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Abstract

This tutorial review presents high-resolution multisensor time-frequency distri-

butions (MTFDs) and their application to the analysis of multichannel non-

stationary signals. The approach involves combining time-frequency analysis

and array signal processing methods. To demonstrate the benefits of MTFDs,

this study considers several applications including source localization based on

direction of arrival (DOA) estimation and automated component separation

(ACS) of non-stationary sources, with particular attention on blind source sep-

aration which is a particular case of ACS. The MTFD approach is further il-

lustrated by a new application to EEG signals that specifically uses ACS and

DOA estimation methods for artifacts removal and source localization. Supple-

mentary material with code is provided to allow readers to reproduce all the

results and apply these methods to their own data.
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1. Introduction

Recent studies have reported significant advances in both array signal pro-

cessing for non-stationary signals and mutichannel high resolution time-frequency

signal processing [1, 2, 3, 4]. The main idea of this paper is to combine, extend
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and report these advances in a tutorial review framework and provide corre-

sponding code to allow for reproducible research [5] and application to other

areas where multisensor/multichannel data are collected for analysis and deci-

sion making.

1.1. Objectives and motivations

1.1.1. Multichannel systems condition monitoring

In a wide range of engineering applications, a collection or array of mea-

surement sensors is used to solve the problem at hand. The type of sensors

depends on the application context. For example, antennas measuring an elec-

trical field are used in telecommunications, while sensors for measuring pressure

fluctuations are utilized in acoustic applications such as sonar, ultrasound and

speech processing. Regardless of the type of sensor used, by using more than

one sensor, one may acquire more information about the measured phenomena.

Typically, the placement of sensors in different physical locations is per-

formed to exploit any spatial diversity present in the signal being measured,

and to potentially infer spatial characteristics about the underlying process.

For example, in a radar or sonar application, one may wish to determine from

which direction an echo is returning, and thus infer the position of a target.

In speech processing, it may be desirable to extract the speech signal from

a speaker standing in a known position, while suppressing any “noise” com-

ing from other locations, in order to improve intelligibility of the speech in

hands-free communications or improve the performance of a speech recognition

program. Furthermore, signals can be collected from multisensor systems with

a large number of sensors and under several conditions such as low signal to

noise ratio [6, 7], high interference [8, 9], missing data [10] ... etc). Multichan-

nel systems (multi-sensor, sensor array) are used in many applications, such

as: biomedical signal processing [11], wireless communications [8, 9], and au-

dio/speech processing [12, 13]. In such applications, the general objective is to

extract critical discriminatory information from the multidimensional signal in

order to achieve and/or improve change detection and classification processes
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[14]. Thus, the general approach involves several processing stages such as: ac-

quisition, transformation (time-frequency, time-scale...), information extraction

(features, denoising ...etc), clustering, detection and decision.

In many real-life problems, the spectral characteristics of the signals acquired

by the multichannel systems are varying with time. This may be a character-

istic of the originating process, such as with speech, or due to the surrounding

environment, as when the measurement system is in motion with respect to the

source of interest. On the one hand, estimation of parameters linked to the

time-varying nature of a signal can be enhanced through the use of multiple

sensors. This may be relevant, for example, if one wishes to infer the velocity

of a moving target with a radar system. On the other hand, if the time-varying

nature of the process is known, this property can be used to enhance the estima-

tion of spatial parameters related to the physical location of the signal source;

An example is the position of an observed target using radar. It is specifically

the synergical combined consideration of both the time-varying characteristics

of a measured signal and the spatial information provided by an array of mea-

surement sensors, which is the focus of this paper. A particular formal field

of signal processing was motivated by the existence of non-stationary signals,

i.e. signals with time-varying spectral characteristics; it is often called joint

time-frequency analysis.

Therefore, by combining array signal processing for non-stationary signals

and multichannel high resolution time-frequency signal processing, one can pro-

vide generic methodologies to a wide field of new applications, such as:

• Abnormalities detection in biomedical signal processing (EEG, ECG...etc)

in order to improve early detection of diseases [14, 15, 16, 17, 18, 19].

• Structural health monitoring of strategic assets such as bridges, dams, for

the early detection or prevention of faults [20, 21, 22, 23].

• Energy monitoring for industrial applications, such as electrical consump-

tion monitoring of units in a factory where the objective is to optimize

the performance (production versus electrical consumption) [24, 25].
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1.1.2. Motivation and organization of the paper

Previous studies have found that the performance of communication systems,

radar, sonar and EEG processing systems could be enhanced by simultaneously

taking into account (1) the non-stationary characteristics of measured signals

using time-frequency distributions (TFDs) and (2) the spatial information pro-

vided by an array of measuring sensors [1]. This results in the development of

new methods born from the marriage of these two advanced specialized signal

processing fields: hence, the collective name “multisensor time-frequency sig-

nal processing”. Furthermore, newly developed high-resolution quadratic TFDs

have led to improved performance in a wide range of situation [1, 2, 14]. Hence,

this study presents a tutorial review on the use of multisensor high-resolution

TFDs in the optimal processing of multisensor data e.g. the context of solving

array processing problems such as automated component separation (ACS) and

direction of arrival estimation (DOA); one key aim being improved resolution,

when signals are non-stationary. In addition to resolution, another key aim is

the signal causality analysis across sensors/channels and/or signals which allows

us to track the time varying location of moving sources by combining spatial

and time-frequency information obtained by a multisensor array. For example,

(1) in biomedical signal processing, the cross channel causality characterizes the

propagation of a seizure location across EEG channels and therefore providing

a key information about the time-varying information flow in scalp EEG sig-

nals [26]. Combing ACS and DOA should therefore improve decision making

from scalp EEG measurements and allow more knowledge about brain activity.

(2) In wireless communication, it characterizes the varying spatial location of a

moving user (mobile) in cell by exploiting the multiantenna array of the base

station. Determining the position and velocity of mobiles in cell is an important

issue for cellular networks since the efficient resource allocation depends on it.

1.2. Main Objectives

This study aims at presenting and extending past findings in a step by step

tutorial review with focus on:
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• Showing the mathematical and physical relationship between the founda-

tions of single variable TFDs and multichannel time-frequency distribu-

tions (MTFDs).

• Extending conventional stationary array processing techniques to the non-

stationary (time-frequency) array processing case in a step by step tutorial

presentation.

• Using advanced algorithms based on multisensor high-resolution TFDs to

enhance the capability of multisensor systems in areas such as direction

of arrival estimation or separation of non-stationary sources.

• Finally, illustrating the methods developed for multisensor TFDs on new

applications such as source localization of brain EEG abnormalities, and

propagation path of seizures on the scalp.

The rest of the paper is organized as follows: The extension of single sensor

TFDs to multisensor TFDs is discussed in Section 2. Blind source separation

methods based on MTFDs are described in Section 3. Then, Section 4 presents

a review on direction of arrival estimation algorithms using MTFDs. In Section

5, cross channel causality analysis is introduced with extension to MTFDs. An

application of mutisensor time-frequency analysis for EEG signals is provided in

Section 6. Finally, Section 7 concludes the paper. In 7, symbols frequently used

in this paper are listed in alphabetical order. The meaning in this list should

be assumed unless the symbol is otherwise defined in context.

The terminology MTFD is preferred as sensors and therefore channels pro-

vide a spatial dimension which is originally discrete, while the t and f variables

are naturally continuous. In addition, “M” in “MTFD” can refer to either

multisensors or multichannels as the former generates the latter.
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2. Extension of single sensor TFDs to multisensor TFDs

2.0. Background and motivation

This section aims at reviewing the fundamentals of array processing from

a non-stationary perspective in order to establish the mathematical and phys-

ical foundation for multisensor TFDs. Next, the advantages of multisensor or

multichannel TFDs are discussed.

Multisensor or multichannel TFDs are also called Spatial Time Frequency

Distributions (STFDs) in other works. In this study, the terminology MTFD

is preferred as discussed in Section 1.2. These techniques can solve array pro-

cessing problems such as direction of arrival (DOA) estimation with improved

resolution, using spatial information for the (t, f) processing of multichannel

non-stationary signals.

Many signal processing approaches focus on the case where non-stationary

signals are recorded by a single sensor. In fact, in some cases, only one source

produces a mono-component signal received by the sensor. However, a single

source can also generate a multicomponent signal. In other cases, a different

situation arises where several sources generate different components that merge

into one signal recorded by one sensor. (See Fig. 1). These two cases are known

as “Single Input and Single Output (SISO)” and “Multiple Input and Single

Output (MISO)”. The TF problem of analyzing multicomponent signals then

reduces to a problem of source separation in the case of just one sensor [27].

The traditional field of multisensor (array processing) deals effectively both with

this case “Single Input Multiple Output (SIMO)” and the more complex case of

multisource and Multi-sensor “Multiple Input and Multiple Output (MIMO)”.

This section formalized the problem statement for the extension of single sensor

TFDs to multisensor TFDs.
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Figure 1: a) Single-Input Single-Output (SISO) b) Multiple-Input Single-Output (MISO).

2.1. Problem statement

Let us consider a non-stationary zero-mean1 real signal vector x (t) =

[x1 (t) , x2 (t) , . . . , xm (t)]
T

and z(t) = [z1 (t) , z2 (t) , . . . , zm (t)]
T

is the analytic

signal associated with the original real signal x (t) obtained using the Hilbert

transform such that:

zi (t) = xi (t) + jH{xi (t)} , i = 1, . . . ,m. (1)

where H{ · } represents the Hilbert transform operator defined by:

H{xi (t)} = F−1

f→t

{
(−j sgn f) F

t→f

{
xi (t)

}}
. (2)

In the next section, we introduce the formulation of monochannel time-frequency

distributions and its extension to the multichannel case.

2.1.1. Formulation

In order to introduce the class of multichannel TFDs, we start this section

by presenting the foundation of TFDs in the monosensor case2. Let us consider

a non-stationary monosensor real signal x(t) and its analytic associate z(t).

1It is assumed, without loss of generality, that xi (t) has zero mean for i = 1, . . . ,m.
2For greater clarity, convenience, and without loss of generality, we focus on the use of

quadratic TFDs (QTFDs) as they form a class that encompass most of the useful TFDs used

in practice, including the spectrogram and standard filterbank (also called sonogram). Note

also that the spectrogram is the square modulus of the short time Fourier transform.
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The Wigner-Ville distribution (WVD) is considered as the core distribution of

quadratic class of TFDs [1]; it is defined as the Fourier Transform (FT) of the

instantaneous auto-correlation function3 Kz(t, τ) expressed as:

Wz (t, f) = F
τ→f
{Kz(t, τ)} =

∫
R
Kz(t, τ) e−j2πfτdτ, (3)

where Kz(t, τ) is defined as

Kz(t, τ) = z
(
t+

τ

2

)
z∗
(
t− τ

2

)
(4)

The WVD defined in Eq. (3) gives optimal concentration for mono-component

linear frequency modulation (LFM) signals, but it produces undesirable “ar-

tifacts” (or cross-terms) for non-linear frequency modulated (FM) or multi-

component signals. These cross-terms can be minimized by convolving the WVD

with a relevant 2D TF kernel; this is expressed as follows:

ρz(t, f) = Wz(t, f) ∗
t
∗
f
γ(t, f), (5)

where ρz(t, f) is a quadratic TFD, ∗
t
∗
f

indicates a double convolution and γ(t, f)

is a 2D smoothing kernel operating both in t and f variables. The 2D smoothing

of the WVD with γ(t, f) can reduce the cross-terms, but it also blurs the auto-

terms. Therefore, the TF kernels are designed to achieve the best trade-off

between minimizing cross-terms and retaining the resolution of auto-terms.

Eq. (5) can be calculated using a time–lag formulation by replacing the

convolution in f with a multiplication in lag, yielding the expression:

ρz (t, f) = F
τ→f

{
G (t, τ) ∗

t
Kz (t, τ)

}
(6)

where G(t, τ) is the time–lag kernel of the TFD and is related to γ(t, f) by

inverse FT (IFT).

G(t, τ) = F−1

f→τ

{
γ(t, f)

}
=

∫
R
γ(t, f) ej2πτfdf. (7)

3The instantaneous auto-correlation function is used to define the instantaneous correlation

of signal z(t) for different lags τ [1, Chapter 2].
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Therefore, by extending the previous formulation of time-frequency distri-

butions, the class of multichannel TFDs (MTFDs) for the signal vector z(t) is

then defined as:

ρzz (t, f) = F
τ→f

{
G (t, τ) ∗

t
Kzz (t, τ)

}

=


ρz1,z1 (t, f) ρz1,z2 (t, f) · · · ρz1,zm (t, f)

ρz2,z1 (t, f) ρz2,z2 (t, f) · · · ρz2,zm (t, f)
...

...
. . .

...

ρzm,z1 (t, f) ρzm,z2 (t, f) · · · ρzm,zm (t, f)

 ,
(8)

In the above, the time convolution ∗
t

applies on each entry of the spa-

tial instantaneous correlation matrix Kzz (t, τ) with elements Kzi,zj (t, τ) =

zi
(
t+ τ

2

)
z∗j
(
t− τ

2

)
, i, j = 1, 2, . . . ,m, being the instantaneous auto-correlation

functions, such that:

Kzz (t, τ) = z (t+ τ/2) zH (t− τ/2)

=


Kz1,z1 (t, τ) Kz1,z2 (t, τ) · · · Kz1,zm (t, τ)

Kz2,z1 (t, τ) Kz2,z2 (t, τ) · · · Kz2,zm (t, τ)
...

...
. . .

...

Kzm,z1 (t, τ) Kzm,z2 (t, τ) · · · Kzm,zm (t, τ)

 ,
(9)

2.1.2. Multisensor Time-Frequency Distributions MTFDs

In the MTFD matrix ρzz (t, f) (Eq. (8)), diagonal terms are called auto-

TFDs and the quadratic class of auto-TFD of xi(t) can be expressed as:

ρzizi (t, f) =

∫ ∞
−∞

∫ ∞
−∞

G (t− u, τ) zi(u+ τ/2)z∗i (u− τ/2)e−j2πτfdudτ. (10)

Similarly, the off-diagonal terms are called cross-TFDs. The cross-TFD of two

signals xi(t) and xj(t) can be expressed as:

ρzizj (t, f) =

∫ ∞
−∞

∫ ∞
−∞

G (t− u, τ) zi(u+ τ/2)z∗j (u− τ/2)e−j2πτfdudτ. (11)

2.1.3. Two types of cross-terms in MTFDs

In addition to the auto-TFDs encountered in the monocomponent single

channel case, multicomponent or multichannel TF analysis has both auto-TFDs
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Figure 2: Two sensors and one point source.

and cross-TFDs. There are then two different types of cross-terms in multichan-

nel TFDs. Type 1 is associated with auto-TFDs such cross-terms are formed by

the interactions within components of the same source signal; they are located

along the auto-terms on the main diagonal of the source TFD matrix. Type

2 cross-terms is generated by cross-TFDs of different source signals from the

interactions between signal components of two different sources [3].

2.2. Mixing models in array processing

Let us consider a simple example of sensor array with two sensors and one

source. Fig.2 shows the θ (azimuth) and φ (elevation) angles of the source. The

sources are considered as points in space, from which the propagation of signal

energy originates. This may be due, for example, to the emission of electro-

magnetic energy from a transmitter in a wireless communications system, the

reflection of electro-magnetic energy from a target in a radar system, or the

reflection of acoustic energy in a sonar system.

The signal energy results from a wave propagating radially outward from

the source location. Assuming the far-field scenario, the sources and array

are coplanar, implying that the azimuth angle θ is the only relevant spatial
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Figure 3: Multi-sensor array and multiple sources.

parameter of a source4.

2.2.1. Instantaneous mixing model

We introduce in this section the mathematical time domain model of instan-

taneous mixing systems and present the assumptions under which the instanta-

neous model is realistic.

The instantaneous mixing system is applicable to a wide range of problems in

array signal processing. Typical examples include mixtures speech signals that

are simultaneously recorded by several microphones, interfering radio signals

arriving at a mobile phone, or brain waves recorded by multiple sensors. Under

the assumption that sources are in the far-field, Fig. 3 shows n sources each

generating a signal; the combined signals {s1, s2, . . . , sn} arrive at the sensor

that form an m element multisensor array (uniform linear array). The linear

data model is given as:

z (t) = A s (t) + η (t) , (12)

4If the physical size of the sensor array is very small compared to the distance between

the source and sensor array (i.e., the source is in the far-field), the received wavefront may be

considered as a plane across the array.
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Figure 4: Instantaneous mixing model: m sensors receiving linear combinations of n source

signals.

where The m × n matrix A represents the propagation matrix or mix-

ing matrix, having n column vectors called steering vectors, vector

s (t) = [s1 (t) , s2 (t) , . . . , sn(t)]
T

contains the source signals, z (t) =

[z1 (t) , z2 (t) , . . . , zm (t)]
T

is the signal vector arriving at the m sensors and

η(t) represents an additive noise vector whose elements are modeled usually as

stationary, temporally and spatially white random processes, and independent

of the source signals. In other words, it is assumed that the signals received by

an array of sensors (e.g. microphones, antennas, transducers, etc) under far-

field assumption form a weighted sum (linear mixture) of the original sources.

As illustrated in Fig. 3, the matrix A contains information on the DOAs of the

different signals:

A = [a (θ1) ,a (θ2) , . . . ,a (θn)] , (13)

where a (θi) for i = 1, 2, . . . n is the steering vector of the array for direction θi,

as illustrated by Figs. 2 and 3.

Eq. (12) indicates that each sensor receives a combined contribution from

each source that forms the observations {zi (t)}mi=1. This mixture of n signals

is described in Fig 4; the elements {zi (t)}mi=1 of vector z (t) are linear super-

positions of the source signals. In the simple case, the sensors receive signals

from sources only through a single path (i.e., line-of-sight) and the observa-
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Figure 5: Convolutive mixing model: m sensors receiving linear combinations of delayed

(filtered) n source signals.

tions {zi (t)}mi=1 depend on the values of n source signals at the same time; this

elementary mixing process is referred to as instantaneous mixing.

2.2.2. Convolutive mixing model

We introduce in this section the mathematical time domain model of convo-

lutive mixing system. We present the assumptions under which the convolutive

model is realistic and some examples.

In the previous section, we have presented an instantaneous mixing model

where each recording consists of a sum of differently weighted source signals.

The instantaneous mixing model holds under the assumption that sources are

in the far-field. However, in many real-life applications, and when the sources

are in the near-field, the mixing process is more complex. In such situations, the

mixtures are weighted and delayed, and each source contributes to the sum with

multiple delays corresponding to the various paths by which a signal propagates

to a sensor as shown in Fig. 5. Such filtered sums of different sources form a

convolution operation and are therefore called convolutive mixtures. Depending

on the situation, the filters may consist of a few delay and attenuation elements,

as in radio communications, or possibly a few thousand delay elements as in

acoustics. Hence, in such cases the sensor array is clearly convolutive, as the

signals picked-up by the sensors consist not only of direct-path signals but they
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are also supplemented by their delayed (reflected) and attenuated versions in

the presence of noise. The received signal at the ith sensor under the convolutive

mixing model can be expressed as:

zi(t) =

n∑
j=1

K∑
k=0

aij(k)sj(t− k) + ηi(t), (14)

The received signal is a linear mixture of filtered versions of each source signals,

and aij(k) represents filter coefficients between the ith sensor and the jth source

signal. The filters may be of infinite length with K →∞ (and implemented as

recursive infinite impulse response systems); in practice it is in general sufficient

to assume K < ∞. The convolutive model can be formulated in matrix form

as:

z (t) =

K∑
k=0

A (k) s (t− k) + η(t), (15)

where the elements of the matrix A (k) are given by (A (k))i,j = aij(k).

2.3. Non-stationary case array signal model

Conventional stationary array processing methods are based on the covari-

ance matrix of the received observation at the array of sensors. For non-

stationary signals, their spectral content is time varying, and assuming sta-

tionarity would be inappropriate and reduce performance. There is therefore

a need to extend array processing methods to the non-stationary case in with

rigorous formulation of precise relevant models.

2.3.1. Defining multisensor TFDs

Multisensor TFDs represent a vector signal corresponding to the number of

channels (the space variable). The three dimensions, namely space, time and

frequency, are used to construct a matrix called Multisensor Time-Frequency

Distribution Matrix as given in Eq. (8). This approach may be called “Space-

Time-Frequency Processing” or more simply “Multisensor Time-Frequency Pro-

cessing” to account for the fact that the sensor/channel variable is naturally

discrete while the t and f variables are naturally continuous at the stage of mea-

surement and prior to sampling. It uses (t, f) domain information across sensors
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located at different spatial locations to characterize the set of non-stationary sig-

nals, and their interrelationship. By removing the stationarity assumption, the

covariance matrix becomes time-dependent, and is expressed as:

Rzz (t, τ) = E {Kzz(t, τ)} = E
{
z (t+ τ/2) zH (t− τ/2)

}
, (16)

where E { · } denotes expected value. By assuming the instantaneous mixing

model given by Eq. (12) the previous equation can be rewritten as:

Rzz (t, τ) = ARss (t, τ) AH + σ2
η δ(τ) Im. (17)

where Rss (t, τ) = E
{
s (t+ τ/2) sH (t− τ/2)

}
represents the signal sources

covariance matrix. The additive noise vector η(t) is assumed to be a sta-

tionary, temporally and spatially white zero mean random process, such that

Rηη (t, τ) = E
{
η (t+ τ/2)ηH (t− τ/2)

}
= σ2

η δ(τ) Im where δ(t) is the Dirac

delta function and Im is the m×m identity matrix.

In such case, using the extended Wiener–Khintchine theorem, the time-

varying power spectrum of a non-stationary signal z (t) can be estimated as the

FT of the filtered time-dependent covariance matrix Rzz (t, τ),

ρzz (t, f) = F
τ→f

{
G (t, τ) ∗

t
Rzz (t, τ)

}
. (18)

Replacing the matrix Rzz (t, τ) by its expression Eq. (17) yields:

ρzz (t, f) = F
τ→f

{
G (t, τ) ∗

t

(
A Rss (t, τ) AH + σ2

η δ(τ) Im
)}
. (19)

By exploiting the linearity of the Fourier transform and convolution operations,

we can rewrite the previous equation as:

ρzz (t, f) = A F
τ→f

{
G (t, τ) ∗

t
Rss (t, τ)

}
AH + σ2

η Im F
τ→f

{
G (t, τ) ∗

t
δ(τ)

}
.

(20)

Finally, the time-varying power spectrum of a non-stationary signal z (t) can be

given by:

ρzz (t, f) = Aρss (t, f) AH + σ2 Im, (21)
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where ρss (t, f) = F
τ→f

{
G (t, τ) ∗

t
Rss (t, τ)

}
is the signal TFD, σ2 = σ2

η g(0, 0)5.

By replacing the covariance matrices with Rzz (t, τ) and defining ρzz (t, f), then

the multisensor TFD (i.e., MTFD) matrices, Eq. (17) and Eq. (21) have a sim-

ilar structure. In Eq. (21), the auto-source TFDs (diagonal entries of ρss (t, f))

and the cross-source TFDs (off-diagonal entries of ρss (t, f)) play an analogous

role to the signal auto- and cross-correlations, respectively. This important ob-

servation allows one to apply many of the conventional second-order based array

processing methods to nonstationary signals by replacing the covariance matrix

with the MTFD matrix [3, 28, 29].

2.3.2. High resolution MTFDs

This section discusses the use of high resolution TFDs as a basis for designing

high-resolution MTFDs and their role in enhancing their performance.

i) Design principle.

The multisensor MWVD of the multisensor analytic signal z(t) is defined as the

FT of the instantaneous auto-correlation function.

Wzz (t, f) = F
τ→f
{Kzz (t, τ)} . (22)

Despite its many desirable properties, the MWVD has some drawbacks that re-

quire a precise handling. It may assume large negative values. Furthermore, it

is quadratic in the signal; hence, it exhibits cross-terms. Such cross-terms may

be useful in some applications like classification but are undesirable in other

applications, including analysis and interpretation as well as multicomponent

IF estimation. As in the single sensor case, cross-terms can be reduced by con-

volving the MWVD with a 2D TF kernel designed specifically for this purpose.

By extension of Eq.(5) most quadratic MTFDs, including the Multisensor Spec-

trogram (MS), can be interpreted as smoothed versions of the MWVD i.e. all

5g(ν, τ) is defined in Eq.(28). For some standard QTFDs g(0, 0) = 1, but this is not always

the case. It is a requirement for the marginal property to hold [1].
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MTFDs can be written as:

ρzz(t, f) = Wzz(t, f) ∗
t
∗
f
γ(t, f), (23)

where ∗
t
∗
f

indicates a double convolution and γ(t, f) is a TF kernel filter related

to G(t, τ) by Eq.(7) or equivalently defined by:

γ(t, f) = F
τ→f

{
G(t, τ)

}
=

∫
R
G(t, τ) e−j2πfτdτ. (24)

By extending of monosensor case, one obtains an approach for designing and

implementing high-performance quadratic MTFDs which is to apply the speci-

fication constraints in the dual domain expression i.e. [1, 14]:

ρzz(t, f) = F
τ→f

{
F−1

ν→t

{
g(ν, τ)Azz(ν, τ)

}}
, (25)

where Azz(ν, τ) is the spatial ambiguity function such that:

Azz (ν, τ) = F
t→ν

{
Kzz(t, τ)

}

=


Az1,z1 (ν, τ) Az1,z2 (ν, τ) · · · Az1,zm (ν, τ)

Az2,z1 (ν, τ) Az2,z2 (ν, τ) · · · Az2,zm (ν, τ)
...

...
. . .

...

Azm,z1 (ν, τ) Azm,z2 (ν, τ) · · · Azm,zm (ν, τ)

 ,
(26)

with

Azi,zj (ν, τ) =

∫
R
zi

(
t+

τ

2

)
z∗j

(
t− τ

2

)
e−j2πνtdt (27)

and g(ν, τ) is a Doppler-lag kernel defined by:

g(ν, τ) = F
t→ν

{
G(t, τ)

}
. (28)

ii) Formulation.

Separable kernel methods can overcome the resolution limitation of the multisen-

sor spectrogram because they add an additional degree of freedom that controls

smoothing along both axes [1, Section 5.7] such that g(ν, τ) = G1(ν)g2(τ). The

S-method [30], extended modified B-distribution (EMBD) [2], compact kernel

distribution (CKD) [31] and multidirectional distribution (MDD) [2] are four ex-

amples of high resolution separable kernel TFDs used earlier in the single sensor
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case. Previous studies showed that the CKD and the MDD give promising re-

sults [1, 2, 14]. For this reason we focus on them for the purpose of illustrating

the capability of the MTFD approach. The CKD is defined as:

g(ν, τ) =

 exp
(

2c+ cD2

ν2−D2 + cE2

τ2−E2

)
if |ν| < D, |τ | < E

0 otherwise
(29)

The parameters D and E specify the cut-off of the ambiguity domain filters

along the ν and τ axes. The parameter c controls the shape of the smoothing

kernel.

To account for the fact that real signals are multicomponent and can have several

directions of energy concentration in the (t, f) domain, the multidirectional

kernel (MDK) was formulated as [1, Section 5.9]:

gβ(ν, τ) =
1

P

P∑
i=1

χβi(ν, τ)hβi(ν, τ) , (30)

where P represents the number of branches and the factor 1/P in front of the

summation is a normalization coefficient and βi is related to the frequency rate

αi by αi = tan(βi). The term gβi(ν, τ) is the ith branch of the MDK, which is

rotated in the ambiguity domain by an angle βi ,

χβi(ν, τ) =

 exp
(
c0 +

cD2
i

Fβi (ν,τ)2−D2
i

)
, |Fβi(ν, τ)| < Di

0, otherwise

where Fβi(ν, τ) = cos(βi)ν−sin(βi)τ , c0 and c are slope-adjustment parameters,

and Di is the half-support of gβi(ν, τ) along the direction perpendicular to the

ith branch of the MDK, and hβi(ν, τ) is the Doppler lag window for the ith

branch of the MDK; that is,

hβi(ν, τ) =

 exp
(
c+

c0 E
2
i

Gβi (ν,τ)2−E2
i

)
, |Gβi(ν, τ)| < Ei

0, otherwise

where Gβi(ν, τ) = sin(βi)ν + cos(βi)τ and Ei is related to either the time dura-

tion of the LFM components or the bandwidth of spike components.
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2.3.3. Advantages of MTFDs over the Covariance matrix approach

This MTFD-based approach is in essence designed to increase the effective

SNR. It provides improved robustness with respect to noise by spreading the

noise power while simultaneously localizing the source signal power in the (t, f)

domain [3]. More precisely, the TFD of white noise is spread over the whole

(t, f) plane, while the TFDs of FM like sources are in general confined to much

smaller regions, as illustrated in Fig. 6. Let us consider three sources 1, 2

and 3 arriving on a multisensor array. Source 1 occupies the (t, f) region R1,

Source 2 the (t, f) region R2 and Source 3 the (t, f) region R3. The (t, f) region

characteristics (signatures) of the three sources intersect (i.e., region R12, R13,

R23 and region R123), but each source still has its own particular (t, f) region

that has no overlap with other sources. On the other hand, the noise is spread

over R1, R2 and R3, as well as the complement region Rc. When we select (t, f)

points for averaging that are within the noise only region Rc (such as (t1, f1)),

then no useful information about the sources is available. But, if we constrain

the selection of (t, f) points to R1, R2 or R3, such as (t2, f2), then only the noise

contribution in these regions is counted. The effect of removing the (t, f) points

that are outside the (t, f) signatures region of the signal arrivals is to increase

the SNR. To be more specific, the MTFDs property of concentrating the input

signal energy in its instantaneous bandwidth (IB) and around its instantaneous

frequency (IF) while distributing the noise over the whole (t, f) plane improves

the effective SNR which is important in many applications. A key point is

therefore the selection of (t, f) points in the region of interest.

2.3.4. Four key properties of MTFDs

Four key advantages results from using array signal processing with MTFD.

To explain these advantages, let us use the example presented in the previous

section and illustrated by Fig. 6.

1. The prior knowledge about any time-domain parameters or the type of

time-varying frequency behavior of the sources of interest can allow us to

directly select the (t, f) regions used in Eq. (21). For example, recall that,
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Figure 6: Depiction of three source signals having (t, f) signatures located on different regions.

in the (ν, τ) ambiguity domain, all tones map to the time-lag axis. By

only including the points on this axis, one can separate and localize all

narrowband signals in broadband communications platforms.

2. Eq. (21) is valid for all (t, f) points. Direction finding techniques require

ρzz(t, f) to be full rank; i.e. Rank(ρzz) = m, preferably diagonal [3]. On

the other hand, blind source separation techniques require the diagonal

structure of the same matrix without degenerate eigenvalues (we mean by

degenerate eigenvalues that the matrix is rank deficient). These properties

combined with high SNR requirements may be difficult to verify using one

single (t, f) point. Two different techniques can be used to integrate sev-

eral (t, f) points into Eq. (21). One uses a simple averaging performed over

the signatures of the relevant sources, and the second combines several de-

sired (t, f) points into joint diagonalization or joint block-diagonalization

schemes (details are given in Section 3.1 and Section 3.2).

3. The TFD of white noise is spread over the whole (t, f) plane, while the

TFDs of the source signals are generally confined to much smaller regions.

Fig. 6 indicated that the noise is distributed over R1, R2 and R3 and

the complement region Rc. When the (t, f) points used in either the joint
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diagonalization or the averaging procedures belong to the noise-only region

Rc, then it means that in this case, no information about the arriving

signals is used, and therefore no source localization and signal separation

operation can be reasonably achieved. However, if all (t, f) points in Fig. 6

are used, and the selected TFD verifies the marginals, then it follows that

the signal average power only is considered. As a consequence, the problem

reduces to the second-order covariance based matrix approach used in

standard high resolution DOA estimation. This key property means that

conventional techniques then become particular cases of the (t, f) array

signal processing approach. Finally, if we restrict the (t, f) points to be

in the regions R1, R2 and R3, then only the contribution of the noise in

these regions is relevant. Removing the points (t, f) that are not within the

(t, f) signatures area of the signal arrivals enhances the input SNR; this

can then be used by source localization and signal separation algorithms.

4. If we select only (t, f) points that are within the (t, f) signature of a partic-

ular source, then this source is the only one considered by Eq. (21). Such

selection, in essence, implicitly performs spatial filtering and removes other

sources from consideration. However, such removal does not reduce the

number of degrees-of-freedom (DOFs), as it does in beamspace process-

ing [32]. Then, the spatial information conserved which keep the problem

as a sensor space processing with the same original number of DOFs un-

changed. This finding represents a key contribution of TFDs to direction

finding and DOA estimation applications. It is intuitively expected that

an antenna array can localize a number of sources equal or even greater

than its number of sensors; this is an undertermined case and it is dis-

cussed in Sections 3.3 and 4.4. The key condition is that (t, f) regions

exist over which the respective (t, f) signatures regions of the sources do

not overlap. Let us consider the case of two sensors (see Fig. 6), if all (t, f)

points used in direction finding belong to region R1 and not R2, then the

signal subspace defined by Eq. (21) has dimension 1. This concept will be

further elaborated in Section 3.3. Thus, by excluding source 2, a noise
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subspace is established. This allows us to proceed with high resolution

techniques for localization of source 1. In a general context, one can local-

ize one source at a time or a set of selected sources, depending on the array

size, overlapping and distinct (t, f) regions, and the dimension of the noise

subspace necessary to achieve the required resolution performance. The

same concepts and advantages of (t, f) point selection discussed above for

direction finding can be applied to blind source separation problems.

2.3.5. Cross-term issues in MTFD

In the case of a single sensor, there are two sources of crossterms. The

first type are crossterms that result from the interactions between components

of the same source signal. The second type of crossterms are produced from

interactions between pairs of signal components belonging to different sources.

This second category of crossterms originates from cross-TFDs of the source

signals and, at any given (t, f) point, it constitutes the off-diagonal entries of

the source TFD matrices ρzz(t, f) defined in Eq.(21). Although the off-diagonal

elements do not necessarily affect the full-rank matrix property required for

direction-finding [28], they violate the key assumption in the problem of source

separation regarding the diagonal structure of the source TFD matrix. One

needs therefore to select the (t, f) points that are in autoterm regions where

crossterm contributions are at minimum, e.g., by using a priori information

from the source signals.

Note that the method of spatial averaging of the MTFD described in [29] does

not reduce the crossterms as in the case with reduced-interference distribution

kernels (see Section 2.3.2). Instead, it moves them from their locations on the

off-diagonal matrix entries to be part of the matrix diagonal elements. The other

parts of the matrix diagonal elements represent the contribution of autoterms

at the same point. Therefore, one can set the off-diagonal elements of the source

TFD matrix to zeros, and also improve performance by selecting the (t, f) points

of peak values, whether these points belong to autoterm or crossterm regions.
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2.3.6. Examples

In this illustration, three synthetic signals are generated with sampling fre-

quency 1 Hz such that:

z1(t) = exp (−j2π (0.25 t+ 0.012 cos (3.8πt))) ,

z2(t) = exp (−j2π(0.3) t) ,

z3(t) = exp

(
−j2π

(
0.4 t− 0.3

256
t2
))

.

Two MTFDs for the three generated signals are computed using the MWVD

and the CKD distributions respectively, as depicted in Figs. 7 and 8. The auto-

MTFDs in the MWVD diagonal plots in Fig. 7 illustrate the ideal representa-

tion of the WVD for mono-component LFM signals, and the deleterious effect

of inner cross-terms when representing nonlinear FM signals. Furthermore, the

cross-MTFDs in the MWVD off-diagonal plots in Fig. 7 do not represent the

intersections between the synthetic signals time-frequency signatures. On the

other hand, auto-MTFDs in the CKD, diagonal plots in Fig. 8, illustrate the

tradeoff between resolution and cross-terms suppression, when representing dif-

ferent classes of signals. In addition, the cross-MTFD in the CKD off-diagonal

plots in Fig. 8 successfully represent the intersections between the synthetic

signals time-frequency signatures.

The above results can be reproduced using the codes provided in [5].

3. Blind source separation (BSS)

3.0. Background and motivation

The aim of automated component separation (ACS) methods is to process

the observation acquired by multisensor arrays in such a way that the original

unknown source signal can be extracted. The scientific community used the

word “blind” to denote all identification or inversion methods that are based

on output observations only. Therefore, in the following, we use blind source

separation (BSS) to introduce the presented algorithm.
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Figure 7: Multisensor Wigner-Ville distribution (MWVD).

This section focuses on the use of modern BSS techniques in applications

where its needed to separate different components comprising a signal. BSS

applications include: source localization and tracking by radar/sonar systems;

multiuser detection in telecommunication; speaker separation (cocktail party

problem); biomedical data processing (e.g., separating EEG or ECG signals

from artifacts); industrial condition monitoring and fault detection; generally

speaking extracting key meaningful features from recorded data, etc. BSS algo-

rithms are used e.g. in EEG applications to localize abnormal EEG sources and
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Figure 8: Multisensor compact kernel distribution (CKD): (Tradeoff between resolution and

cross-terms suppression).

remove artifacts from the EEG. BSS methods can be divided in two classes: 1)

Over-determined case and 2) Under-determined case.

The underlying BSS model assumes that n ‘statistically’ independent signals

are observed through m (possibly noisy) mixtures. Neither the structure of the

mixtures nor the source signals are known to the observer. In such a context,

the problem is to identify and then disassemble the mixtures blindly.

It turns out that, this apparently difficult problem has elegant solutions
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Figure 9: Principle of blind source separation.

that vary according to the type of mixture and the nature of source statistical

information. Most BSS approaches, such as independent component analysis

(ICA) [33], assume that each source signal is statistically independent from

each other. In this context, BSS works only if at most one of the sources has

a Gaussian distribution6. If each source sequence is a temporally correlated

stationary process, BSS works if the source signals have different spectra [3, 34].

The approach is to account for the signal non-stationarity by using a time-

frequency approach with BSS so that one can separate and recover the indi-

vidual incoming signals. The problem can be viewed as a signal synthesis from

the (t, f) domain with the constraint of the spatial diversity provided by the

multisensor information. One advantage in combining BSS with a TF approach

is that the effect of distributing the noise power while simultaneously localiz-

ing the source signal energy in the (t, f) domain result in improving the SNR,

therefore improving robustness. This TF based BSS methodology includes (i)

the BSS problem of instantaneous mixtures and (ii) the general case of BSS of

convolutive mixtures.

6The BSS methods based on the assumption of statistical independence of source signals

aim to maximize the non-Gaussianity of estimated sources. It follows that, if all source signals

are Gaussian, this BSS methods will not work.
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Although BSS algorithms exist in great profusion, the underdetermined case

(with number of sensors smaller than number of sources) is less addressed than

the overdetermined case (with number of sensors greater than or equal to num-

ber of sources). In the underdetermined BSS (UBSS) case, one way to deal with

the lack of information is to exploit the assumption that the non-stationary

sources are disjoint in the time-frequency domain in order to solve the UBSS

problem without prior knowledge on the source distribution.

3.1. BSS of instantaneous mixtures based on MTFDs

In this section, we review the BSS technique based on multisensor time-

frequency analysis for instantaneous mixing system. Let us consider an n-

dimensional vector s(t) = [s1(t), . . . , sn(t)]T that represents n non-stationary

source signals si(t), i = 1, . . . , n. The si(t) propagate through a medium and

arrives at an array of m sensors which records a mixture of signals described

by an m-dimensional vector z(t) = [z1(t), . . . , zm(t)]T . Therefore, the data

model given in Section 2.2.1 by Eq.(12) is applicable in this situation so that

z (t) = A s (t) + η (t).

A number of BSS algorithms have been developed for the instantaneous

mixing case, which make use of the MTFD matrices discussed in the previous

section. [35, 36]. The various approches all exploit the underlying diagonal or

off-diagonal structure of MTFD matrices at some locations in the (t, f) domain.

BSS is achieved by first constructing a set of MTFD matrices, followed by joint

diagonalization (JD), joint off-diagonalization (JOD) or combined JD/JOD, to

estimate the mixing matrix. The optimization of JD/JOD criteria is based on

both orthogonal [35] and non-orthogonal [37] constraints. Such an algorithm is

illustrated in Fig. 10.

The principle of BSS based on orthogonal JD/JOD of MTFDs matrices is

outlined below [3]. This approach constrains the mixing matrix to be orthogonal,

but this is not the case in general. A whitening step needs therefore to be applied

to the signals, to verify the orthogonality constraint.
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Figure 10: Diagram of the BSS algorithm for instantaneous mixtures based on MTFDs.

3.1.1. Data whitening preprocessing

Let us consider an n×m matrix H which verifies (HA)(HA)H = In. Here,

U = HA is a n × n unitary whitening matrix (which whitens the signal part

of the observations). Then, the whitened MTFD matrices are computed by

applying the whitening matrix H as follow:

ρ
zz

(t, f) = Hρzz(t, f)HH . (31)

From the definition of H and Eq.(21), one can express ρ
zz

(t, f), in the noiseless

case, as:

ρ
zz

(t, f) = Uρss(t, f)UH . (32)

The whitening matrix H can be estimated in different ways. One example is

the inverse square root of the observation autocorrelation matrix; another is to

calculate it using the MTFD matrices [3].

3.1.2. Source separation by joint diagonalization (JD)

Selecting only auto-term (t, f) points reduces the whitened MTFD matrices

to the formulation below:

ρa
zz

(t, f) = Uρa
ss(t, f)UH (33)
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where ρa
ss(t, f) is diagonal7. Eq.(33) shows that any whitened MTFD matrix

is diagonal in the basis formed by the columns of the matrix U (given that the

eigenvalues of ρa
zz

(t, f) are the diagonal entries of ρss(t, f)).

In the case where, for a given (t, f) point, the diagonal elements of ρa
ss(t, f)

are all different, the missing unitary matrix U may be uniquely retrieved by

computing the eigendecomposition of ρa
zz

(t, f), up to permutation and scaling

ambiguity. Indeed, the BSS problem has an inherent ambiguity concerning the

order and amplitudes of the sources. In the case of degenerate eigenvalues in-

determinacy occurs, where we mean by degenerate eigenvalues that the matrix

ρa
zz

(t, f) is rank deficient. Formally, this occurs when ρsisi(t, f) = ρsjsj (t, f),

i 6= j. One cannot see how to a priori choose the (t, f) point such that the

diagonal entries of ρa
ss(t, f) are all different. Furthermore, if some eigenvalues

of ρa
zz

(t, f) are degenerate, the robustness of determining U from the eigen-

decomposition of a single whitened MTFD matrix suffers. The situation is

more appropriate if one considers the joint diagonalization of a combined set

{ρa
zz

(ti, fi)|i = 1,. . . , p} of p (source auto-term) MTFD matrices. This is equiv-

alent to including several (t, f) points in the source separation problem which

decreases the probability of selecting only degenerate eigenvalues. Therefore,

by considering a combined set {ρa
zz

(ti, fi)|i = 1,. . . , p} one can improve the ro-

bustness of the joint diagonalization procedure. Note that if two source signals

have identical (t, f) signatures, it is expected intuitively that they cannot be

separated even if one includes all information available in the (t, f) domain.

The joint diagonalization of a set {Mk|k = 1,. . . , p} of p matrices is formu-

lated as the maximization of the following cost function [3]:

C(V) ,
p∑
k=1

n∑
i=1

|vHi Mkvi|2 (34)

over the set of unitary matrices V = [v1, . . . ,vn] [3]. One way to get an efficient

7Given that the off-diagonal elements of ρa
ss(t, f) are actually cross-terms, the source TFD

matrix is quasi-diagonal for the (t, f) points that correspond to a true component power

concentration, i.e. a source auto-term.
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joint approximate diagonalization algorithm is to generalize the Jacobi technique

[38] for the exact diagonalization of a single normal matrix [3].

3.1.3. Source separation by joint off-diagonalization (JOD)

The effect of selecting cross-term (t, f) points is that the whitened MTFD

matrices formulation becomes:

ρc
zz

(t, f) = Uρc
ss(t, f)UH (35)

where ρc
ss(t, f) is off-diagonal. As the diagonal of ρc

ss(t, f) are formed by el-

ements that are auto-terms, the source TFD matrix is then quasi off-diagonal

(i.e., diagonal entries are negligible i.e. ' 0) for each (t, f) point that corre-

sponds to a cross-term. The required unitary matrix U is estimated by joint

off-diagonalization (JOD) of a combined set {ρc
zz

(ti, fi)|i = 1,. . . , q} of q source

cross-term MTFD matrices [3].

Such JOD procedure is justified by realizing that the off-diagonalization of

a single n× n matrix N means maximizing

C(N,V) , −
n∑
i=1

|vHi Nvi|2 (36)

over the set of unitary matrices V=[v1, . . . ,vn]. This is because the Frobenius

norm of a matrix is constant under unitary transform, i.e., ‖N‖F = ‖VHNV‖F .

Hence, the JOD of a set {Nk|k=1,. . . , q} of n×n matrices is formulated as the

maximization of the JOD cost function:

C(V) ,
q∑

k=1

C(Nk,V) = −
q∑

k=1

n∑
i=1

|vHi Nkvi|2 (37)

under the same unitary constraint.

Then, in order to improve the robustness of separation procedure and take

advantage of both auto-terms and cross-terms, one can combine joint diag-

onalization and joint off-diagonalization of two sets {Mk|k = 1,. . . , p} and

{Nk|k = 1,. . . , q} of n× n matrices by maximizing the JD/JOD cost function:

C(V) ,
n∑
i=1

(
p∑
k=1

|vHi Mkvi|2 −
q∑

k=1

|vHi Nkvi|2
)

(38)
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over the set of unitary matrices V = [v1, . . . ,vn]. Then, the combined JD/JOD

criterion can be applied to a combined set of p (source auto-term) MTFD matri-

ces and q (source cross-term) MTFD matrices in order to estimate the unitary

matrix U.

Notes:

(1) The performance of the JD or JOD of MTFD matrices in retrieving the

unitary matrix U depends strongly on correctly selecting auto-term and cross-

term points [3]. Therefore, it is critical to define a selection method that can

discriminate between auto-term and cross-term points based only on the MTFD

observations matrices. One possible solution is to exploit the off-diagonal struc-

ture of the source cross-term MTFD matrices and the invariance of Trace oper-

ation under a unitary transformation. More specifically, for a source cross-term

MTFD matrix, we have

Trace
(
ρc
zz

(t, f)
)

= Trace
(
Uρc

ss(t, f)UH
)

Then, knowing that the source cross-term MTFD matrices are off-diagonal (i.e.

the diagonal elements are equal to zero), and that Trace
(
U M UH

)
= Trace

(
M
)

if U is a unitary matrix, then:

Trace
(
Uρc

ss(t, f)UH
)

= Trace
(
ρc
ss(t, f)

)
≈ 0.

Based on this observation, the following testing procedure applies:

1) if
Trace(ρ

zz
(t,f))

‖ρ
zz

(t,f)‖ < ε,−→ then, allocate the (t, f) point as cross-term;

2) if
Trace(ρ

zz
(t,f))

‖ρ
zz

(t,f)‖ > ε,−→ then, allocate the (t, f) point as auto-term;

where ε is a ‘small’ positive real scalar (typically, ε = 0.05) [3].

(2) In effect, the source cross-term MTFD matrices are not totally off-diagonal,

given that some auto-terms main lobes or side lobes overlap with the areas

where cross-terms are dominant. This is like the case of joint diagonalization

of MTFD matrices selecting auto-term points [3], where the source auto-term

MTFD matrices are not totally diagonal because of cross-term overlap. This
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weakness is compensated by the joint approximation and robustness properties

of the JD/JOD algorithm.

(3) The above results suggest that other classes of TFDs and related methods

may also benefit from BSS; e.g. a cumulant-based 4th order WVD or time-

varying trispectrum can be utilized for source separation [39]. Blind separation

of more sources than sensors (underdetermined BSS) is solved using a (t, f)

disjoint concept [40] (see Section 3.3).

Implementation details and the corresponding MATLAB code of the above

algorithm are described in [5].

3.1.4. Experiment: Separation of Instantaneous Mixtures

In this example, three synthetic signals are generated with sampling fre-

quency 1 Hz such that:

s1(t) = exp

(
−j2π 0.5

256
t2
)
,

s2(t) = exp

(
−j2π

(
0.5 t− 0.5

256
t2
))

,

s3(t) = exp (−j2π(0.3 t)) ,

as depicted in the first row of Fig. 11. The generated signals are mixed using an

instantaneous noisy uniform linear array model, to be received on m = 6 sensors

with an SNR of 30 dB (Fig. 12). The received mixtures are whitened, and

their MTFD using WVD is computed for the selection of auto and cross-terms.

Finally, the un-mixing matrix is estimated, using a joint diagonalization/joint

off-diagonalization algorithm, and estimated sources are classified using their

time-frequency correlation with the original signals, as depicted in the second

row of Fig. 11. The results presented in this section can be reproduced using

the codes provided in [5].

3.2. BSS of convolutive mixtures based on MTFDs

3.2.1. Signal Model in the convolutive mixture case

The convolutive case involves delayed elements caused e.g. by a multi-path

propagation. The multiple input multiple output (MIMO) linear time invariant
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Figure 11: Blind source separation of three source signals (n = 3) based on MTFDs.
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Figure 12: Received mixed signal: Received Signal on Sensor 3 with SNR = 30dB.

signal model can then be expressed as z (t) =

K∑
k=0

A (k) s (t− k) + η(t) i.e.
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Eq.(15). As discussed earlier, two assumptions are made; (1) that the sources

have different sparse (t, f) signatures and (2) the channel matrix Ã formulated

in (40) is full column rank; this means that all the filters {aij(k)}Kk=0 are stable

[41]. Eq. (15) can be rewritten in matrix form as:

z̃(t) = Ã s̃(t) + η̃(t), (39)

where s̃(t), z̃(t), η̃(t) and Ã are further described below:

s̃(t) = [s1(t), . . . , s1(t− (K +K ′) + 1), . . . , sn(t− (K +K ′) + 1)]T ,

z̃(t) = [z1(t), . . . , z1(t−K ′ + 1), . . . , zm(t−K ′ + 1)]T ,

η̃(t) = [η1(t), . . . , η1(t−K ′ + 1), . . . , ηm(t−K ′ + 1)]T ,

Ã =


A11 · · · A1n

...
. . .

...

Am1 · · · Amn

 , (40)

with

Aij =


aij(0) · · · aij(K) · · · 0

. . .
. . .

. . .

0 · · · aij(0) · · · aij(K)

 , (41)

where Ã is an mK ′ × n(K +K ′) matrix and Aij are K ′ × (K +K ′) matrices.

The parameter K ′ is a slide window size chosen such that mK ′ ≥ n(K+K ′) to

ensure that the matrix Ã is invertible.

The formalism is similar to the instantaneous mixture case. The data MTFD

matrices still have the same expression as in Eq. (21). But the source auto-

term matrices ρs̃s̃(t, f) are no longer diagonal, but block-diagonal8 where each

diagonal block is of size (K +K ′)× (K +K ′). Similarly, the source cross-term

matrices are no longer off-diagonal but block off-diagonal. This block-diagonal

8The block diagonal characteristic comes from the property that cross-terms between si(t)

and si(t−d) are not zero as they relate to the local correlation structure of the signal.
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or block off-diagonal property enables BSS to work in this case; as discussed in

the next section.

3.2.2. BSS using MTFD matrices for convolutive mixtures

Let us now generalize the BSS method for the instantaneous case presented

in Section 3.1 to the case of convolutive mixtures.

i) Data whitening preprocessing.

For BSS of instantaneous mixtures, this approach constrains the mixing matrix

Ã to be orthogonal, which is not the case in general. To match assumptions

with reality, the first step of the procedure is to then whiten the data vector

z̃(t) to fulfill the orthogonality constraint. This is done by processing z̃(t) with

a whitening matrix H, which is an n(K ′+K)×mK ′ matrix verifying:

H Rz̃z̃ HH =
(
HÃR

1
2

s̃s̃

)(
HÃR

1
2

s̃s̃

)H
= In(K′+K), (42)

where Rz̃z̃ and Rs̃s̃ denote the covariance matrices of z̃(t) and s̃(t), respectively.

Eq. (42) shows that if H is a whitening matrix and if R
1
2

s̃s̃ (Hermitian square

root matrix of Rs̃s̃) is block diagonal, then the following matrix

U = HÃR
1
2

s̃s̃ (43)

is an n(K ′ +K)× n(K ′ +K) unitary matrix. The whitening matrix H can be

determined from the eigendecomposition of the data covariance matrix Rz̃z̃ as

its inverse square root [3].

ii) Separation using matrix joint block diagonalization.

Recall the whitened MTFD matrices ρ
z̃z̃

(t, f) = Hρz̃z̃(t, f)HH as defined in

(31). Combining Eq.(39) and Eq.(43) leads to:

ρ
z̃z̃

(t, f) = UR
− 1

2

s̃s̃ ρs̃s̃(t, f)R
− 1

2

s̃s̃ UH (44)

Let us denote ρ(t, f) = R
− 1

2

s̃s̃ ρs̃s̃(t, f)R
− 1

2

s̃s̃ . This then results in

ρ
z̃z̃

(t, f) = Uρ(t, f)UH (45)
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As ρ(t, f) is block diagonal and the matrix U is unitary, the following property

holds: any whitened MTFD matrix is then block diagonal on the basis formed

by the column vectors of matrix U. As a consequence, the unitary matrix U can

be determined by estimating the block diagonalization of the matrix ρ
z̃z̃

(t, f).

As for the joint diagonalization approach presented in Section 3.1.2, one can use

the joint block diagonalization of a set {ρ
z̃z̃

(ti, fi); i = 1,. . . , p} of p whitened

MTFD matrices in order to reduces the probability of selecting only degenerate

eigenvalues, and then improve the robustness of the joint block-diagonalization.

A similar procedure can be used with the joint block off-diagonalization of the

source cross-term MTFD matrices.

This joint block-diagonalization (JBD) is obtained by maximizing the fol-

lowing criterion under unitary transform:

C(U) ,
p∑
k=1

n∑
l=1

(K′+K)l∑
i,j=(K′+K)(l−1)+1

∣∣∣u∗i ρz̃z̃(tk, fk) uj

∣∣∣2 , (46)

over the set of unitary matrices U = [u1, . . . ,un(K′+K)]. To perform the above,

one can use an efficient Jacobi-like algorithm for joint block diagonalization

algorithm such as [38, 42].

After the unitary matrix U is retrieved (up to a block diagonal unitary

matrix P due to the inherent JBD problem indeterminacy [43]), the estimated

signals are then estimated up to a filter by:

̂̃s(t) = UH H z̃(t). (47)

By “up to a filter” we mean that the separated sources correspond to filtered

versions of the original ones, i.e. ŝi(t) = si(t) ∗ hi(t) where hi(t) is an unknown

filter and ∗ stands for the convolution. According to (39) and (43), the estimated

signals verify, ̂̃s(t) = PR
− 1

2

s̃s̃ s̃(t) (48)

where, the matrix R
− 1

2

s̃s̃ is block diagonal and P is a block diagonal unitary

matrix.
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iii) Assumptions and reality.

The performance of the above algorithms may be affected by a few points.

(1) In practice, it is sufficient that only n signals among the n(K ′+K) recovered

ones are selected. One chooses the signals resulting in the smallest cross-terms

coefficients. This result is obtained as a byproduct of the joint block diagonal-

ization procedure with no additional required computations.

(2) The algorithm yields a source separation up to a filter, instead of the full

MIMO deconvolution procedure. An alternative is to apply a SIMO (Single In-

put Multiple Output) deconvolution/equalization [44] to the separated sources.

3.2.3. Experiment: Separation of Convolutive Mixtures

In this experiment, two synthetic signals (n = 2) are generated with sampling

frequency 1 Hz as:

s1(t) = exp

(
−j2π

(
0.5 t− 0.5

256
t2
))

,

s2(t) = exp
(
−j2π 10−5 t3

)
,

as depicted in the first row of Fig. 13. The generated signals are passed through

a noisy convolutive invariant filter with length K = 1 representing the mixing

model and then received on four sensors (m = 4) with 40 dB SNR (Fig. 14).

The received mixtures are whitened, and their MTFD is computed using WVD

for the selection of auto-terms. The estimated sources are obtained by applying

a separation matrix given by the joint block diagonalization of selected auto-

terms with window size K ′ = 2. Estimated filtered sources are then classified

using their TF correlation with the original signals, as depicted in the last three

rows of Fig. 13.

In the second experiment, a pair of one seconds soundtracks (n = 2), car

start-up and seagull sounds, are used as illustrated in the first row of Figs. 15

and 16. Other one seconds soundtracks can be obtained from [5], while their

original full length can be downloaded from [45]. The used sounds are passed

through a noisy convolutive invariant filter, describing the mixing model, to be

received on three sensors (m = 3), as shown in Fig. 17. The received mixtures
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Figure 13: Blind source separation of two source signals based on MTFDs.

are then whitened and their MTFD is computed using WVD for the selection of

auto-terms. Estimated filtered sources are classified using their time-frequency

correlation with the original signals, as depicted in the last three rows of Figs.

15 and 16.

The above results can be reproduced using the codes provided in [5].

3.3. Under-determined blind source separation (UBSS)

In applications such as telecommunications or geophysics, the received sig-

nals form a mixture. The user is not necessarily interested in the whole signal

mixture, but rather in one or more particular signal components. For exam-

ple, in wireless communications the received signal is often a mixture of several

source signals (multiple access interference) but the user may be interested in

recovering only one or a few source signals. In the case where the signal com-
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Figure 14: Received mixed signal (received signal on sensor 2 with SNR=40dB).

ponent are non-stationary one can use MTFDs to extract the desired source

signal, and separate/recover any signal component.

The BSS algorithms given in Section 3.1 have apparent limitations in sit-

uations where there are more sources than sensors with a failure to separate

sources. The focus of this section is to address this problem known as the

underdetermined BSS (UBSS).

This section therefore assumes that (1) there are more sources than sensors,

and (2) the sources are non-stationary FM signals as encountered in wireless

communications and geophysics.

3.3.1. Data model and assumptions

As in Section 3.1, let us assume that an n-dimensional vector s(t) =

[s1(t), . . . , sn(t)]T represents n non-stationary source signals denoted si(t),

i = 1, . . . , n. These signals propagate through a medium and arrive at an array

of m sensors which records a set of mixed signals described by an m-dimensional

vector z(t) = [z1(t), . . . , zm(t)]T . This situation is described by the data model

presented in Section 2.2.1 Eq.(12) such that z (t) = A s (t) + η (t).
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Figure 15: Blind source separation of two audio source signals based on MTFDs (time-

frequency representation).

In the case where the number of sensors m is less than the number of sources

n, i.e. UBSS problem, the mixing matrix A is not (left) invertible. However,

the column vectors of mixing matrix given by A = [a1,a2, . . . ,an] are assumed

to be pairwise linearly independent, i.e., for any i, j ∈ 1, 2, . . . , n and i 6= j, ai

and aj are linearly independent. This hypothesis is equivalent to assuming that

the direction of arrival of each of the n signal sources is different. As mentioned

earlier, the sources are assumed to be multicomponent FM signals. This signal

model finds application in speech analysis/synthesis [46]. In this case, the (t, f)

domain representing the sources shows a distinct pattern with multiple ridges.

The kth source may be expressed as,

sk(t) =

Mk∑
l=1

sk,l(t), (49)
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Figure 16: Blind source separation of two audio source signals based on MTFDs (time domain

representation).

where each component sk,l(t), has an AM/FM form such as:

sk,l(t) = ak,l(t) e
jφk,l(t). (50)

It is assumed that sk,l(t) has only one ridge in the (t, f) domain. Fig. 18 shows

an example of a multicomponent signal, consisting of three components.

3.3.2. UBSS using Vector Clustering

The following presents a UBSS algorithm with a vector clustering approach

using the assumption that the sources are disjoint in the (t, f) domain [40].

i) Model assumptions.

This approach assumes that (1) the sources have different sparse (t, f) signa-

tures, (2) the sources are consequently disjoint in the (t, f) domain (Fig. 19) in

44



0 1000 2000 3000 4000 5000

Frequency (Hz)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
 (

s
)

Figure 17: Received mixed signal (received signal on sensor 3 ): (time-frequency representation

of the convolutive mixture of two audio sources).

Figure 18: A time-frequency distribution of a multicomponent non-stationary signal: (Com-

pact kernel distribution (CKD) with parameters c = 1, D = 0.1 and E = 0.1).

the sense that their (t, f) supports are disjoint. The (t, f) support of a signal

s(t) is defined as {(t, f)|ρss(t, f) 6= 0} where ρss(t, f) is the TFD of s(t).
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Figure 19: (t, f) orthogonal sources; the (t, f) supports of two sources are disjoint.

The properties of TFDs suggest that the (t, f) disjoint assumption is too

restrictive and cannot be verified exactly in practice. However, only an approx-

imate disjoint assumption (quasi-disjoint) is required in practice to separate

sources [40]; e.g. two linear FM signals with different gradients satisfy the

quasi-disjoint assumption.

Under these assumptions, let us consider two auto-term MTFD matrices

(as defined in Section 3.1) of the observation; then the MTFDs ρzz(t1, f1) and

ρzz(t2, f2) corresponding to the same source si(t) verify:

ρzz(t1, f1) = ρsisi(t1, f1)aia
H
i ,

ρzz(t2, f2) = ρsisi(t2, f2)aia
H
i .

(51)

Eq.(51) shows that ρzz(t1, f1) and ρzz(t2, f2) have the same principal eigenvec-

tor ai. One can then design an algorithm which groups together all auto-term

points corresponding to the same principal eigenvector associated with a par-

ticular source signal. This source TFD (ρsisi(t, f)) is then estimated as the

principal eigenvalue of the MTFD matrices at the auto-term points. Fig.20

illustrates the corresponding flowchart.

ii) A four stage design and implementation procedure.

The UBSS algorithm using vector clustering has four main stages:
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Figure 20: Diagram of the UBSS algorithm.

(1) MTFD computation and noise thresholding

These MTFD matrices process the received signal to extract the source signals.

The computational cost is reduced by processing only “significant” MTFD ma-

trices, using a noise thresholding applied to the signal TFD. A threshold ε1 is

used to keep only the points {(ts, fs)} with sufficient energy. Typically, ε1 = 0.05

of the point with maximum energy [40]. This step can be summarized as:

Keep (ts, fs) if ‖ρzz(ts, fs)‖ > ε1. (52)

(2) Auto-term selection

Separating the auto-term points from cross-term points requires an appropriate

testing criterion. Given the sources TF disjoint requirement, each auto-term

MTFD matrix is of rank one, or in practice it has one “large” eigenvalue rel-

ative to other eigenvalues. One can then use rank selection criteria, such as

MDL (minimum description length) or AIC (Akaike information criterion) to

discriminate (t, f) points [47]. The result is then essentially to select auto-term

points as those corresponding to MTFD matrices of rank one. This step can

written formally as follows:

if

∣∣∣∣ λmax {ρzz(t, f)}
norm {ρzz(t, f)}

− 1

∣∣∣∣ > ε2 −→ decide that (t, f) is a cross-term point.

(53)

In the above, the parameter ε2 is a negligible positive scalar (typically, ε2 = 10−4

[40]), and λmax {ρzz(t, f)} denotes the largest relative eigenvalue of ρzz(t, f).

47



(3) Clustering and source TFD estimation

After selecting the auto-term points, one needs a clustering step for the spatial

signatures of the sources. This step is done to separate (cluster) each (t, f) point

following its spatial component given by the corresponding principal eigenvector.

The principle is that that two MTFD matrices associated with the same source

signal have the same corresponding principal eigenvectors. Also, recall that such

corresponding principal eigenvalues identify the desired source TFD. The above

step can be implemented in 4 operations described below:

(a) For each auto-term point, (ta, fa), find the principal eigenvector, v(ta, fa),

and its associated eigenvalue, λ(ta, fa), of ρzz(ta, fa).

(b) Given that the vectors {v(ta, fa)} are estimated up to a random phase

multiplicative coefficient ejφ, φ ∈ [0, 2π), one can constraint, without loss

of generality, their norms to be 1 and their first entries to be real positive.

(c) These vectors are then clustered into different classes {Ci|i = 1, . . . , n} by

using any clustering algorithms such as the k-means algorithm [48].

(d) For each particular source si (i.e. each class Ci), calculate its TFD as:

ρ̂sisi(t, f) =

λ(ta, fa), if (t, f) = (ta, fa) ∈ Ci

0, otherwise.

(54)

Note that one can also estimate the mixing matrix A such that the column

vectors of A are estimated as the centroid of each class Ci i.e.:

âi =
1

Card{Ci}
∑

(t,f)∈Ci

v(t, f).

where Card{Ci} represents the number of elements in the set Ci.

(4) Source signal reconstruction

The last stage is then to select an appropriate reconstruction technique to es-

timate the source signals, si(t) (i = 1, . . . , n), from their corresponding TFD

estimates ρ̂sisi . The method in [49] can be exploited for TF synthesis from the
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WVD of separated sources, based on the following inversion property of the

WVD [1, Chapter 3]:

z(t) =
1

z(0)∗

∫
R
Wz

(
t

2
, f

)
ej2πtf df (55)

In the next section, the TF-disjoint condition is relaxed by allowing the

sources to be nondisjoint in the (t, f) plane. This is to overcome the drawback

of the BSS method presented above. Although this method worked well under

the TF-almost-disjoint condition, it did not explicitly process the TF regions

where the sources overlap. A point in the overlap area of two sources was

assigned “by chance” to only one of the sources. As a result, the source that is

allocated this point gets information about another source while the latter loses

some of its own information. If the number of overlapping points increases (i.e.,

the TF-almost-disjoint condition is not met), the performance of the separation

tends to reduce unless the overlapping points are processed correctly.

3.3.3. UBSS for non-disjoint sources in the (t, f) domain

In most real life applications, the (t, f) disjoint assumption is a restrictive

condition that is not precisely and rigourously applicable. When this condition

is not met, the separation performance degrades greatly at those overlapped

(t, f) points. In order to remedy this weakness, a subspace projection based

separation method, with sparsity assumption relaxed, can be used [4, 50]. In this

algorithm, the (t, f) representations of different sources are allowed to overlap,

but only to the extent that there are less active sources at any (t, f) point than

the number of sensors. As this sparsity condition is more relaxed than the

(t, f) disjoint assumption so that the sources are allowed to overlap in the (t, f)

domain, it will be called TF nondisjoint.

Under the (t, f) nondisjoint assumption, consider a particular (t, f) point

at which there are K sources s`1(t), . . . , s`K(t) present, with K < m where

`1, . . . , `K ∈ {1, 2, . . . , n} denote the indexes of the sources present at the point

(t0, f0). The goal is to identify the sources that are present at the point (t0, f0),

i.e. `1, . . . , `K, and to estimate the TFD of each of these contributing sources.
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In order to model the received signal under this assumption, let us define

the following sub-vector and sub-matrix:

s̃(t) = [s`1(t), . . . , s`K(t)]T , (56a)

Ã` = [a`1 , . . . ,a`K ]. (56b)

Then, under the (t, f) nondisjoint assumption the instantaneous model reduces

to the following

ρzz(t, f) = Ã` ρs̃s̃(t, f) ÃH
` . (57)

Consequently, given that ρs̃s̃(t, f) is of full rank, we obtain

Range {ρzz(t, f)} = Range
{

Ã`

}
(58)

Let Q = Im −VVH be the orthogonal projection matrix onto the noise sub-

space of ρzz(t, f), where V is the matrix formed by the K principal singular

eigenvectors of ρzz(t, f). Then, from Eq. (58), we obtain:Q ai = 0, i ∈ {`1, . . . , `K},

Q ai 6= 0, otherwise.

. (59)

Assuming that the mixing matrix A has been estimated by methods such as

the clustering based method presented in Section 3.3.2, the observation in Eq.

(59) can be used to identify the indexes `1, . . . , `K and therefore, the sources

present at (t0, f0). To implement this and account for the additive noise,

one can detect these indexes by selecting the K smallest values from the set

{‖Q ai‖|i = 1, . . . , n}, as mathematically expressed by:

{`1, . . . , `K} = arg min
i;K
‖Q ai‖ . (60)

The MTFD values of the K sources at (t0, f0) are calculated as the diagonal

elements of the following matrix:

ρ̂s̃s̃(t0, f0) ≈ Ã#
` ρzz(t0, f0) Ã#H

` , (61)

where (#) represents the Moore-Penrose’s pseudo-inversion operator [51].
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3.3.4. Experiment: Underdetermined blind source separation

In the first experiment, four TF disjoint source signals (n = 4) are generated

with sampling frequency 1 Hz such that:

s1(t) = exp

(
−j2π 0.2

256
t2
)

+ exp

(
−j2π

(
0.2 t− 0.2

256
t2
))

,

s2(t) = exp (−j2π(0.25 t)) ,

s3(t) = exp

(
−j2π

(
0.3 t+

0.1

256
t2
))

,

s4(t) = exp

(
−j2π

(
0.4 t+

0.1

256
t2
))

,

as depicted in the first row of Fig. 21. The generated signals are then mixed

using an instantaneous noisy uniform linear array model, to be received on three

sensors (m = 3) with an SNR of 30 dB. The MTFDs of the received mixtures

are computed and the separation is achieved by using a clustering method as

depicted in the second row of Fig. 21.

In the second experiment, four non-disjoint source signals (n = 4) are gener-

ated using crossing LFMs. The first two signals are crossing LFMs interchange-

ably changing from 0.05 Hz to 0.2 Hz, while the third and fourth signals are

LFMs interchangeably changing from 0.3 Hz to 0.45 Hz, as depicted in the first

row of Fig. 22. The generated signals are then mixed using an instantaneous

noisy uniform linear array model, to be received on three sensors (m = 3) with

an SNR of 40 dB (Fig. 23). From Fig. 22, we can observe that the overlapping

points are randomly allocated for one source, when utilizing the cluster-based

algorithm. However, by using the subspace-based algorithm, the intersection

points are redistributed to their corresponding two sources. In general, overlap-

ping points in the non-disjoint case have been explicitly treated. This provides

a visual performance comparison.

The above results can be reproduced using the codes provided in [5].

3.4. Discussion

The performance and limitations of BSS algorithms and their applications

are further reviewed below.
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Figure 21: Underdetermined blind source separation of four source signals (n = 4) based on

MTFDs received from an array of three sensors (m = 3) using clustering based method: (The

first row represents the source signals, while the second row represents the estimated sources

using UBSS clustering method).

3.4.1. Auto-term selection

In a noisy environment, the selection of auto-term TF points by the pro-

cedures presented in Sections 3.1 and 3.2 may become challenging when the

signals are highly corrupted by noise. The spatial diversity, embedded in the

MTFD matrix, can reduce noise and enhance the TF signatures of the signals of

interest. This can be achieved by averaging the TFDs over all receiver sensors

[52].

3.4.2. Number of sources for UBSS clustering step

In the UBSS algorithm using vector clustering the number of sources n is

assumed known in the clustering step (k-means). However, there exist other

clustering methods that perform the class estimation as well as the estimation

of the number n [53]. Nevertheless, the results observed indicate that by using

this kind of clustering method most of the time the number of classes is overes-
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Figure 22: Underdetermined blind source separation of four non-disjoint source signals (n = 4)

based on MTFDs received from an array of three sensors (m = 3) using clustering and subspace

projection based methods: (The red circles highlight the overlaping point where the clustering

methods fails to adequately estimate the sources).

timated, leading to poor source separation quality. Hence, robust estimation of

the number of sources in the UBSS case remains a difficult open problem that

deserves particular attention in future studies.

3.4.3. Number of overlapping sources

In the subspace based UBSS algorithm, one has to evaluate the number K of

overlapping sources at a given (t, f) point. This can be done by finding out the

number of non-zero eigenvalues of ρzz(t, f) using criteria such as MDL or AIC

[47]. It is also possible to consider a fixed (maximum) value of K that is used

for all autosource (t, f) points. Indeed, if the number of overlapping sources is

less than K, one would estimate close-to-zero source (t, f) values. For example,
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Figure 23: Received mixed signal (received signal on sensor 1 with SNR=40dB).

if we assume K = 2 sources are present at a given (t, f) point while only one

source is effectively contributing, then one estimates one close-to-zero source

(t, f) values. This approach increases slightly the estimation error of the source

signals (especially at low SNRs) but has the advantage of simplicity compared

to using information theoretic-based criterion.

3.4.4. Separation quality versus number of sources

Although we are in the underdetermined case, the number of sources n should

not exceed too much the number of sensors. Indeed, when n increases, the level

of source interference increases, and hence, the source disjointness assumption is

ill satisfied. Moreover, for a large number of sources, the likelihood of having two

sources closely spaced, i.e., such that the spatial directions ai and aj are “close”

to linear dependency, increases. In that case, vector clustering performance

degrades significantly. In brief, sparseness and spatial separation are the two

limiting factors against increasing the number of sources.
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3.4.5. Overdetermined case

The class of UBSS algorithms presented in Section 3.3 can be further sim-

plified in the overdetermined case where m ≥ n. In that context, the algorithm

can be reduced to the mixing matrix estimation step, the noise thresholding

then source estimation using the mixing matrix pseudo-inversion.

3.4.6. Improved BSS using high-resolution MTFDs

In the case where the received multisensor signal presents high cross-terms,

the BSS may become a challenging. Therefore, in order to improve the robust-

ness against cross-terms of separation procedure based on joint diagonalization

(JD, JOD and JBD), we can use the hight resolution TFDs introduced in Sec-

tion 2.3.2 instead of MWVD. Indeed, despite its many desirable properties, the

MWVD has some drawbacks that require a precise handling such as cross-terms.

Such cross-terms are undesirable in BSS application. Then, cross-terms can be

reduced by using high resolution TFDs such as EMBD, CKD or MDD.

To support this claim, let us consider the same three source signals pre-

sented in Section 3.1.4 as depicted in the first row of Fig. 24. The generated

signals are mixed using an instantaneous noisy uniform linear array model, to

be received on m = 6 sensors with an SNR of 30 dB (Fig. 25). The received

mixtures are whitened, and their MTFD using CKD is computed with param-

eters c = 1, D = 0.1 and E = 0.1 for the selection of auto and cross-terms.

Finally, the un-mixing matrix is estimated, using a joint diagonalization/joint

off-diagonalization algorithm, and estimated sources are classified using their

time-frequency correlation with the original signals, as depicted in the second

row of Fig. 24. The main objective of this simulation is to illustrate the trade-

off between resolution and cross-terms suppression, when representing different

classes of signals such as CKD. Indeed, one can observe from Figs. 12 and 25

that the cross-terms have been significantly reduced with keeping a good time-

frequency resolution which improve the robustness of TF BSS algorithms against

auto-terms and cross-terms selection. This robustness against auto-terms and

cross-terms selection will improve the performance of joint diagonalization al-
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Figure 24: Blind source separation of three source signals (n = 3) based on MTFDs: MTFD

computed using CKD with parameters c = 1, D = 0.1 and E = 0.1.

gorithms and then the separation quality (see Fig. 24). The results presented

in this section can be reproduced using the codes provided in [5].

4. Direction of arrival estimation using MTFDs

4.0. Background and motivation

The topic of direction of arrival (DOA) estimation has received considerable

attention in past studies over the last three decades (see [54] and [55]). In

this section, a brief overview of some of the most important and fundamental

approaches to DOA estimation is provided to serve as background for a detailed

tutorial presentation of more recent advances.

This section focuses on DOA estimation techniques, starting with the details

of traditional time-domain algorithms. These traditional algorithms provide a
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Figure 25: Received mixed signal: Received Signal on Sensor 3 with SNR = 30dB computed

using CKD with parameters c = 1, D = 0.1 and E = 0.1.

basis to the subsequent sections related to more advanced DOA estimation

schemes based on multisensor TFDs.

Let us consider a basic scheme of an array as illustrated in Fig. 26. Let d

be the distance between any two consecutive elements of the array, c the speed

of light, ∆t the time delay between the elements and θ the incident angle of the

far field signal. The signals arrive at the array elements with a delay ∆t caused

by the path difference i.e.:

∆t =
d cos (θ)

c
. (62)

This means that, it takes ∆t seconds less for one signal to reach an antenna in

the two element array relative to the first one. In the frequency domain, such

delays appear as a phase shift in the signals received by the elements i.e.:

e−jω∆t = e−j2πfc(
d
c ) cos(θ) = e−j2πfc(

d cos(θ)
λfc

) = e−j2π( dλ ) cos(θ), (63)

where fc is the center frequency and λ is the wavelength of the signal [55]. With

knowledge of the geometry of the array, the delays or phase differences are used

to estimate the incident angle. If the time delay of the signal is known, the
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Figure 26: Basic principle of DOA estimation (an array of antenna receiving a signal from a

far field source).

direction of the signal is estimated from Eq. (62). This is the basic principle of

spatial spectrum estimation techniques.

For an m antennas array, the steering vector given in Eq. (13) can be defined

as: a (θi) =
[
1, e−j2π( dλ ) cos(θi), e−j2π( 2d

λ ) cos(θi), · · · , e−j2π( (m−1)d
λ ) cos(θi)

]
, where

{θi}ni=1 is the angle of arrival of the ith source signal.

4.1. Time domain DOAs estimation

The covariance matrix of the observation vector z(t) is given by Rzz =

E
{
z (t) zH (t)

}
such that (see Section 2.3.1):

Rzz = A Rss AH + σ2
η Im. (64)

Let us consider the case where Rss = E
{
s (t) sH (t)

}
is a full rank matrix.

This occurs by assuming (1) non-coherence9 of the n incoming signals, and

(2) that the set of n vectors in A are linearly independent. The eigenvalue

decomposition of the covariance matrix is then carried out as the DOAs are

determined by the eigen-structure of the matrix. Let %1 ≥ %2 ≥ . . . ≥ %m

denote the eigenvalues of the matrix Rzz, and λ1 ≥ λ2 ≥ . . . ≥ λm those of the

matrix ARssA
H , respectively. Eq. (64) yields %i = λi + σ2

η, i = 1, 2, . . . ,m.

9If si(t) and sj(t) are non-coherent signals, then E{si(t)sj(t)∗} = 0.
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Since, the matrix A is full column rank n, the (m− n) smallest eigenvalues of

Rzz equal σ2
η:

%i =

λi + σ2
η i = 1, 2, . . . , n,

σ2
η i = n+ 1, n+ 2, . . . ,m.

(65)

The eigenvalue decomposition of the covariance matrix Rzz then reduces to:

Rzz =

n∑
i=1

(
λi + σ2

η

)
viv

H
i +

m∑
i=n+1

σ2
ηviv

H
i , (66)

where vHi vj = δi,j are the orthogonal eigenvectors of the matrix Rzz (i.e.,

Rzzvi = %ivi for i = 1, 2, . . . ,m). Eq.(66) will then simplify to Rzzvi =

σ2
ηvi, i = n+ 1, n+ 2, . . . ,m or, equivalently,

(
Rzz − σ2

ηIm
)
vi = 0, i = n+ 1, n+ 2, . . . ,m. (67)

Eq.(64) can be rewritten as Rzz − σ2
ηIm = ARssA

H ; Eq.(67) then becomes:

ARssA
Hvi = 0, i = n+ 1, n+ 2, . . . ,m, which yields:

AHvi = 0, i = n+ 1, n+ 2, . . . ,m. (68)

Eq.(68) shows that the subspace spanned by the eigenvectors

{vn+1,vn+2, . . . ,vm} is orthogonal to the complement subspace spanned

by the steering vectors in matrix A. Therefore, from the eigenvectors of Rzz,

one can obtain the signal DOAs by finding those steering vectors that are

orthogonal to the noise subspace.

4.1.1. Time Domain MUSIC Algorithm

Spectral-based DOA estimation methods are based on maximizing the power

of signal projected on the signal subspace. One of the standard DOA techniques,

MUSIC (Multiple SIgnal Classification) [56], performs an eigenvalue decompo-

sition of the unknown covariance matrix Rzz estimated as:

R̂zz =
1

T

∫ T

0

z (τ) zH (τ) dτ, (69)
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where T is the signal duration. Let use express the eigenvector estimates as

{v̂1, v̂2, . . . , v̂m} such that the singular value decomposition of R̂zz is given by:

R̂zz = V̂ Λ V̂H , (70)

with V̂ = [v̂1, v̂2, . . . , v̂m]. Using Eq.(68), MUSIC then estimates the signal

directions as the peaks of the spatial spectrum estimate expressed by [55]:

PMUSIC (θ) =
1

m∑
i=n+1

|a (θ) v̂i|2
, (71)

where a (θ) is a column vector of the steering matrix defined by Eq.(13). The

MUSIC spectrum is estimated from a single realization of the random process

represented by the observations z (t) for t = 1, 2, . . . , T . MUSIC estimates were

shown to be consistent and they converge to the true source bearings as the

number of observations increases to infinity [57].

4.1.2. Time Domain ESPRIT Algorithm

ESPRIT stands for Estimation of Signal Parameters via Rotational Invari-

ance Techniques [58, 54]. The aim of the ESPRIT algorithm is to exploit the

rotational invariance in the signal subspace which is created by two arrays with

a translational invariance structure. ESPRIT inherently assumes narrowband

signals so as to know the translational phase relationship between the multi-

ple arrays to be used. The ESPRIT algorithm is more robust with respect to

array imperfections than MUSIC [59, 60]. Computation complexity and stor-

age requirements are lower than MUSIC as it does not perform an extensive

search throughout all possible steering vectors [54]. The ESPRIT algorithm is

summarized as follows:

• Estimate the correlation matrix R̂zz by using Eq. (69) and compute its

eigendecomposition in order to get the eigenvector {v̂1, v̂2, . . . , v̂m}.

• From the n principal eigenvectors {v̂1, v̂2, . . . , v̂n}, representing the signal

subspace, form the matrix Vs = [v̂1, v̂2, . . . , v̂n]. Then, from the matrix
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Vs form the matrices V1 and V2 such that:

Vs =

 V1

last row

 =

 first row

V2

 . (72)

• Solve in a least square sense the relation V2 = V1Ψ in order to estimate

the matrix Ψ.

• Find the eigenvalues {ψ1, ψ2, . . . , ψn} of the matrix Ψ. Then, DOA esti-

mates are obtained by [55]:

θi = arccos

(
jλ logψi

2πd

)
(73)

4.2. Time-frequency DOAs estimation

4.2.1. Time-Frequency MUSIC Algorithm

As noted in Section 2.3.1, the linear model given in Eq. (21) has the same

structure as the covariance matrix based on the linear model given in Eq. (64).

This similarity suggests that the MUSIC algorithm can be simply extended

for direction finding using the subspace decomposition of an averaged MTFD

matrix. The steps needed to find the averaged MTFD matrix ρzz are given

in Table 1. After estimating the averaged MTFD matrix ρzz, TF-MUSIC can

therefore simply extend Eq.(71) to get:

PTF-MUSIC (θ) =
1

M∑
i=n+1

|a (θ) v̂TFi |
2

, (77)

where v̂TFi is the ith eigenvector of the averaged MTFD matrix ρzz. A differ-

ence between the averaged MTFD matrix ρzz and the sample covariance R̂zz is

that the former is obtained by averaging selected high signal energy points by

rejecting noise contributions while the later is obtained by averaging all avail-

able points including noise contributions. Hence, the averaged MTFD matrix

ρzz based directional estimation technique PTF-MUSIC (θ) is expected to im-

prove performance. In addition, the TF approach allows the estimation of the

covariance matrix of each source separately (e.g. by using a multi-component IF
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Table 1: Algorithm to estimate the averaged MTFD matrix

1. Compute the MTFD matrix ρzz (t, f) as given in Eq.(21).

2. Select auto-TFDs
{
ρzi,i (t, f)

}m
i=1

and compute the spatial averaged TFD as:

ρavg (t, f) =
1

m

m∑
i=1

ρzi,i (t, f) . (74)

3. Select high energy (t, f) points as Eq.(52):

Select the point (ti, fi) if ‖ρavg (ti, fi)‖ > εt (75)

and reject the (t, f) points with negligible energy (e.g. noise) to improve the SNR.

The threshold εt is a user defined parameter; in this study the value for εt is selected

such that: εt ≥ 0.05×max(ρavg).

4. Compute the averaged MTFD matrix ρzz using averages of the selected (t, f) points

in the previous step as:

ρzz =
1

npoints

npoints∑
i=1

ρzz (ti, fi) . (76)

where npoints represents the total number of selected (t, f) points.

approach). This is significant as it then allows the formulation of estimates of

DOAs even in the case where there are more sources than sensors (case discussed

later in Section 4.4).

4.2.2. Time-Frequency ESPRIT Algorithm

As for TF-MUSIC, one can extend the ESPRIT algorithm to TF-ESPRIT

for direction finding based on MTFD matrices by considering the subspace de-

composition of an averaged MTFD matrix (see Table 1). After estimating the

averaged MTFD matrix ρzz, TF-ESPRIT uses ρzz instead of R̂zz in the sub-

space technique given in Section 4.1.2 to get the DOA estimates. The advantage

of this approach, like TF-MUSIC, is to exploit the accuracy and robustness of

the averaged MTFD matrix ρzz over the basic sample covariance R̂zz approach.
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Figure 27: DOA estimation of two sources using MUSIC and TF-MUSIC (average spatial

spectrum).

4.3. Examples

Let us compare the performance of time-frequency DOA estimation methods

and the conventional DOA estimation methods, for the case of a uniform linear

array having eight sensors (m = 8). Two source signals arrive on this array

from directions θ1 = 10◦ and θ2 = 30◦, respectively. For the time-frequency

DOA estimation methods, we have used the MTFD based on WVD. In Fig. 27

the estimated spatial spectra of the TF-MUSIC and conventional time-domain

MUSIC are shown for SNRs −5dB and −10dB. The results indicate that TF-

MUSIC outperforms its time-domain counterpart in resolving two closely spaced

sources.

Figs. 28 and 29 represent the histograms of estimated angles by using MU-

SIC, TF-MUSIC, ESPRIT and TF-ESPRIT for SNRs −10dB and −5dB respec-

tively. The results indicate that TF methods outperforms their time-domain

counterparts in terms of error estimation. This conclusion, is confirmed by Fig.

30 which represents the normalized mean square error of angle estimation with

respect to SNR for MUSIC, TF-MUSIC, ESPRIT and TF-ESPRIT algorithms.
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Figure 28: DOA estimation of two sources using MUSIC, TF-MUSIC, ESPRIT and TF-

ESPRIT for SNR=−10dB (histogram of estimated angles): TF-MUSIC and TF-ESPRIT

provide a more accurate DOA estimate than MUSIC and ESPRIT, respectively.

The above results can be reproduced using the codes provided in [5].

4.4. Underdetermined DOAs estimation using MTFDs

Another advantage of TF source localization is its ability to address the

problem of sources localization in the underdetermined case [61]. The TF ap-

proach allows the estimation of the covariance matrix of each source separately,

and therefore yields estimates of DOAs, even in the case of more sources than

sensors. Indeed, as presented in Section 3.3.2 and based on clustering infor-

mation we can define a time-frequency binary mask to separate the TF region

where each source is present alone. Based on the clustering information and
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Figure 29: DOA estimation of two sources using MUSIC, TF-MUSIC, ESPRIT and TF-

ESPRIT for SNR=−5dB (histogram of estimated angles): TF-MUSIC and TF-ESPRIT pro-

vide a more accurate DOA estimate than MUSIC and ESPRIT, respectively.

the binary masking, one can use the TF-DOA estimation algorithms presented

in Section 4.2 to estimate the DOA of each source. After a clustering step, one

can apply the TF binary masking operation defined as:

ρ̂si,si(t, f) = ρzz(t, f) Ωi(t, f), (78)

such that:

Ωi(t, f) =

1, if (t, f) ∈ Ci

0, otherwise.

(79)

where ρ̂si,si is the estimated TFD of the ith source, ρzz represents the averaged

MTFD introduced in Section 4.2.1.
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Figure 30: Normalized mean square error of DOA estimation with respect to SNR.

4.5. Discussion

The performance and limitations of the above DOA estimation algorithms

and their applications are further discussed below.

4.5.1. Signal subspace dimension

In the presented DOA estimation methods the number of sources n is as-

sumed known. Then, an important problem is the determination of n, the

number of source signals. Based on the fact that the number of source signals

is equal to the number of large eigenvalues of the covariance matrix, one can

obtain relatively simple non-parametric algorithms for estimating n. The idea

is to determine the multiplicity of the smallest eigenvalue, which theoretically

equals m − n. A statistical hypothesis test can be used based on information

theoretic criteria, such AIC and MDL [47]. The estimation of the number of
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sources can be done by using Akaike’s criterion according to:

n̂AIC = arg min
k

T (m− k) log


m∑

i=k+1

%i

(m− k)

m∏
i=k+1

%
1

m−k
i

+ k (2m− k)

 . (80)

or using MDL criterion according to:

n̂MDL = arg min
k

T (m− k) log


m∑

i=k+1

%i

(m− k)

m∏
i=k+1

%
1

m−k
i

+ (k (2m− k) + 1) log(
√
T )

 .

(81)

where value %i, i = 1, . . . ,m represent the eigenvalues of the covariance ma-

trix R̂zz. Unfortunately, the aforementioned approach is very sensitive to the

assumption of a spatially white noise field [62].

Let us consider the case of a uniform linear array having six sensors (m = 6).

Two source signals (n = 2) arrive on this array from directions θ1 = 10◦ and

θ2 = 30◦, respectively. Fig. 31 represents the estimated number of sources

with respect to the SNR for AIC and MDL criteria. We can observe that both

methods well estimated the number of sources from SNR grater thant −4 dB

with a bias for AIC method. The same observation can be made for Fig. 32,

where we consider the case of a uniform linear array having six sensors (m = 6)

and three source signals (n = 3) arrive on this array from directions θ1 = 10◦,

θ2 = 30◦ and θ3 = 50◦, respectively.

4.5.2. Spatial resolution

The spatial resolution is defined as the ability to distinguish two or more

sources with very close incident angle. As for MUSIC and TF-MUSIC algo-

rithms, the resolution ability is one of their weakness. It is not hard to un-

derstand that we cannot decide the exact number of signal from one peak in

the graph of MUSIC and TF-MUSIC algorithms. A small step of scanning can

improve the resolution ability but cannot solve this problem totally. However,
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Figure 31: Estimated number of sources with respect to SNR for n = 2 sources and m = 6

sensors using AIC and MDL criteria.
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Figure 32: Estimated number of sources with respect to SNR for n = 3 sources and m = 6

sensors using AIC and MDL criteria.
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between the sources δθ: ESPRIT and TF-ESPRIT provide a more accurate DOA estimate

than MUSIC and TF-MUSIC, respectively.

ESPRIT and TF-ESPRIT have excellent spatial resolution due to the fact that

they estimate the DOA from an analytic expression (see Section 4.1.2).

To support this claim, let us compare the performance of MUSIC, TF-

MUSIC, ESPRIT and TF-ESPRIT, for the case of a uniform linear array having

six sensors (m = 6). Two source signals arrive on this array from directions

θ1 = 10◦ and θ2 = 10◦ + δθ, respectively. Fig. 33 represents the normalized

mean square error of angle estimation with respect to the spatial resolution

δθ for MUSIC, TF-MUSIC, ESPRIT and TF-ESPRIT algorithms and for SNR

20dB. We can observe that ESPRIT and TF-ESPRIT algorithms outperform

MUSIC and TF-MUSIC in resolving two closely spaced sources.

4.5.3. Improved DOA estimation using high-resolution MTFDs

As presented in Section 4.2, the TF DOA algorithms are based on the average

MTFD matrix instead of the covariance matrix. The averaged MTFD matrix

ρzz is obtained by averaging selected high signal energy points by rejecting
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noise contributions. However, in the case where the received signal presents

high cross-terms, the averaged MTFD matrix ρzz can be disturbed by these

cross-terms and then degrade the performance of DOA estimations. Therefore,

in order to improve the robustness against cross-terms of TF DOA algorithms,

we can use the hight resolution TFDs introduced in Section 2.3.2 instead of

MWVD. Indeed, the high resolution TFDs provide a good compromise between

resolution and cross-terms reduction which improve the robustness of TF DOA

algorithms against cross-terms.

To support this claim, let us compare the performance of the conventional

MUSIC algorithm, TF-MUSIC algorithm using different TFDs, for the case

of a uniform linear array having eight sensors (m = 4). Two source signals

arrive on this array from directions θ1 = −5◦ and θ2 = 5◦, respectively. For

the TF-MUSIC algorithm, we have used the MTFD based on WVD and MDD

respectively. In Fig. ??a the estimated spatial spectra of the TF-MUSIC based

on MDD is shown, while Fig. ??b shows the estimated spatial spectra of the for

conventional MUSIC (red) and TF-MUSIC based on the MWVD (black). The

results indicate that, when the SNR is set to -10 dB both standard TF-MUSIC

based on the MWVD and conventional MUSIC fail to estimate the 2 angles

accurately (see Fig. ??b), while the TF-MUSIC based on MDD gives sharp

peaks at the incident angles as shown in Fig. ??a. In the second experiment,

keeping the same setup with an SNR of 10 dB, all the algorithms appear to give

sharp peaks at estimated incident angles as illustrated in Fig. ??c for the TF-

MUSIC based on MDD and Fig. ??d for the TF-MUSIC based on the MWVD

and conventional MUSIC algorithms.

5. Cross Channel Causality Analysis

5.0. Background and motivation

Previous sections have shown that by combining array signal processing for

non-stationary signals and multichannel high resolution time-frequency signal

processing methods, one can enhance the performance of several standard meth-
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ods and techniques (such as BSS and DOA estimation) for a wide field of appli-

cations by simultaneously taking into account (1) the non-stationary character-

istics of measured signals using TFDs and (2) the spatial information provided

by an array of measuring sensors.

In addition to such improvements, another key capability of the MTFSP

approach is to allow a signal causality analysis across sensors/channels and/or

signals; new information is then gained e.g. by tracking the time varying location

of moving sources propagating through the system. Combining spatial and time-

frequency information obtained by a multisensor array results then in improved

precision. Examples are:

(1) in brain studies, the concept of cross channel causality can be used to

characterize the propagation of a seizure location across EEG channels, therefore

providing a key information about the time-varying information flow scalp [26];

(2) In wireless communication, it characterizes the varying spatial location

of a moving user (mobile) in cell by exploiting the multi-antenna array of the

base station;

(3) In aeronautics, a primary design goal for helicopter engineers is to uti-

lize vibrations measured from a multichannel system to identify the excitation

sources or faults of a rotating system [63].

5.1. Cross-channel causality and phase synchrony

The cross channel causality describes the dependence relationship between

multichannel signals. This dependence can be quantified using various ap-

proaches, from simple linear correlation to more advanced TF based approaches.

Cross-correlation between two zero mean signals xi(t) and xj(t) under the weak-

sense stationarity assumption is defined as:

rij(τ) =
E
{
xi(t)xj(t+ τ)∗

}
√
E
{
xi(t)2

}
E
{
xj(t+ τ)2

} such that − 1 ≤ rij(τ) ≤ 1. (82)

The cross-correlation is typically utilized to assess the linear relationship be-

tween different signals; however, a simple correlation coefficient at the zeroth
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lag is limited in its ability to assess the interactions of these signals, as it can

only quantify the linear relationships and capture mostly the amplitude-based

relationships.

Another useful measure between multichannel signals is the coherence func-

tion defined as:

Cij(f) =
Sij(f)√
Sii(f)Sjj(f)

such that 0 ≤ |Cij(f)| ≤ 1. (83)

where Sij(f) is the cross-spectral density between xi(t) and xj(t) given by:

Sij(f) = F
τ→f

{
E{xi(t)xj(t+ τ)∗}

}
(84)

and Sii(f) and Sjj(f) the auto-spectral density of xi(t) and xj(t) respectively.

The coherence function provides a measure that quantifies linear relationships

in the frequency domain between two wide sense stationary signals [64, 65]. The

magnitude squared coherence function measures the degree to which one signal

can be represented as the output of a linear filter operating on the other signal

and varies from 0 for two statistically independent signals to 1, when one signal is

the result of linear filtering performed on the other. The coherence function finds

many useful applications but the results based on coherence depend on several

factors like stationarity of the signal, segment length, number of segments, etc.

[66]. A short but broad review that includes linear as well as non-linear measures

is given in [67, 68].

In order to mitigate these limitations and address the analysis of non-

stationary signal, phase synchrony analysis can be used [69]. Phase synchrony

analysis is a useful measure of linear dependence between multichannel signals.

This approach is based on the concept of phase synchronization of chaotic os-

cillators [70, 71]. The phase synchrony (coefficient) takes on values between 0,

for two signals at different frequencies, and 1, for signals that exhibit a constant

difference in instantaneous phase (representing the situation where a signal and

its time-shifted version are observed). So, phase synchrony refers to the inter-

dependence between the instantaneous phases of two signals; the instantaneous
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phases may be strongly synchronized even when the amplitudes of the two sig-

nals are statistically independent [70, 71].

The degree of synchrony between two signals is usually assessed via esti-

mation of instantaneous phase around a particular frequency, which is usually

accomplished via the Hilbert transform such that [72]:

ϕ(t) = arg [z(t)] = arg [x (t) + jH{x (t)}] (85)

Then, in the case of non-stationary signals, TF methods become naturally more

suitable for the calculation of synchrony between two signals [73, 74]. Several

approaches exist. A Morlet wavelet-based method was used in [75], but here for

continuity with above sections, we present a recently proposed method based

on quadratic TFDs [73] [1, Section 16.4].

5.1.1. Phase synchrony estimation using a complex TFD

Let us consider the QTFD of a signal based on the reduced-interference

Rihaczek TFD, defined for a monosensor signal z(t) as:

ρz(t, f) =

∫ ∫
R2

e−
ν2τ2

σ e−jπντAz(ν, τ) e−j2π(fτ−νt) dνdτ (86)

where Az(ν, τ) is the ambiguity function defined in Section 2.3.2 and given by:

Az (ν, τ) =

∫
R
z
(
t+

τ

2

)
z∗
(
t− τ

2

)
e−j2πνtdt (87)

The factor e−jπντ is the kernel for the Rihaczek distribution, and e−
ν2τ2

σ is an

exponential kernel used to reduce the effect of the cross-terms. Other kernels

can be used as long as they remove the cross-terms in the Rihaczek amplitude

spectrum.

Therefore, by extending the previous formulation of Rihaczek distributions,

the Rihaczek MTFD for the signal vector z(t) can be defined as:

ρzz(t, f) = F
τ→f

{
F−1

ν→t

{
g(ν, τ)Azz(ν, τ)

}}
, (88)

where Azz(ν, τ) is the spatial ambiguity function defined by Eq.(26) and g(ν, τ)

is the Doppler-lag kernel defined by:

g(ν, τ) = e−
ν2τ2

σ e−jπντ (89)
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Since the TFD localizes spectral components in the (t, f) domain, the cross

correlation of specific events on two spatially separated TFDs gives the phase

difference and hence the phase synchrony can be estimated. The amplitude of

the cross TFD indicates coincident or partly overlapped signals. The phase of

the cross TFD at local maxima indicates the phase difference between them.

The phase of the TFD product of two signals zi(t) and zj(t) is then defined as

follows [73] [1, Section 16.4]:

ϕij(t, f) = arg
[
ρzi,zi(t, f)ρ∗zj,zj (t, f)

]
(90)

Based on the estimate of a time-varying phase spectrum as shown above, a syn-

chrony measure still needs to be defined. For this, the phase-locking value (PLV)

is considered. The PLV between two signals, averaged across realizations/trials,

can be defined as [73]:

Pij(t, f) =
1

Tr

∣∣∣∣∣
Tr∑
k=1

ej ϕ
(k)
ij (t,f)

∣∣∣∣∣ (91)

where Pij(t, f) is the ijth element of the matrix P(t, f), Tr is the number of tri-

als/realizations, and ϕ
(k)
ij (t, f) is the time-varying phase estimate between zi(t)

and zj(t) for the kth trial. The PLV measures the intertrial/interrealization vari-

ations of phase differences at time t and frequency f . A PLV close to 1 indicates

a small phase difference across trials/realizations. For a single trial, a so-called

single-trial PLV is calculated, denoting the consistency of the phase across time.

Lastly, the described phase synchrony measure assesses the instantaneous phase

differences between signals in the (t, f) domain using the complex Rihaczek dis-

tribution [76]. In some applications, such as biomedical signal processing, one

would expect to have a ”number” which shows whether the channels are syn-

chronized. Then, based on the PLV definition, the channel synchronization can

be quantified by using the mean value over time and frequency, such that:

Pij =
1

Card{Ω}

∣∣∣∣∣∣
∑

(t,f)∈Ω

ej ϕij(t,f)

∣∣∣∣∣∣ , (92)

where Pij is the ijth element of the mean PLV matrix P which quantifies the

synchronization between the ith and the jth sensors.
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5.1.2. Phase synchrony estimation using MTFDs

The above derivation shows that we can use the cross spectral property to

estimate the PLV between two signals as a function of t and f . Therefore, a

similar attempt can be made by taking advantage of MTFDs definition and

using the cross TFD terms to define the phase of the cross TFD as:

ϕij(t, f) = arg
[
ρzi,zj (t, f)2

]
(93)

This definition, calculates the phase of the square of cross TFD in order to

remain homogeneous with respect to the phase definition given by Eq. (90)

and to avoid the sign indeterminacy in the real case. Then, the PLV can be

estimated from this new definition of phase of cross TFD and following the

definition given in Eq. (91).

The method of a time-varying phase estimation presented in Eq. (90) re-

quires the use of the Rihaczek distribution, due to the fact that the Rihaczek

distribution is a complex distribution. However, one of the disadvantages of the

Rihaczek distribution is the existence of cross-terms for multicomponent signals.

These cross-terms are located at the same time and frequency locations as the

original signals and will lead to biased energy and phase estimates. To get rid

of these cross-terms a reduced interference version of the Rihaczek distribution

is used in Eq. (86) by applying a kernel function to filter the cross-terms in

the ambiguity domain. On the other hand, the method of a time-varying phase

estimation presented in Eq. (93) allows us to exploit the whole class of TFDs

which is the fact that the cross TFDs are intrinsically complex and convey a

phase information. Therefore, this time-varying phase estimation method en-

ables to choose the best TFD according to the used signals in order to optimize

the trade-off between cross-terms reduction and resolution.

In order to assess the behaviour of phase synchrony and PLV, let consider a

simple case of two phase locked signals zi(t) and zj(t) such that zj(t) = zi(t) e
jφ.

In this case, one can observe that ρzi,zi(t, f) = ρzj,zj (t, f). Then, the phase of

the TFD product of the two signals zi(t) and zj(t) define in Eq. (90) will be:

ϕij(t, f) = arg
[
ρzi,zi(t, f)ρ∗zj,zj (t, f)

]
= 0
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Therefore, the PLV defined by Eq. (92) tends to 1 which is consistent under

phase locked signal assumption. In other hand, the cross TFD of zi(t) and zj(t)

can be expressed as:

ρzi,zj (t, f) = ρzi,zi(t, f) e−jφ

Then, knowing that ρzi,zi(t, f) is real, the phase of cross TFD defined in Eq.

(93) is given by:

ϕij(t, f) = arg
[
ρzi,zj (t, f)2

]
= −2φ

In the same way the resulting PLV also tends to 110. One can conclude that

the two methods of time-varying phase estimation lead to the same theoretical

behavior of the PLV for the phase locked signals. However, the method defined

by Eq. (93) makes it possible to extract additional information on the phase

shift of the two signals where the method defined by Eq. (90) is invariant with

respect to the phase shift.

5.2. Illustrative examples

This simulation uses a forward model11 generated from an atlas of neonatal

MRI data. The relevant surfaces, a 3D cortex mesh, and the coregistration of

the Electrical Geodesics, Inc (EGI) hydrocell caps orientation on the infants

head are generated by using the MATLAB software, Brainstorm [77, 78]. Once

these surfaces are generated, OpenMEEG is then used to generate the lead-field

matrix from this model [79, 80]. A simulator then takes the lead-field matrix and

generates virtual sources centered on a single cortical volume. To do so, a virtual

source signal is given, along with a cortical volume and dipole orientation for

m = 64 electrodes. The signal is then propagated through the lead-field matrix,

and additive noise is included. To establish brain connectivity matrices, the

definitions given by Eqs. (90) and (93) are used to calculate the time-varying

phase spectra and the corresponding PLV values for all EEG channels.

10By replacing ϕij(t, f) = −2φ for ∀(t, f) in Eq. (92) the PLV tends to 1.
11The forward model is a conduction model describing how signals originating from partic-

ular locations within the brain traverse the tissues of the head and are received at the EEG

electrodes (see Section 6.1.1).
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5.2.1. Experiment 1

This experiment was conducted for different values of SNR, in order to asses

the robustness of PLV estimation methods. In this experiment, three synthetic

signals (n = 3); two of them are Gaussian pulse expressed as:

s1(t) = exp
(
−40 (t− 2.8)

2
)

exp (−j2π (5 t− 14)) ,

s2(t) = exp
(
−128 (t− 7)

2
)

exp (−j2π (6 t− 42)) ,

and the third is an LFM signal generated as:

s3(t) = exp

(
−j2π

(
1

2
t2 + t

))
t ∈ [1.8, 4.5],

The generated signals are passed through the lead-field matrix and then received

on 64 sensors (m = 64). As depicted in Fig. 34, the signals are selected in such

a way that they do not have cross-terms, so as to avoid the cross-terms in the

PLV estimation.

The resulting PLV is represented in Figs. 35, 36 and 37 for received signals

with SNR 10 dB, 30 dB and 50 dB respectively. To describe the cross-channel

causality of obtained multichannel EEG signals, we compare for each SNR ob-

tained the PLV by using the standard definition in Eq. (90) and the MTFD

based one given by Eq. (93). For the MTFD based PLV definition we used

three TFDs; Rihaczek, Wigner-Ville and compact kernel distribution (CKD).

One can observe from Figs. 35, 36 and 37 that the MTFD based PLV defi-

nition has better resolution to describe the cross-channel causality and greater

noise robustness compared to the PLV estimation based on Eq. (90).

5.2.2. Experiment 2

This experiment was conducted for source signals with cross-terms, in order

to assess the robustness of PLV estimation using high resolution TFDs. Then,

in this experiment, three synthetic signals (n = 3); one LFM signal and two
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Figure 34: TFDs of received mixed signal for experiment 1: (a) ideal TF representation; (b)

Rihaczek distibution; (c) Wigner-Ville distibution; (d) Compact kernel distribution (CKD)

with parameters c = 1, D = 0.1 and E = 0.1.

quadratic FM signal, generated as:

s1(t) = exp

(
−j2π

(
4 t− 25

32
t2
))

,

s2(t) = exp

(
−j2π

(
9 t− 1

64
t3
))

,

s3(t) = exp

(
−j2π

(
t+

1

64
t3
))

,
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Figure 35: Brain networks representation (newborne): brain connectivity matrices represent-

ing the mean PLV matrices P for SNR = 10 dB using (a) standard definition Eq. (90) based

on Rihaczek distribution; (b) Rihaczek distibution with cross MTFD terms; (c) Wigner-Ville

distibution with cross MTFD terms; (d) Compact kernel distribution (CKD) with parameters

c = 1, D = 0.1 and E = 0.1 using cross MTFD terms.

and their corresponding instantaneous frequencies (IFs) are given by:

IFs1(t) =
1

2π

dϕs1
dt

(t) = −4 +
25

16
t,

IFs2(t) =
1

2π

dϕs2
dt

(t) = −9 +
3

64
t2,

IFs3(t) =
1

2π

dϕs3
dt

(t) = −1− 3

64
t2,

79



(a) Standard definition using Rihaczek
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(d) Compact Kernel Distribution (CKD)
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Figure 36: Brain networks representation (newborne): brain connectivity matrices represent-

ing the mean PLV matrices P for SNR = 30 dB using (a) standard definition Eq. (90) based

on Rihaczek distribution; (b) Rihaczek distibution with cross MTFD terms; (c) Wigner-Ville

distibution with cross MTFD terms; (d) Compact kernel distribution (CKD) with parameters

c = 1, D = 0.1 and E = 0.1 using cross MTFD terms.

The generated signals are propagated through the lead-field matrix and then

received on 61 sensors (m = 61). One can observe in Fig. 38(c) the WVD of the

received signals, and the distorting effect of inner cross-terms when representing

nonlinear FM signals. On the other hand, the CKD represented in Fig. 38(d)

demonstrated a better trade-off between resolution and cross-terms suppression.

The computed connectivity matrices based on PLV estimation are not sparse
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(a) Standard definition using Rihaczek
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Figure 37: Brain networks representation (newborne): brain connectivity matrices represent-

ing the mean PLV matrices P for SNR = 50 dB using (a) standard definition Eq. (90) based

on Rihaczek distribution; (b) Rihaczek distibution with cross MTFD terms; (c) Wigner-Ville

distibution with cross MTFD terms; (d) Compact kernel distribution (CKD) with parameters

c = 1, D = 0.1 and E = 0.1 using cross MTFD terms.

(see e.g. Figs 35, 36 and 37 of Experiment 1), as many spurious connections also

appear. Therefore, to concentrate on the most relevant connections, we thresh-

olded the connectivity matrices to keep only the 5% strongest connections. One

can observe from Fig. 39 that connectivity matrices based on PLV estimation

using the CKD provide a better resolution to describe the cross-channel causal-

ity in presence of cross-terms. Indeed, in this experiment the WVD introduces

pseudo-information in the (t, f) domain in the form of inner cross-terms (see
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Figure 38: TFDs of received mixed signal for experiment 2: (a) ideal TF representation; (b)

Rihaczek distibution; (c) Wigner-Ville distibution; (d) Compact kernel distribution (CKD)

with parameters c = 1, D = 0.1 and E = 0.08.

Fig. 38(c)), which becomes problematic for the PLV estimation. To reduce the

cross-terms while keeping a high (t, f) resolution separable kernel methods, pre-

sented in Section 2.3.2 can be used. This experiment used the compact kernel

distribution (CKD) with parameters c = 1, D = 0.1 and E = 0.08 (see Fig.

38(d)). One can observe from Figs. 39(c) and 39(d) that the CKD provides a

more accurate PLV than that obtained by using the WVD.
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(a) Standard definition using Rihaczek
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(c) Wigner-Ville Distribution
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(d) Compact Kernel Distribution (CKD)
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Figure 39: Brain networks representation (newborn): thresholded brain connectivity matrices

with keeping only the strongest 5% of connections using (a) standard definition Eq. (90) based

on Rihaczek distribution; (b) Rihaczek distibution with cross MTFD terms; (c) Wigner-Ville

distibution with cross MTFD terms; (d) Compact kernel distribution (CKD) with parameters

c = 1, D = 0.1 and E = 0.08 using cross MTFD terms.

6. Application: multisensor time-frequency analysis of EEG signals

The relationship between functional brain activity and anatomical sources

is important in many clinical situations such as presurgical analysis, and is

one of the scientific cutting edge topics of brain research. Electroencephalog-

raphy (EEG) is a non-invasive method for acquiring neural information that

measures electrical potential corresponding to neural activities using sensors
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directly attached to the scalp. Despite its superior temporal resolution, the

spatial resolution of EEG is less than other functional brain imaging methods

such as fMRI. This is due to the separation between EEG electrodes and the

current sources inside the head, i.e. neurons, by several layers with different

conductivity profiles [81]. In addition, since various source arrangements inside

the brain or cortex can result in a similar potential distribution on the scalp,

the visual interpretation of EEG cannot provide an accurate location of neural

generators [82].

Some of the well-documented methods are based on the convenient but inac-

curate assumption that EEG signals are stationary or at least quasi-stationary

[83, 84, 85]. To account for the non-stationary characteristic EEG seizure, a

number of time-frequency methods have been proposed [86, 69, 87]. Most stud-

ies have focused on only single channel EEG or on single channels at a time when

using multichannel EEGs. However, to improve precision and performance, the

problem of analyzing multichannel EEGs should be approached more precisely

using recently developed TF methods for analyzing multisensor data in the con-

text of array signal processing [87, 88]. Once an abnormality has been detected

and classified in multichannel EEG, the solution of the inverse problem can be

used to locate the sources of that abnormality in the brain.

The following extends the MTFD concepts presented earlier to an application

dealing with EEG signals enhancement and diagnosis; specifically, we use TF-

BSS and TF-MUSIC methods for artifacts removal and source localization.

6.1. Data model

6.1.1. Lead Field Matrix

The EEG forward problem aims at predicting the scalp potentials that re-

sult from the hypothetical dipoles, or more generally from current distributions

inside the head at any location, orientation and amplitude values [89]. Because

most studies of EEG deal with frequencies between 0.1 Hz and 100 Hz [90],

the forward model can be described by the quasi-static versions of Maxwell’s

equations [91]. In this condition Poisson’s equation gives the potentials at any
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position in a volume conductor due to current source distribution as [92, 93]:

∇. (µ∇ϑ) = ∇.Js, in Ω, (94)

where ∇ is a partial differential vector operator, Ω denotes ohm (unit of the

resistance of a conductor), µ is the electrical conductivity, ϑ are the electrical

potentials and Js are the electric current sources. Eq. (94) indicates that for

a given configuration of electric sources, the mapping from the electric sources

within the head to the scalp recordings on the outside of the scalp can be

represented by a lead field matrix [89].

There are two main numerical methods for solving the forward model and

obtaining the lead field matrix, namely; boundary element method (BEM) [94,

95] and finite element method (FEM) [96, 97, 98]. Boundary element methods

assume that each layer is homogeneous and isotropic in conductivity. Finite

element methods can be extended to model anisotropic and inhomogeneous

tissues such as skull and white matter. However, It has been shown that when

piecewise constant conductivity is used (instead of a spatially varying anisotropic

conductivity model), both methods perform similar in terms of the accuracy of

the solution [99].

6.1.2. Formulation

Let us define zi (t) as the electric field measured at sensor i at time instant t.

The vector z (t) = [z1 (t) , z2 (t) , . . . , zm(t)]
T

then presents the set of measure-

ments collected by m sensors. Let’s assume n current dipole sources generate

the electric field. The magnitude of the ith dipole source movement is si (t) and

the source magnitude vector is defined as: s (t) = [s1 (t) , s2 (t) , . . . , sn(t)]
T

. For

m sensors and n dipole sources, the relationship between z (t) and s (t) can be

expressed by Eq.(12) using matrix A such that z (t) = A s (t) + η (t), where A

represents the lead-field matrix of dimension m× n [89] that includes both the

effect of location Λ and orientation Φ of the dipoles as A = ΛΦ. Each column

of the lead-field matrix is called a lead field and it defines the current flow for a

given sensor through each dipole position [89].
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Hence, the above model can be used to solve the problem of EEG source

localization and artifacts removal using the approaches presented earlier.

6.2. Application of BSS to EEG artifacts removal

6.2.0. Background and motivation

In this section, the advanced BSS algorithms discussed earlier in the text

are applied to the analysis of multichannel EEG signals for artifacts removal.

Artifacts cause a major problem in the implementation of fully automated

EEG signal classification systems; e.g. respiratory artifacts look like seizures

and can be misinterpreted by the automatic abnormality detection system thus

resulting in false alarms. One option is to apply machine learning algorithms

to first detect and then reject EEG segments corrupted by artifacts, but this

approach results in a loss of EEG data [2, 14]. Another approach for removing

artifacts is to correct EEG signals without discarding any EEG segments. Some

artifacts can be corrected by simple frequency domain filtering, e.g. band pass

filtering can remove low-frequency movement related artifacts or a notch filter

can remove 50 Hz noise. This approach does not require any reference signals.

For more complex cases, when the spectrum of artifacts overlaps with the spec-

trum of EEG signals, BSS algorithms can be used. In this approach, signals

that are corrupted by artifacts are identified either manually or automatically

using correlation from a reference signal [100]. The artifact free signal is then

synthesized by combining only artifact free components.

Based on the model presented in Section 6.1.1 the instantaneous BSS meth-

ods can be considered to tackle the problem of artifacts removal. Therefore, an

EEG artifact removal algorithm can be designed by using the BSS algorithm

presented in Section 3 with a selected high resolution time-frequency distribu-

tion to extract close signal components (see results in Section 6.4).
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6.3. TF-MUSIC applied to source localization of brain EEG abnormalities

6.3.0. Background and motivation

In this section, the advanced DOA estimation algorithms discussed above

are applied to the analysis of multichannel EEG signals.

EEG source localization (ESL) is an important tool used to estimate the

intracerebral generators of the potentials observed on the scalp in both clinical

and research in cognitive neuroscience. While there is an increasing interest in

studying motor evoked potentials (EVP) by means of ESL, epilepsy has been the

main focus of the clinical application of ESL in neurology [101]. Similarly, cog-

nitive neuroscience studies have used ESL to investigate temporal information

in the event related potentials (ERP), and psychiatry and psychopharmacology

has employed ESL to study sources in specific frequency bands [101].

6.3.1. Source localization of EEG abnormality using TF-MUSIC

In the context of the brain application, where the aim is to estimate the loca-

tions of EEG abnormalities, localization algorithms (such as MUSIC, ESPRIT)

exploit the fact that the lead-field matrix A = ΛΦ is orthogonal to the noise

subspace of the received covariance matrix [89]. To find the locations of ab-

normalities, the covariance matrix is estimated from the received multichannel

EEG signals, and instead of using steering vectors, in Eq.(71) the eigenvectors

are projected on the columns of the lead field matrix A.

More precisely, the TF-MUSIC algorithm, as indicated in Section 4.2.1,

starts with calculating the MTFD of the processed EEG data ρzz(t, f), fol-

lowed by the average procedure described in Table 1. To estimate the loca-

tions of the sources, the TF-MUSIC algorithm takes advantage of the fact that

span (A) = span (Vs) (where Vs is the signal subspace of ρzz(t, f)) and the or-

thogonality of signal subspace and noise subspace. These can thus be obtained

by checking the orthogonality between the lead field matrix and the noise sub-

space projector. Then, the final TF-MUSIC metric is derived as a measure of
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orthogonality between the noise subspace and the lead-field matrix [102]:

J =
1

λmin (AH V VH A, AHA)
(95)

where λmin is the minimum generalized eigenvalue of the matrix pair

AH V VH A and AHA, and V is the noise subspace defined as V =

[vn+1, . . . ,vm] in which vi is the ith eigenvector of the averaged MTFD ma-

trix. Calculating this metric over all grid points (source space) then results in

a map with a peak at or near the location of the source.

6.4. Results and discussion

In this section, numerical and experimental results will be discussed where

we apply the concepts of TF BSS and TF-MUSIC on EEG signals for artifacts

removal and source localization.

6.4.1. Experiment: application of BSS to EEG artifacts removal

In order to illustrate the application of BSS to EEG artifacts removal we

propose the following experiment. A 5 seconds segment of clean multichannel

EEG was obtained from a publicly available database described in [103]. The

obtained EEG segment is recorded using nineteen electrodes, which were placed

according to the 10-20 International System. The extracted EEG segment is

down-sampled to 100 Hz, and then combined with synthetic multichannel EEG

artifacts as depicted in Fig. 40. The TFDs of clean EEG signal and corrupted

EEG signal are represented in Figs 42a and 42b respectively. The multichan-

nel contaminated signals are whitened, and their MTFDs are computed for the

selection of auto and cross-terms. After that, two independent sources are es-

timated using the joint diagonalization/joint off-diagonalization algorithm, and

artifactual components are identified using a maximum likelihood detector that

utilizes an independent template. Finally, clean multichannel EEG is estimated

and compared with the original clean EEG, as depicted in Fig. 41 (TFD of the

estimated EEG signal is given in Fig. 42c).
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Figure 40: Multichannel clean and corrupted EEG signals (EEG contamination with multi-

channel artifacts).

6.4.2. Experiment: TF-MUSIC applied to source localization of EEG signals

In source localization of EEG signals, generation of a high quality Forward

model is key to reproducible results. Small modeling errors may result in sig-

nificant localization error, as described in [104]. The best case is to have an

anatomically accurate physical model of the head available with particular em-

phasis on the geography and composition of the surfaces of the scalp, outer

skull, inner skull and cortex, and accurately localized electrode locations. This

is generally best done using a brain magnetic resonance image and either manual

or automated segmentation of the surfaces.

In this simulation the MATLAB software, Brainstorm [77, 78], was used to

generate a forward model from an atlas of neonatal MRI data. The relevant

surfaces, a 3D cortex mesh, and the coregistration of the EGI hydrocell caps
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Figure 41: Multichannel clean EEG signals and theirs estimates using the TF BSS algorithm

(artifacts detection and removal using TF BSS algorithm where the signal in red represents

the estimated EEG signal by TF-BSS algorithm).

orientation on the infants head are generated by using the Brainstorm toolbox.

Once these surfaces were generated, OpenMEEG was then used to generate the

lead-field matrix from this model [79, 80]. A simulation has been developed

which takes the lead-field matrix and generates virtual sources centered on a

single cortical volume. To do so a virtual source signal, in this demonstration

a Gaussian pulse, is given, along with a cortical volume and dipole orientation

for 64 electrodes. The signal is then propagated through the lead-field matrix,

and additive noise is included.

MUSIC and TF-MUSIC algorithms are applied to estimate the source loca-

tions for several noise realisations with SNR=3dB. Fig. 43 shows the location of

three virtual signals on the cortical volume, highlighted in black, and the esti-
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Figure 42: TFDs of EEG signal: a) Clean EEG signal b) EEG signal corrupted by artifact c)

Estimated EEG signal (by using BSS algorithm).

Figure 43: Localization of abnormality sources from 64 EEG channels using TF-MUSIC (new-

born).

mated locations highlighted in red by using MUSIC and TF-MUSIC algorithms

for 1000 simulation runs. The results indicate that TF-MUSIC outperforms its

time-domain counterpart in terms of source localization accuracy.
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7. Summary and conclusions

This study presents a rigorous tutorial review of multisensor high-resolution

time-frequency distributions (MTFDs) and a discussion of their area of appli-

cation, with a special EEG feasibility case study. MTFDs effectively combine

time-frequency analysis and array signal processing and are formulated by:

• Extending the principles of single-variable TFDs to multisen-

sor/multichannel TFDs,

• Extending conventional stationary array processing to the non-stationary

case using time-frequency methods.

• Using principles of high-resolution TFD design [105].

To demonstrate the benefits of MTFDs, this study considered several appli-

cations including source localization based on direction of arrival (DOA) es-

timation and blind source separation (BSS) of non-stationary sources. One

key aspect of this study is to illustrate clearly that, in these two applications,

the incorporation of time-frequency (TF) concepts enhances the attributes of

multisensor receivers. The key reason for this enhancement is the possible ex-

ploitation of the signal power localization properties in the (t, f) domain by

expressing the multisensor data in terms of the source TF signatures. By doing

so, enhancement of signal to noise ratio (SNR) is obtained prior to performing

subspace decomposition for source localization and source separation. Analyt-

ical reasoning also indicates that distinction in the TF signatures of closely

spaced sources allows reducing the number of sources in the field to a single

source. This enables processing more sources than sensors and further enhances

the performance of the techniques for DOA estimation and BSS.

In the second part of the study, time-frequency DOA estimation approaches

(such as the TF-MUSIC and the TF-ESPRIT algorithms) are discussed and

compared with the conventional time domain DOA estimation approaches in

the context of localizing the sources of EEG abnormalities. The findings indi-

cate that compared to traditional DOA estimation algorithms, when properly
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used, MTFDs perform better for the localization of the sources of EEG abnor-

malities. It is because; 1) EEG signals are non-stationary in nature, 2) TF

DOA estimation algorithms exploit the signal signature localization properties

of MTFDs through the selection of the high energy (t, f) points.

However, this detailed presentation of MTFDs indicates that there is a

lot of potential for extracting additional useful information from multisen-

sor/multichannel data sets in a wide range of fields, such as feature extraction

for change detection in biomedical signal processing or to detect early struc-

tural problem in structural health monitoring. Also, key methodologies have

been provided and illustrated on selected examples with applications to audio

and EEG signals. The MTFSP toolbox [5] needed to reproduce the results pre-

sented in this paper is provided as Supplementary Material and outlined in a

companion paper [5].
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Appendix A. Definitions, Terminology and Notations

Symbols frequently used in this paper are listed below in alphabetical order.

The meaning in the list below should be assumed unless the symbol is otherwise

defined in context.

Az(ν, τ) symmetrical ambiguity function (SAF) of z(t)

=
∫∞
−∞ z(t+ τ

2 ) z∗(t− τ
2 ) e−j2πνt dt

f frequency

F
t→f

{
x(t)

}
Fourier transform (FT) of x(t), to f domain
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F−1

f→t

{
X(f)

}
inverse Fourier transform (IFT) of X(f), back to t domain

G(t, τ) time-lag kernel =
∫∞
−∞ g(ν, τ) ej2πνt dν

g(ν, τ) Doppler-lag kernel

In n× n identity matrix

Kz(t, τ) instantaneous auto-correlation function (IAF) of z(t)

= z(t+ τ
2 ) z∗(t− τ

2 )

Kzz(t, f) represents spatial instantaneous autocorrelation function (SIAF)

T duration of signal

t time

w(t) window function

Wz(t, f) Wigner-Ville distribution (WVD) of z(t)

=
∫∞
−∞ z(t+ τ

2 ) z∗(t− τ
2 ) e−j2πfτdτ

γ(t, f) time-frequency kernel =
∫∞
−∞G(t, τ) e−j2πfτdτ

η(t) additive noise with mean µη and variance σ2
η

ν Doppler (frequency shift)

ρz(t, f) quadratic time-frequency distribution (TFD) of signal z(t)

=
∫∞
−∞

∫∞
−∞

∫∞
−∞ ej2πν(t−u)g(ν, τ) z(u+ τ

2 ) z∗(u− τ
2 ) e−j2πfτdν du dτ

ρzz(t, f) represents multisensor time-frequency distributions

τ lag (delay, time shift)

∗
t

convolution in time

∗
t
∗
f

2D convolution in both time and frequency

, equal by definition, or defined as

∝ proportional to∫
R
≡
∫ ∞
−∞∫

R2

≡
∫ ∞
−∞

∫ ∞
−∞
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Appendix B. Supplementary material for MTFSP MATLAB Package

The additional material, MTFSP MATLAB package [5], is provided by the

authors to assist the reader to better understand the concepts introduced in this

paper. The MATLAB functions and scripts listed below are used to reproduce

some of the supporting figures of this papers.

Supplementary material Figures

Section 2 : Extension of single sensor TFDs to multisensor TFDs

Demo_MTFD_example Figs. 7 and 8

Section 3 : Blind source separation (BSS)

Demo_BSS_instantaneous_mix Figs. 11 and 12.

Demo_BSS_convolutive_mix Figs. 13 and 14

Demo_BSS_convolutive_sound Figs. 15, 16 and 17

Demo_MultiComponent_Signal Fig. 18

Demo_UBSS_instantaneous_mix_1 Fig. 21

Demo_UBSS_instantaneous_mix_2 Figs. 22 and 23

Section 4 : Direction of arrival estimation using MTFDs

Demo_DOA_Results Figs. 27, 28, 29 and 30

Demo_DOA_SignalSubspace Figs. 31 and 32

Demo_DOA_SpatialResolution Fig. 33

Section 5 : Cross channel causality analysis

Demo_Causality Figs. 34, 35, 36, 37, 38 and 39

Section 6 : Application: multisensor time-frequency analysis of EEG signals

Demo_BSS_EEG Figs. 40, 41 and 42

Demo_DOA_EEG Fig. 43
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