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1. Introduction

Extremes and the impacts of rare events have been brought into public focus
in the context of climate change or financial crises. The temporal or spatial
concurrence of several such events has often shown to be most catastrophic.
Arising naturally as limits of rescaled componentwise maxima of random vectors,
max-stable distributions are frequently used to describe this joint behavior of
extremes. The generalization to continuous domains gives rise to max-stable
processes that have become popular models in spatial extreme value statistics
(e.g., Davison and Gholamrezaee, 2012), and are applied in various fields such as
meteorology (Buishand et al., 2008; Engelke et al., 2015; Einmahl et al., 2016)
and hydrology (Asadi et al., 2015).

For a k-dimensional max-stable random vector Z = (Z1, . . . , Zk) with unit
Fréchet margins, there exists an exponent function V describing the dependence
between the components of Z such that P[Z ≤ z] = exp{−V (z)}, z ∈ (0,∞)k.
Many parametric models {Fθ, θ ∈ Θ} for the distribution function of Z have
been proposed (cf. Schlather, 2002; Boldi and Davison, 2007; Kabluchko et al.,
2009; Opitz, 2013), but likelihood-based inference remains challenging. The main
reason is the lack of simple forms of the likelihood L(z; θ) in these models, which,
by Faá di Bruno’s formula, is given by

L(z; θ) =
∑

τ∈Pk

L(z, τ ; θ) =
∑

τ∈Pk

exp{−V (z)}
|τ |∏
j=1

{−∂τjV (z)}, (1)

where Pk is the set of all partitions τ = {τ1, . . . , τ|τ |} of {1, . . . , k} and ∂τjV (·; θ)
denotes the partial derivative of the exponent function V = Vθ of Fθ with respect
to the variables zi, i ∈ τj . The fact that the cardinality of Pk is the kth Bell
number that grows super-exponentially in the dimension k inhibits the use of
the maximum likelihood methods based on L(z; θ) in (1).

The most common way to avoid this problem is to maximize the composite
pairwise likelihood that relies only on the information in bivariate sub-vectors of
Z (Padoan et al., 2010). Apart from the fact that this likelihood is misspecified,
there might also be considerable losses in efficiency by using the composition
of bivariate likelihoods instead of the full likelihood L(z; θ). To reduce this ef-
ficiency loss, higher order composite likelihood has been considered (Genton
et al., 2011; Huser and Davison, 2013; Castruccio et al., 2016).

In practice, to obtain observations from the random variable Z, the data,
typically a multivariate time series, is split into disjoint blocks and a max-
stable distribution is fitted to the componentwise maxima within each block. To
increase the efficiency, not only the block maxima but additional information
from the time series can be exploited. The componentwise occurrence times of
the maxima within each block lead to a partition τ of {1, . . . , k} with indices
belonging to the same subset if and only if the maxima in this component
occurred at the same time. The knowledge of this partition makes inference
much easier, as a single summand L(z, τ ; θ) in the full likelihood L(z; θ) given
in (1) corresponds to the likelihood contribution of the specific partition τ . This
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joint likelihood L(z, τ ; θ) was introduced in Stephenson and Tawn (2005b) and
is tractable for many extreme value models and, consequently, can be used for
inference if occurrence times are available.

In real data applications, however, the distribution of the block maxima is
only approximated by a max-stable distribution and the distribution of the ob-
served partitions of occurrence times are only approximations to the limiting
distribution (as the block size tends to infinity) given by the likelihood L(z, τ ; θ).
This approximation introduces a significant bias in the Stephenson–Tawn esti-
mator and a bias correction has been proposed in Wadsworth (2015).

In many cases, only observations z(1), . . . , z(N) ∈ Rk of the random max-
stable vector Z are available, but there is no information about the correspond-
ing partitions τ (1), . . . , τ (N). In this case, the Stephenson–Tawn likelihood can-
not be used since the partition information is missing. In the context of con-
ditional simulation of max-stable processes, Dombry et al. (2013) proposed a
Gibbs sampler to obtain conditional samples of τ (l) given the observation z(l),
l = 1, . . . , N . Thibaud et al. (2016) use this approach to treat the missing parti-
tions as latent variables in a Bayesian framework to estimate the parameters of
a Brown–Resnick model (cf., Kabluchko et al., 2009) for extreme temperature.
They obtain samples from the posterior distribution

L
(
θ, {τ (l)}Nl=1 | {z(l)}Nl=1

)
∝ πθ(θ)

N∏
l=1

L(z(l), τ (l); θ), (2)

via a Markov chain Monte Carlo algorithm, where πθ is the prior distribution
on Θ.

In this paper we extend the Bayesian approach to general max-stable distri-
butions and provide various examples of parametric models Fθ where it can be
applied. The first focus is to study the statistical efficiency of the point estima-
tors obtained as the median of the posterior distribution (2). This frequentist
perspective allows to compare the efficiency of the Bayesian estimator that uses
the full likelihoods to other frequentist estimators. A simulation study shows
a substantial improvement of the estimation error when using full likelihoods
rather than the commonly used pairwise likelihood estimator of Padoan et al.
(2010).

From the Bayesian perspective, this approach opens up many new possibilities
for Bayesian techniques in multivariate extreme value statistics. Besides readily
available credible intervals, we discuss how Bayesian model comparison can be
implemented. Thanks to the full, well-specified likelihoods in our approach, no
adjustment of the posterior distribution as in the composite pairwise likelihood
methods (Ribatet et al., 2012) is required.

Finally, we note that Dombry et al. (2017b) follow a complementary approach
to ours where they apply an expectation-maximization algorithm to use full
likelihoods L(z; θ) in the frequentist framework. The large sample asymptotic
behavior of the frequentist and Bayesian estimators are the same (see section 3
below) but the Monte-Carlo Markov Chain computation of the Bayesian esti-
mator offers better convergence guarantees than the expectation-maximization



4816 C. Dombry et al.

computation of the maximum likelihood estimator. Moreover, alternatively to
the perspective of max-stability and block maxima, inference can be based
on threshold exceedances (Engelke et al., 2014; Wadsworth and Tawn, 2014;
Thibaud and Opitz, 2015) and the corresponding multivariate Pareto distribu-
tions (Rootzén and Tajvidi, 2006; Rootzén et al., 2017).

The paper is organized as follows. In Section 2 we provide some background
on max-stable distributions and their likelihoods, and we present the general
methodology for the Bayesian full-likelihood approach. Section 3 develops an
asymptotic theory for the resulting estimator. We show in Section 4 that our
method and the asymptotic theory are applicable for the popular models in
multivariate and spatial extremes, including the Brown–Resnick and extremal-t
processes. The simulation studies in Section 5 quantify the finite-sample effi-
ciency gains of the Bayesian approach when used as a frequentist point estima-
tor of the extremal dependence parameters. Interestingly, this advantage persists
when the dependence is a nuisance parameter and one is only interested in esti-
mating marginal parameters (Section 5.3), at least in the case of a well-specified
model. The posterior distribution and genuinely Bayesian techniques are studied
in Section 6, with a focus on Bayesian model comparison. Section 7 concludes
the paper with a discussion on computational aspects.

2. Methodology

In Section 2.1 we review some facts on max-stable distributions and their like-
lihoods. We describe the general setup of our approach and review the Markov
chain Monte Carlo algorithm from Thibaud et al. (2016) and the Gibbs sampler
from Dombry et al. (2013) in Section 2.2.

2.1. Max-stable distributions, partitions and joint likelihoods

Let us assume from now on that the max-stable vector Z belongs to a parametric
family {Fθ, θ ∈ Θ}, where Θ ⊂ Rp is the parameter space, and that it admits
a density fθ. The exponent function of Fθ is Vθ(z) = − logFθ(z). If there is no
confusion we might omit the dependence on θ for simplicity.

Recall that if Z has standard Fréchet margins, it can be represented as the
componentwise maximum

Zi = max
j∈N

ψ
(j)
i , i = 1, . . . , k, (3)

where {ψ(j) : j ∈ N} is a Poisson point process on E = [0,∞)k \ {0} with
intensity measure Λ such that Λ(E \ [0, z]) = V (z). For more details and an
exact simulation method of Z via this representation, we refer to Dombry et al.
(2016).

Analogously to the occurrence times in case of block maxima, the Poisson
point process induces a random limit partition T of the index set {1, . . . , k},
where two indices i1 �= i2 belong to the same subset if and only if Zi1 = ψ

(j)
i1
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and Zi2 = ψ
(j)
i2

for the same j ∈ N (Dombry and Éyi-Minko, 2013). The joint
likelihood of the max-stable vector Z and the limit partition T under the model
Fθ satisfies

L(z, τ ; θ) = exp{−V (z)}
|τ |∏
j=1

{−∂τjV (z)}, z ∈ (0,∞)k, τ ∈ Pk, (4)

and it equals the likelihood introduced in Stephenson and Tawn (2005b). This
fact provides another interpretation of Equation (1), namely that the likelihood
of Z is the integrated joint likelihood of Z and T .

In Dombry et al. (2017a) it has been shown that the existence of a density for
the simple max-stable random vector Z with exponent measure Λ is equivalent
to the existence of a density λI for the restrictions of Λ to the different faces
EI ⊂ E defined by

EI = {z ∈ E; zi > 0 for i ∈ I and zi = 0 for i /∈ I}, ∅ �= I ⊂ {1, . . . , k},

that is,

Λ(A) =
∑

∅�=I⊂{1,...,k}

∫
{zI : z∈A∩EI}

λI(zI)μI(dzI),

Thus, the Stephenson–Tawn likelihood L(z, τ ; θ) can be rewritten as

L(z, τ ; θ) = exp{−V (z)}
�∏

j=1

ω(τj , z), (5)

where

ω(τj , z) =
∑

τj⊂I⊂{1,...,k}

∫
(0,zτc

j
∩I)

λI(zτj , uj)duj , (6)

and τ1, . . . , τ� denote the 	 = |τ | different blocks of the partition τ , and zτj and
zτc

j
are the restrictions of z to τj and τ cj = {1, . . . , k} \ τj , respectively.
Equation (5) provides a formula for the joint likelihood of max-stable distri-

butions with unit Fréchet margins and its partition. From this we can deduce a
formula for the joint likelihood of a general max-stable distribution that admits
a density. More precisely, let Z̄ be a k-dimensional max-stable random vector
whose ith component, i = 1, . . . , k, has a generalized extreme value distribution
with parameters (μi, σi, ξi) ∈ R× (0,∞)× R, that is,

P(Z̄i ≤ zi) = exp

{
−
(
1 + ξi

zi − μi

σi

)−1/ξi

+

}
, zi ∈ R.

Then, Ui(Z̄i) has unit Fréchet distribution where Ui denotes the marginal trans-
formation

Ui(x) =

(
1 + ξi

x− μi

σi

)1/ξi

, 1 + ξi
x− μi

σi
> 0.
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For a vector zI = (zi)i∈I with I ⊂ {1, . . . , k}, we define U(zI) = (Ui(zi))i∈I ,
such that P(Z̄ ≤ z) = exp {−V [U(z)]}, where V is the exponent measure of the
normalized max-stable distribution U(Z̄). Consequently, the joint density of the
general max-stable vector Z̄ and the limit partition T is

L(z, τ ; θ) = exp {−V [U(z)]} ·

⎛
⎝ �∏

j=1

ω(τj , U(z))

⎞
⎠ ·

(
k∏

i=1

1

σi
Ui(zi)

1−ξi

)
, (7)

for z ∈ (0,∞)k such that 1 + ξi(zi − μi)/σi > 0, i = 1, . . . , k and τ =
{τ1, . . . , τ�} ∈ Pk.

2.2. Bayesian inference and Markov chain Monte Carlo

Extreme value statistics is concerned with the estimation and uncertainty quan-
tification of the parameter vector θ ∈ Θ. Here, θ might include both marginal
and dependence parameters of the max-stable model. In a Bayesian setup we
introduce a prior πθ(θ) on the parameter space Θ. Given independent data
z(1), . . . , z(N) ∈ Rk from the max-stable distribution Z ∼ Fθ, we are interested
in the posterior distribution of the parameter θ conditional on the data. As ex-
plained in Section 1, the complex structure of the full likelihood L({z(l)}; θ) =∏N

l=1 L(z
(l); θ) prevents a direct assessment of the posterior distribution, which

is proportional to the product of L({z(l)}; θ) and the prior density πθ(θ). In-
stead, we introduce the corresponding limit partitions T (1), . . . , T (N) as latent
variables and sample from the joint distribution of (θ, T (1), . . . , T (N)) conditional
on the data z(1), . . . , z(N), which is given in Equation (2).

It is customary to use Monte Carlo Markov Chain methods to sample from
a target distribution which is known up to a multiplicative constant only. The
aim is to construct a Markov chain which possesses the target distribution as
stationary distribution and has good mixing properties. To this end, in each step
of the Markov chain, the parameter vector θ and the partitions T (1), . . . , T (N) are
updated separately by the Metropolis–Hastings algorithm and a Gibbs sampler,
respectively (cf., Thibaud et al., 2016).

For fixed partitions T (l) = τ (l), l = 1, . . . , N , and the current state θ for the
parameter vector, we propose a new state θ∗ according to a probability density
q(θ, ·) which satisfies q(θ1, θ2) > 0 if and only if q(θ2, θ1) > 0 for θ1, θ2 ∈ Θ. The
proposal is accepted, that is, θ is updated to θ∗, with probability

a(θ, θ∗) = min

{∏N
l=1 L(z

(l), τ (l); θ∗)πθ(θ
∗)q(θ∗, θ)∏N

l=1 L(z
(l), τ (l); θ)πθ(θ)q(θ, θ∗)

, 1

}
(8)

where L(z, τ ; θ) is given by (7). In general, there are various ways of choosing an
appropriate proposal density q. For instance, it might be advisable to update the
vector θ component by component. It has to be ensured that any state θ2 with
positive posterior density can be reached from any other state θ1 with positive
posterior density in a finite number of steps, that is, that the Markov chain is
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irreducible. The convergence of the Markov chain to its stationary distribution
(2) is then guaranteed. Note that the framework described above enables esti-
mation of marginal and dependence parameters simultaneously. In particular,
it allows for response surface methodology such as (log-)linear models for the
marginal parameters.

For a fixed parameter vector θ ∈ Θ we use the Gibbs sampler in Dombry
et al. (2013) to update the current states of the partitions τ (1), . . . , τ (N) ∈ Pk

conditional on the data z(1), . . . , z(N). Thanks to independence, for each l =
1, . . . , N , we can update τ = τ (l) conditional on z = z(l) separately, where the
conditional distribution is

L(τ | z; θ) = L(z, τ ; θ)∑
τ ′∈Pk

L(z, τ ′; θ)
=

1

Cz

�∏
j=1

ω{τj , U(z)}, (9)

with Cz the normalization constant

Cz =
∑
τ∈Pk

�∏
j=1

ω{τj , U(z)}.

For i ∈ {1, . . . , k}, let τ−i be the restriction of τ to the set {1, . . . , k} \ {i}.
As usual with Gibbs samplers, our goal is to simulate from

Pθ (T = · | T−i = τ−i, Z = z) , (10)

where τ is the current state of the Markov chain and Pθ denotes the probability
under the assumption that Z follows the law Fθ. It is easy to see that the
number of possible updates according to (10) is always less than k, so that a
combinatorial explosion is avoided. Indeed, the index i can be reallocated to
any of the components of τ−i or to a new component with a single point: the
number of possible updates τ∗ ∈ Pk such that τ∗−i = τ−i equals 	 if {i} is a
partitioning set of τ , and 	+ 1 otherwise.

The distribution (10) has nice properties. From (9), we obtain that

Pθ(T = τ∗ | T−i = τ−i, Z = z) =
L(z, τ∗)∑

τ ′∈Pk

L(z, τ ′)1{τ ′
−i=τ−i}

∝
∏|τ∗|

j=1 w{τ∗j , U(z)}∏|τ |
j=1 w{τj , U(z)}

.

(11)
for all τ∗ ∈ Pk with τ∗−i = τ−i. Since τ and τ∗ share many components, all the
factors in the right-hand side of (11) cancel out except at most four of them.
This makes the Gibbs sampler particularly convenient.

We suggest a random scan implementation of the Gibbs sampler, mean-
ing that one iteration of the Gibbs sampler selects randomly an element i ∈
{1, . . . , k} and then updates the current state τ according to the proposal dis-
tribution (10). For the sake of simplicity, we use the uniform random scan, i.e.,
i is selected according to the uniform distribution on {1, . . . , k}.
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3. Asymptotic results

In the previous section, we presented a procedure that allows to sample from
the posterior distribution of the parameter θ of a parametric model {fθ, θ ∈ Θ}
given a sample of N observations. In this section, we will discuss the asymptotic
properties of the posterior distribution as the sample size N tends to ∞.

The asymptotic analysis of Bayes procedures usually relies on the Bernstein–
von Mises theorem which allows for an asymptotic normal approximation of the
posterior distribution of

√
N(θ− θ0), given the observations z(1), . . . , z(N) from

the parametric model fθ0 . The theorem then implies the asymptotic normality
and efficiency of Bayesian point estimators such as the posterior mean or pos-
terior median with the same asymptotic variance as the maximum likelihood
estimator.

A key assumption is that for every ε > 0 there exists a sequence of uniformly
consistent tests φN = φN (z(1), . . . , z(N)) ∈ {0, 1} for testing the hypothesis
H0 : θ = θ0 against H1 : ‖θ − θ0‖∞ ≥ ε, where H0 is rejected if and only if
φN = 0. The uniformity means that

Pθ0(φN = 1) → 0 and sup
‖θ−θ0‖∞≥ε

Pθ(φN = 0) → 0 as N → ∞. (12)

where Pθ denotes the probability measure induced by N independent copies of
Z ∼ fθ.

Theorem 1 (Bernstein-von Mises, Theorems 10.1 and 10.8 in van der Vaart
(1998)). Let the parametric model {fθ, θ ∈ Θ} be differentiable in quadratic
mean at θ0 with non-singular Fisher information matrix Iθ0 , and assume that
the mapping θ �→

√
fθ(z) is differentiable at θ0 for fθ0-almost every z. For

every ε > 0, suppose there exists a sequence of uniformly consistent tests φN

as in (12). Suppose further that the prior distribution πprior(dθ) is absolutely
continuous in a neighborhood of θ0 with a continuous positive density at θ0.
Then, under the distribution fθ0 , the posterior distribution satisfies∥∥∥πpost(dθ | z(1), . . . , z(N))

−N
(
θ0 +N−1/2ΔN,θ0 , N

−1I−1
θ0

)∥∥∥
TV

d−→ 0 as N → ∞,

where ΔN,θ0 = N−1/2
∑N

i=1 I
−1
θ0

∂θ log fθ0(z
(i)) and ‖ · ‖TV is the total variation

distance.
As a consequence, if the prior distribution πprior(dθ) has a finite mean, the

posterior median θ̂Bayes
n is asymptotically normal and efficient, that is, it satis-

fies √
N(θ̂Bayes

N − θ0)
d−→ N (0, I−1

θ0
), as N → ∞.

In order to apply this theorem to max-stable distributions, two main assump-
tions are required: the differentiability in quadratic mean of the statistical model
and the existence of uniformly consistent tests satisfying (12). Differentiability
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in quadratic mean is a technical condition that imposes a certain regularity on
the likelihood fθ0 . For the case of multivariate max-stable models this prop-
erty has been considered in detail in Dombry et al. (2017a), where equivalent
conditions on the exponent function and the spectral density are given.

We now discuss the existence of uniformly consistent tests and propose a
criterion based on pairwise extremal coefficients. This criterion turns out to be
simple and general enough since it applies for most of the standard models in
extreme value theory. Indeed, in many cases, pairwise extremal coefficients can
be explicitly computed and allow for identifying the parameter θ.

For a max-stable vector Z with unit Fréchet margins, the pairwise extremal
coefficient ηi1,i2 ∈ [1, 2] between margins 1 ≤ i1 < i2 ≤ k is defined by

P(Zi1 ≤ z, Zi2 ≤ z) = exp {−ηi1,i2/z} , z > 0.

It is the scale exponent of the unit Fréchet variable Zi1 ∨Zi2 and hence satisfies

ηi1,i2 =

(
E

[
1

Zi1 ∨ Zi2

])−1

.

In the case that Z follows the distribution fθ, we write ηi1,i2(θ) for the associated
pairwise extremal coefficient.

Proposition 1. Let θ0 ∈ Θ and ε > 0. Assume that

inf
‖θ−θ0‖∞≥ε

max
1≤i1<i2≤k

|ηi1,i2(θ)− ηi1,i2(θ0)| > 0. (13)

Then there exists a uniformly consistent sequence of tests φN satisfying (12).

Remark 1. The identifiability of the model parameters θ ∈ Θ through the
pairwise extremal coefficients ηi1,i2(θ), 1 ≤ i1 < i2 ≤ k is a direct consequence
of Equation (13).

Remark 2. If θ = (θ1, . . . , θp) ∈ Θ, and for any 1 ≤ j ≤ p there exists
1 ≤ i1 < i2 ≤ k, such that ηi1,i2(θ) depends only on θj and it is strictly monotone
with respect to this component, then Equation (13) is satisfied.

Proof of Proposition 1. For a random vector Z with distribution fθ and 1 ≤
i1 < i2 ≤ k, the random variable 1/(Zi1∨Zi2) follows an exponential distribution
with parameter ηi1,i2(θ) ∈ [1, 2] and variance η−2

i1,i2
(θ) ∈ [1/4, 1]. Hence,

T−1
i1,i2

=
1

N

N∑
i=1

1

Z
(i)
i1

∨ Z
(i)
i2

is an unbiased estimator of η−1
i1,i2

(θ) with variance less than or equal to 1/N .
Chebychev’s inequality entails

Pθ

(∣∣T−1
i1,i2

− η−1
i1,i2

(θ)
∣∣ > δ

)
≤ 1

Nδ2
, for all δ > 0. (14)
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Define the test φN by

φN =

{
0 if max1≤i1<i2≤k

∣∣T−1
i1,i2

− η−1
i1,i2

(θ0)
∣∣ ≤ δ,

1 otherwise.

We prove below that, for δ > 0 small enough, the sequence φN satisfies (12).
For θ = θ0, the union bound together with Eq. (14) yield

Pθ0(φB = 1) ≤
∑

1≤i1<i2≤k

Pθ0

(∣∣T−1
i1,i2

− η−1
i1,i2

(θ0)
∣∣ > δ

)
≤ k(k − 1)

2Nδ2
−→ 0,

as N → ∞. On the other hand, Eq. (13) implies that there is some γ > 0 such
that

max
1≤i1<i2≤k

∣∣η−1
i1,i2

(θ)− η−1
i1,i2

(θ0)
∣∣ ≥ γ, for all ‖θ − θ0‖∞ ≥ ε.

Let θ ∈ Θ be such that ‖θ − θ0‖∞ ≥ ε and consider 1 ≤ i1 < i2 ≤ k realizing
the maximum in the above equation. By the triangle inequality,∣∣T−1

i1,i2
− η−1

i1,i2
(θ)

∣∣ ≥ ∣∣η−1
i1,i2

(θ)− η−1
i1,i2

(θ0)
∣∣− ∣∣T−1

i1,i2
− η−1

i1,i2
(θ0)

∣∣
≥ γ −

∣∣T−1
i1,i2

− η−1
i1,i2

(θ0)
∣∣ ,

so that, on the event {φN = 0} ⊂
{∣∣T−1

i1,i2
− η−1

i1,i2
(θ0)

∣∣ ≤ δ
}
, we have

∣∣T−1
i1,i2

− η−1
i1,i2

(θ)
∣∣ ≥ γ − δ.

Applying Eq. (14) again, we deduce, for δ ∈ (0, γ),

Pθ(φN = 0) ≤ Pθ

(∣∣T−1
i1,i2

− η−1
i1,i2

(θ)
∣∣ ≥ γ − δ

)
≤ 1

N(γ − δ)2
.

Since the upper bound goes to 0 uniformly in θ with ‖θ−θ0‖∞ ≥ ε, as N → ∞,
this proves Eq. (12).

4. Examples

In the previous sections we discussed the practical implementation of a Markov
chain Monte Carlo algorithm to obtain samples from the posterior distribution
L
(
θ, {τ (l)}Nl=1 | {z(l)}Nl=1

)
and its asymptotic behavior as N → ∞. The only

model-specific quantity needed to run the algorithm are the weights ω(τj , z)
in (6). In this section, we provide explicit formulas for these weights for several
classes of popular max-stable models and prove that the models satisfy the
assumptions of the Bernstein–von Mises theorem; see Theorem 1. It follows
that the posterior median θ̂Bayes

N is asymptotically normal and efficient for these
models.

For the calculation of the weights ω(τj , z), we first note that all of the ex-
amples in this section admit densities as a simple consequence of Prop. 2.1
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in Dombry et al. (2017a). We further note that, for the models considered in
Subsections 4.1-4.4, we have λI ≡ 0 for all I � {1, . . . , k}, i.e.

Λ(A) =

∫
A

λ(z)μ(dz), A ⊂ [0,∞)k \ {0},

and, consequently, Equation (6) simplifies to

ω(τj , z) =

∫
(0,zτc

j
)

λ(zτj , uj)duj .

For the posterior median θ̂Bayes
n , in the sequel, we will always assume that the

prior distribution is absolutely continuous with strictly positive density in a
neighborhood of θ0, and that it has finite mean. Given the differentiability in
quadratic mean of the model, it suffices to verify condition (13) in Prop. 1.
This implies the existence of a uniformly consistent sequence of tests and, by
Remark 1, the identifiability of the model. Theorem 1 then ensures asymptotic
normality of the posterior median.

Analogously to the notation zI = (zi)i∈I for a vector z ∈ Rk and an index set
∅ �= I ⊂ {1, . . . , k}, we write AI,J = (Aij)i∈I,j∈J for a matrix A = (Aij)1≤i,j≤k

and index sets ∅ �= I, J ⊂ {1, . . . , k}. Proofs for the results presented in this
section can be found in Appendix A.

4.1. The logistic model

One of the simplest multivariate extreme value distributions is the logistic model
where

V (z) =
(
z
−1/θ
1 + · · ·+ z

−1/θ
k

)θ

, θ ∈ (0, 1). (15)

The logistic model is symmetric in its variables and interpolates between inde-
pendence as θ ↑ 1 and complete dependence as θ ↓ 0.

Proposition 2. Let τ = (τ1, . . . , τ�) ∈ Pk and z ∈ E. The weights ω(τj , z) in
(6) for the logistic model with exponent measure (15) are

ω(τj , z) = θ−|τj |+1Γ(|τj | − θ)

Γ(1− θ)

(
k∑

i=1

z
−1/θ
i

)θ−|τj | ∏
i∈τj

z
−1−1/θ
i . (16)

Remark 3. From (16), it can be seen that we can also write

L(τ, z) = exp(−V (z))

(
k∏

i=1

z
−1−1/θ
i

)(
k∑

i=1

z
−1/θ
i

)−k

θ−k
�∏

j=1

ω̃(τj , z)

with

ω̃(τj , z) = θ
Γ(|τj | − θ)

Γ(1− θ)

(
k∑

i=1

z
−1/θ
i

)θ

.

This suggests to use the simplified weights ω̃ for the Gibbs sampler.
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Proposition 3. For the logistic model with θ0 ∈ (0, 1), the posterior median

θ̂Bayes
N is asymptotically normal and efficient as N → ∞.

4.2. The Dirichlet model

The Dirichlet model (Coles and Tawn, 1991) is defined by its spectral density
h on the simplex Sk−1 = {w ∈ [0,∞)k : w1 + · · · + wk = 1}. For parameters
α1, . . . , αk > 0, it is given by

h(w) =
1

k

Γ(1 +
∑k

i=1 αi)

(
∑k

i=1 αiwi)k+1

k∏
i=1

αi

Γ(αi)

(
αiwi∑k

j=1 αjwj

)αi−1

, w ∈ Sk−1, (17)

and it has no mass on lower-dimensional faces of Sk−1 (Coles and Tawn, 1991).
Equivalently, the exponent function of the Dirichlet model is given by

V (z) = kE

[
max

i=1,...,k

Wi

zi

]
,

where W is a random vector with density h(w).

Proposition 4. Let τ = (τ1, . . . , τ�) ∈ Pk and z ∈ E. The weights ω(τj , z) in
(6) for the Dirichlet model with spectral density (17) are

ω(τj , z) =
∏
i∈τj

ααi
i zαi−1

i

Γ(αi)

∫ ∞

0

e
− 1

r

∑
i∈τj

αizi

⎛
⎝∏

i∈τc
j

Fαi(αizi/r)

⎞
⎠ r−2−

∑k
i=1 αidr,

(18)

where

Fα(x) =
1

Γ(α)

∫ x

0

tα−1e−tdt

is the distribution function of a Gamma variable with shape α > 0.

Proposition 5. Consider the Dirichlet model with θ0 = (α1, . . . , αk) ∈ Θ =

(0,∞)k. For k ≥ 3 and almost every θ0 ∈ Θ, the posterior median θ̂Bayes
N is

asymptotically normal and efficient as N → ∞.

Remark 4. We believe that the result for the posterior median holds true even
for every θ0 ∈ Θ. In the proof of Proposition 5, we need the partial derivatives
of (α1, α2) �→ η(α1, α2) to be negative, but this can only be concluded almost
everywhere.

4.3. The extremal-t model and the Schlather process

The extremal-t model (Nikoloulopoulos et al., 2009; Opitz, 2013) is given by an
exponent measure of the form

V (z) = cνE

[
max

i=1,...,k

max{0,Wi}ν
zi

]
, (19)



Bayesian inference for multivariate extremes 4825

where (W1, . . . ,Wk)
 is a standardized Gaussian vector with correlation matrix

Σ, cν =
√
π2−(ν−2)/2Γ{(ν + 1)/2}−1 and ν > 0.

Proposition 6 ((Thibaud and Opitz, 2015)). Let τ = (τ1, . . . , τ�) ∈ Pk and z ∈
E. The weights ω(τj , z) in (6) for the extremal-t model with exponent function
(19) are

ω(τj , z) = T|τj |+ν

(
z
1/ν
τc
j

− μ̃, Σ̃
)
· ν1−|τj | · π(1−|τj |)/2 · det(Στj ,τj )

−1/2

· Γ{(ν + |τj |)/2}
Γ{(ν + 1)/2} ·

∏
i∈τj

|zi|1/ν−1 ·
{(

z1/ντj

)
Σ−1

τj ,τjz
1/ν
τj

}−(ν+|τj |)/2

(20)

where μ̃ = Στc
j ,τj

Σ−1
τj z

1/ν
τj ,

Σ̃ = (|τj |+ ν)−1
(
z
1/ν
τj

)
Σ−1

τj zτj

(
Στc

j
− Στc

j ,τj
Σ−1

τj ,τjΣτj ,τc
j

)
and Tk(·; Σ) denotes a multivariate Student distribution function with k degrees
of freedom and scale matrix Σ.

Proposition 7. Consider the extremal-t model with θ0 = (Σ, ν) where Σ is a
positive definite correlation matrix and ν > 0. Then, for fixed ν > 0 the posterior
median θ̂Bayes

N is asymptotically normal and efficient as N → ∞.

Remark 5. If ν is not fixed, then the parameter θ = (Σ, ν) cannot be identified
from the pairwise extremal coefficients and Equation (13) is not satisfied. The
identifiability can still be shown by considering the behavior of the bivariate
angular measure at the origin (Engelke and Ivanovs, 2017, Section A.3.3).

A popular model in spatial extremes is the extremal-t process (Opitz, 2013),
a max-stable process {Z(x), x ∈ Rd} whose finite-dimensional distributions
(Z(x1), . . . , Z(xk))

, x1, . . . , xk ∈ Rd have an exponent function of the form (19)
where the Gaussian vector is replaced by a standardized stationary Gaussian
process {W (x), x ∈ Rd} evaluated at x1, . . . , xk. The correlation matrix Σ then
has the form

Σ = {ρ(xi − xj)}1≤i,j≤k,

where ρ : Rd → [−1, 1] is the correlation function of the Gaussian process W .
The special case ν = 1 corresponds to the extremal Gaussian process (Schlather,
2002), also called Schlather process.

Corollary 1. Let Z be the Schlather process on Rd with correlation function ρ
coming from the parametric family

ρ(h) = exp(−‖h‖α2 /s), (s, α) ∈ Θ = (0,∞)× (0, 2].

Suppose that Z is observed at pairwise distinct locations t1, . . . , tk ∈ Rd such that
not all pairs of locations have the same Euclidean distance. Then, the posterior
median of θ = (s, α) is asymptotically normal.
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4.4. The Hüsler-Reiss model and the Brown–Resnick model

The Hüsler–Reiss distribution (cf., Hüsler and Reiss, 1989; Kabluchko et al.,
2009) can be characterized by its exponent function

V (z) = E

[
max

i=1,...,k

exp {Wi − Σii/2}
zi

]
, (21)

where W = (W1, . . . ,Wk)
 is a Gaussian vector with expectation 0 and covari-

ance matrix Σ. It can be shown that the exponent function can be parameterized
by the matrix

Λ = {λ2
i,j}1≤i,j≤k =

{
1

4
E(Wi −Wj)

2

}
1≤i,j≤k

as we have the equality

V (z) =

k∑
p=1

z−1
p Φk−1

(
2λ2

p,−p + log(z−p/zp); Σ
(p)

)
, z ∈ (0,∞)k, (22)

(cf. Nikoloulopoulos et al., 2009), where for p = 1, . . . , k, the matrix Σ(p) has
(i, j)th entry 2(λ2

p,i + λ2
p,j −λ2

i,j), i, j �= p and Φk−1(·,Σ(p)) denotes the (k− 1)-

dimensional normal distribution function with covariance matrix Σ(p).
Note that the positive definiteness of the matrices Σ(p), p = 1, . . . , k, follows

from the fact that Λ is conditionally negative definite, i.e.∑
1≤i,j≤k

aiajλ
2
i,j ≤ 0 (23)

for all a1, . . . , ak ∈ R summing up to 0 (cf. Berg et al., 1984, Lem. 3.2.1). In the
following, we will assume that Λ is even strictly positive definite, i.e. equality

in (23) holds true if and only if a1 = . . . = ak = 0. Then, all the matrices Σ
(p)
I,I

with p ∈ {1, . . . , k} and ∅ �= I ⊂ {1, . . . , k} are strictly positive definite.

Proposition 8 ((Wadsworth and Tawn, 2014), (Asadi et al., 2015) ). Let τ =
(τ1, . . . , τ�) ∈ Pk and z ∈ E. For j ∈ {1, . . . , k}, choose any p ∈ τj and let
τ̃ = τj \ {p}, τ̃ c = {1, . . . , k} \ τj . The weights ω(τj , z) in (6) for the Hüsler–
Reiss distribution with exponent function (22) are

ω(τj , z) =
1

z2p
∏

i∈τ̃ zi
ϕ|τ̃ |

{
z∗τ̃ ; Σ

(p)
τ̃ ,τ̃

}
Φ|τ̃c|

{
z∗τ̃c − Σ

(p)
τ̃c,τ̃ (Σ

(p)
τ̃ ,τ̃ )

−1z∗τ̃ ; Σ̂
(p)

}
, (24)

where

z∗ =

{
log

(
zi
zp

)
+

Γ(xi, xp)

2

}
i=1,...,k

and Σ̂(p) = Σ
(p)
τ̃c,τ̃c − Σ

(p)
τ̃c,τ̃ (Σ

(p)
τ̃ ,τ̃ )

−1Σ
(p)
τ̃ ,τ̃c .

Here Φk(·; Σ) denotes a k-dimensional Gaussian distribution function with mean
0 and covariance matrix Σ, and ϕk(·; Σ) its density. The functions Φ0 and ϕ0

are set to be constant 1.
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Proposition 9. Consider the Hüsler–Reiss model with θ0 = Λ being a strictly
conditionally negative definite matrix. Then, the posterior median θ̂Bayes

N is
asymptotically normal and efficient as N → ∞.

Hüsler–Reiss distributions are the finite dimensional distributions of the max-
stable Brown–Resnick process, a popular class in spatial extreme value statistics.
Here, the Gaussian vectors (W1, . . . ,Wk)

 in (21) are the finite-dimensional
distributions of a centered Gaussian process {W (x), x ∈ Rd} which is pa-
rameterized via a conditionally negative definite variogram γ : Rd × Rd →
[0,∞), γ(x1, x2) = E(W (x1) − W (x2))

2. If W has stationary increments, we
have that γ(x1, x2) = γ(x1 − x2, 0) =: γ(x1 − x2) and the resulting Brown–
Resnick process is stationary (Brown and Resnick, 1977; Kabluchko et al., 2009).
The most common parametric class of variograms belonging to Gaussian pro-
cesses with stationary increments is the class of fractional variograms, which we
consider in the following corollary.

Corollary 2. Consider a Brown–Resnick process on Rd with variogram coming
from the parametric family

γ(h) = ‖h‖α2 /s, (s, α) ∈ Θ = (0,∞)× (0, 2).

Suppose that the process is observed on a finite set of locations t1, . . . , tm ∈ Rd

such that the pairwise Euclidean distances are not all equal. Then the posterior
median of θ = (s, α) is asymptotically normal.

5. Simulation study

Let z(l) = (z
(l)
1 , . . . , z

(l)
k ), l = 1, . . . , N , be N realizations of a k-dimensional

max-stable vector Z whose distribution belongs to some parametric family
{Fθ, θ ∈ Θ}. As described in Section 2, including the partition τ (l) associated
to a realization z(l) in a Bayesian framework allows to obtain samples from the
posterior distribution L(θ | z(1), . . . , z(N)) of θ given the data. This procedure
uses the full dependence information of the multivariate distribution Z. This is
in contrast to frequentist maximum likelihood estimation for the max-stable vec-
tor Z, where even in moderate dimensions the likelihoods are too complicated
for practical applications. Instead, at the price of likelihood misspecification,
it is common practice to use only pairwise likelihoods which are assumed to
be mutually independent. The maximum pairwise likelihood estimator (Padoan
et al., 2010) is then

θ̂PL = argmax
θ∈Θ

N∑
l=1

∑
1≤i<j≤k

log fθ;i,j(z
(l)
i , z

(l)
j ), (25)

where fθ;i,j denotes the joint density of the ith and jth component of Z under
the model Fθ. Using only bivariate information on the dependence results in
efficiency losses.
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In this section, we analyze the performance of our proposed Bayesian estima-
tor and compare it to θ̂PL and other existing methods. Since the latter are all
frequentist approaches, for a Markov chain whose stationary distribution is the
posterior, we obtain a point estimator θ̂Bayes of θ as the posterior median, i.e.,

θ̂Bayes = median
{
L(θ|z(1), . . . , z(N))

}
.

As the parametric model we choose the logistic distribution introduced in Sub-
section 4.1 with parameter space Θ = (0, 1) and uniform prior. This choice
covers a range of situations from strong to very weak dependence. Other choices
of parametric models will result in different efficiency gains but the general
observations in the next sections should remain the same.

We note that other functionals of the posterior distribution can be used to
obtain point estimators. Simulations based on the posterior mean, for instance,
gave very similar results, and we therefore restrict to the posterior median in
the sequel. Similarly, changing the prior distributions does not have a strong
effect on the posterior distribution for the sample sizes we consider; see also
Section 6.1.

5.1. Max-stable data

We first take the marginal parameters to be fixed and known and quantify
the efficiency gains of θ̂Bayes compared to θ̂PL. We simulate N = 100 sam-
ples z(1), . . . , z(N) from the logistic distribution for different dimensions k ∈
{6, 10, 50} and different dependence parameters θ = 0.1 × i, i = 1, . . . , 9. For
each combination of dimension k and parameter θ we then run a Markov chain
with length 1500, where we discard the first 500 steps as the burn-in time.
The empirical median of the remaining 1000 elements gives θ̂Bayes. The chain
is sufficiently long to reliably estimate the posterior median; see also the mix-
ing properties in Section 6.1. The maximum pairwise likelihood estimator θ̂PL

is obtained according to (25). The whole procedure is repeated 1500 times to
compute the corresponding root mean squared errors and biases shown in Fig-
ure 1.

As expected, the use of full dependence information substantially decreases
the root mean squared errors and thus increases the efficiency of the estimates.
In extreme value statistics, where typically only small data sets are available,
this allows to reduce uncertainty due to parameter estimation. The advantage
of this additional information becomes stronger for both higher dimensions and
weaker dependence, analogously to the observations in Huser et al. (2015). This
behavior can to some extent be understood by the results in Shi (1995) on
the Fisher information of the logistic distribution for different dimensions and
dependence parameters. When θ ↓ 0, pairwise likelihood performs just as well
as full likelihood, which is sensible since, up to a multiplicative constant, the
pairwise likelihood equals the full likelihood when θ = 0.

It is interesting to note that the estimates θ̂Bayes appear to be unbiased in
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Fig 1. Root mean squared errors (dashed) and biases (solid) of θ̂Bayes (blue) and θ̂PL (red)
for different dimensions k and different parameters θ. Values have been multiplied by 10000.

almost all cases, whereas the pairwise estimator has a finite sample bias for θ
close to 1.

5.2. Data in the max-domain of attraction

In applications, the max-stable distribution Z might not be observed exactly
but only as an approximation by componentwise block maxima of data vectors
X(1), . . . , X(b) in its max-domain of attraction with standard Fréchet margins,
where b ∈ N is the block size. Indeed, the random vector

Z̃ =
1

b

(
max

l=1,...,b
X

(l)
1 , . . . , max

l=1,...,b
X

(l)
k

)
,

approximates the distribution of Z, where the approximation improves for in-
creasing b. In this situation we can associate to Z̃ the partition of occurrence
times of the maxima, say τ̃ . Stephenson and Tawn (2005b) proposed to use this
information on the partition to simplify the likelihood of the max-stable dis-
tribution. For N observations z̃(1), . . . , z̃(N) of Z̃ with partitions τ̃ (1), . . . , τ̃ (N)

they defined the estimator

θ̂ST = argmax
θ∈Θ

N∑
l=1

logL(z̃(l), τ̃ (l); θ).

This estimator suffers from two kinds of misspecification biases. Firstly, the z̃(l)

are only approximately Z distributed and, secondly, the partitions τ̃ (l) are only
finite sample approximations to the true distribution of the limit partition T . For
the latter, Wadsworth (2015) proposed a bias reduction method for moderate
dimensions and showed in a simulation study that it significantly decreases the
bias of the Stephenson–Tawn estimator in the case where the X(k) and thus
also Z̃ follow exactly a max-stable logistic distribution. However, if the X(k) are
samples from the outer power Clayton copula (cf. Hofert and Mächler, 2011)
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θ0 = 0.1 θ0 = 0.4 θ0 = 0.7 θ0 = 0.9
k 6 10 6 10 6 10 6 10
RMSE(θBayes) 36 29 144 111 241 191 262 220
RMSE(θPL) 40 32 159 127 279 235 311 286
RMSE(θST) 38 29 148 126 352 401 647 840
RMSE(θW) 38 29 134 108 230 228 313 434

Bias(θBayes) -9 -10 -44 -35 -57 -70 -96 -114
Bias(θPL) -10 -10 -47 -32 -44 -42 -46 -42
Bias(θST) -12 -11 -90 -88 -315 -385 -634 -835
Bias(θW) -11 -11 -61 -58 -158 -194 -277 -422

Table 1

Root mean squared errors (top four rows) and biases (bottom four rows) of θ̂Bayes, θ̂PL, θ̂ST
and θ̂W, estimated from 1500 estimates; figures have been multiplied by 10000.

and thus only in the max-domain of attraction of the logistic distribution, then
even the bias reduced estimator suffers from significant bias (cf., Wadsworth,
2015, Table 3).

We repeat the simulation study from Section 5.1 with the only difference
that, instead of sampling from Z, we simulate N = 100 samples z̃(1), . . . , z̃(N)

of Z̃, which is the rescaled maximum of b = 50 samples from the outer power
Clayton copula for different parameters. Based on these data in the max-domain
of attraction of the logistic distribution we estimate the dependence parameter
θ using our Bayes estimator and compare it to the pairwise likelihood esti-
mator. Both approaches ignore the additional information on the partitions
τ̃ (l) that we have in this setup. On the other hand, we can also compute the
Stephenson–Tawn estimator and its bias reduced version by Wadsworth (2015),
which explicitly include the partition information.

Table 1 shows the root mean squared errors and biases of the four estima-
tors. For all of them the bias plays a significant role for the overall estimation
error and that is due to the model misspecification for only approximately max-
stable data. This bias is however much stronger for θ̂ST and θ̂W, which use the
again misspecified partitions. In this case, the Bayes estimator that treats the
partitions as unknown and samples from them automatically seems to be more
robust and does not need a bias correction. At the same time it has a small
variance and thus in many cases the smallest root mean squared error. Espe-
cially in higher dimensions (≥ 20) where the bias reduction of Wadsworth (2015)
can no longer be used, the Bayes estimator still provides a robust and efficient
method of inference. As one would expect, the pairwise likelihood estimator has
the smallest bias since it is less sensitive to model misspecification, but it still
a higher root mean squared error due to its higher variance.

5.3. Estimation of marginal extreme value parameters

In spatial settings, the marginal extreme value parameters are often estimated by
using the independence likelihood (Chandler and Bate, 2007), where all locations
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θ0 = 0.1 θ0 = 0.4 θ0 = 0.7 θ0 = 0.9

ξ = −0.2 μ σ ξ μ σ ξ μ σ ξ μ σ ξ

Bayes full 105 75 22 97 58 21 71 37 20 51 28 19

Pairwise 106 73 31 98 57 28 72 39 24 52 30 21

Independence 111 75 67 101 58 52 73 39 35 52 30 24

ξ = 0.4 μ σ ξ μ σ ξ μ σ ξ μ σ ξ

Bayes full 102 99 41 96 89 39 71 65 34 51 45 32

Pairwise 106 98 57 97 89 54 71 67 45 51 47 38

Independence 112 100 96 100 89 79 72 67 56 51 48 42

ξ = 1 μ σ ξ μ σ ξ μ σ ξ μ σ ξ

Bayes full 109 155 85 100 144 76 77 111 59 53 75 46

Pairwise 106 146 94 96 135 90 74 108 72 52 75 53

Independence 110 146 127 98 135 107 74 109 81 52 76 57

Table 2

Root mean squared errors of (μ, σ, ξ) estimates with different values of ξ for the Bayesian
approach, pairwise likelihoods and independence likelihoods, respectively, where θ is an

unknown nuisance parameter; figures have been multiplied by 1000.

are assumed independent. This avoids to specify a dependence structure but can
result in efficiency losses, even if only the marginal parameters are of interest.

We perform a simulation study to assess how using the full likelihoods in
a Bayesian framework improves estimation of the marginal parameters. We fix
the dimension k = 10 and set the marginal parameters to μ = 1, σ = 1 and
ξ ∈ {−0.2, 0.4, 1}, equal for all k margins. The dependence is logistic with
unknown nuisance parameter θ0 ∈ {0.1, 0.4, 0.7, 0.9}.

Based on N = 100 independent samples from this model, we compare three
different estimation procedures. The first one is our Bayesian approach using
the full joint likelihood of the marginal parameters and the dependence param-
eter. We use a uniform prior for θ, and independent normal priors for μ, log σ
and ξ with large standard deviations. For the univariate case, more sophis-
ticated choices for the prior distributions are possible, including dependencies
between the three extreme value parameters (e.g., Stephenson and Tawn, 2005a;
Northrop and Attalides, 2016).

The second procedure is the maximum pairwise likelihood estimator that
only uses bivariate dependence, and the third is the maximum independence
likelihood estimator that completely ignores dependence between different com-
ponents. Each simulation and estimation is repeated 1500 times.

Table 2 contains the root mean squared errors of the marginal parameters
for the three approaches. Interestingly, for the location and scale parameter we
see only little difference between the three methods, meaning that they can be
efficiently estimated without taking into account dependencies. For the shape
parameter, however, there are substantial improvements in the estimation error
by including the unknown dependence structure in the model and estimating it
simultaneously. Since estimation of the shape is both the most difficult and the
most important of the three extreme value parameters, the Bayesian approach
is promising also for marginal tail estimation. Finally, we observe that there is
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already an efficiency gain for the shape parameter when only the pairwise de-
pendence is considered, but it is even more remarkable in the Bayesian setting
with full likelihoods. Table 2 also shows that these observations hold across dif-
ferent ranges for the shape parameter ξ. It should be noted that we considered
the case of a well-specified model, where the class of dependence structures is
known. An additional model uncertainty might render the independence likeli-
hood more favorable.

6. Applications in a Bayesian framework

In the previous sections we discussed the efficiency gains of the Bayesian full
likelihood approach in the frequentist framework of point estimates. The Markov
chain from Section 2.2 however produces not only a point estimate but an esti-
mate of the entire posterior distribution. For instance, this can directly be used
to produce credible intervals for the parameter of interest. As a further applica-
tion of our approach in the Bayesian framework, we will present Bayesian model
comparison in this section.

6.1. The posterior distribution and credible intervals

As an illustration of the methodology we simulate a sample of N = 15 data

z(l) = (z
(l)
1 , . . . , z

(l)
k ), l = 1, . . . , N , from a k-dimensional max-stable vector Z

whose distribution belongs to the parametric family of logistic distributions
introduced in Subsection 4.1 with parameter space Θ = (0, 1). We run the
Markov chain from Subsection 2.2. The left panel of Figure 2 shows the Markov
chain for the parameter θ with simulated data from the logistic distribution
in dimension k = 10 with θ0 = 0.8. The prior distribution is uniform, that is,
πθ = Unif(0, 1). The chain seems to have converged to its stationary distribution,
namely the posterior distribution

L
(
θ | {z(l)}Nl=1

)
∝ πθ(θ)

N∏
l=1

L(z(l); θ), (26)

after a burn-in period of about 200 steps. The auto correlation of the Markov
chain in Figure 3 suggests that there is serial dependence up to a lag of 30
steps. The parallel chain that updates the partitions is difficult to plot. The
right panel of Figure 2 therefore shows in each step as a summary the mean
number m of sets in the partitions τ (1), . . . , τ (N), that is, m = 1/N

∑N
l=1 |τ (l)|.

For complete independence (θ0 = 1) we must have m = k = 10, whereas for
complete dependence (θ0 = 0) we have m = 1.

The left panel of Figure 4 shows a histogram and an approximated smooth
version of the posterior distribution, together with the uniform prior. In order to
assess the impact of the prior distribution on the posterior, the two other panels
contain the corresponding plots for the same data set but for different priors,
namely the beta distributions πθ = Beta(0.5, 0.5) (center) and πθ = Beta(4, 4)
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Fig 2. Markov chains for θ (left) and the mean partition size (right) with uniform prior.

Fig 3. Auto correlation function of the Markov chain for the parameter θ.

Fig 4. Histogram and smooth approximation of the posterior distribution (dotted red) for
different priors (solid blue): Unif(0, 1) (left), Beta(0.5, 0.5) (center) and Beta(4, 4) (right).

(right). Even for a relatively small amount of N = 15 data points, the influence
of the prior is not very strong.

The Bayesian setup provides us with a whole distribution for the parame-
ter instead of a point estimate only. From this we can readily deduce credible
intervals for the parameter θ. This is an advantage compared to frequentist com-
posite likelihood methods since the Fisher information matrix has a “sandwich”
form adjusting for the misspecified likelihood, and confidence intervals are thus
not easily computed (Padoan et al., 2010). When using composite likelihoods in
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θ0 = 0.1 θ0 = 0.4 θ0 = 0.7 θ0 = 0.9
k 6 10 50 6 10 50 6 10 50 6 10 50
Coverage (in %) 94 93 90 95 94 94 94 94 94 94 94 90

Table 3

Empirical coverage rates of 95% credible intervals obtained from the posterior distributions
using full likelihood.

a Bayesian setup, the posterior distributions are much too concentrated and the
empirical coverage rates are very small. Adjustments are necessary to obtain
appropriate inference (Ribatet et al., 2012). Since our approach uses the full,
correct likelihood, no adjustment is needed to obtain accurate empirical cover-
age rates. Indeed, in Table 3 we provide the coverage rates of the 95% credible
intervals obtained in the simulation study in Section 5.1 for some values of θ0.

6.2. Bayesian model comparison

Starting from data z from a family of max-stable distributions {Fθ, θ ∈ Θ},
we consider two sub-models M1 : θ ∈ Θ1 and M2 : θ ∈ Θ2 for disjoint sets
Θ1,Θ2 ⊂ Θ. In Bayesian statistics, comparison of such models is often based on
the Bayes factor B1,2, which translates the prior odds into the posterior odds
(e.g., Kass and Raftery, 1995), that is,

πposterior(Θ1)

πposterior(Θ2)
= B1,2 ×

πprior(Θ1)

πprior(Θ2)
. (27)

The Bayes factor can also be written as B1,2 = L(z | M1)/L(z | M2), where

L(z | Mi) =

∫
Θ

L(z; θ)π(θ | Mi)dθ, i = 1, 2, (28)

are the so-called marginal probabilities of the data and π(· | Mi) is the prior
density of the parameter θ under the model Mi. Since the max-stable likelihood
cannot be computed, the integral in (28) is computationally infeasible. However,
we can use the estimation of the posterior probability (26) discussed in the
previous subsection and estimate

B1,2 =
πθ(Θ2)

πθ(Θ1)
×

∫
Θ1

L(θ | {z(l)}Nl=1)dθ∫
Θ2

L(θ | {z(l)}Nl=1)dθ
. (29)

As an example, we consider a simple regression model

ξi = α+ iβ, i = 1, . . . , k, (30)

for the marginal shape parameters ξ1, . . . , ξk of the k-dimensional max-stable
distribution in dimension k. One might be interested in testing if there is a linear
trend in the shape parameters, and, thus, in comparing the models M1 : {β = 0}
and M2 : {β �= 0}. In order to compute the Bayes factor as the ratio of the
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Fig 5. Bayes factors for different value of β for full likelihood (blue) and independence like-
lihood (red).

posterior probabilities of the two models according to (29), the prior distribution
πβ of β must be a mixture p0,π × δ{0} + (1 − p0,π) × πc

β of a Dirac point mass
δ{0} on 0 and an appropriate continuous distribution πc

β on R with mixture
weight p0,π ∈ (0, 1). This ensures that we have a positive posterior probability
on both sets {β = 0} and {β �= 0} and the Bayes factor is well-defined. Here, it
is important to note that the choice of the mixture weight p0,π does not have
an effect on the Bayes factor B1,2 as Equations (27)–(29) show.

Similarly as in Section 5.3, we simulate N = 15 data from a max-stable
logistic distribution with dimension k = 10 and dependence parameter θ0 = 0.5,
with marginal parameters μi = 1, σi = 1 and ξi as in (30) with α = 1 and
different values for β, i = 1, . . . , k. The prior distributions for the dependence,
location and scale parameters are chosen as in Section 5.3. The prior for α is
standard normal and for the prior for β is a mixture of 0.5× δ{0}+0.5×πc

β of a
point mass and a centered normal with standard deviation 0.5 as the continuous
component πc

β .
A Markov chain whose stationary distribution is the posterior distribution of

the parameters given the data can be constructed analogously to Section 2.2.
However, given the current state β of the Markov chain, the proposal β∗ is not
drawn from a continuous distribution with density q, but from a mixture

p0(β)δ{0}(·) + (1− p0(β))q
c(β, ·)

of a Dirac point mass on {0} and a continuous distribution with density qc(β, ·),
with mixture weight p0(β) ∈ (0, 1). To ensure convergence of the Markov Chain,
the densities qc(β, ·) should be chosen such that qc(β, β∗) > 0 if and only if
qc(β∗, β) > 0.

Figure 5 shows the Bayes factors B1,2 that compare the model without trend
M1 : {β = 0} and the model with trend M2 : {β �= 0} for the simulated data
described above. The true trend varies from β = 0, in which case M1 would be
correct, over positive values up to β = 0.08 where M2 is the correct model. As
comparison, we implemented a Bayesian approach based on the independence
likelihood (Chandler and Bate, 2007), which is the product of the marginal den-
sities and ignores the dependence structure. The results show that using the full
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likelihood that takes the dependence into account and treats it as a nuisance pa-
rameter significantly facilitates the distinction between the two different models.
The Bayes factors for the full likelihood show stronger support for M1 if β = 0,
and decrease more rapidly to 0 if β > 0 than the Bayes factors for independence
likelihood.

Finally, we note that a similar approach has been proposed in the univariate
setting for estimation of the shape parameter in Stephenson and Tawn (2005a)
in order to allow the Gumbel case ξ = 0 with positive probability.

7. Discussion

We present an approach that allows for inference of max-stable distributions
based on full likelihoods by perceiving the underlying random partition of the
data as latent variables in a Bayesian framework. The formulas for ω(τj , z)
provided in Section 4 allow in principle to perform Bayesian inference based
on full likelihoods for many popular max-stable distributions in any dimension.
However, computational challenges arise for both the extremal-t and the Brown–
Resnick model in higher dimensions since the corresponding ω(τj , z) require the
evaluation of a multivariate Student and Gaussian distribution functions, re-
spectively, which have to be approximated numerically; see also Thibaud et al.
(2016). The recent work de Fondeville and Davison (2017) on efficient compu-
tation of Gaussian distribution functions allows for even higher dimensions.

Making use of the weights ω(τj , z), the posterior distribution of the param-
eters becomes numerically available by samples based on Markov chain Monte
Carlo techniques. As the results in Section 6.1 indicate, the posterior distribu-
tion does not show strong influence of the prior distribution even in case of a
rather small amount of data; cf., Figure 4. In most of the examples presented
here, the proposal distributions for the model parameters in the Metropolis–
Hastings algorithms were chosen to be centered around the current state of
the Markov chain with an appropriate standard deviation, resulting in chains
with satisfactory convergence and mixing properties; cf., Figures 2 and 3, for
instance. Further improvements of these properties might be possible, e.g., by
implementing an adaptive design of the Markov chain Monte Carlo algorithms.

In the frequentist framework, we propose to use the posterior median as a
point estimator for the model parameters. As the simulation studies in Section
5 show, the use of full likelihoods considerably improves the estimation errors
compared to the commonly used composite likelihood method even in the case
of a rather small sample size. This complements our theoretical results on the
asymptotic efficiency of the posterior median. Besides the point estimator in
the frequentist setting, we can also make use of the posterior distribution in a
Bayesian framework. In Section 6, we discuss the use of credible intervals and
Bayesian model comparison for max-stable distributions. Further applications
such as Bayesian prediction are possible.
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Appendix A: Proofs postponed from Section 4

A.1. Proofs from Subsection 4.1

Proof of Prop. 2. Taking partial derivative of the exponent function (15) we
obtain

−∂τjVθ(z) =

|τj |−1∏
i=1

(
i

θ
− 1

)(
k∑

i=1

z
−1/θ
i

)θ−|τj | ∏
i∈τj

z
−1/θ−1
i .

We note that

Γ(|τj | − θ)

Γ(1− θ)
=

|τj |−1∏
i=1

(i− θ).

Using this, Equation (5) becomes for the logistic model

L(τ, z; θ) = exp{−V (z)}
�∏

j=1

ω(τj , z)

with

ω(τj , z) = θ−1|τj |+1Γ(|τj | − θ)

Γ(1− θ)

(
k∑

i=1

z
−1/θ
i

)θ−|τj | ∏
i∈τj

z
−1−1/θ
i .

Proof of Prop. 3. From Prop. 4.1 in Dombry et al. (2017a) it follows that the
model is differentiable in quadratic mean. For any 1 ≤ i1 < i2 ≤ k, the pairwise
extremal coefficient of the logistic model with parameter θ ∈ (0, 1) is ηi1,i2(θ) =
2θ, a strictly increasing function in θ. The assertion of the proposition follows
by Remark 2.

A.2. Proofs from Subsection 4.2

Both the proof of Prop. 4 and Prop. 5 rely on the following lemma.

Lemma 1. Let Y (α1), . . . , Y (αk) be independent random variables such that
Y (α) has a Gamma distribution with shape parameter α > 0 and scale 1.

(i) Let U1 > U2 > . . . be the points of a Poisson point process on (0,∞)
with intensity u−2du and Ỹ (1), Ỹ (2), . . . independent copies of the random
vector Ỹ = (Y (αi)/αi)1≤i≤k. Then the simple max-stable random vector

Z =
∨

i≥1 UiỸ
(i) has angular density (17).

(ii) In the Dirichlet max-stable model (17), the pair extremal coefficient ηi1,i2 ,
1 ≤ i1 < i2 ≤ k, is given by

ηi1,i2 = η(αi1 , αi2) = E

[
Y (αi1)

αi1

∨ Y (αi2)

αi2

]
.

Furthermore, η : (0,∞)2 → [1, 2] is continuously differentiable and strictly
decreasing in both components.
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Proof. For the proof of the first part, we note that the intensity of the spectral
measure is given by

λ(z) =

∫ ∞

0

fỸ (z/u)u
−k−2du, z ∈ (0,∞)k,

where

fỸ (ỹ) =
k∏

i=1

ααi
i

Γ(αi)
ỹαi−1
i e−αiỹi , ỹ ∈ (0,∞)k,

is the density of the random vector Ỹ . A direct computation yields

λ(z) =
Γ(1 +

∑d
i=1 αi)

(
∑d

i=1 αizi)1+
∑d

i=1 αi

d∏
i=1

ααi

i zαi−1
i

Γ(αi)
.

We see that the restriction of λ to the simplex Sk−1 is equal to h which proves
the claim.

The first statement of the second part, is a direct consequence of the first
part since

η(α1, α2) = − logP(Z1 ≤ 1, Z2 ≤ 1) = E

[
Y (α1)

α1
∨ Y (α2)

α2

]
.

The proof of the strict monotonicity relies on the notion of convex order, see
Chapter 3.4 in Denuit et al. (2005). For two real-valued random variables X1,
X2 we say that X1 is lower than X2 in convex order if E[ϕ(X1)] ≤ E[ϕ(X1)] for
all convex functions ϕ : R → R such that the expectations exist. It is known
that the family of random variables (Y (α)/α)α>0 is non-increasing in convex
order (Ramos et al., 2000, Section 4.3), and, in this case, the Lorenz order is
equivalent to the convex order (Denuit et al., 2005, Property 3.4.41). We show
below that this implies that η(α1, α2) is strictly decreasing in its arguments.

Let α′
1 > α1 > 0 and α2 > 0 and let us prove that η(α′

1, α2) < η(α1, α2). For
independent random variables Y (α1), Y (α′

1) and Y (α2), we have

η(α′
1, α2) = E

[
Y (α′

1)

α′
1

∨ Y (α2)

α2

]
and η(α1, α2) = E

[
Y (α1)

α1
∨ Y (α2)

α2

]
.

Using that Y (α′
1)/α

′
1 is lower than Y (α1)/α1 in convex order, we obtain

E

[
Y (α′

1)

α′
1

∨ y2
α2

]
≤ E

[
Y (α1)

α1
∨ y2

α2

]
for all y2 > 0, (31)

because the map u �→ u ∨ (y2/α2) is convex. Replacing y2 by Y (α2) and inte-
grating, we get η(α′

1, α2) ≤ η(α1, α2). The equality η(α′
1, α2) = η(α1, α2) would

imply that for almost every y2 > 0 the equality holds in (31) which is true if and
only if Y (α1)/α1 and Y (α′

1)/α
′
1 have the same distribution. Since this is not

the case, η(α′
1, α2) < η(α1, α2) and η is strictly decreasing in α1. By symmetry,

η is also strictly decreasing in α2.
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Finally, the fact that (α1, α2) �→ η(α1, α2) is continuously differentiable fol-
lows from the integral representation

η(α1, α2) =

∫ ∞

0

∫ ∞

0

y1
α1

∨ y2
α2

1

Γ(α1)Γ(α2)
yα1−1
1 yα2−1

2 e−y1e−y2 dy1dy2, (32)

for α1, α2 > 0, and standard theorems for integrals depending on a parameter.

Proof of Prop. 4. From the construction given in the first part of Lemma 1, we
obtain

λ(z) =

∫ ∞

0

(
k∏

i=1

ααi

i

Γ(αi)

(zi
r

)αi−1

e−(αizi/r)

)
r−2−kdr

=

k∏
i=1

ααi

i zαi−1
i

Γ(αi)

∫ ∞

0

e−
1
r

∑k
i=1 αizir−2−

∑k
i=1 αidr

and, consequently,∫
uj<zτc

j

λ(zτj , uj)duj

=
∏
i∈τj

ααi

i zαi−1
i

Γ(αi)

∫ ∞

0

∫
uj<zτc

j

∏
i∈τc

j

(
ααi

i zαi−1
i

Γ(αi)
e−(αizi/r)

)
duj

· e−
1
r

∑
i∈τj

αizir−2−
∑k

i=1 αidr

=
∏
i∈τj

ααi

i zαi−1
i

Γ(αi)

∫ ∞

0

e
− 1

r

∑
i∈τj

αizi

⎛
⎝∏

i∈τc
j

Fαi(αizi/r)

⎞
⎠ r

−2−
∑

i∈τj
αidr,

where

Fα(x) =
1

Γ(α)

∫ x

0

tα−1e−tdt,

is the distribution function of a Gamma variable with shape α > 0.

Proof of Prop. 5. Prop. 4.2 in Dombry et al. (2017a) implies that the model is
differentiable in quadratic mean. In order to verify Eq. (13) for the Dirichlet
model, we consider the mapping

Ψ : (0,∞)k → [1, 2]k, θ = (α1, . . . , αk) �→ (η1,2, η2,3, η1,3, η1,4, . . . , η1,k).

We first show that Ψ is injective. To this end, let θ(1) �= θ(2) ∈ Θ where ψi =

(α
(i)
1 , . . . , α

(i)
k ), i = 1, 2. We distinguish between two cases. First, we assume that

θ(1) and θ(2) share at least one common component. Then, there is a pair (i, j) ∈
{(1, 2), (2, 3), (1, 3), (1, 4), . . . , (1, k)} such that (α

(1)
i , α

(1)
j ) and (α

(2)
i , α

(2)
j ) differ

in exactly one component. As ηi,j = η(αi, αj) is strictly decreasing both in
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αi and αj , by Lemma 1, we have that η(α
(1)
i , α

(1)
j ) �= η(α

(2)
i , α

(2)
j ). Secondly,

we consider the case that θ(1) and θ(2) do not share any common component.
Then, there is a pair (i, j) ∈ {(1, 2), (2, 3), (1, 3)} such that both components

(α
(1)
i − α

(2)
i , α

(1)
j − α

(2)
j ) have the same sign and, again, by the strict mono-

tonicity of η(αi, αj), it follows that η(α
(1)
i , α

(1)
j ) �= η(α

(2)
i , α

(2)
j ). Hence, in both

cases, Ψ(θ(1)) �= Ψ(θ(2)), that is, Ψ is injective and there exists a unique inverse
function Ψ−1 : Ψ((0,∞)k) → (0,∞)k.

Consider the set

Θ′ = {(α1, . . . , αk) ∈ (0,∞)k : ∂αiη(αi, αj) < 0

and ∂αjη(αi, αj) < 0 for all 1 ≤ i < j ≤ k}.

Note that since η is continuously differentiable and strictly decreasing in its
argument, Θ \ Θ′ has Lebesgue measure 0. For all θ0 = (α1, . . . , αk) ∈ Θ′, the
Jacobian DΨ satisfies

det{DΨ(θ0)} = {∂α1η(α1, α2) · ∂α2η(α2, α3) · ∂α3η(α1, α3)

+ ∂α2η(α1, α2) · ∂α3η(α2, α3) · ∂α1η(α1, α3)} ·
k∏

j=4

∂αjη(α1, αj)

�= 0.

The inverse function theorem then implies that Ψ−1 is continuously differ-
entiable at Ψ(θ0), that is, for every ε > 0, there exists δ > 0 such that
‖Ψ(θ0)−Ψ∞(θ)‖∞ < δ implies ‖θ0 − θ‖∞ < ε. In particular, we obtain

inf
‖θ0−θ‖∞>ε

‖Ψ(θ0)−Ψ(θ)‖∞ ≥ δ,

that is, Eq. (13), and the asymptotic normality and efficiency of the posterior
median for θ0 ∈ Θ′ follow from Prop. 1. Finally, we note that each extremal
coefficient η is continuously differentiable and strictly decreasing with respect
to both components by Lemma 1. Thus, ∂α1η(α1, α2) < 0 and ∂α2η(α1, α2) < 0
for almost every θ ∈ Θ.

A.3. Proofs from Subsection 4.3

Proof of Prop. 7. By Prop. 4.3 in Dombry et al. (2017a), the model is differen-
tiable in quadratic mean (even if ν > 0 is not fixed). For any 1 ≤ i1 < i2 ≤ k,
and fixed ν > 0, the pairwise extremal coefficient of the extremal-t model with
parameter matrix Σ = {ρij}1≤i,j≤k is

ηi1,i2(Σ) = 2Tν+1

(√
(ν + 1)

1− ρi1i2
1 + ρi1i2

)
, (33)

where Tν+1 denotes the distribution function of a t-distribution with ν + 1
degrees of freedom. Therefore, ηi1,i2(Σ) as a function of ρi1i2 ∈ [−1, 1] is strictly
decreasing and the claim follows by Remark 2 together with Prop. 1.
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Proof of Cor. 1. Analogously to the proof of Cor. 4.4 in Dombry et al. (2017a),
it can be shown that the model is differentiable in quadratic mean. Suppose that
‖t1−t2‖2 �= ‖t2−t3‖2 and observe that the mapping Ψ : Θ → Ψ(Θ), θ = (s, α) �→
{ρij}1≤i,j≤k = {exp(−‖ti − tj‖α2 /s)}1≤i,j≤k is continuously differentiable. Since

α =
log{log ρ12} − log{log ρ23}

log ‖t1 − t2‖2 − log ‖t2 − t3‖2
, s = −‖t1 − t2‖α2

log ρ12
,

the same holds true for the inverse mapping Ψ−1.
Further, from the continuity of Ψ−1 at Ψ(θ0) at any θ0 ∈ Θ, we obtain

that for every ε > 0 there is some δ > 0 such that for all Ψ(θ) ∈ Ψ(Θ) with
‖Ψ(θ0)−Ψ(θ)‖∞ < δ we have ‖θ0 − θ‖∞ < ε. Consequently,

inf
‖θ0−θ‖∞>ε

‖Ψ(θ0)−Ψ(θ)‖∞ ≥ δ.

From the proof of Prop. 7 and with the notation in (33), we obtain that ‖Ψ(θ0)−
Ψ(θ)‖∞ ≥ δ implies max1≤i1<i2≤k |ηi1,i2{Ψ(θ0)} − ηi1,i2{Ψ(θ)}| > δ′ for some
δ′ > 0, that is, Equation (13) holds. The assertion follows then from Prop. 1.

A.4. Proofs from Subsection 4.4

Proof of Prop. 9. From Prop. 4.5 in Dombry et al. (2017a), it follows that
the model is differentiable in quadratic mean. For any 1 ≤ i1 < i2 ≤ k, the
pairwise extremal coefficient of the Hüsler–Reiss model with parameter matrix
Λ = {λ2

i,j}1≤i,j≤k is

ηi1,i2(Λ) = 2Φ1

{√
λ2
i1,i2

}
,

which is a strictly increasing function in λ2
i1,i2

> 0, and the claim follows by
Remark 2 together with Prop. 1.

Proof of Cor. 2. Analogously to Cor. 4.6 in Dombry et al. (2017a), the model
can be shown to be differentiable in quadratic mean. Suppose that ‖t1 − t2‖2 �=
‖t2 − t3‖2. As the mapping Ψ : Θ → Ψ(Θ), θ = (λ, α) �→ {λ2

ij}1≤i,j≤k =

{‖ti−tj‖α
2

4s }1≤i,j≤k is continuously differentiable and

α =
log γ12 − log γ23

log ‖t1 − t2‖2 − log ‖t2 − t3‖2
, s =

‖ti − tj‖α2
4λ2

ij

,

the inverse mapping Ψ−1 is continuously differentiable, as well. The same ar-
guments as in the proof of Cor. 1 together with the proof of Prop. 9 yield the
assertion.
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M. Hofert and M. Mächler. Nested Archimedean copulas meet R: The nacopula
package. J. Stat. Softw., 39:1–20, 2011.

R. Huser and A. Davison. Composite likelihood estimation for the brown-resnick
process. Biometrika, 100:511–518, 2013. MR3068451

R. Huser, A. C. Davison, and M. G. Genton. Likelihood estimators for multi-
variate extremes. Extremes, 19:79–103, 2015. MR3454032
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