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Abstract

An u-shapelet is a sub-sequence of a time series
used for clustering a time series dataset. The pur-
pose of this paper is to discover u-shapelets on un-
certain time series. To achieve this goal, we pro-
pose a dissimilarity score called FOTS whose com-
putation is based on the eigenvector decomposition
and the comparison of the autocorrelation matrices
of the time series. This score is robust to the pres-
ence of uncertainty; it is not very sensitive to tran-
sient changes; it allows capturing complex relation-
ships between time series such as oscillations and
trends, and it is also well adapted to the comparison
of short time series. The FOTS score is used with
the Scalable Unsupervised Shapelet Discovery al-
gorithm for the clustering of 17 datasets, and it has
shown a substantial improvement in the quality of
the clustering with respect to the Rand Index. This
work defines a novel framework for the clustering
of uncertain time series.

1 Introduction

Uncertainty in time series comes from several sources. For
instance, to protect privacy, privacy-preserving transforma-
tion [Papadimitriou et al.2007, Aggarwal2008] deliberately
introduce uncertainty to the confidential data before further
processing. In a sensor network, sensor readings are im-
precise because of the presence of noise generated either by
the equipment itself or other external influences [Cheng et
al.2003]. Ignoring the uncertainty of the data can lead to
rough or inaccurate conclusions, hence the need to implement
uncertain data management techniques.

Several recent studies have focused on the processing of
uncertainty in data mining. Two main approaches allow
to take uncertainty into account in data mining tasks: ei-
ther it is taken into account during the comparison by using
appropriate distance functions [Rizvandi et al.2013, Hwang
et al.2014, Rehfeld and Kurths2014, Orang and Shiri2014,
Wang et al.2015, Orang and Shiri2017], or its impact is
reduced by transformations performed on the data [Orang
and Shiri2015].This latter strategy is used natively by the u-
shapelet algorithm.

1.1 U-shapelets algorithm for clustering Uncertain
Time Series

U-shapelets clustering is a framework introduced by [Zakaria
et al.2012] who suggested clustering time series from the lo-
cal properties of their sub-sequences rather than using their
global features of the time series [Zhang et al.2016]. In that
aim, u-shapelets clustering first seeks a set of sub-sequences
characteristic of the different categories of time series and
classifies a time series according to the presence or absence
of these typical sub-sequences in it.

Clustering time series with u-shapelets has several advan-
tages. Firstly, u-shapelets clustering is defined for datasets
in which time series have different lengths, which is not the
case for most techniques described in the literature. Indeed,
in many cases, the equal length assumption is implied, and
the trimming to equal length is done by exploiting expensive
human skill [Ulanova et al.2015]. Secondly, u-shapelets clus-
tering is much more expressive regarding representational
power. Indeed, it allows clustering only time series that can
be clustered and do not cluster those that do not belong to any
cluster.

Furthermore, it is very appropriate to use u-shapelets clus-
tering with uncertain time series because it can ignore irrele-
vant data and thus, reduce the adverse effects of the presence
of uncertainties in the time series. Despite this advantage, it
is highly desirable to take into account the adverse impact of
uncertainty during u-shapelet discovery.

1.2 Uncertainty and u-shapelets discovery issue

Traditional measurement of similarity like Euclidean distance
(ED) or Dynamic Time Warping (DTW) do not always work
well for uncertain time series data. Indeed, they aggregate the
uncertainty of each data point of the time series being com-
pared and thus amplify the negative impact of uncertainty.
However, ED plays a fundamental role in u-shapelet discov-
ery because it is used to compute the gap, i.e. the distance
between the two groups formed by a u-shapelet candidate.
The discovery of u-shapelet on uncertain time series could
thus lead to the selection of a wrong u-shapelet candidate or
to assign a time series to the wrong cluster.

In this study, our goal is to cluster uncertain time series
with u-shapelets algorithm. Our work leverages the obser-
vation that the use of a dissimilarity function robust to uncer-
tainty could improve the quality of the u-shapelets discovered



and thus improve the clustering quality of uncertain time se-
ries.

1.3 Summary of contributions

• We review state of the art on similarity functions for un-
certain time series and evaluate them for the comparison
of small, uncertain time series.

• We introduce the Frobenius cOrrelation for uncertain
Time series uShapelet discovery (FOTS), a new dissim-
ilarity score based on local correlation, which has in-
teresting properties useful for comparison of small, un-
certain time series and that makes no assumption on the
probability distribution of uncertainty in data.

• We put the source code at the disposal of the scien-
tific community to allow extension of our work [FOTS-
SUSh].

2 Definitions and Background

2.1 Related work

An Uncertain Time Series (UTS) X =< X1, . . . , Xn > is a
sequence of random variables where Xi is the random vari-
able modeling the unknown real value number at timestamp
i. There are two main ways to model uncertain time series:
multiset-based model and PDF-based model.

In Multiset-based model, each element Xi(1 ≤ i ≤ n)
of an UTS X =< X1, . . . , Xn > is represented as a set
{Xi,1, . . . , Xi,Ni

} of observed values and Ni denotes the
number of observed values at timestamp i.

In PDF-based model, each element Xi, (1 ≤ i ≤ n) of
UTS X =< X1, . . . , Xn > is represented as a random vari-
able Xi = xi + Xei , where xi is the exact value that is un-
known and Xei is a random variable representing the error. It
is this model that we consider this work.

Several similarity measures have been proposed for uncer-
tain time series. They are grouped into two main categories:
Traditional similarity measures and uncertain similarity mea-
sures.

• Traditional similarity measures such as Euclidean dis-
tance are those conventionally used with time series.
They use a single uncertain value at each timestamp as
an approximation of the unknown real value.

• Uncertain similarity measures use additional statistical
information that quantifies the uncertainty associated
with each approximation of the real value : this is
the case of DUST, PROUD, MUNICH [Dallachiesa et
al.2012]. [Orang and Shiri2015] demonstrated that the
performances of uncertain similarity measures associ-
ated with pre-processing of data are higher than those
of traditional similarity measurements.

2.2 Review of u-shapelets

Definition 1 Two datasets DA and DB are said to be r-

balanced if only if 1

r
< |DA|

|DB | < (1 − 1

r
), r > 1

Definition 2 An Unsupervised-Shapelet is any sub-sequence
that has a length shorter than or equal to the length of the
shortest time series in the dataset, and that allows dividing
the dataset into two r-balanced groups DA and DB; where
DA is the group of time series that contains a pattern similar
to the shapelet and DB is the group of time series that does
not contain the shapelet.

The similarity between a time series and a shapelet is eval-
uated using a distance function.

Definition 3 The sub-sequence distance sdist(S, T) between
a time series T and a sub-sequence S is the minimum of the
distances between the sub-sequence S and all possible sub-
sequences of T of length equal to the length of S.

This definition opens the question of which distance measure
to use for sdist. In general, the ubiquitous Euclidean distance
(ED) is used, but it is not appropriate for uncertain time series
[Orang and Shiri2014]. In the following section, we introduce
a dissimilarity function that is more adapted to uncertainty.

Computing the sdist between a u-shapelet candidate and
all time series in a dataset creates an orderline:

Definition 4 An orderline is a vector of sub-sequence dis-
tances sdist(S, Ti) between a u-shapelet and all time series Ti
in the dataset.

The computation of the orderline is time-consuming. An
orderline for a single u-shapelet candidate is O(NMlog(M))
where N is the number of time series in the dataset and M
is the average length of the time series. The brute force al-
gorithm for U-shapelets discovery requires K such computa-
tions, where K is the number of sub-sequences. The strat-
egy used by [Ulanova et al.2015] in Scalable Unsupervised
Shapelet algorithm consists in filtering the K candidate seg-
ments by considering only those allowing to build r-balanced
groups. This selection is made efficiently thanks to a hash
algorithm.

The assessment of a u-shapelet quality is based on its sep-
aration power which is calculated as follows :

gap = µB − σB − (µA − σA), (1)

where µA (resp. µB) denotes mean(sdist(S, DA)) (resp.
mean(sdist(S, DB))), and σA (resp. σB) represents stan-
dard deviation of sdist(S,DA) (resp. standard deviation of
sdist(S,DB)). If DA or DB consists of only one element
(or of an insignificant number of elements that cannot rep-
resent a separate cluster), the gap score is assigned to zero.
This ensures that a high gap scored for a u-shapelet candidate
corresponds to a true separation power.

2.3 Review on uncertain similarity functions

Uncertain similarity measures can be grouped into two broad
categories : deterministic similarity measurements and prob-
abilistic similarity measurements.

Deterministic Similarity Measures

Like traditional similarity measures, deterministic similarity
measures return a real number as the distance between two
uncertain time series. DUST is an example of deterministic
similarity measure.



DUST [Murthy and Sarangi2013] Given two uncertain time
series X =< X1, . . . , Xn > and Y =< Y1, . . . , Yn > ,
the distance between two uncertain values Xi, Yi is defined
as the distance between their true (unknown) values r(Xi),
r(Yi): dist(Xi, Yi) = |r(Xi) − r(Yi)|. This distance is used
to measures the similarity of two uncertain values.
ϕ(|Xi−Yi|) is the probability that the real values at times-

tamp i are equal, given the observed values at that instant :

ϕ(|Xi − Yi|) = Pr(dist(0, |Xi − Yi|) = 0). (2)

This similarity function is then used inside the dust dissimi-
larity function:

dust(Xi, Yi) =
√

−log(ϕ(|Xi − Yi|)) + log(ϕ(0)). (3)

The distance between uncertain time series X =<
X1, . . . , Xn > and Y =< Y1, . . . , Yn > in DUST is then
defined as follows:

DUST (X,Y ) =

√

√

√

√

n
∑

i=1

dust(Xi, Yi)
2 . (4)

The problem with the deterministic uncertain distances like
DUST is that their expression varies as a function of the
probability distribution of uncertainty, and the probability
distribution of the uncertainty is not always available in time
series datasets.

Probabilistic Similarity Measures

Probabilistic similarities measures do not require knowledge
of the uncertainty probability distribution. Furthermore, they
provide the users with more information about the reliability
of the result. There are several probabilistic similarity func-
tions, as MUNICH, PROUD, PROUDS or Local Correlation.

MUNICH [Aßfalg et al.2009] This distance function is
suitable for uncertain time series represented by the multi-
set based model. The probability that the distance between
two uncertain time series X and Y is less than a threshold ε is
equal to the number of distances between X and Y, which are
less than ε, over the possible number of distances:

Pr(distance(X,Y )) ≤ ε =
|{d ∈ dists(X,Y )|d ≤ ε}|

|dists(X,Y )|
(5)

The computation of this distance function is very time-
consuming.

PROUD [Yeh et al.2009] LetX =< X1, ..., Xn > and
Y =< Y1, ..., Yn > be two UTS each modeled by a sequence
of random variables, the PROUD distance between X and Y

is d(X,Y ) =
n
∑

i=1

(Xi − Yi)
2. According to the central limit

theorem [Hoffmann-Jørgensen and Pisier1976], the cumula-
tive distribution of the distances approaches asymptotically a
normal distribution:

d(X,Y ) ∝ N(
∑

i

E[(Xi − Yi)
2],

∑

i

V ar[(Xi − Yi)
2]) (6)

As a consequence of that feature of PROUD distance, the
table of the normal centered reduced law can be used to com-
pute the probability that the normalized distance is lower than
a threshold:

Pr(d(X,Y )norm ≤ ǫ). (7)

A major disadvantage of PROUD is its inadequacy for
comparing time series of small lengths like u-shapelets. In-
deed, the calculation of the probability that the PROUD dis-
tance is less than a value is based on the assumption that it fol-
lows asymptotically a normal distribution. Thus, this proba-
bility will be all the more accurate as the compared time series
are long (more than 30 data points).

PROUDS [Orang and Shiri2015] is an enhanced version of
PROUD, which suppose that random variables coming from
time series are independent and identically distributed.

Definition 5 The normal form of a standard time series

X =< X1, . . . , Xn > is defined as X̂ =< X̂1, . . . , X̂n > in
which for each timestamp i (1 ≤ i ≤ n), we have:

X̂i =
Xi − X̄

SX

, X̄ =

n
∑

i=1

Xi

n
, SX =

√

√

√

√

n
∑

i=1

(Xi − X̄)2

(n− 1)
. (8)

PROUDS defines the distance between two normalized
time series X̂ =< X̂1...X̂n > and Ŷ =< Ŷ1...Ŷn > (Defini-
tion 5) as follows:

Eucl(X̂, Ŷ ) = 2(n− 1) + 2

n
∑

i=1

X̂iŶi (9)

For the same reasons as PROUD, PROUDS is not suitable
for short time series comparison. Another disadvantage of
PROUDS is that it assumes that the random variables are in-
dependent : this hypothesis is strong and particularly inappro-
priate for short time series like u-shapelets. A more realistic
hypothesis with time series would be to consider that the ran-
dom variables constituting the time series are M-dependent.
Random variables of a time series are called M-dependent if
Xi, Xi+1, ..., Xi+M are dependent (correlated) and the vari-
ables Xi and Xi+M+1 are independent. However, the M-
dependent assumption could make PROUDS writing more
complex and its use more difficult because of the choice of
the parameter M.

Uncertain Correlation [Orang and Shiri2017] : Correla-
tion analysis techniques are useful for feature selection in
uncertain time series data. Indeed, correlation indicates the
degree of dependency of a feature on other features. Using
this information, redundant features can be identified. The
same strategy can be useful for u-shapelet discovery. Uncer-
tain correlation is defined as follows :



Definition 6 (Uncertain time series correlation) Given UTS
X =< X1, . . . , Xn > and Y =< Y1, . . . , Yn >, their corre-
lation is defined as:

Corr(X,Y ) =

n
∑

i=1

X̂iŶi/(n− 1), (10)

where X̂i and Ŷi are normal forms of Xi and Yi (Definition
5), respectively. Xi and Yi are supposed to be independant
continous random variables.

If we know the probability distribution of random variables, it
is possible to determine the probability density function asso-
ciated with the correlation, which will subsequently be used
to calculate the probability that the correlation between two
time series is greater than a given threshold. Uncertain corre-
lation has however some drawbacks :

• It is too sensitive to transient changes, often leading to
widely fluctuating scores;

• It cannot capture complex relationship in timeseries;

• It requires to know the probability distribution function
of the uncertainty or to make some assumption on the
independence of the random variables contained in time
series.

Because of all thoses drawbacks, uncertain correlation cannot
be used as it is for u-shapelet discovery. The next paragraph
presents a generalisation of correlation coefficient that is not
an uncertain similarity function but is still interesting for u-
shapelet discovery.

Local Correlation [Papadimitriou et al.2007] is a general-
ization of the correlation. It computes a time-evolving cor-
relation scores that tracks a local similarity on multivariate
time series based on local autocorrelation matrix. The au-
tocorrelation matrix allows capturing complex relationship
in time series like the key oscillatory (e.g., sinusoidal) as well
as aperiodic trends (e.g., increasing or decreasing) that are
present. The use of autocorrelation matrices which are com-
puted based on overlapping windows allows reducing the
sensibility to transient changes in time series.

Definition 7 (Local autocovariance, sliding window). Given
a time series X , a sample set of windows with length w, the

local autocorrelation matrix estimator Γ̂t using a sliding win-
dow is defined at time t ∈ N as (Eq.11) :

Γ̂t(X,w,m) =
t

∑

τ=t−m+1

xτ,w ⊗ xτ,w. (11)

where xτ,ω is a sub-sequence of the time series of length w
and started at τ , x ⊗ y = xyT is the outer product of x and
y. The sample set of m windows is centered around time t. We
typically fix the number of windows to m = w.

Given the estimates Γ̂t(X) and Γ̂t(Y ) for the two time se-
ries, the next step is how to compare them and extract a corre-
lation score. This goal is reached using the spectral decompo-
sition; The eigenvectors of the autocorrelations matrices cap-
ture the key aperiodic and oscillatory trends, even in short

time series. Thus, the subspaces spanned by the first few (k)
eigenvectors are used to locally characterize the behavior of
each series. Definition 8 formalizes this notion:

Definition 8 (LoCo score). Given two series X and Y , their
LoCo score is defined by

ℓt(X,Y ) =
1

2
(‖UT

XuY ‖+ ‖U
T
Y uX‖) (12)

where UX and UY are the k first eigenvector matrices

of the local autocorrelation Γ̂t(X) and Γ̂t(Y ) respectively,
and uX and uY are the corresponding eigenvectors with the
largest eigenvalue.

Intuitively, two time series X and Y will be considered as
close when the angle α formed by the space carrying the in-
formation of the time series X and the vector carrying the
information the time series Y is zero. In other words X and
Y will be close when the value of the cos(α) will be 1. The
only assumption made for the computation of LoCo similarity
is that the mean of time series data point is zero. This could
be easily achieve with z-normalization. LoCo similarity func-
tion has many interesting properties and does not require to:

• Know the probability distribution of the uncertainty,

• Assume the independence of the random variables or the
length of u-shapelets.

It is therefore interesting for feature selection, but we still
need a dissimilarity function to be able to discover u-shapelet.
In the next paragraph, we define a dissimilarity function that
has the same properties as LoCo and that is robust to the pres-
ence of uncertainty.

3 Our Approach

3.1 Dissimilarity function

The LoCo similarity function defined on two multivari-
ate time series X and Y approximately corresponds to the
absolute value of the cosine of the angle formed by the
eigenspaces of X and Y (|cos(α)|). A straightforward idea
would be to use the sin(α) or α-value as a dissimilarity func-
tion but this approach does not work so well; the sine and the
angle are not discriminant enough for eigenvector compari-
son for clustering purpose. We thus propose the following
dissimilarity measure (Definition. 9).

Definition 9 (FOTS : Frobenius cOrrelation for uncertain
Time series uShapelet discovery) Given two series X and Y ,
their FOTS score is defined by

FOTS(X,Y ) = ‖UX − UY ‖F =

√

√

√

√

m
∑

i=1

k
∑

j=1

(UX − UY )2ij (13)

where ‖‖F is the Frobenius norm.

Because the FOTS computation is based on the comparison
of the k-first eigenvectors of the autocorrelation matrices of
the time series, it has the same desirable properties of the
LoCo similarity function, that is:



• It allows to capture complex relationship in time se-
ries like the key oscillatory (e.g., sinusoidal) as well as
aperiodic (e.g., increasing or decreasing) trends that are
present;

• It allows to reduce the sensibility to transient changes
in time series;

• It is appropriate for the comparison of short timeseries.

Moreover, the FOTS dissimilarity function is robust to the
presence of uncertainty due to the spectral decomposition
of the autocorrelation matrices of the time series. The robust-
ness of FOTS to the uncertainty is confirmed by the following
theorem:

Theorem 1 (HoffmanWielandt) [Bhatia and Bhat-
tacharyya1993] If X and X + E are n × n symmetric
matrices, then :

n
∑

i=1

(λi(X + E)− λi(X))2 ≤ ||E||2F . (14)

where λi(X) is the ith largest eigenvalue of X , and ||E||2F is
the squared of the Frobenius norm of E.

The next section explains how FOTS is integrated in the
Scalable Unsupervised Shapelet discovery algorithm.

3.2 Scalable u-shapelets Algorithm with FOTS
score

In this section we do not define a new SUShapelet algorithm,
but we explain how we use SUShapelet algorithm with FOTS
score (FOTS-SUSh) to deal with uncertainty.

Two main criteria make possible to evaluate the quality of
a u-shapelet:

• It has to produce two r-balanced groups.

• It must build two well separated groups, i.e., groups
whose gap is maximal.

The gap is, therefore, an essential criterion for the selection
of u-shapelets candidate. It is subject to uncertainty because
its calculation is based on the Euclidean distance. To remedy
this, we propose to use the FOTS score instead of a simple
Euclidean distance when calculating the gap in the Scalable
u-shapelet algorithm. Algorithms 1 and 2 present a more for-
mal definition:

Definition 10 The sub-sequence FOTS dissimilarity
sdf(S, T ) between a time series T and a sub-sequence S is
the minimum of the FOTS score between the sub-sequence
S and all possible sub-sequences of T of length equal to the
length of S.

4 Experimental Evaluation

4.1 Clustering with u-shapelets

The algorithm iteratively splits the data with each discovered
u-shapelet: each u-shapelet splits the dataset into two groups
DA and DB . The time series that belong to DA are consid-
ered as members of the cluster form by the u-shapelet and
are then removed from the dataset. A new u-shapelet search

Algorithm 1: ComputeOrderline

Input: u-shapeletCandidate : s,
time series dataset : D
Output: Distance between the u-shapelet Candidate and

all the time series of the dataset
1 function ComputeOrderline(s, D)
2 dis← {}
3 s← zNorm(s)
4 forall i ∈ {1, 2, . . . , |D|} do
5 ts← D(i, :)
6 dis(i)← sdf (s, ts)

7 return dis/|s|

Algorithm 2: ComputeGap

Input: u-shapeletCandidate : s,
timeseries dataset : D,
lb, ub : lower/upper bound of reasonable number of time
series in cluster
Output: gap : gap score

1 function ComputeGap(s, D, lb, ub)
2 dis← ComputeOrderline(s,D)
3 gap← 0
4 for i← lb toub do
5 DA ← dis ≤ dis(i), DB ← dis > dis(i)
6 if lb ≤ |DA| ≤ ub then
7 mA ← mean(DA), mB ← mean(DB)
8 sA ← std(DA), sB ← std(DB)
9 currGap← mB − sB − (mA + sA)

10 if currGap > gap then
11 gap← currGap

12 return gap

continues with the rest of the data until there is no more time
series in the dataset or until the algorithm is no more able
to find u-shapelet. As a stopping criterion for the number
of u-shapelets extracted, the decline of the u-shapelet gap
score is examined: the algorithm stops when the gap score
of the newly-found u-shapelet becomes less than half of the
gap score of the first discovered u- shapelet. This approach is
a direct implementation of the u-shapelet definition

Choosing the length N of a uShapelet : The choice of
the length of u-shapelet is directed by the knowledge of the
domain to which the time series belongs. As part of these
experiments, we tested all numbers between 4 and half the
length of the time series. We consider as length of u-shapelet
the one allowing to better cluster the time series.

Choosing the length w of the windows : The use of over-
lapping windows for calculating the autocorrelation matrix
makes it possible to capture the oscillations present in the
time series. During these experiments, we consider that the
size of the window is equal to half the length of the u-shapelet.



Choosing the number k of eigenvectors: A practical
choice is to fix k to a small value; we use k = 4 throughout
all experiments. Indeed, key aperiodic trends are captured
by one eigenvector, whereas key oscillatory trends manifest
themselves in a pair of eigenvectors.

4.2 Evaluation Metric

To appreciate the quality of the u-shapelets found, we use
them for a clustering task. The quality of clustering is evalu-
ated from the Rand Index [Rand1971] which is calculated as
follows:

Let Lc be the cluster labels returned by a clustering algo-
rithm and Lt be the set of ground truth class labels. Let A be
the number of time series that are placed in the same cluster
in Lc and Lt, B be the number of time series in different clus-
ters in Lc and Lt, C be the number of time series in the same
cluster in Lc but not in Lt and D be the number of time series
in different clusters in Lc but in same cluster in Lt. The Rand
Index is equals to :

Rand Index = (A+B)/(A+B + C +D) (15)

4.3 Comparison with u-shapelet

Similarly to [Dallachiesa et al.2012], we tested our method on
17 datasets coming from UCR archive [Chen et al.2015] rep-
resenting a wide range of application domains. The training
and testing sets have been joined to obtained bigger datasets.
Table 1 present detailed information about tested datasets.

Data-set Size of Length No. of Type
dataset Classes

50words 905 270 50 IMAGE
Adiac 781 176 37 IMAGE
Beef 60 470 5 SPECTRO
Car 120 577 4 SENSOR
CBF 930 128 3 SIMULATED
Coffee 56 286 2 SPECTRO
ECG200 200 96 2 ECG
FaceFour 112 350 4 IMAGE
FISH 350 463 7 IMAGE
Gun Point 200 150 2 MOTION
Lighting2 121 637 2 SENSOR
Lighting7 143 319 7 SENSOR
OliveOil 60 570 4 SPECTRO
OSULeaf 442 427 6 IMAGE
SwedishLeaf 1125 128 15 IMAGE
synthetic control 600 60 6 SIMULATED
FaceAll 2250 131 14 IMAGE

Table 1: Datasets

Table 2 presents the comparison of the two algorithms.

4.4 Discussion

The use of the FOTS score associated with the SUShapelet
algorithm makes it possible to discover different u-shapelets
than those found by the Euclidean distance. The FOTS-SUSh
improves the results of time series clustering because the
FOTS score takes into account the intrinsic properties of the
time series when searching for u-shapelets and is robust to

Datasets RI SUSh RI FOTS
50words 0.811 0.877
Adiac 0.796 0.905
Beef 0.897 0.910
Car 0.708 0.723
CBF 0.578 0.909
Coffee 0.782 0.896
ECG200 0.717 0.866
FaceFour 0.859 0.910
FISH 0.775 0.899
Gun Point 0.710 0.894
Lighting2 0.794 0.911
Lighting7 0.757 0.910
OliveOil 0.714 0.910
OSULeaf 0.847 0.905
SwedishLeaf 0.305 0.909
synthetic control 0.723 0.899
FaceAll 0.907 0.908

Table 2: Comparison of the Rand Index of SUSH (RI SUSh) and
FOTS-SUSh (RI FOTS). The best Rand Index is in bold

the presence of uncertainty. This improvement is particularly
significant when the FOTS score is used for the clustering
of time series containing several small oscillations. Indeed,
these oscillations are not captured by the Euclidean distance
but are by the FOTS score whose calculation is based on the
autocorrelation matrix. This observation is illustrated by the
result obtained on SwedishLeaf dataset.

Time complexity analysis

ED can be computed in O(n) and FOTS score is computed
in O(nω), 2 ≤ ω ≤ 3 due to the time complexity of the
eigenvector decompositions [Pan and Chen1999]. The com-
putation of FOTS score is then more expensive than that of
ED. However, its use remains relevant for u-shapelet research
as they are often small.

5 Conclusion and Future Work

The purpose of this work was to discover u-shapelets on un-
certain time series. To answer this question, we have pro-
posed a dissimilarity score (FOTS) adapted to the compari-
son of short time series, whose computation is based on the
comparison of the eigenvector of the autocorrelation matri-
ces of the time series. This score is robust to the presence
of uncertainty, it is not very sensitive to transient changes,
and it allows capturing complex relationships between time
series such as oscillations and trends. The FOTS score was
used with the Scalable Unsupervised Shapelet Discovery al-
gorithm for clustering 17 literature datasets and showed an
improvement in the quality of clustering evaluated using the
Rand Index. By combining the benefits of the u-shapelets al-
gorithm, which reduces the adverse effects of uncertainty, and
the benefits of the FOTS score, which is robust to the presence
of uncertainty, this work is defining a framework for cluster-
ing uncertain time series. As a perspective to this work, we
plan to use the FOTS score for fuzzy clustering of uncertain
time series.
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