t) = Λ

(
un(t, x−), un(t, x+)

)
< 0,

vn(t, x−) > vn(t, x+), w±
.
= w

(
un(t, x−)

)
= w

(
un(t, x+)

)
≥ w−,

hence

∆E
k,i
n (t) =







ρn(t, x+)− ρn(t, x−)

p−1(w± − k)
if vn(t, x+) < vn(t, x−) < k,

ρn(t, x+)

p−1(w± − k)
− 1 if vn(t, x+) < k ≤ vn(t, x−),

0 if k ≤ vn(t, x+) < vn(t, x−),

−∆Q
k,i
n (t) =







f
(
un(t, x−)

)
− f

(
un(t, x+)

)

p−1(w± − k)
if vn(t, x+) < vn(t, x−) < k,

k − f
(
un(t, x+)

)

p−1(w± − k)
if vn(t, x+) < k ≤ vn(t, x−),

0 if k ≤ vn(t, x+) < vn(t, x−).
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If k > vn(t, x−) or k ≤ vn(t, x+), then it is immediate to see that δ̇in(t)∆Ek,in (t)−∆Qk,in (t) = 0. Furthermore, if
vn(t, x+) < k ≤ vn(t, x−), then

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

= Λ
(
un(t, x−), un(t, x+)

)
[

ρn(t, x+)

p−1(w± − k)
− 1

]

+ k − f
(
un(t, x+)

)

p−1(w± − k)

=

[
ρn(t, x+)

p−1(w± − k)
− 1

]

︸ ︷︷ ︸
>0

[

Λ
(
un(t, x−), un(t, x+)

)
− Λ

((
p−1(w± − k), k

)
, un(t, x+)

)]

︸ ︷︷ ︸
>0

> 0.

• If the ith discontinuity is a RS, then we let x
.
= δin(t) and observe that

ρn(t, x−) > ρn(t, x+), f
(
un(t, x−)

)
< f

(
un(t, x+)

)
, δ̇in(t) = Λ

(
un(t, x−), un(t, x+)

)
< 0,

vn(t, x−) < vn(t, x+), w±
.
= w

(
un(t, x−)

)
= w

(
un(t, x+)

)
≥ w−,

hence

∆E
k,i
n (t) =







ρn(t, x+)− ρn(t, x−)

p−1(w± − k)
if vn(t, x−) < vn(t, x+) < k,

ρn(t, x−)

p−1(w± − k)
− 1 if vn(t, x−) < k ≤ vn(t, x+),

0 if k ≤ vn(t, x−) < vn(t, x+),

−∆Q
k,i
n (t) =







f
(
un(t, x−)

)
− f

(
un(t, x+)

)

p−1(w± − k)
if vn(t, x−) < vn(t, x+) < k,

f
(
un(t, x−)

)

p−1(w± − k)
− k if vn(t, x−) < k ≤ vn(t, x+),

0 if k ≤ vn(t, x−) < vn(t, x+).

If k > vn(t, x+) or k ≤ vn(t, x−), then it is immediate to see that δ̇in(t)∆Ek,in (t)−∆Qk,in (t) = 0. Furthermore, if
vn(t, x−) < k ≤ vn(t, x+), then

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

= Λ
(
un(t, x−), un(t, x+)

)
[

ρn(t, x−)

p−1(w± − k)
− 1

]

+
f
(
un(t, x−)

)

p−1(w± − k)
− k

=

[
ρn(t, x−)

p−1(w± − k)
− 1

]

︸ ︷︷ ︸
>0

[

Λ
(
un(t, x−), un(t, x+)

)
+ Λ

(

un(t, x−),
(
p−1(w± − k), k

))
]

︸ ︷︷ ︸
<0

≥ − 2

ρ−
p−1(w±) p

′
(
p−1(w±)

) [
ρn(t, x−)− ρn(t, x+)

]

because ρn(t, x−) > p−1(w± − k) ≥ ρn(t, x+) ≥ ρ− and because by the concavity of Lw±(ρ) = (w± − p(ρ)) ρ we
have

0 > Λ
(
un(t, x−), un(t, x+)

)
> Λ

(

un(t, x−),
(
p−1(w± − k), k

))

> L
′
w±

(
ρn(t, x−)

)
= w± − p

(
ρn(t, x−)

)
− ρn(t, x−) p

′
(
ρn(t, x−)

)

≥ L
′
w±

(
p−1(w±)

)
= −p−1(w±) p

′
(
p−1(w±)

)
.

The above case by case study shows that

lim inf
n→∞

∫ T

0

∫

R

[

E
k(un)φt + Q

k(un)φx

]

dxdt

= lim inf
n→∞

∫ T

0

∑

i∈RSn(t)

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

φ
(
t, δin(t)

)
dt
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≥ − 2

ρ−
max

ρ∈[p−1(w−),R]

∣
∣ρ p′(ρ)

∣
∣ lim inf

n→∞

∫ T

0

∑

i∈RSn(t)

[

ρn
(
t, δin(t)−

)
− ρn

(
t, δin(t)+

)]

φ
(
t, δin(t)

)
dt

≥ − 2T

ρ−
‖φ‖L∞∞∞ Co

F max
ρ∈[ρ−,R]

∣
∣ρ p′(ρ)

∣
∣ .
= −M,

where δin(t) ∈ R, i ∈ RSn(t) ⊂ N, are the positions of the RSs of un(t, ·) and Co
F is defined in (18).

We claim that for any fixed h > 0, there exists a dense set Kh of values of k in [0, V ] such that

lim inf
n→∞

∫ T

0

∑

i∈RSn(t)

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

φ
(
t, δin(t)

)
dt ≥ − 1

h
.

To prove it we fix a, b ∈ [0, V ] with a < b and show that there exists k ∈ (a, b) such that the above estimate is
satisfied. Let l

.
= ⌈2(M h+ 1)/(b− a)⌉ and introduce the set

Kh
.
=

2N+ 1

l
∩ (a, b).

Let En > 0 be the maximal (v, w)-distance between two “consecutive” points in the grid Gn having the same
w-coordinate, namely, with a slight abuse of notations, we let

En .
= max

(vi,w), (vi+1,w)∈Gn

vi 6=vi+1

(vi+1 − vi).

Let nh ∈ N be sufficiently large so that Enh
< 2/l. Take n ≥ nh. We claim that for any i ∈ RSn(t) we have

Kh ∩
(

vn
(
t, δin(t)−

)
, vn

(
t, δin(t)+

))

has at most one element. Indeed, if Kh has more than one element then for any i ∈ RSn(t) we have

vn
(
t, δin(t)+

)
− vn

(
t, δin(t)−

)
≤ En <

2

l
= min

k1, k2∈Kh

k1 6=k2

|k1 − k2|.

As a consequence the sum
∑

k∈Kh

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

has at most one nonzero element; moreover

−m
(

ρn
(
t, δin(t)−

)
− ρn

(
t, δin(t)+

))

≤
∑

k∈Kh

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

,

where

m
.
=

2

ρ−
max

ρ∈[ρ−,R]

∣
∣ρ p′(ρ)

∣
∣ =

M

T Co
F ‖φ‖L∞∞∞

.

Therefore we find ∑

i∈RSn(t)

∑

k∈Kh

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

≥ −mCo
F .

By exchanging the sums, multiplying by the test function and integrating in time we get

∑

k∈Kh

∫ T

0

∑

i∈RSn(t)

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

φ
(
t, δin(t)

)
dt ≥ −M.

Moreover, by construction we have that Kh is a non-empty set with a finite number of elements (it has at most
hM elements), hence

hM max
k∈Kh





∫ T

0

∑

i∈RSn(t)

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

φ
(
t, δin(t)

)
dt



 ≥ −M.
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In conclusion we proved that there exists k ∈ Kh ⊆ (a, b) such that the above estimate is satisfied for any
n ≥ nh; therefore, since Kh has a finite number of elements, we have

lim inf
n→∞

∫ T

0

∑

i∈RSn(t)

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

φ
(
t, δin(t)

)
dt ≥ − 1

h
.

Since a and b are arbitrary, the above estimate holds true for a dense set of values of k in [0, V ].

Actually, the above estimate holds for any k in [0, V ] because the term in brackets in the above formula is
continuous with respect to k. Finally, for the arbitrariness of h, we have that

lim inf
n→∞

∫ T

0

∑

i∈RSn(t)

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

φ
(
t, δin(t)

)
dt ≥ 0

and this concludes the proof of (21).

(CS.4) We prove now that (5) holds for a.e. t > 0, namely

f
(
u(t, 0±)

)
≤ F for a.e. t > 0.

By construction f(un(t, 0±)) ≤ F for any t > 0, namely the approximate solutions satisfy (5). Since weak
convergence preserves pointwise inequalities, it is sufficient to prove that f(un(t, 0±)) weakly converges to
f(u(t, 0±)). If φ is a smooth test function of time with compact support in (0,∞) and ϕ is a smooth test
function of space with compact support and such that ϕ(0) = 1, then

∫ ∞

0

f
(
un(t, 0−)

)
φ(t) dt =

∫ ∞

0

∫ 0

−∞

[

ρn(t, x) φ̇(t)ϕ(x) + f
(
un(t, x)

)
φ(t) ϕ̇(x)

]

dxdt.

The right-hand side passes to the limit, yielding the analogous expression with un replaced by u. By using
again the Green-Gauss formula, one finally finds that

lim
n→∞

∫ ∞

0

f
(
un(t, 0−)

)
φ(t) dt =

∫ ∞

0

f
(
u(t, 0−)

)
φ(t) dt.

As a consequence f(un(t, 0−)) weakly converges to f(u(t, 0−)), hence f(u(t, 0−)) ≤ F for a.e. t > 0. At last,
since we already proved that u satisfies the first Rankine-Hugoniot condition, we have f(u(t, 0−)) = f(u(t, 0+)),
hence f(u(t, 0±)) ≤ F for a.e. t > 0.

4.4 The density flow through x = 0x = 0x = 0

Let u be the solution of constrained Cauchy problem (3), (4), (5) constructed in the previous section. By
Propositions 2.1 and 4.3 we have that non-classical shocks of u can occur only at the constraint location x = 0,
and in this case the (density) flow at x = 0 does not exceed the maximal flow F allowed by the constraint.

In the case of a constrained Riemann problem (3), (5), (15), we know that u coincides with (t, x) 7→
RF [uℓ, ur](x/t), moreover if (uℓ, ur) ∈ D2 then the flow of the non-classical shock of u coincides with F . In the
next proposition we show that also for a general constrained Cauchy problem the flow of the non-classical shocks
of u coincides with F if the traces at x = 0 of the approximate solutions (un)n satisfy a technical condition.

Proposition 4.4. Let uo ∈ L111 ∩ BV(R; Ω), F ∈ [0, f+
c ] satisfy (H.1) or (H.2) and u be a limit of the

approximate solutions (un)n constructed in Section 4.1. Assume that the traces at x = 0 of (un)n and u satisfy
(14), that is for any k ∈ [0, V ] and φ ∈ C∞

c ((0,∞)× R;R) such that φ ≥ 0

lim
n→∞

∫ T

0

N
k
F

(
un(t, 0−)

)
φ(t, 0) dt =

∫ T

0

N
k
F

(
u(t, 0−)

)
φ(t, 0) dt,

with

N
k
F (u)

.
=







f(u)

[

k

F
− 1

p−1
(
W(u)− k

)

]

+

if F 6= 0,

k if F = 0.

If at time t0 > 0 the limit u has a non-classical discontinuity, then f(u(t0, 0±)) = F .
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Proof. We first prove that for any k ∈ [0, V ] and φ ∈ C∞
c ((0,∞)× R;R) such that φ ≥ 0 we have

∫ ∞

0

[∫

R

[

E
k(u)φt + Q

k(u)φx

]

dx+ N
k
F

(
u(t, 0−)

)
φ(t, 0)

]

dt ≥ 0. (22)

Notice that (22) differs from (8) not only for an extra term involving NkF (u(t, 0+)), but also because here we do
not require that φ(·, 0) ≡ 0.

Choose T > 0 such that φ(t, x) = 0 whenever t ≥ T . By (14), the a.e. convergence of un to u and the
uniform continuity of Ek and Qk, it is sufficient to prove that

lim inf
n→∞

∫ T

0

[∫

R

[

E
k(un)φt + Q

k(un)φx

]

dx+ N
k
F

(
un(t, 0−)

)
φ(t, 0)

]

dt ≥ 0. (23)

As already observed in the proof of Proposition 4.3, by the Green-Gauss formula the double integral above can
be written as ∫ T

0

∑

i∈D(t)

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

φ
(
t, δin(t)

)
dt,

where

∆E
k,i
n (t)

.
= E

k
(

un

(
t, δin(t)+

))

− E
k
(

un

(
t, δin(t)−

))

, ∆Q
k,i
n (t)

.
= Q

k
(

un

(
t, δin(t)+

))

− Q
k
(

un

(
t, δin(t)−

))

.

To estimate the above integral we can proceed as in the proof of Proposition 4.3, with the exception that here
the ith discontinuity could also be a NS. In this case, that is, if the ith discontinuity is a NS, then

ρ

f

F

v+0 = V

v−0,F

v−0

k

ρ

f

F

v+0

k

v−0

v−0,F

ρ

f

F

v−0,F

v+0

v−0

v+0,F
k

Figure 9: Above F ∈ (f−
c , f+

c ), v±0
.
= vn(t, 0±) and v±0,F

.
= F/p−1(W(un(t, 0±))− k). With the first two pictures

we show that if v−0 < k < v+0 , then v−0,F < k. In the last picture we consider the case v−0 < v+0 < k and show

that v−0,F < v+0,F < k.

δin(t) = 0, f
(
un(t, 0±)

)
= F, v−F ≤ vn(t, 0−) < vn(t, 0+),

δ̇in(t) = 0, w
(
un(t, 0−)

)
= W

(
un(t, 0−)

)
≥ W

(
un(t, 0+)

)
,

hence

−∆Q
k,i
n (t) =







F

p−1
(

w
(
un(t, 0−)

)
− k

) − F

p−1
(

W
(
un(t, 0+)

)
− k

) if vn(t, 0−) < vn(t, 0+) < k,

F

p−1
(

w
(
un(t, 0−)

)
− k

) − k if vn(t, 0−) < k ≤ vn(t, 0+),

0 if k ≤ vn(t, 0−) < vn(t, 0+),

N
k
F

(
un(t, 0−)

)
=









k − F

p−1
(

W
(
un(t, 0−)

)
− k

)





+

if F 6= 0,

k if F = 0.
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v−0,F
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F
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v−0
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k

Figure 10: Above F ∈ (0, f−
c ), v±0

.
= vn(t, 0±) and v±0,F

.
= F/p−1(W(un(t, 0±))− k). With the first two pictures

we show that if v−0 < k < v+0 , then v−0,F < k. In the last picture we consider the case v−0 < v+0 < k and show

that v−0,F < v+0,F < k.

Notice that if F = 0, then un(t, 0+) = (0, V ) and un(t, 0−) ∈ [p−1(w−), R] × {0}. We observe, see Figures 9
and 10, that −∆Qk,in (t) < 0 and that −∆Qk,in (t) + NkF (un(t, 0−)) ≥ 0 and therefore

[

δ̇in(t)∆E
k,i
n (t)−∆Q

k,i
n (t)

]

φ
(
t, δin(t)

)
+ N

k
F

(
u(t, 0−)

)
φ(t, 0) =

[

−∆Q
k,i
n (t) + N

k
F

(
un(t, 0−)

)]

φ(t, 0) ≥ 0.

Thus, by proceeding as in the proof of Proposition 4.3 it is easy to see that (23) holds true. Let us just underline
that beside the NSs, the only possible stationary discontinuities at x = 0 are PTs and CDs, however in both of
these cases we have f(un(t, 0−)) = 0 and therefore NkF (un(t, 0−)) = 0.

We can now prove that if u has a non-classical discontinuity then f(u(t, 0±)) = F . This is of course obvious
if F = 0, due to (CS.4) and the fact that f(u) ≥ 0. We can therefore assume that F > 0 and that x 7→ u(t0, x)
has a (stationary) non-classical shock (uℓ, ur), with vℓ < vr and f(uℓ) = f(ur)

.
= f ≤ F . We want to prove

that f = F . Consider the test function

φ(t, x)
.
=

[
∫ ∞

|x|−ε

ϕε(z) dz

][
∫ t−t0+2ε

t−t0+ε

ϕε(z) dz

]

,

where ϕε is a smooth approximation of the Dirac mass centred at 0+, δ
D
0+ , namely

ϕε ∈ C∞
c (R;R+), ε > 0, supp(δε) ⊆ [0, ε], ‖ϕε‖L111(R;R) = 1, ϕε → δD0+ .

Observe that as ε goes to zero

φ(t0, x) ≡ 0 → 0,

φ(t, 0) =

∫ t−t0+2ε

t−t0+ε

ϕε(z) dz → δDt0−(t),

φt(t, x) =

[
∫ ∞

|x|−ε

ϕε(z) dz

][

ϕε(t− t0 + 2ε)− ϕε(t− t0 + ε)

]

→ 0,

χ
R±

(x)φx(t, x) → ∓ δD0±(x) δ
D
t0−

(t).

Then by (22) for all k belonging to the interval (v̂(wℓ, F ), v̌(vr, F )) we have

Q
k(uℓ)− Q

k(ur) + f

[

k

F
− 1

p−1
(
W(uℓ)− k

)

]

+

=

[

f

p−1
(
W(uℓ)− k

) − k

]

+ f

[

k

F
− 1

p−1
(
W(uℓ)− k

)

]

=

[
f

F
− 1

]

k ≥ 0.

Since f ≤ F , the above estimate implies that f = F and this concludes the proof.
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We underline that the entropy condition (8) “becomes” (22) if we do not require that the test function φ
satisfy the condition φ(·, 0) ≡ 0. Even if it is not necessary for the proof of Theorem 2.2, we conclude this
section by considering in (7) a test function φ which may not satisfy the condition φ(·, 0) ≡ 0.

Proposition 4.5. Let uo ∈ L111 ∩ BV(R; Ω), F ∈ [0, f+
c ] satisfy (H.1) or (H.2) and u be a limit of the

approximate solutions (un)n constructed in Section 4.1. If the traces at x = 0 of (un)n and u satisfy for any
φ ∈ C∞

c ((0,∞)× R;R)

lim
n→∞

∫ T

0

f
(
un(t, 0−)

)[

W
(
un(t, 0−)

)
− W

(
un(t, 0+)

)]

+
φ(t, 0) dt

=

∫ T

0

f
(
u(t, 0−)

) [

W
(
u(t, 0−)

)
− W

(
u(t, 0+)

)]

+
φ(t, 0) dt (24)

then u satisfies the following integral condition for any φ ∈ C∞
c ((0,∞)× R;R)

∫ ∞

0

[∫

R

[
ρ φt + f(u)φx

]
W(u) dx− f

(
u(t, 0−)

) [

W
(
u(t, 0−)

)
− W

(
u(t, 0+)

)]

+
φ(t, 0)

]

dt = 0.

Proof. Choose T > 0 such that φ(t, x) = 0 whenever t ≥ T . By (24), since un is uniformly bounded and f is
uniformly continuous on bounded sets, it is sufficient to prove that

∫ T

0

[∫

R

[ρn φt + f(un)φx] W(un) dx− f
(
un(t, 0−)

) [
W
(
un(t, 0−)

)
− W

(
un(t, 0+)

)]

+
φ(t, 0)

]

dt → 0. (25)

By the Green-Gauss formula the double integrals above can be written as

∫ T

0

∑

i∈D(t)

[
δ̇in(t)∆Y i

n(t)−∆Qi
n(t)

]
φ
(
t, δin(t)

)
dt,

where

∆Y i
n(t)

.
= ρn

(
t, δin(t)+

)
W

(

un

(
t, δin(t)+

))

− ρn
(
t, δin(t)−

)
W

(

un

(
t, δin(t)−

))

,

∆Qi
n(t)

.
= f

(

un

(
t, δin(t)+

))

W

(

un

(
t, δin(t)+

))

− f
(

un

(
t, δin(t)−

))

W

(

un

(
t, δin(t)−

))

.

If un(t, ·) does not have a non-classical shock at δin(t), then by the Rankine-Hugoniot conditions

δ̇in(t)∆Y i
n(t)−∆Qi

n(t) = 0;

moreover, if δin(t) = 0 and un(t, ·) has a stationary discontinuity at x = 0, namely a phase transition or a
contact discontinuity, then vn(t, 0+) = vn(t, 0) = 0 and therefore sign(vn(t, 0+)) = 0.
On the other hand, if δin(t) = 0 and un(t, ·) has a stationary non-classical shock at x = 0, then

δ̇in(t) = 0, f
(
un(t, 0±)

)
= F, W

(
un(t, 0−)

)
≥ W

(
un(t, 0+)

)
,

and therefore

δ̇in(t)∆Y i
n(t)−∆Qi

n(t) = −F
[

W
(
un(t, 0+)

)
− W

(
un(t, 0−)

)]

= f
(
un(t, 0−)

) [

W
(
un(t, 0−)

)
− W

(
un(t, 0+)

)]

+
.

As a consequence (25) is trivial.
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