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INTRODUCTION

Digital watermarking technology has evolved as an important technology in the recent years. The basic principle of most watermarking method involves the application of small, pseudo-random changes to the selected coefficients in the spatial or transform domain. Most of the watermark detection schemes use some kinds of correlating detector to verify the presence of the embedded watermark [START_REF] Hartung | Multimedia watermarking techniques[END_REF][START_REF] Stefan | Information Hiding Techniques for Steganography and Digital Watermarking[END_REF]. Digital image watermarking has its applications in copy rights protection, data tracking and monitoring [START_REF] Hartung | Multimedia watermarking techniques[END_REF]. Blind source separation (BSS) is an important area of research in signal and image processing. The BSS problem can be solved using sparse representations of the source signals. Solution for the blind separation of image sources using sparsity include the wavelet-transform domain method in [START_REF] Stefan | Information Hiding Techniques for Steganography and Digital Watermarking[END_REF] and the method in [START_REF] Bronstein | Separation of reflections via sparse ICA[END_REF] using projection onto sparse dictionaries and the iterative Blind source separation algorithm presented in [START_REF] Souidene | Blind image separation using sparse representation[END_REF]. This paper introduces a new image watermark extraction technique based on the iterative sparse blind separation algorithm (ISBS) and a new ISBS algorithm. The ISBS algorithm employs an p norm based contrast function for blind signal separation. When the images are sparse or sparsely representable, a smooth approximation of the absolute value function is a good choice for the cost function. The NISBS algorithm proposed in this paper employs the modeling of the distributions of sparse images using a family of convex smooth functions. The ISBS algorithm proposed in [START_REF] Souidene | Blind image separation using sparse representation[END_REF] and the NISBS algorithm presented in this paper are shown to be more efficient than other existing techniques in the literature and both lead to improved separation quality with lower computational cost. The performance of the proposed algorithms is compared to the performance of other ICA algorithms using the objective image quality measure inspired by the Human Visual System (HVS) proposed in [START_REF] Beghdadi | A new image distortion measure based on wavelet decomposition[END_REF]. It is shown that the ISBS and NISBS algorithms perform better in terms of PSNR-WAV. The new watermarking technique is presented with the principal assumptions of (i) image source sparsity, (ii) instantaneous mix-tures and (iii) the same number of mixtures and sources (three mixtures and three sources). In our proposed BSS based method, we do not have restrictions on the mixing process as well as the mixing coefficients. The paper is organized as follows. Section 2 presents the data model and assumptions of our system. The blind watermark extraction system using the sparsity based algorithms is described in Section 3. The simulations and the performance of the algorithms is discussed in Section 4. The conclusions are drawn in Section 5.

DATA MODEL AND ASSUMPTIONS

A generic watermark embedding system consists of the inputs which are the original data f1 , the watermark signal f2 and an optional public or secret key f3 each of size (m f , n f ). The key is used to enforce the security, that is, to prevent unauthorized party from recovering and manipulating the watermark. The proposed image watermarking system uses a watermark f2 and a secret key f3 for the purpose of conducting two levels of security, by using the special images as the watermark and the key, with the same size as the original image f1, to be embedded. Both the watermark f2 and the key f3 are inserted in the spatial domain of the original image f1. The watermarked image g1 is a linear mixture of the original image, key and watermark. That is,

g1(m, n) = f1(m, n) + a f2(m, n) + b f3(m, n) (1) 
where a and b are the weighting coefficients [START_REF] Yu | Watermark detection and extraction using independent component analysis[END_REF]. To assure the identifiability of BSS model, it is required that the number of observed linear mixture inputs is at least equal to or larger than the number of independent sources. For the proposed watermark extraction scheme, at least three linear mixtures of the three independent sources are needed. Using the key image f3 and with the help of original image f1, two more mixed images are generated by adding them into the watermarked image

g2(m, n) = c g1(m, n) + d f3(m, n) (2) g3(m, n) = k g1(m, n) + l f1(m, n) (3) 
where {c, d, k, l} are arbitrary real numbers. The latter mixtures can be modeled by the following linear system:

g(m, n) = Af (m, n) (4) 
where,

f (m, n) = [f1(m, n), • • • , fN (m, n)] T is a N × 1 (with N = 3
) image source vector consisting of the stack of corresponding pixels of source images, A is the M × N full column rank mixing matrix (here,

M = N = 3), g(m, n) = [g1(m, n), • • • , gM (m, n)]
T is an M × 1 vector of mixture image pixels and the superscript T denotes the transpose operator. The purpose of blind image separation is to find a separating matrix, i.e. a N × M matrix B such that f (m, n) = Bg(m, n) is an estimate of original images.

BLIND WATERMARK EXTRACTION

As shown in [START_REF] Bronstein | Separation of reflections via sparse ICA[END_REF][START_REF] Zibulevsky | Blind source separation by sparse decomposition in signal dictionary[END_REF], exploiting the sparsity of some representations of the original images afford us to achieve the BSS problem. Indeed, the mixture destroys or 'reduces' the sparsity of the considered signals that is restored after source separation. Reversely, it is shown in [START_REF] Bronstein | Separation of reflections via sparse ICA[END_REF][START_REF] Zibulevsky | Blind source separation by sparse decomposition in signal dictionary[END_REF] that restoring (maximizing) the sparsity leads to the desired source separation. Based on this, we propose in the sequel a two-step BSS solution consisting in a linear pre-treatment that transforms the original sources into sparse signals followed by a BSS algorithm that minimizes the cost function of the transformed image mixtures using natural gradient technique.

Image pre-treatment

The algorithms proposed in this article are efficients for separating sparse sources. For some signals, one can assume that the spatial or temporal representation is naturally sparse, whereas for natural scenes, this assumptions falls down. We propose to make the image sparse by simply taking into account its Laplacian transform:

F = ∇f = ∂ 2 f ∂x 2 + ∂ 2 f ∂y 2 , (5) 
or, in discrete form

F (m, n) = f (m + 1, n) + f (m -1, n) + f (m, n + 1) +f (m, n -1) -4f (m, n) .
Our motivation for choosing this transformation is two fold. First the Laplacian transform is a sparse representation of the image since it acts as an edge detector which provides a two-level image, the edges and the homogeneous background. Second, the Laplacian is a linear transformation. This latter property is 'critical' since the separation matrix estimated to separate the image mixtures is the same to separate the mixture of Laplacian images:

G = ∂ 2 Af ∂x 2 + ∂ 2 Af ∂y 2 = AF ( 6 
)
where G is the Laplacian transform of the mixtures. In the literature, some other linear transformations were proposed in order to make the image sparse, including the projection into a sparse dictionary [START_REF] Zibulevsky | Blind source separation by sparse decomposition in signal dictionary[END_REF]. In Figure 1, the original cameraman image is displayed as well as its Laplacian transform and their respective histograms that clearly show the sparsity of the latter.

In the pre-treatment phase, we also propose an optional whitening step which aims to set the mixtures to the same energy level. Furthermore, this procedures reduces the number of parameters to be estimated. More precisely, the whitening step is applied to the Laplacian image mixtures before using our separation algorithm. The whitening is achieved by applying a N × M matrix Q to the Laplacian image mixtures in such a way Cov(QG) = I in the noiseless case, where Cov(•) stands for the covariance operator. As shown in [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF],

Q can be computed as the inverse square root of the noiseless covariance matrix of the Laplacian image mixtures (see [START_REF] Belouchrani | A blind source separation technique using second-order statistics[END_REF] for more details). In the following, we apply our separation algorithm on the whitened data: 

G w (m, n) = QG(m, n).

Sparsity-based BSS algorithm

In this section, we propose an iterative algorithm for the separation of sparse signals, namely the ISBS for Iterative Sparse Blind Separation algorithm. It is well known that Laplacian image transform is characterized by its sparsity property in the spatial domain [START_REF] Cichocki | Adaptive Blind Signal and Image Processing[END_REF][START_REF] Zibulevsky | Sparse source separation with relative Newton method[END_REF]. This property can be measured by the p norm where 0 ≤ p < 2. More specifically, one can define the following sparsity based contrast function,

Gp(F ) = N i=1 [Jp(Fi)] 1 p (7)
where

Jp(Fi) = 1 m f n f m f m=1 n f n=1 |Fi(m, n)| p . (8) 
The algorithm finds a separating matrix B such as,

B = arg min B {Gp(B)} (9) 
where Gp(B) Gp(H) [START_REF] Zibulevsky | Sparse source separation with relative Newton method[END_REF] and H(m, n) BG w (m, n) represents the estimated image sources Laplacian. The approach we choose to solve (9) is inspired from [START_REF] Pham | Blind separation of mixture of independent sources through a quasi-maximum likelihood approach[END_REF]. It is a block technique based on the processing of m f n f observed image pixels and consists in searching the minimum of the sample version of [START_REF] Cichocki | Adaptive Blind Signal and Image Processing[END_REF]. Solutions are obtained iteratively in the form:

B (k+1) = (I + (k) )B (k) (11) 
H (k+1) (m, n) = (I + (k) )H (k) (m, n) . ( 12 
)
At iteration k, a matrix (k) is determined from a local linearization of Gp(BG w ). It is an approximate Newton technique with the benefit that (k) can be very simply computed (no Hessian inversion) under the additional assumption that B (k) is close to a separating matrix. This procedure is illustrated in the following. At the (k+1) th iteration, the proposed criterion ( 8) can be developed as follows:

Jp(H (k+1) i ) = 1 m f n f m f ,n f m,n=1 H (k) i (m, n) + N j=1 (k) ij H (k) j (m, n) p
Under the assumption that B (k) is close to a separating matrix, we have

| (k) ij | 1
and thus, a first order approximation of Jp(H

(k+1) i
) is given by:

Jp(H (k+1) i ) ≈ 1 m f n f m f ,n f m,n=1 |H (k) i (m, n)| p + p N j=1 (k) ij |H (k) i (m, n)| p-1 sign H (k) i (m, n) H (k) j (m, n) (13 
) where sign(•) represents the sign value operator. Using equation (13), equation ( 7) can be rewritten in more compact form as:

Gp B (k+1) = Gp B (k) + T r (k) R (k)T D (k) ( 14 
)
where T r(•) is the matrix trace operator, the ij th entry of matrix R (k) is given by:

R (k) ij = 1 m f n f m f ,n f m,n=1 |H (k) i (m, n)| p-1 sign H (k) i (m, n) H (k) j (m, n) .
and

D (k) = diag R (k) 11 , . . . , R (k) N N 1 p -1 . (15) 
Using a gradient technique, (k) can be written as:

(k) = -µD (k) R (k) , (16) 
where µ > 0 is the descent step. Replacing (16) into (14) leads to,

Gp B (k+1) = Gp B (k) -µ D (k) R (k) 2 , (17) 
so µ controls the decrement of the criterion. Now, to avoid the algorithm's convergence to the trivial solution B = 0, one normalizes the outputs of the separating matrix to unit-power, i.e. ρ (k+1)

H i E |H (k+1) i (m, n)| 2 = 1, ∀ i.
Using first order approximation, this normalization leads to:

(k) ii = 1 -ρ (k) H i 2ρ (k) H i . ( 18 
)
The final estimated separation matrix B = B (K) Q is applied to the image mixtures g to obtain an estimation of the original images. K denotes here the number of iterations that can be either chosen a priori or given by a stopping criterion the form B (k+1) -B (k) < δ where δ is a small threshold value.

New sparsity-based BSS algorithm

When the images are sparse or sparsely representable, a smooth approximation of the absolute value function might be a better choice for the cost function [START_REF] Bronstein | Blind deconvolution of images using optimal sparse representations[END_REF]. We, therefore, focus our attention on modeling distributions of sparse images using a family of convex smooth functions and propose the following cost function :

G λ (F ) = N i=1 J λ (Fi) (19) 
with

J λ (F i ) = 1 m f n f m f ,n f m,n=1 |F i (m, n)| -λ log 1 + |F i (m, n)| λ ( 20 
)
where λ is a positive smoothing parameter [START_REF] Bronstein | Blind deconvolution of images using optimal sparse representations[END_REF]. The algorithm finds a separating matrix B such as,

B = arg min B G λ (B) (21) 
where

G λ (B) G λ (H) . (22) 
In the same way as the ISBS algorithm presented in the previous section, the solutions are obtained iteratively as describe by the equations [START_REF] Pham | Blind separation of mixture of independent sources through a quasi-maximum likelihood approach[END_REF] and [START_REF] Bronstein | Blind deconvolution of images using optimal sparse representations[END_REF]. Therefore, at the (k+1) th iteration, the proposed criterion (20) can be developed as follows :

J λ (H (k+1) i ) = 1 m f n f m f ,nf m,n=1 H (k) i (m, n) + N j=1 (k) ij H (k) j (m, n) -λ log 1 + H (k) i (m,n)+ N j=1 (k) ij H (k) j (m,n) λ .
Under the assumption that B (k) is close to a separating matrix, we have

| (k) ij | 1 
and thus, by using a first order approximation of J λ (H (k+1) i

), we can rewrite equation (19) in more compact form as:

G λ B (k+1) = G λ B (k) + T r (k) R (k)T (23)
where the ij th entry of matrix R (k) is given by: R

k) ij = 1 m f n f m f ,nf m,n=1 sign H (k) i (m, n) H (k) j (m, n) λ + |H (k) i (m, n)| . ( 
Using a gradient technique, (k) can be written as:

(k) = -µ R (k) , (24) 
Replacing ( 24) into (23) leads to,

G λ B (k+1) = G λ B (k) -µ R (k) 2 . (25) 
Now, to avoid the algorithm's convergence to the trivial solution B = 0, one normalizes the outputs of the separating matrix to unitpower (see equation ( 18)). 1 shows the PSNR-WAV between the original and extracted images for the example described in Fig. 2. We compare the performance of the proposed algorithms to the ICA algorithm. It is clearly shown that our algorithms (ISBS and New ISBS) perform better in terms of PSNR-WAV.

CONCLUSION

In this paper, a new watermarking technique based on BSS algorithm using sparsity property of images has been proposed. The proposed technique consists in a sparsification of the natural observed mixtures followed by a blind separation of the original images. The 

Fig. 1 .

 1 Fig. 1. (a) Original image, (b) Laplacian transform, (c) Original image histogram, (d) Sparse Laplacian transform histogram

Fig. 2 .

 2 Fig. 2. (a) watermarked image, (b) and (c) generated mixture images, (d) extracted watermark, (e) extracted image, (f) extracted key.

Table 1 .

 1 Performance evaluation : Comparison of the PSNR-WAV for ICA, ISBS and NISBS algorithms sparsification is simply the Laplacian transform and has a low computational cost. The separation is performed using an iterative algorithm based on the minimizing of the sparsity cost function of the Laplacian image.

			PSNR-WAV (dB)
	BSS			
	Algorithm	Parrot	Key	Watermark
	ICA	28.76	15.85	22.36
	ISBS	33.12	19.32	25.67
	NISBS	40.70	28.92	34.49