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ABSTRACT
This paper proposes a new image watermarking technique,

which employs an Iterative sparse blind separation algorithm (ISBS)
and a new sparsity based BSS algorithm (New ISBS algorithm or
NISBS) for watermark extraction. The ISBS algorithm performs the
separation based on the optimization of an `p norm based contrast
function. The new sparsity based BSS algorithm employs a smooth
approximation of the absolute value function as the cost function.
The watermark embedding of the images is performed in the spatial
domain. The results of the simulations demonstrate the validity and
performance of these two techniques for watermark extraction.

1. INTRODUCTION

Digital watermarking technology has evolved as an important tech-
nology in the recent years. The basic principle of most watermarking
method involves the application of small, pseudo-random changes
to the selected coefficients in the spatial or transform domain. Most
of the watermark detection schemes use some kinds of correlating
detector to verify the presence of the embedded watermark [1, 2].
Digital image watermarking has its applications in copy rights pro-
tection, data tracking and monitoring [1]. Blind source separation
(BSS) is an important area of research in signal and image process-
ing. The BSS problem can be solved using sparse representations of
the source signals. Solution for the blind separation of image sources
using sparsity include the wavelet-transform domain method in [2]
and the method in [3] using projection onto sparse dictionaries and
the iterative Blind source separation algorithm presented in [4]. This
paper introduces a new image watermark extraction technique based
on the iterative sparse blind separation algorithm (ISBS) and a new
ISBS algorithm. The ISBS algorithm employs an `p norm based
contrast function for blind signal separation. When the images are
sparse or sparsely representable, a smooth approximation of the ab-
solute value function is a good choice for the cost function. The
NISBS algorithm proposed in this paper employs the modeling of
the distributions of sparse images using a family of convex smooth
functions. The ISBS algorithm proposed in [4] and the NISBS al-
gorithm presented in this paper are shown to be more efficient than
other existing techniques in the literature and both lead to improved
separation quality with lower computational cost. The performance
of the proposed algorithms is compared to the performance of other
ICA algorithms using the objective image quality measure inspired
by the Human Visual System (HVS) proposed in [5]. It is shown that
the ISBS and NISBS algorithms perform better in terms of PSNR-
WAV. The new watermarking technique is presented with the princi-
pal assumptions of (i) image source sparsity, (ii) instantaneous mix-

tures and (iii) the same number of mixtures and sources (three mix-
tures and three sources). In our proposed BSS based method, we
do not have restrictions on the mixing process as well as the mixing
coefficients. The paper is organized as follows. Section 2 presents
the data model and assumptions of our system. The blind watermark
extraction system using the sparsity based algorithms is described in
Section 3. The simulations and the performance of the algorithms is
discussed in Section 4. The conclusions are drawn in Section 5.

2. DATA MODEL AND ASSUMPTIONS

A generic watermark embedding system consists of the inputs which
are the original data f1 , the watermark signal f2 and an optional
public or secret key f3 each of size (mf , nf ). The key is used to
enforce the security, that is, to prevent unauthorized party from re-
covering and manipulating the watermark. The proposed image wa-
termarking system uses a watermark f2 and a secret key f3 for the
purpose of conducting two levels of security, by using the special
images as the watermark and the key, with the same size as the orig-
inal image f1, to be embedded. Both the watermark f2 and the key
f3 are inserted in the spatial domain of the original image f1. The
watermarked image g1 is a linear mixture of the original image, key
and watermark. That is,

g1(m,n) = f1(m,n) + a f2(m,n) + b f3(m,n) (1)

where a and b are the weighting coefficients [6]. To assure the identi-
fiability of BSS model, it is required that the number of observed lin-
ear mixture inputs is at least equal to or larger than the number of in-
dependent sources. For the proposed watermark extraction scheme,
at least three linear mixtures of the three independent sources are
needed. Using the key image f3 and with the help of original image
f1, two more mixed images are generated by adding them into the
watermarked image

g2(m,n) = c g1(m,n) + d f3(m,n) (2)
g3(m,n) = k g1(m,n) + l f1(m,n) (3)

where {c, d, k, l} are arbitrary real numbers. The latter mixtures can
be modeled by the following linear system:

g(m,n) = Af(m,n) (4)

where, f(m,n) = [f1(m,n), · · · , fN (m,n)]T is a N × 1 (with
N = 3) image source vector consisting of the stack of corre-
sponding pixels of source images, A is the M × N full col-
umn rank mixing matrix (here, M = N = 3), g(m,n) =



[g1(m,n), · · · , gM (m,n)]T is an M × 1 vector of mixture image
pixels and the superscript T denotes the transpose operator. The pur-
pose of blind image separation is to find a separating matrix, i.e. a
N ×M matrixB such that f̂(m,n) = Bg(m,n) is an estimate of
original images.

3. BLIND WATERMARK EXTRACTION

As shown in [3,7], exploiting the sparsity of some representations of
the original images afford us to achieve the BSS problem. Indeed,
the mixture destroys or ‘reduces’ the sparsity of the considered sig-
nals that is restored after source separation. Reversely, it is shown
in [3, 7] that restoring (maximizing) the sparsity leads to the desired
source separation. Based on this, we propose in the sequel a two-step
BSS solution consisting in a linear pre-treatment that transforms the
original sources into sparse signals followed by a BSS algorithm that
minimizes the cost function of the transformed image mixtures using
natural gradient technique.

3.1. Image pre-treatment

The algorithms proposed in this article are efficients for separating
sparse sources. For some signals, one can assume that the spatial
or temporal representation is naturally sparse, whereas for natural
scenes, this assumptions falls down. We propose to make the image
sparse by simply taking into account its Laplacian transform:

F = ∇f =
∂2f

∂x2
+
∂2f

∂y2
, (5)

or, in discrete form

F(m,n) = f(m+ 1, n) + f(m− 1, n) + f(m,n+ 1)

+f(m,n− 1)− 4f(m,n) .

Our motivation for choosing this transformation is two fold. First
the Laplacian transform is a sparse representation of the image since
it acts as an edge detector which provides a two-level image, the
edges and the homogeneous background. Second, the Laplacian is
a linear transformation. This latter property is ’critical’ since the
separation matrix estimated to separate the image mixtures is the
same to separate the mixture of Laplacian images:

G =
∂2Af

∂x2
+
∂2Af

∂y2
= AF (6)

where G is the Laplacian transform of the mixtures. In the litera-
ture, some other linear transformations were proposed in order to
make the image sparse, including the projection into a sparse dictio-
nary [7]. In Figure 1, the original cameraman image is displayed as
well as its Laplacian transform and their respective histograms that
clearly show the sparsity of the latter.
In the pre-treatment phase, we also propose an optional whitening
step which aims to set the mixtures to the same energy level. Further-
more, this procedures reduces the number of parameters to be esti-
mated. More precisely, the whitening step is applied to the Laplacian
image mixtures before using our separation algorithm. The whiten-
ing is achieved by applying a N × M matrix Q to the Laplacian
image mixtures in such a way Cov(QG) = I in the noiseless case,
where Cov(·) stands for the covariance operator. As shown in [8],
Q can be computed as the inverse square root of the noiseless co-
variance matrix of the Laplacian image mixtures (see [8] for more
details). In the following, we apply our separation algorithm on the
whitened data:

Gw(m,n) = QG(m,n).
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Fig. 1. (a) Original image, (b) Laplacian transform, (c) Original
image histogram, (d) Sparse Laplacian transform histogram

3.2. Sparsity-based BSS algorithm

In this section, we propose an iterative algorithm for the separation
of sparse signals, namely the ISBS for Iterative Sparse Blind Sepa-
ration algorithm. It is well known that Laplacian image transform is
characterized by its sparsity property in the spatial domain [9, 10].
This property can be measured by the `p norm where 0 ≤ p < 2.
More specifically, one can define the following sparsity based con-
trast function,

Gp(F) =

N∑
i=1

[Jp(Fi)]
1
p (7)

where

Jp(Fi) =
1

mfnf

mf∑
m=1

nf∑
n=1

|Fi(m,n)|p . (8)

The algorithm finds a separating matrixB such as,

B = arg min
B

{Gp(B)} (9)

where
Gp(B) , Gp(H) (10)

and H(m,n) , BGw(m,n) represents the estimated image
sources Laplacian. The approach we choose to solve (9) is inspired
from [11]. It is a block technique based on the processing of mfnf
observed image pixels and consists in searching the minimum of the
sample version of (9). Solutions are obtained iteratively in the form:

B(k+1) = (I + ε(k))B(k) (11)

H(k+1)(m,n) = (I + ε(k))H(k)(m,n) . (12)

At iteration k, a matrix ε(k) is determined from a local linearization
of Gp(BGw). It is an approximate Newton technique with the ben-
efit that ε(k) can be very simply computed (no Hessian inversion)
under the additional assumption that B(k) is close to a separating



matrix. This procedure is illustrated in the following.
At the (k+1)th iteration, the proposed criterion (8) can be developed
as follows:

Jp(H(k+1)
i ) =

1

mfnf

mf ,nf∑
m,n=1

∣∣∣∣∣∣H(k)
i (m,n) +

N∑
j=1

ε
(k)
ij H

(k)
j (m,n)

∣∣∣∣∣∣
p

Under the assumption that B(k) is close to a separating matrix, we
have

|ε(k)ij | � 1

and thus, a first order approximation of Jp(H(k+1)
i ) is given by:

Jp(H(k+1)
i ) ≈ 1

mfnf

mf ,nf∑
m,n=1

|H(k)
i (m,n)|p+

p
N∑
j=1

ε
(k)
ij

(
|H(k)

i (m,n)|p−1sign
(
H(k)
i (m,n)

)
H(k)
j (m,n)

)
(13)

where sign(·) represents the sign value operator. Using equa-
tion (13), equation (7) can be rewritten in more compact form as:

Gp

(
B(k+1)

)
= Gp

(
B(k)

)
+ Tr

(
ε(k)R(k)TD(k)

)
(14)

where Tr(·) is the matrix trace operator, the ijth entry of matrix
R(k) is given by:

R(k)
ij =

1

mfnf

mf ,nf∑
m,n=1

|H(k)
i (m,n)|p−1sign

(
H(k)
i (m,n)

)
H(k)
j (m,n) .

and

D(k) =
[
diag

(
R(k)

11 , . . . ,R
(k)
NN

)] 1
p
−1

. (15)

Using a gradient technique, ε(k) can be written as:

ε(k) = −µD(k)R(k) , (16)

where µ > 0 is the descent step. Replacing (16) into (14) leads to,

Gp

(
B(k+1)

)
= Gp

(
B(k)

)
− µ‖D(k)R(k)‖2 , (17)

so µ controls the decrement of the criterion. Now, to avoid the algo-
rithm’s convergence to the trivial solution B = 0, one normalizes
the outputs of the separating matrix to unit-power, i.e. ρ

(k+1)
Hi

,

E
(
|H(k+1)

i (m,n)|2
)

= 1, ∀ i. Using first order approximation,
this normalization leads to:

ε
(k)
ii =

1− ρ(k)
Hi

2ρ
(k)
Hi

. (18)

The final estimated separation matrix B = B(K)Q is applied to
the image mixtures g to obtain an estimation of the original im-
ages. K denotes here the number of iterations that can be ei-
ther chosen a priori or given by a stopping criterion of the form
‖B(k+1) −B(k)‖ < δ where δ is a small threshold value.

3.3. New sparsity-based BSS algorithm

When the images are sparse or sparsely representable, a smooth ap-
proximation of the absolute value function might be a better choice

for the cost function [12]. We, therefore, focus our attention on mod-
eling distributions of sparse images using a family of convex smooth
functions and propose the following cost function :

G̃λ(F) =

N∑
i=1

J̃λ(Fi) (19)

with

J̃λ(Fi) =
1

mfnf

mf ,nf∑
m,n=1

|Fi(m,n)| − λ log

(
1 +
|Fi(m,n)|

λ

)
(20)

where λ is a positive smoothing parameter [12]. The algorithm finds
a separating matrixB such as,

B = arg min
B

{
G̃λ(B)

}
(21)

where
G̃λ(B) , G̃λ(H) . (22)

In the same way as the ISBS algorithm presented in the previous sec-
tion, the solutions are obtained iteratively as describe by the equa-
tions (11) and (12). Therefore, at the (k+1)th iteration, the proposed
criterion (20) can be developed as follows :

J̃λ(H(k+1)
i ) = 1

mfnf

mf ,nf∑
m,n=1

∣∣∣∣∣∣H(k)
i (m,n) +

N∑
j=1

ε
(k)
ij H

(k)
j (m,n)

∣∣∣∣∣∣
−λ log

(
1 +

∣∣∣H(k)
i (m,n)+

∑N
j=1 ε

(k)
ij H

(k)
j (m,n)

∣∣∣
λ

)
.

Under the assumption that B(k) is close to a separating matrix, we
have

|ε(k)ij | � 1

and thus, by using a first order approximation of J̃λ(H(k+1)
i ), we

can rewrite equation (19) in more compact form as:

G̃λ

(
B(k+1)

)
= G̃λ

(
B(k)

)
+ Tr

(
ε(k)R̃

(k)T
)

(23)

where the ijth entry of matrix R̃
(k)

is given by:

R̃(k)
ij =

1

mfnf

mf ,nf∑
m,n=1

sign
(
H(k)
i (m,n)

)
H(k)
j (m,n)

λ+ |H(k)
i (m,n)|

.

Using a gradient technique, ε(k) can be written as:

ε(k) = −µR̃
(k)

, (24)

Replacing (24) into (23) leads to,

G̃λ

(
B(k+1)

)
= G̃λ

(
B(k)

)
− µ‖R̃

(k)
‖2 . (25)

Now, to avoid the algorithm’s convergence to the trivial solution
B = 0, one normalizes the outputs of the separating matrix to unit-
power (see equation (18)).

4. SIMULATION

Simulation experiments are conducted to demonstrate the feasibility
of the proposed BSS method for watermark extraction. All simu-
lations are carried on 256 × 256 parrot, secret key and watermark
images. The algorithms are developed on MATLAB environment.
Illustrative result for watermark extraction is shown in Fig. 2. where
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Fig. 2. (a) watermarked image, (b) and (c) generated mixture im-
ages, (d) extracted watermark, (e) extracted image, (f) extracted key.

we represent the watermarked image, generated mixture images, ex-
tracted watermark, extracted image and extracted key by the pro-
posed algorithm. The mixture coefficients are a = 2 · 10−3, b =
5 · 10−3, c = 1, d = 2, k = 1, l = 1. The performance of water-
mark extraction is evaluated by an objective image quality measure
inspired from the Human Visual System (HVS) properties and devel-
oped in [5]. It is calledPSNR−WAV for Peak Signal to Noise Ra-
tio based on Wavelet decomposition. Table 1 shows the PSNR-WAV
between the original and extracted images for the example described
in Fig. 2. We compare the performance of the proposed algorithms
to the ICA algorithm. It is clearly shown that our algorithms (ISBS
and New ISBS) perform better in terms of PSNR-WAV.

5. CONCLUSION

In this paper, a new watermarking technique based on BSS algorithm
using sparsity property of images has been proposed. The proposed
technique consists in a sparsification of the natural observed mix-
tures followed by a blind separation of the original images. The

PSNR-WAV (dB)
BSS

Algorithm Parrot Key Watermark

ICA 28.76 15.85 22.36
ISBS 33.12 19.32 25.67

NISBS 40.70 28.92 34.49

Table 1. Performance evaluation : Comparison of the PSNR-WAV
for ICA, ISBS and NISBS algorithms

sparsification is simply the Laplacian transform and has a low com-
putational cost. The separation is performed using an iterative algo-
rithm based on the minimizing of the sparsity cost function of the
Laplacian image.
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