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This tutorial review presents high-resolution multisensor time-frequency distributions (MTFDs) and their application to the analysis of multichannel nonstationary signals. The approach involves combining time-frequency analysis and array signal processing methods. To demonstrate the benefits of MTFDs, this study considers several applications including source localization based on direction of arrival (DOA) estimation and automated component separation (ACS) of non-stationary sources, with particular attention on blind source separation which is a particular case of ACS. The MTFD approach is further illustrated by a new application to EEG signals that specifically uses ACS and DOA estimation methods for artifacts removal and source localization. Supplementary material with code is provided to allow readers to reproduce all the results and apply these methods to their own data.

and report these advances in a tutorial review framework and provide corresponding code to allow for reproducible research [START_REF] Boashash | Multisensor time-frequency signal processing software MATLAB package: An analysis tool for multichannel nonstationary data[END_REF] and application to other areas where multisensor/multichannel data are collected for analysis and decision making.

Objectives and motivations 1.Multichannel systems condition monitoring

In a wide range of engineering applications, a collection or array of measurement sensors is used to solve the problem at hand. The type of sensors depends on the application context. For example, antennas measuring an electrical field are used in telecommunications, while sensors for measuring pressure fluctuations are utilized in acoustic applications such as sonar, ultrasound and speech processing. Regardless of the type of sensor used, by using more than one sensor, one may acquire more information about the measured phenomena.

Typically, the placement of sensors in different physical locations is performed to exploit any spatial diversity present in the signal being measured, and to potentially infer spatial characteristics about the underlying process.

For example, in a radar or sonar application, one may wish to determine from which direction an echo is returning, and thus infer the position of a target.

In speech processing, it may be desirable to extract the speech signal from a speaker standing in a known position, while suppressing any "noise" coming from other locations, in order to improve intelligibility of the speech in hands-free communications or improve the performance of a speech recognition program. Furthermore, signals can be collected from multisensor systems with a large number of sensors and under several conditions such as low signal to noise ratio [START_REF] Carlson | Multichannel electrophysiological spike sorting via joint dictionary learning and mixture modeling[END_REF][START_REF] Weiss | A sparse regularization technique for source localization with non-uniform sensor gain[END_REF], high interference [START_REF] Fadlallah | New iterative detector of MIMO transmission using sparse decomposition[END_REF][START_REF] Aïssa-El-Bey | Sparsity-based recovery of finite alphabet solutions to underdetermined linear systems[END_REF], missing data [START_REF] Langley | Estimation of missing data in multi-channel physiological timeseries by average substitution with timing from a reference channel[END_REF] ... etc). Multichannel systems (multi-sensor, sensor array) are used in many applications, such as: biomedical signal processing [START_REF] Mowla | Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising[END_REF], wireless communications [START_REF] Fadlallah | New iterative detector of MIMO transmission using sparse decomposition[END_REF][START_REF] Aïssa-El-Bey | Sparsity-based recovery of finite alphabet solutions to underdetermined linear systems[END_REF], and audio/speech processing [START_REF] Bayram | A multichannel audio denoising formulation based on spectral sparsity[END_REF][START_REF] Mirzaei | Blind audio source counting and separation of anechoic mixtures using the multichannel complex NMF framework[END_REF]. In such applications, the general objective is to extract critical discriminatory information from the multidimensional signal in order to achieve and/or improve change detection and classification processes [START_REF] Boashash | Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study[END_REF]. Thus, the general approach involves several processing stages such as: acquisition, transformation (time-frequency, time-scale...), information extraction (features, denoising ...etc), clustering, detection and decision.

In many real-life problems, the spectral characteristics of the signals acquired by the multichannel systems are varying with time. This may be a characteristic of the originating process, such as with speech, or due to the surrounding environment, as when the measurement system is in motion with respect to the source of interest. On the one hand, estimation of parameters linked to the time-varying nature of a signal can be enhanced through the use of multiple sensors. This may be relevant, for example, if one wishes to infer the velocity of a moving target with a radar system. On the other hand, if the time-varying nature of the process is known, this property can be used to enhance the estimation of spatial parameters related to the physical location of the signal source;

An example is the position of an observed target using radar. It is specifically the synergical combined consideration of both the time-varying characteristics of a measured signal and the spatial information provided by an array of measurement sensors, which is the focus of this paper. A particular formal field of signal processing was motivated by the existence of non-stationary signals, i.e. signals with time-varying spectral characteristics; it is often called joint time-frequency analysis. Therefore, by combining array signal processing for non-stationary signals and multichannel high resolution time-frequency signal processing, one can provide generic methodologies to a wide field of new applications, such as:

• Abnormalities detection in biomedical signal processing (EEG, ECG...etc) in order to improve early detection of diseases [START_REF] Boashash | Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study[END_REF][START_REF] Boashash | A review of time-frequency matched filter design with application to seizure detection in multichannel newborn EEG[END_REF][START_REF] Shen | A physiology-based seizure detection system for multichannel EEG[END_REF][START_REF] Fu | Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals[END_REF][START_REF] Varanini | A new method for QRS complex detection in multichannel ECG: Application to self-monitoring of fetal health[END_REF][START_REF] Ionescu | Fetal ECG extraction from multichannel abdominal ECG recordings for health monitoring during labor[END_REF].

• Structural health monitoring of strategic assets such as bridges, dams, for the early detection or prevention of faults [START_REF] Wang | Medium wave energy scavenging for wireless structural health monitoring sensors[END_REF][START_REF] Zou | Embedding compressive sensing-based data loss recovery algorithm into wireless smart sensors for structural health monitoring[END_REF][START_REF] Herrasti | Wireless sensor nodes for generic signal conditioning: Application to struc-tural health monitoring of wind turbines[END_REF][START_REF] Liang | Structural health monitoring system based on multiagent coordination and fusion for large structure[END_REF].

• Energy monitoring for industrial applications, such as electrical consumption monitoring of units in a factory where the objective is to optimize the performance (production versus electrical consumption) [START_REF] Sung | A distributed energy monitoring network system based on data fusion via improved PSO[END_REF][START_REF] Doyle | Design of an embedded sensor network for application in energy monitoring of commercial and industrial facilities[END_REF].

Motivation and organization of the paper

Previous studies have found that the performance of communication systems, radar, sonar and EEG processing systems could be enhanced by simultaneously taking into account [START_REF] Boashash | Time-frequency signal analysis and processing, 2nd Edition[END_REF] the non-stationary characteristics of measured signals using time-frequency distributions (TFDs) and ( 2) the spatial information provided by an array of measuring sensors [START_REF] Boashash | Time-frequency signal analysis and processing, 2nd Edition[END_REF]. This results in the development of new methods born from the marriage of these two advanced specialized signal processing fields: hence, the collective name "multisensor time-frequency signal processing". Furthermore, newly developed high-resolution quadratic TFDs have led to improved performance in a wide range of situation [START_REF] Boashash | Time-frequency signal analysis and processing, 2nd Edition[END_REF][START_REF] Boashash | Time-frequency processing of nonstationary signals: Advanced TFD design to aid diagnosis with highlights from medical applications[END_REF][START_REF] Boashash | Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study[END_REF]. Hence, this study presents a tutorial review on the use of multisensor high-resolution TFDs in the optimal processing of multisensor data e.g. the context of solving array processing problems such as automated component separation (ACS) and direction of arrival estimation (DOA); one key aim being improved resolution, when signals are non-stationary. In addition to resolution, another key aim is the signal causality analysis across sensors/channels and/or signals which allows us to track the time varying location of moving sources by combining spatial and time-frequency information obtained by a multisensor array. For example, [START_REF] Boashash | Time-frequency signal analysis and processing, 2nd Edition[END_REF] in biomedical signal processing, the cross channel causality characterizes the propagation of a seizure location across EEG channels and therefore providing a key information about the time-varying information flow in scalp EEG signals [START_REF] Omidvarnia | Measuring time-varying information flow in scalp EEG signals: Orthogonalized partial directed coherence[END_REF]. Combing ACS and DOA should therefore improve decision making from scalp EEG measurements and allow more knowledge about brain activity.

(2) In wireless communication, it characterizes the varying spatial location of a moving user (mobile) in cell by exploiting the multiantenna array of the base station. Determining the position and velocity of mobiles in cell is an important issue for cellular networks since the efficient resource allocation depends on it.

Main Objectives

This study aims at presenting and extending past findings in a step by step tutorial review with focus on:

• Showing the mathematical and physical relationship between the foundations of single variable TFDs and multichannel time-frequency distributions (MTFDs).

• Extending conventional stationary array processing techniques to the nonstationary (time-frequency) array processing case in a step by step tutorial presentation.

• Using advanced algorithms based on multisensor high-resolution TFDs to enhance the capability of multisensor systems in areas such as direction of arrival estimation or separation of non-stationary sources.

• Finally, illustrating the methods developed for multisensor TFDs on new applications such as source localization of brain EEG abnormalities, and propagation path of seizures on the scalp.

The rest of the paper is organized as follows: The extension of single sensor TFDs to multisensor TFDs is discussed in Section 2. Blind source separation methods based on MTFDs are described in Section 3. Then, Section 4 presents a review on direction of arrival estimation algorithms using MTFDs. In Section 5, cross channel causality analysis is introduced with extension to MTFDs. An application of mutisensor time-frequency analysis for EEG signals is provided in Section 6. Finally, Section 7 concludes the paper. In 7, symbols frequently used in this paper are listed in alphabetical order. The meaning in this list should be assumed unless the symbol is otherwise defined in context.

The terminology MTFD is preferred as sensors and therefore channels provide a spatial dimension which is originally discrete, while the t and f variables are naturally continuous. In addition, "M" in "MTFD" can refer to either multisensors or multichannels as the former generates the latter.

Extension of single sensor TFDs to multisensor TFDs

Background and motivation

This section aims at reviewing the fundamentals of array processing from a non-stationary perspective in order to establish the mathematical and physical foundation for multisensor TFDs. Next, the advantages of multisensor or multichannel TFDs are discussed.

Multisensor or multichannel TFDs are also called Spatial Time Frequency Distributions (STFDs) in other works. In this study, the terminology MTFD is preferred as discussed in Section 1.2. These techniques can solve array processing problems such as direction of arrival (DOA) estimation with improved resolution, using spatial information for the (t, f ) processing of multichannel non-stationary signals.

Many signal processing approaches focus on the case where non-stationary signals are recorded by a single sensor. In fact, in some cases, only one source produces a mono-component signal received by the sensor. However, a single source can also generate a multicomponent signal. In other cases, a different situation arises where several sources generate different components that merge into one signal recorded by one sensor. (See Fig. 1). These two cases are known as "Single Input and Single Output (SISO)" and "Multiple Input and Single Output (MISO)". The TF problem of analyzing multicomponent signals then reduces to a problem of source separation in the case of just one sensor [START_REF] Lerga | An efficient algorithm for instantaneous frequency estimation of nonstationary multicomponent signals in low SNR[END_REF].

The traditional field of multisensor (array processing) deals effectively both with this case "Single Input Multiple Output (SIMO)" and the more complex case of multisource and Multi-sensor "Multiple Input and Multiple Output (MIMO)". This section formalized the problem statement for the extension of single sensor TFDs to multisensor TFDs. 

Problem statement

Let us consider a non-stationary zero-mean1 real signal vector x (t) =

[x 1 (t) , x 2 (t) , . . . , x m (t)] T and z(t) = [z 1 (t) , z 2 (t) , . . . , z m (t)] T is the analytic signal associated with the original real signal x (t) obtained using the Hilbert transform such that:

z i (t) = x i (t) + j H {x i (t)} , i = 1, . . . , m. (1) 
where H { • } represents the Hilbert transform operator defined by:

H {x i (t)} = F -1 f →t (-j sgn f ) F t→f x i (t) . (2) 
In the next section, we introduce the formulation of monochannel time-frequency distributions and its extension to the multichannel case.

Formulation

In order to introduce the class of multichannel TFDs, we start this section by presenting the foundation of TFDs in the monosensor case2 . Let us consider a non-stationary monosensor real signal x(t) and its analytic associate z(t).

The Wigner-Ville distribution (WVD) is considered as the core distribution of quadratic class of TFDs [START_REF] Boashash | Time-frequency signal analysis and processing, 2nd Edition[END_REF]; it is defined as the Fourier Transform (FT) of the instantaneous auto-correlation function3 K z (t, τ ) expressed as:

W z (t, f ) = F τ →f {K z (t, τ )} = R K z (t, τ ) e -j2πf τ dτ, (3) 
where K z (t, τ ) is defined as

K z (t, τ ) = z t + τ 2 z * t - τ 2 (4) 
The WVD defined in Eq. ( 3) gives optimal concentration for mono-component linear frequency modulation (LFM) signals, but it produces undesirable "artifacts" (or cross-terms) for non-linear frequency modulated (FM) or multicomponent signals. These cross-terms can be minimized by convolving the WVD with a relevant 2D TF kernel; this is expressed as follows:

ρ z (t, f ) = W z (t, f ) * t * f γ(t, f ), (5) 
where ρ z (t, f ) is a quadratic TFD, * t * f indicates a double convolution and γ(t, f ) is a 2D smoothing kernel operating both in t and f variables. The 2D smoothing of the WVD with γ(t, f ) can reduce the cross-terms, but it also blurs the autoterms. Therefore, the TF kernels are designed to achieve the best trade-off between minimizing cross-terms and retaining the resolution of auto-terms.

Eq. ( 5) can be calculated using a time-lag formulation by replacing the convolution in f with a multiplication in lag, yielding the expression:

ρ z (t, f ) = F τ →f G (t, τ ) * t K z (t, τ ) (6) 
where G(t, τ ) is the time-lag kernel of the TFD and is related to γ(t, f ) by inverse FT (IFT).

G(t, τ ) = F -1 f →τ γ(t, f ) = R γ(t, f ) e j2πτ f df. (7) 
Therefore, by extending the previous formulation of time-frequency distributions, the class of multichannel TFDs (MTFDs) for the signal vector z(t) is then defined as:

ρ zz (t, f ) = F τ →f G (t, τ ) * t K zz (t, τ ) =         ρ z1,z1 (t, f ) ρ z1,z2 (t, f ) • • • ρ z1,zm (t, f ) ρ z2,z1 (t, f ) ρ z2,z2 (t, f ) • • • ρ z2,zm (t, f ) . . . . . . . . . . . . ρ zm,z1 (t, f ) ρ zm,z2 (t, f ) • • • ρ zm,zm (t, f )         , (8) 
In the above, the time convolution * t applies on each entry of the spatial instantaneous correlation matrix K zz (t, τ ) with elements K zi,zj (t, τ ) =

z i t + τ 2 z * j t -τ 2 , i, j = 1, 2, .
. . , m, being the instantaneous auto-correlation functions, such that:

K zz (t, τ ) = z (t + τ /2) z H (t -τ /2) =         K z1,z1 (t, τ ) K z1,z2 (t, τ ) • • • K z1,zm (t, τ ) K z2,z1 (t, τ ) K z2,z2 (t, τ ) • • • K z2,zm (t, τ ) . . . . . . . . . . . . K zm,z1 (t, τ ) K zm,z2 (t, τ ) • • • K zm,zm (t, τ )         , (9) 

Multisensor Time-Frequency Distributions MTFDs

In the MTFD matrix ρ zz (t, f ) (Eq. ( 8)), diagonal terms are called auto-TFDs and the quadratic class of auto-TFD of x i (t) can be expressed as:

ρ zizi (t, f ) = ∞ -∞ ∞ -∞ G (t -u, τ ) z i (u + τ /2)z * i (u -τ /2)e -j2πτ f dudτ. ( 10 
)
Similarly, the off-diagonal terms are called cross-TFDs. The cross-TFD of two signals x i (t) and x j (t) can be expressed as:

ρ zizj (t, f ) = ∞ -∞ ∞ -∞ G (t -u, τ ) z i (u + τ /2)z * j (u -τ /2)e -j2πτ f dudτ. (11)

Two types of cross-terms in MTFDs

In addition to the auto-TFDs encountered in the monocomponent single channel case, multicomponent or multichannel TF analysis has both auto-TFDs 

Mixing models in array processing

Let us consider a simple example of sensor array with two sensors and one source. Fig. 2 shows the θ (azimuth) and φ (elevation) angles of the source. The sources are considered as points in space, from which the propagation of signal energy originates. This may be due, for example, to the emission of electromagnetic energy from a transmitter in a wireless communications system, the reflection of electro-magnetic energy from a target in a radar system, or the reflection of acoustic energy in a sonar system.

The signal energy results from a wave propagating radially outward from the source location. Assuming the far-field scenario, the sources and array are coplanar, implying that the azimuth angle θ is the only relevant spatial

𝒅 𝜃 1
. . . parameter of a source4 .

Instantaneous mixing model

We introduce in this section the mathematical time domain model of instantaneous mixing systems and present the assumptions under which the instantaneous model is realistic. where The m × n matrix A represents the propagation matrix or mixing matrix, having n column vectors called steering vectors, vector

z (t) = A s (t) + η (t) , ( 12 
)
𝒙 𝟏 𝑺 𝟏 𝑺 𝟐 𝑺 𝒏 𝒙 𝟐 𝒙 𝒎
s (t) = [s 1 (t) , s 2 (t) , . . . , s n (t)] T contains the source signals, z (t) = [z 1 (t) , z 2 (t) , . . . , z m (t)]
T is the signal vector arriving at the m sensors and η(t) represents an additive noise vector whose elements are modeled usually as stationary, temporally and spatially white random processes, and independent of the source signals. In other words, it is assumed that the signals received by an array of sensors (e.g. microphones, antennas, transducers, etc) under farfield assumption form a weighted sum (linear mixture) of the original sources.

As illustrated in Fig. 3, the matrix A contains information on the DOAs of the different signals:

A = [a (θ 1 ) , a (θ 2 ) , . . . , a (θ n )] , (13) 
where a (θ i ) for i = 1, 2, . . . n is the steering vector of the array for direction θ i , as illustrated by Figs. 2 and3.

Eq. ( 12) indicates that each sensor receives a combined contribution from each source that forms the observations {z i (t)} 

Convolutive mixing model

We introduce in this section the mathematical time domain model of convolutive mixing system. We present the assumptions under which the convolutive model is realistic and some examples.

In the previous section, we have presented an instantaneous mixing model where each recording consists of a sum of differently weighted source signals.

The instantaneous mixing model holds under the assumption that sources are in the far-field. However, in many real-life applications, and when the sources are in the near-field, the mixing process is more complex. In such situations, the mixtures are weighted and delayed, and each source contributes to the sum with multiple delays corresponding to the various paths by which a signal propagates to a sensor as shown in Fig. 5. Such filtered sums of different sources form a convolution operation and are therefore called convolutive mixtures. Depending on the situation, the filters may consist of a few delay and attenuation elements, as in radio communications, or possibly a few thousand delay elements as in acoustics. Hence, in such cases the sensor array is clearly convolutive, as the signals picked-up by the sensors consist not only of direct-path signals but they are also supplemented by their delayed (reflected) and attenuated versions in the presence of noise. The received signal at the i th sensor under the convolutive mixing model can be expressed as:

z i (t) = n j=1 K k=0 a ij (k)s j (t -k) + η i (t), (14) 
The received signal is a linear mixture of filtered versions of each source signals, and a ij (k) represents filter coefficients between the i th sensor and the j th source signal. The filters may be of infinite length with K → ∞ (and implemented as recursive infinite impulse response systems); in practice it is in general sufficient to assume K < ∞. The convolutive model can be formulated in matrix form as:

z (t) = K k=0 A (k) s (t -k) + η(t), (15) 
where the elements of the matrix A (k) are given by (A (k)) i,j = a ij (k).

Non-stationary case array signal model

Conventional stationary array processing methods are based on the covariance matrix of the received observation at the array of sensors. For nonstationary signals, their spectral content is time varying, and assuming stationarity would be inappropriate and reduce performance. There is therefore a need to extend array processing methods to the non-stationary case in with rigorous formulation of precise relevant models.

Defining multisensor TFDs

Multisensor TFDs represent a vector signal corresponding to the number of channels (the space variable). The three dimensions, namely space, time and frequency, are used to construct a matrix called Multisensor Time-Frequency Distribution Matrix as given in Eq. ( 8). This approach may be called "Space-Time-Frequency Processing" or more simply "Multisensor Time-Frequency Processing" to account for the fact that the sensor/channel variable is naturally discrete while the t and f variables are naturally continuous at the stage of measurement and prior to sampling. It uses (t, f ) domain information across sensors located at different spatial locations to characterize the set of non-stationary signals, and their interrelationship. By removing the stationarity assumption, the covariance matrix becomes time-dependent, and is expressed as:

R zz (t, τ ) = E {K zz (t, τ )} = E z (t + τ /2) z H (t -τ /2) , (16) 
where E { • } denotes expected value. By assuming the instantaneous mixing model given by Eq. ( 12) the previous equation can be rewritten as:

R zz (t, τ ) = AR ss (t, τ ) A H + σ 2 η δ(τ ) I m . ( 17 
)
where R ss (t, τ ) = E s (t + τ /2) s H (t -τ /2) represents the signal sources covariance matrix. The additive noise vector η(t) is assumed to be a stationary, temporally and spatially white zero mean random process, such that

R ηη (t, τ ) = E η (t + τ /2) η H (t -τ /2) = σ 2 η δ(τ ) I m where δ(t)
is the Dirac delta function and I m is the m × m identity matrix.

In such case, using the extended Wiener-Khintchine theorem, the timevarying power spectrum of a non-stationary signal z (t) can be estimated as the FT of the filtered time-dependent covariance matrix R zz (t, τ ),

ρ zz (t, f ) = F τ →f G (t, τ ) * t R zz (t, τ ) . ( 18 
)
Replacing the matrix R zz (t, τ ) by its expression Eq. ( 17) yields:

ρ zz (t, f ) = F τ →f G (t, τ ) * t A R ss (t, τ ) A H + σ 2 η δ(τ ) I m . (19) 
By exploiting the linearity of the Fourier transform and convolution operations, we can rewrite the previous equation as:

ρ zz (t, f ) = A F τ →f G (t, τ ) * t R ss (t, τ ) A H + σ 2 η I m F τ →f G (t, τ ) * t δ(τ ) . (20) 
Finally, the time-varying power spectrum of a non-stationary signal z (t) can be given by:

ρ zz (t, f ) = A ρ ss (t, f ) A H + σ 2 I m , (21) 
where

ρ ss (t, f ) = F τ →f G (t, τ ) * t R ss (t, τ
) is the signal TFD, σ 2 = σ 2 η g(0, 0) 5 . By replacing the covariance matrices with R zz (t, τ ) and defining ρ zz (t, f ), then the multisensor TFD (i.e., MTFD) matrices, Eq. ( 17) and Eq. ( 21) have a similar structure. In Eq. ( 21), the auto-source TFDs (diagonal entries of ρ ss (t, f )) and the cross-source TFDs (off-diagonal entries of ρ ss (t, f )) play an analogous role to the signal auto-and cross-correlations, respectively. This important observation allows one to apply many of the conventional second-order based array processing methods to nonstationary signals by replacing the covariance matrix with the MTFD matrix [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF][START_REF] Amin | Direction finding based on spatial time-frequency distribution matrices[END_REF][START_REF] Zhang | Spatial averaging of time-frequency distributions for signal recovery in uniform linear arrays[END_REF].

High resolution MTFDs

This section discusses the use of high resolution TFDs as a basis for designing high-resolution MTFDs and their role in enhancing their performance.

i) Design principle.

The multisensor MWVD of the multisensor analytic signal z(t) is defined as the FT of the instantaneous auto-correlation function.

W zz (t, f ) = F τ →f {K zz (t, τ )} . ( 22 
)
Despite its many desirable properties, the MWVD has some drawbacks that require a precise handling. It may assume large negative values. Furthermore, it is quadratic in the signal; hence, it exhibits cross-terms. Such cross-terms may be useful in some applications like classification but are undesirable in other applications, including analysis and interpretation as well as multicomponent IF estimation. As in the single sensor case, cross-terms can be reduced by convolving the MWVD with a 2D TF kernel designed specifically for this purpose.

By extension of Eq.( 5) most quadratic MTFDs, including the Multisensor Spectrogram (MS), can be interpreted as smoothed versions of the MWVD i.e. all

MTFDs can be written as:

ρ zz (t, f ) = W zz (t, f ) * t * f γ(t, f ), (23) 
where * t * f indicates a double convolution and γ(t, f ) is a TF kernel filter related to G(t, τ ) by Eq.( 7) or equivalently defined by:

γ(t, f ) = F τ →f G(t, τ ) = R G(t, τ ) e -j2πf τ dτ. ( 24 
)
By extending of monosensor case, one obtains an approach for designing and implementing high-performance quadratic MTFDs which is to apply the specification constraints in the dual domain expression i.e. [START_REF] Boashash | Time-frequency signal analysis and processing, 2nd Edition[END_REF][START_REF] Boashash | Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study[END_REF]:

ρ zz (t, f ) = F τ →f F -1 ν→t g(ν, τ )A zz (ν, τ ) , (25) 
where A zz (ν, τ ) is the spatial ambiguity function such that:

A zz (ν, τ ) = F t→ν K zz (t, τ ) =         A z1,z1 (ν, τ ) A z1,z2 (ν, τ ) • • • A z1,zm (ν, τ ) A z2,z1 (ν, τ ) A z2,z2 (ν, τ ) • • • A z2,zm (ν, τ ) . . . . . . . . . . . . A zm,z1 (ν, τ ) A zm,z2 (ν, τ ) • • • A zm,zm (ν, τ )         , (26) 
with

A zi,zj (ν, τ ) = R z i t + τ 2 z * j t - τ 2 e -j2πνt dt (27) 
and g(ν, τ ) is a Doppler-lag kernel defined by:

g(ν, τ ) = F t→ν G(t, τ ) . (28) 
ii) Formulation.

Separable kernel methods can overcome the resolution limitation of the multisensor spectrogram because they add an additional degree of freedom that controls smoothing along both axes [1, Section 5.7] such that g(ν, τ ) = G 1 (ν)g 2 (τ ). The S-method [START_REF] Stankovic | A method for time-frequency analysis[END_REF], extended modified B-distribution (EMBD) [START_REF] Boashash | Time-frequency processing of nonstationary signals: Advanced TFD design to aid diagnosis with highlights from medical applications[END_REF], compact kernel distribution (CKD) [START_REF] Abed | Time-frequency distributions based on compact support kernels: Properties and performance evaluation[END_REF] and multidirectional distribution (MDD) [START_REF] Boashash | Time-frequency processing of nonstationary signals: Advanced TFD design to aid diagnosis with highlights from medical applications[END_REF] are four examples of high resolution separable kernel TFDs used earlier in the single sensor case. Previous studies showed that the CKD and the MDD give promising results [START_REF] Boashash | Time-frequency signal analysis and processing, 2nd Edition[END_REF][START_REF] Boashash | Time-frequency processing of nonstationary signals: Advanced TFD design to aid diagnosis with highlights from medical applications[END_REF][START_REF] Boashash | Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study[END_REF]. For this reason we focus on them for the purpose of illustrating the capability of the MTFD approach. The CKD is defined as:

g(ν, τ ) =    exp 2c + c D 2 ν 2 -D 2 + c E 2 τ 2 -E 2 if |ν| < D, |τ | < E 0 otherwise (29) 
The parameters D and E specify the cut-off of the ambiguity domain filters along the ν and τ axes. The parameter c controls the shape of the smoothing kernel.

To account for the fact that real signals are multicomponent and can have several directions of energy concentration in the (t, f ) domain, the multidirectional kernel (MDK) was formulated as [1, Section 5.9]:

g β (ν, τ ) = 1 P P i=1 χ βi (ν, τ ) h βi (ν, τ ) , (30) 
where P represents the number of branches and the factor 1/P in front of the summation is a normalization coefficient and β i is related to the frequency rate α i by α i = tan(β i ). The term g βi (ν, τ ) is the i th branch of the MDK, which is rotated in the ambiguity domain by an angle β i ,

χ βi (ν, τ ) =    exp c 0 + c D 2 i F β i (ν,τ ) 2 -D 2 i , |F βi (ν, τ )| < D i 0, otherwise
where F βi (ν, τ ) = cos(β i )ν -sin(β i )τ , c 0 and c are slope-adjustment parameters, and D i is the half-support of g βi (ν, τ ) along the direction perpendicular to the i th branch of the MDK, and h βi (ν, τ ) is the Doppler lag window for the i th branch of the MDK; that is,

h βi (ν, τ ) =    exp c + c0 E 2 i G β i (ν,τ ) 2 -E 2 i , |G βi (ν, τ )| < E i 0, otherwise
where G βi (ν, τ ) = sin(β i )ν + cos(β i )τ and E i is related to either the time duration of the LFM components or the bandwidth of spike components.

Advantages of MTFDs over the Covariance matrix approach

This MTFD-based approach is in essence designed to increase the effective SNR. It provides improved robustness with respect to noise by spreading the noise power while simultaneously localizing the source signal power in the (t, f ) domain [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF]. More precisely, the TFD of white noise is spread over the whole (t, f ) plane, while the TFDs of FM like sources are in general confined to much smaller regions, as illustrated in Fig. the SNR. To be more specific, the MTFDs property of concentrating the input signal energy in its instantaneous bandwidth (IB) and around its instantaneous frequency (IF) while distributing the noise over the whole (t, f ) plane improves the effective SNR which is important in many applications. A key point is therefore the selection of (t, f ) points in the region of interest.

Four key properties of MTFDs

Four key advantages results from using array signal processing with MTFD.

To explain these advantages, let us use the example presented in the previous section and illustrated by Fig. 6. in the (ν, τ ) ambiguity domain, all tones map to the time-lag axis. By only including the points on this axis, one can separate and localize all narrowband signals in broadband communications platforms.

2. Eq. ( 21) is valid for all (t, f ) points. Direction finding techniques require ρ zz (t, f ) to be full rank; i.e. Rank(ρ zz ) = m, preferably diagonal [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF]. On the other hand, blind source separation techniques require the diagonal structure of the same matrix without degenerate eigenvalues (we mean by degenerate eigenvalues that the matrix is rank deficient). These properties combined with high SNR requirements may be difficult to verify using one single (t, f ) point. Two different techniques can be used to integrate several (t, f ) points into Eq. ( 21). One uses a simple averaging performed over the signatures of the relevant sources, and the second combines several desired (t, f ) points into joint diagonalization or joint block-diagonalization schemes (details are given in Section 3.1 and Section 3.2).

3. The TFD of white noise is spread over the whole (t, f ) plane, while the TFDs of the source signals are generally confined to much smaller regions. Fig. 6 indicated that the noise is distributed over R 1 , R 2 and R 3 and the complement region R c . When the (t, f ) points used in either the joint diagonalization or the averaging procedures belong to the noise-only region R c , then it means that in this case, no information about the arriving signals is used, and therefore no source localization and signal separation operation can be reasonably achieved. However, if all (t, f ) points in Fig. 6 are used, and the selected TFD verifies the marginals, then it follows that the signal average power only is considered. As a consequence, the problem reduces to the second-order covariance based matrix approach used in standard high resolution DOA estimation. This key property means that conventional techniques then become particular cases of the (t, f ) array signal processing approach. Finally, if we restrict the (t, f ) points to be in the regions R 1 , R 2 and R 3 , then only the contribution of the noise in these regions is relevant. Removing the points (t, f ) that are not within the (t, f ) signatures area of the signal arrivals enhances the input SNR; this can then be used by source localization and signal separation algorithms.

4. If we select only (t, f ) points that are within the (t, f ) signature of a particular source, then this source is the only one considered by Eq. ( 21). Such selection, in essence, implicitly performs spatial filtering and removes other sources from consideration. However, such removal does not reduce the number of degrees-of-freedom (DOFs), as it does in beamspace processing [START_REF] Kautz | Beamspace DOA estimation featuring multirate eigenvector processing[END_REF]. Then, the spatial information conserved which keep the problem as a sensor space processing with the same original number of DOFs unchanged. This finding represents a key contribution of TFDs to direction finding and DOA estimation applications. It is intuitively expected that an antenna array can localize a number of sources equal or even greater than its number of sensors; this is an undertermined case and it is discussed in Sections 3.3 and 4.4. The key condition is that (t, f ) regions exist over which the respective (t, f ) signatures regions of the sources do not overlap. Let us consider the case of two sensors (see Fig. 6), if all (t, f ) points used in direction finding belong to region R 1 and not R 2 , then the signal subspace defined by Eq. ( 21) has dimension 1. This concept will be further elaborated in Section 3.3. Thus, by excluding source 2, a noise subspace is established. This allows us to proceed with high resolution techniques for localization of source 1. In a general context, one can localize one source at a time or a set of selected sources, depending on the array size, overlapping and distinct (t, f ) regions, and the dimension of the noise subspace necessary to achieve the required resolution performance. The same concepts and advantages of (t, f ) point selection discussed above for direction finding can be applied to blind source separation problems.

Cross-term issues in MTFD

In the case of a single sensor, there are two sources of crossterms. The first type are crossterms that result from the interactions between components of the same source signal. The second type of crossterms are produced from interactions between pairs of signal components belonging to different sources.

This second category of crossterms originates from cross-TFDs of the source signals and, at any given (t, f ) point, it constitutes the off-diagonal entries of the source TFD matrices ρ zz (t, f ) defined in Eq.( 21). Although the off-diagonal elements do not necessarily affect the full-rank matrix property required for direction-finding [START_REF] Amin | Direction finding based on spatial time-frequency distribution matrices[END_REF], they violate the key assumption in the problem of source separation regarding the diagonal structure of the source TFD matrix. One needs therefore to select the (t, f ) points that are in autoterm regions where crossterm contributions are at minimum, e.g., by using a priori information from the source signals.

Note that the method of spatial averaging of the MTFD described in [START_REF] Zhang | Spatial averaging of time-frequency distributions for signal recovery in uniform linear arrays[END_REF] does not reduce the crossterms as in the case with reduced-interference distribution kernels (see Section 2.3.2). Instead, it moves them from their locations on the off-diagonal matrix entries to be part of the matrix diagonal elements. The other parts of the matrix diagonal elements represent the contribution of autoterms at the same point. Therefore, one can set the off-diagonal elements of the source TFD matrix to zeros, and also improve performance by selecting the (t, f ) points of peak values, whether these points belong to autoterm or crossterm regions.

Examples

In this illustration, three synthetic signals are generated with sampling frequency 1 Hz such that:

z 1 (t) = exp (-j2π (0.25 t + 0.012 cos (3.8 πt))) , z 2 (t) = exp (-j2π(0.3) t) , z 3 (t) = exp -j2π 0.4 t - 0.3 256 t 2 .
Two MTFDs for the three generated signals are computed using the MWVD and the CKD distributions respectively, as depicted in Figs. The above results can be reproduced using the codes provided in [START_REF] Boashash | Multisensor time-frequency signal processing software MATLAB package: An analysis tool for multichannel nonstationary data[END_REF].

Blind source separation (BSS)

Background and motivation

The aim of automated component separation (ACS) methods is to process the observation acquired by multisensor arrays in such a way that the original unknown source signal can be extracted. The scientific community used the word "blind" to denote all identification or inversion methods that are based on output observations only. Therefore, in the following, we use blind source separation (BSS) to introduce the presented algorithm. that vary according to the type of mixture and the nature of source statistical information. Most BSS approaches, such as independent component analysis (ICA) [START_REF] Hyvarinen | Independent component analysis, 1st Edition, Adaptive and learning systems for signal processing, communications, and control[END_REF], assume that each source signal is statistically independent from each other. In this context, BSS works only if at most one of the sources has a Gaussian distribution 6 . If each source sequence is a temporally correlated stationary process, BSS works if the source signals have different spectra [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF][START_REF] Parra | Convolutive blind separation of non-stationary sources[END_REF].

The approach is to account for the signal non-stationarity by using a timefrequency approach with BSS so that one can separate and recover the individual incoming signals. The problem can be viewed as a signal synthesis from the (t, f ) domain with the constraint of the spatial diversity provided by the multisensor information. One advantage in combining BSS with a TF approach is that the effect of distributing the noise power while simultaneously localizing the source signal energy in the (t, f ) domain result in improving the SNR, therefore improving robustness. This TF based BSS methodology includes (i )

the BSS problem of instantaneous mixtures and (ii ) the general case of BSS of convolutive mixtures.

Although BSS algorithms exist in great profusion, the underdetermined case (with number of sensors smaller than number of sources) is less addressed than the overdetermined case (with number of sensors greater than or equal to number of sources). In the underdetermined BSS (UBSS) case, one way to deal with the lack of information is to exploit the assumption that the non-stationary sources are disjoint in the time-frequency domain in order to solve the UBSS problem without prior knowledge on the source distribution.

BSS of instantaneous mixtures based on MTFDs

In this section, we review the BSS technique based on multisensor timefrequency analysis for instantaneous mixing system. Let us consider an n-

dimensional vector s(t) = [s 1 (t), . . . , s n (t)] T that represents n non-stationary source signals s i (t), i = 1, . . . , n.
The s i (t) propagate through a medium and arrives at an array of m sensors which records a mixture of signals described by an m-dimensional vector z(t) = [z 1 (t), . . . , z m (t)] T . Therefore, the data model given in Section 2.2.1 by Eq.( 12) is applicable in this situation so that

z (t) = A s (t) + η (t).
A number of BSS algorithms have been developed for the instantaneous mixing case, which make use of the MTFD matrices discussed in the previous section. [START_REF] Belouchrani | Blind separation of nonstationary sources[END_REF][START_REF] Giulieri | Nonorthogonal joint diagonalization of spatial quadratic time-frequency matrices for source separation[END_REF]. The various approches all exploit the underlying diagonal or off-diagonal structure of MTFD matrices at some locations in the (t, f ) domain.

BSS is achieved by first constructing a set of MTFD matrices, followed by joint diagonalization (JD), joint off-diagonalization (JOD) or combined JD/JOD, to estimate the mixing matrix. The optimization of JD/JOD criteria is based on both orthogonal [START_REF] Belouchrani | Blind separation of nonstationary sources[END_REF] and non-orthogonal [START_REF] Yeredor | Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation[END_REF] constraints. Such an algorithm is illustrated in Fig. 10.

The principle of BSS based on orthogonal JD/JOD of MTFDs matrices is outlined below [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF]. This approach constrains the mixing matrix to be orthogonal, but this is not the case in general. A whitening step needs therefore to be applied 

Data whitening preprocessing

Let us consider an n × m matrix H which verifies (HA)(HA) H = I n . Here, U = HA is a n × n unitary whitening matrix (which whitens the signal part of the observations). Then, the whitened MTFD matrices are computed by applying the whitening matrix H as follow:

ρ zz (t, f ) = Hρ zz (t, f )H H . (31) 
From the definition of H and Eq.( 21), one can express ρ zz (t, f ), in the noiseless case, as:

ρ zz (t, f ) = Uρ ss (t, f )U H . ( 32 
)
The whitening matrix H can be estimated in different ways. One example is the inverse square root of the observation autocorrelation matrix; another is to calculate it using the MTFD matrices [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF].

Source separation by joint diagonalization (JD)

Selecting only auto-term (t, f ) points reduces the whitened MTFD matrices to the formulation below:

ρ a zz (t, f ) = Uρ a ss (t, f )U H ( 33 
)
where ρ a ss (t, f ) is diagonal 7 . Eq. [START_REF] Hyvarinen | Independent component analysis, 1st Edition, Adaptive and learning systems for signal processing, communications, and control[END_REF] shows that any whitened MTFD matrix is diagonal in the basis formed by the columns of the matrix U (given that the eigenvalues of ρ a zz (t, f ) are the diagonal entries of ρ ss (t, f )). In the case where, for a given (t, f ) point, the diagonal elements of ρ a ss (t, f ) are all different, the missing unitary matrix U may be uniquely retrieved by computing the eigendecomposition of ρ a zz (t, f ), up to permutation and scaling ambiguity. Indeed, the BSS problem has an inherent ambiguity concerning the order and amplitudes of the sources. In the case of degenerate eigenvalues indeterminacy occurs, where we mean by degenerate eigenvalues that the matrix ρ a zz (t, f ) is rank deficient. Formally, this occurs when ρ sisi (t, f ) = ρ sj sj (t, f ), i = j. One cannot see how to a priori choose the (t, f ) point such that the diagonal entries of ρ a ss (t, f ) are all different. Furthermore, if some eigenvalues of ρ a zz (t, f ) are degenerate, the robustness of determining U from the eigendecomposition of a single whitened MTFD matrix suffers. The situation is more appropriate if one considers the joint diagonalization of a combined set {ρ a zz (t i , f i )|i = 1,. . . , p} of p (source auto-term) MTFD matrices. This is equivalent to including several (t, f ) points in the source separation problem which decreases the probability of selecting only degenerate eigenvalues. Therefore, by considering a combined set {ρ a zz (t i , f i )|i = 1,. . . , p} one can improve the robustness of the joint diagonalization procedure. Note that if two source signals have identical (t, f ) signatures, it is expected intuitively that they cannot be separated even if one includes all information available in the (t, f ) domain.

The joint diagonalization of a set {M k |k = 1,. . . , p} of p matrices is formulated as the maximization of the following cost function [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF]:

C(V) p k=1 n i=1 |v H i M k v i | 2 (34) 
over the set of unitary matrices

V = [v 1 , . . . , v n ] [3]
. One way to get an efficient 7 Given that the off-diagonal elements of ρ a ss (t, f ) are actually cross-terms, the source TFD matrix is quasi-diagonal for the (t, f ) points that correspond to a true component power concentration, i.e. a source auto-term.

joint approximate diagonalization algorithm is to generalize the Jacobi technique [START_REF] Chabriel | Joint matrices decompositions and blind source separation: A survey 101 of methods, identification, and applications[END_REF] for the exact diagonalization of a single normal matrix [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF].

Source separation by joint off-diagonalization (JOD)

The effect of selecting cross-term (t, f ) points is that the whitened MTFD matrices formulation becomes:

ρ c zz (t, f ) = Uρ c ss (t, f )U H ( 35 
)
where ρ c ss (t, f ) is off-diagonal. As the diagonal of ρ c ss (t, f ) are formed by elements that are auto-terms, the source TFD matrix is then quasi off-diagonal (i.e., diagonal entries are negligible i.e. 0) for each (t, f ) point that corresponds to a cross-term. The required unitary matrix U is estimated by joint off-diagonalization (JOD) of a combined set {ρ c zz (t i , f i )|i = 1,. . . , q} of q source cross-term MTFD matrices [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF].

Such JOD procedure is justified by realizing that the off-diagonalization of a single n × n matrix N means maximizing

C(N, V) - n i=1 |v H i Nv i | 2 (36) 
over the set of unitary matrices V = [v 1 , . . . , v n ]. This is because the Frobenius norm of a matrix is constant under unitary transform, i.e., N F = V H NV F .

Hence, the JOD of a set {N k |k = 1,. . . , q} of n × n matrices is formulated as the maximization of the JOD cost function:

C(V) q k=1 C(N k , V) = - q k=1 n i=1 |v H i N k v i | 2 (37) 
under the same unitary constraint.

Then, in order to improve the robustness of separation procedure and take advantage of both auto-terms and cross-terms, one can combine joint diagonalization and joint off-diagonalization of two sets {M k |k = 1,. . . , p} and

{N k |k = 1,.
. . , q} of n × n matrices by maximizing the JD/JOD cost function:

C(V) n i=1 p k=1 |v H i M k v i | 2 - q k=1 |v H i N k v i | 2 (38) 
over the set of unitary matrices V = [v 1 , . . . , v n ]. Then, the combined JD/JOD criterion can be applied to a combined set of p (source auto-term) MTFD matrices and q (source cross-term) MTFD matrices in order to estimate the unitary matrix U.

Notes:

(1) The performance of the JD or JOD of MTFD matrices in retrieving the unitary matrix U depends strongly on correctly selecting auto-term and crossterm points [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF]. Therefore, it is critical to define a selection method that can discriminate between auto-term and cross-term points based only on the MTFD observations matrices. One possible solution is to exploit the off-diagonal structure of the source cross-term MTFD matrices and the invariance of Trace operation under a unitary transformation. More specifically, for a source cross-term MTFD matrix, we have

Trace ρ c zz (t, f ) = Trace Uρ c ss (t, f )U H
Then, knowing that the source cross-term MTFD matrices are off-diagonal (i.e.

the diagonal elements are equal to zero), and that Trace U M U H = Trace M if U is a unitary matrix, then:

Trace Uρ c ss (t, f )U H = Trace ρ c ss (t, f ) ≈ 0.
Based on this observation, the following testing procedure applies:

1) if Trace(ρ zz (t,f )) ρ zz (t,f ) < , -→ then, allocate the (t, f ) point as cross-term; 2) if Trace(ρ zz (t,f )) ρ zz (t,f ) > , -→ then, allocate the (t, f ) point as auto-term;
where is a 'small' positive real scalar (typically, = 0.05) [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF].

(2) In effect, the source cross-term MTFD matrices are not totally off-diagonal, given that some auto-terms main lobes or side lobes overlap with the areas where cross-terms are dominant. This is like the case of joint diagonalization of MTFD matrices selecting auto-term points [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF], where the source auto-term MTFD matrices are not totally diagonal because of cross-term overlap. This weakness is compensated by the joint approximation and robustness properties of the JD/JOD algorithm.

(3) The above results suggest that other classes of TFDs and related methods may also benefit from BSS; e.g. a cumulant-based 4 th order WVD or timevarying trispectrum can be utilized for source separation [START_REF] Leyman | Higher-order time frequency-based blind source separation technique[END_REF]. Blind separation of more sources than sensors (underdetermined BSS) is solved using a (t, f ) disjoint concept [START_REF] Linh-Trung | Separating more sources than sensors using time-frequency distributions[END_REF] (see Section 3.3).

Implementation details and the corresponding MATLAB code of the above algorithm are described in [START_REF] Boashash | Multisensor time-frequency signal processing software MATLAB package: An analysis tool for multichannel nonstationary data[END_REF].

Experiment: Separation of Instantaneous Mixtures

In this example, three synthetic signals are generated with sampling frequency 1 Hz such that:

s 1 (t) = exp -j2π 0.5 256 t 2 , s 2 (t) = exp -j2π 0.5 t - 0.5 256 t 2 , s 3 (t) = exp (-j2π(0.3 t)) ,
as depicted in the first row of Fig. 11. The generated signals are mixed using an instantaneous noisy uniform linear array model, to be received on m = 6 sensors with an SNR of 30 dB (Fig. 12). The received mixtures are whitened, and their MTFD using WVD is computed for the selection of auto and cross-terms.

Finally, the un-mixing matrix is estimated, using a joint diagonalization/joint off-diagonalization algorithm, and estimated sources are classified using their time-frequency correlation with the original signals, as depicted in the second row of Fig. 11. The results presented in this section can be reproduced using the codes provided in [START_REF] Boashash | Multisensor time-frequency signal processing software MATLAB package: An analysis tool for multichannel nonstationary data[END_REF].

BSS of convolutive mixtures based on MTFDs

Signal Model in the convolutive mixture case

The convolutive case involves delayed elements caused e.g. by a multi-path propagation. The multiple input multiple output (MIMO) linear time invariant signal model can then be expressed as

z (t) = K k=0 A (k) s (t -k) + η(t) i.e.
Eq.( 15). As discussed earlier, two assumptions are made; (1) that the sources have different sparse (t, f ) signatures and (2) the channel matrix à formulated in ( 40) is full column rank; this means that all the filters {a ij (k)} K k=0 are stable [START_REF] Castella | Chapter 8 -convolutive mixtures[END_REF]. Eq. ( 15) can be rewritten in matrix form as:

z(t) = Ã s(t) + η(t), (39) 
where s(t), z(t), η(t) and à are further described below:

s(t) = [s 1 (t), . . . , s 1 (t -(K + K ) + 1), . . . , s n (t -(K + K ) + 1)] T , z(t) = [z 1 (t), . . . , z 1 (t -K + 1), . . . , z m (t -K + 1)] T , η(t) = [η 1 (t), . . . , η 1 (t -K + 1), . . . , η m (t -K + 1)] T , Ã =      A 11 • • • A 1n . . . . . . . . . A m1 • • • A mn      , (40) 
with

A ij =      a ij (0) • • • a ij (K) • • • 0 . . . . . . . . . 0 • • • a ij (0) • • • a ij (K)      , ( 41 
)
where à is an mK × n(K + K ) matrix and A ij are K × (K + K ) matrices.

The parameter K is a slide window size chosen such that mK ≥ n(K + K ) to ensure that the matrix à is invertible.

The formalism is similar to the instantaneous mixture case. The data MTFD matrices still have the same expression as in Eq. ( 21). But the source autoterm matrices ρ ss (t, f ) are no longer diagonal, but block-diagonal 8 where each diagonal block is of size (K + K ) × (K + K ). Similarly, the source cross-term matrices are no longer off-diagonal but block off-diagonal. This block-diagonal or block off-diagonal property enables BSS to work in this case; as discussed in the next section.

BSS using MTFD matrices for convolutive mixtures

Let us now generalize the BSS method for the instantaneous case presented in Section 3.1 to the case of convolutive mixtures.

i) Data whitening preprocessing.

For BSS of instantaneous mixtures, this approach constrains the mixing matrix à to be orthogonal, which is not the case in general. To match assumptions with reality, the first step of the procedure is to then whiten the data vector z(t) to fulfill the orthogonality constraint. This is done by processing z(t) with a whitening matrix H, which is an n(K +K) × mK matrix verifying:

H R z z H H = H ÃR 1 2 ss H ÃR 1 2 ss H = I n(K +K) , (42) 
where R z z and R ss denote the covariance matrices of z(t) and s(t), respectively.

Eq. [START_REF] Belouchrani | Direction finding in correlated noise fields based on joint block-diagonalization of spatio-temporal correlation matrices[END_REF] shows that if H is a whitening matrix and if R 1 2

ss (Hermitian square root matrix of R ss ) is block diagonal, then the following matrix

U = H ÃR 1 2 ss ( 43 
)
is an n(K + K) × n(K + K) unitary matrix. The whitening matrix H can be determined from the eigendecomposition of the data covariance matrix R z z as its inverse square root [START_REF] Belouchrani | Source separation and localization using time-frequency distributions: An overview[END_REF].

ii) Separation using matrix joint block diagonalization.

Recall the whitened MTFD matrices ρ z z (t, f ) = Hρ z z (t, f )H H as defined in [START_REF] Abed | Time-frequency distributions based on compact support kernels: Properties and performance evaluation[END_REF]. Combining Eq.( 39) and Eq.( 43) leads to:

ρ z z (t, f ) = UR -1 2 ss ρ ss (t, f )R -1 2 ss U H (44) Let us denote ρ(t, f ) = R -1 2 ss ρ ss (t, f )R -1 2
ss . This then results in

ρ z z (t, f ) = Uρ(t, f )U H (45) 
As ρ(t, f ) is block diagonal and the matrix U is unitary, the following property holds: any whitened MTFD matrix is then block diagonal on the basis formed by the column vectors of matrix U. As a consequence, the unitary matrix U can be determined by estimating the block diagonalization of the matrix ρ z z (t, f ).

As for the joint diagonalization approach presented in Section 3.1.2, one can use the joint block diagonalization of a set {ρ z z (t i , f i ); i = 1,. . . , p} of p whitened MTFD matrices in order to reduces the probability of selecting only degenerate eigenvalues, and then improve the robustness of the joint block-diagonalization.

A similar procedure can be used with the joint block off-diagonalization of the source cross-term MTFD matrices.

This joint block-diagonalization (JBD) is obtained by maximizing the following criterion under unitary transform:

C(U) p k=1 n l=1 (K +K)l i,j=(K +K)(l-1)+1 u * i ρ z z (t k , f k ) u j 2 , (46) 
over the set of unitary matrices U = [u 1 , . . . , u n(K +K) ]. To perform the above, one can use an efficient Jacobi-like algorithm for joint block diagonalization algorithm such as [START_REF] Chabriel | Joint matrices decompositions and blind source separation: A survey 101 of methods, identification, and applications[END_REF][START_REF] Belouchrani | Direction finding in correlated noise fields based on joint block-diagonalization of spatio-temporal correlation matrices[END_REF].

After the unitary matrix U is retrieved (up to a block diagonal unitary matrix P due to the inherent JBD problem indeterminacy [START_REF] Bousbia-Salah | Jacobi-like algorithm for blind signal separation of convolutive mixtures[END_REF]), the estimated signals are then estimated up to a filter by:

s(t) = U H H z(t). (47) 
By "up to a filter" we mean that the separated sources correspond to filtered versions of the original ones, i.e. s i (t) = s i (t) * h i (t) where h i (t) is an unknown filter and * stands for the convolution. According to [START_REF] Leyman | Higher-order time frequency-based blind source separation technique[END_REF] and ( 43), the estimated signals verify,

s(t) = PR -1 2 ss s(t) (48) 
where, the matrix R

-1 2
ss is block diagonal and P is a block diagonal unitary matrix.

iii) Assumptions and reality.

The performance of the above algorithms may be affected by a few points.

(1) In practice, it is sufficient that only n signals among the n(K +K) recovered ones are selected. One chooses the signals resulting in the smallest cross-terms coefficients. This result is obtained as a byproduct of the joint block diagonalization procedure with no additional required computations.

(2) The algorithm yields a source separation up to a filter, instead of the full MIMO deconvolution procedure. An alternative is to apply a SIMO (Single Input Multiple Output) deconvolution/equalization [START_REF] Abed-Meraim | Blind system identification, Proceedings of the[END_REF] to the separated sources.

Experiment: Separation of Convolutive Mixtures

In this experiment, two synthetic signals (n = 2) are generated with sampling frequency 1 Hz as:

s 1 (t) = exp -j2π 0.5 t - 0.5 256 t 2 , s 2 (t) = exp -j2π 10 -5 t 3 ,
as depicted in the first row of The above results can be reproduced using the codes provided in [START_REF] Boashash | Multisensor time-frequency signal processing software MATLAB package: An analysis tool for multichannel nonstationary data[END_REF].

Under-determined blind source separation (UBSS)

In applications such as telecommunications or geophysics, the received signals form a mixture. The user is not necessarily interested in the whole signal mixture, but rather in one or more particular signal components. This section therefore assumes that (1) there are more sources than sensors, and (2) the sources are non-stationary FM signals as encountered in wireless communications and geophysics.

Data model and assumptions

As in Section 3. Frequency (Hz) In the case where the number of sensors m is less than the number of sources n, i.e. UBSS problem, the mixing matrix A is not (left) invertible. However, the column vectors of mixing matrix given by A = [a 1 , a 2 , . . . , a n ] are assumed to be pairwise linearly independent, i.e., for any i, j ∈ 1, 2, . . . , n and i = j, a i and a j are linearly independent. This hypothesis is equivalent to assuming that the direction of arrival of each of the n signal sources is different. As mentioned earlier, the sources are assumed to be multicomponent FM signals. This signal model finds application in speech analysis/synthesis [START_REF] Geçkìnì | Speech synthesis using am/fm sinusoids and band-pass noise[END_REF]. In this case, the (t, f ) domain representing the sources shows a distinct pattern with multiple ridges.

The k th source may be expressed as, where each component s k,l (t), has an AM/FM form such as:

s k (t) = M k l=1 s k,l (t), (49) 
s k,l (t) = a k,l (t) e jφ k,l (t) . (50) 
It is assumed that s k,l (t) has only one ridge in the (t, f ) domain. Fig. 18 shows an example of a multicomponent signal, consisting of three components.

UBSS using Vector Clustering

The following presents a UBSS algorithm with a vector clustering approach using the assumption that the sources are disjoint in the (t, f ) domain [START_REF] Linh-Trung | Separating more sources than sensors using time-frequency distributions[END_REF].

i) Model assumptions.

This approach assumes that (1) the sources have different sparse (t, f ) signatures, (2) the sources are consequently disjoint in the (t, f ) domain (Fig. 19) in the sense that their (t, f ) supports are disjoint. The (t, f ) support of a signal s(t) is defined as {(t, f )|ρ ss (t, f ) = 0} where ρ ss (t, f ) is the TFD of s(t). The properties of TFDs suggest that the (t, f ) disjoint assumption is too restrictive and cannot be verified exactly in practice. However, only an approximate disjoint assumption (quasi-disjoint) is required in practice to separate sources [START_REF] Linh-Trung | Separating more sources than sensors using time-frequency distributions[END_REF]; e.g. two linear FM signals with different gradients satisfy the quasi-disjoint assumption.

Under these assumptions, let us consider two auto-term MTFD matrices (as defined in Section 3.1) of the observation; then the MTFDs ρ zz (t 1 , f 1 ) and ρ zz (t 2 , f 2 ) corresponding to the same source s i (t) verify:

ρ zz (t 1 , f 1 ) = ρ sisi (t 1 , f 1 )a i a H i , ρ zz (t 2 , f 2 ) = ρ sisi (t 2 , f 2 )a i a H i . (51) 
Eq. [START_REF] Moore | On the reciprocal of the general algebraic matrix[END_REF] shows that ρ zz (t 1 , f 1 ) and ρ zz (t 2 , f 2 ) have the same principal eigenvector a i . One can then design an algorithm which groups together all auto-term points corresponding to the same principal eigenvector associated with a particular source signal. This source TFD (ρ sisi (t, f )) is then estimated as the principal eigenvalue of the MTFD matrices at the auto-term points. Fig. 20 illustrates the corresponding flowchart.

ii) A four stage design and implementation procedure.

The UBSS algorithm using vector clustering has four main stages: (1) MTFD computation and noise thresholding These MTFD matrices process the received signal to extract the source signals.

The computational cost is reduced by processing only "significant" MTFD matrices, using a noise thresholding applied to the signal TFD. A threshold 1 is used to keep only the points {(t s , f s )} with sufficient energy. Typically, 1 = 0.05 of the point with maximum energy [START_REF] Linh-Trung | Separating more sources than sensors using time-frequency distributions[END_REF]. This step can be summarized as:

Keep (t s , f s ) if ρ zz (t s , f s ) > 1 . (52) 
(2) Auto-term selection

Separating the auto-term points from cross-term points requires an appropriate testing criterion. Given the sources TF disjoint requirement, each auto-term MTFD matrix is of rank one, or in practice it has one "large" eigenvalue relative to other eigenvalues. One can then use rank selection criteria, such as MDL (minimum description length) or AIC (Akaike information criterion) to discriminate (t, f ) points [START_REF] Wax | Detection of signals by information theoretic criteria[END_REF]. The result is then essentially to select auto-term points as those corresponding to MTFD matrices of rank one. This step can written formally as follows:

if λ max {ρ zz (t, f )} norm {ρ zz (t, f )} -1 > 2 -→ decide that (t, f ) is a cross-term point. ( 53 
)
In the above, the parameter 2 is a negligible positive scalar (typically, 2 = 10 -4

[40]), and λ max {ρ zz (t, f )} denotes the largest relative eigenvalue of ρ zz (t, f ).

(

3) Clustering and source TFD estimation

After selecting the auto-term points, one needs a clustering step for the spatial signatures of the sources. This step is done to separate (cluster) each (t, f ) point following its spatial component given by the corresponding principal eigenvector.

The principle is that that two MTFD matrices associated with the same source signal have the same corresponding principal eigenvectors. Also, recall that such corresponding principal eigenvalues identify the desired source TFD. The above step can be implemented in 4 operations described below:

(a) For each auto-term point, (t a , f a ), find the principal eigenvector, v(t a , f a ), and its associated eigenvalue, λ(t a , f a ), of ρ zz (t a , f a ).

(b) Given that the vectors {v(t a , f a )} are estimated up to a random phase multiplicative coefficient e jφ , φ ∈ [0, 2π), one can constraint, without loss of generality, their norms to be 1 and their first entries to be real positive.

(c) These vectors are then clustered into different classes {C i |i = 1, . . . , n} by using any clustering algorithms such as the k-means algorithm [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF].

(d) For each particular source s i (i.e. each class C i ), calculate its TFD as:

ρsisi (t, f ) =      λ(t a , f a ), if (t, f ) = (t a , f a ) ∈ C i 0, otherwise. (54) 
Note that one can also estimate the mixing matrix A such that the column vectors of A are estimated as the centroid of each class C i i.e.:

a i = 1 Card{C i } (t,f )∈Ci v(t, f ).
where Card{C i } represents the number of elements in the set C i .

(4) Source signal reconstruction

The last stage is then to select an appropriate reconstruction technique to estimate the source signals, s i (t) (i = 1, . . . , n), from their corresponding TFD estimates ρsisi . The method in [START_REF] Boudreaux-Bartels | Time-varying filtering and signal estimation using Wigner distribution synthesis techniques[END_REF] can be exploited for TF synthesis from the WVD of separated sources, based on the following inversion property of the WVD [1, Chapter 3]:

z(t) = 1 z(0) * R W z t 2 , f e j2πtf df (55) 
In the next section, the TF-disjoint condition is relaxed by allowing the sources to be nondisjoint in the (t, f ) plane. This is to overcome the drawback of the BSS method presented above. Although this method worked well under the TF-almost-disjoint condition, it did not explicitly process the TF regions where the sources overlap. A point in the overlap area of two sources was assigned "by chance" to only one of the sources. As a result, the source that is allocated this point gets information about another source while the latter loses some of its own information. If the number of overlapping points increases (i.e., the TF-almost-disjoint condition is not met), the performance of the separation tends to reduce unless the overlapping points are processed correctly.

UBSS for non-disjoint sources in the (t, f ) domain

In most real life applications, the (t, f ) disjoint assumption is a restrictive condition that is not precisely and rigourously applicable. When this condition is not met, the separation performance degrades greatly at those overlapped (t, f ) points. In order to remedy this weakness, a subspace projection based separation method, with sparsity assumption relaxed, can be used [START_REF] Aïssa-El-Bey | Underdetermined blind separation of nondisjoint sources in the time-frequency domain[END_REF][START_REF] Aïssa-El-Bey | Blind separation of underdetermined convolutive mixtures using their time-frequency representation[END_REF]. In this algorithm, the (t, f ) representations of different sources are allowed to overlap, but only to the extent that there are less active sources at any (t, f ) point than the number of sensors. As this sparsity condition is more relaxed than the (t, f ) disjoint assumption so that the sources are allowed to overlap in the (t, f ) domain, it will be called TF nondisjoint.

Under the (t, f ) nondisjoint assumption, consider a particular (t, f ) point at which there are K sources s 1 (t), . . . , s K (t) present, with K < m where 1 , . . . , K ∈ {1, 2, . . . , n} denote the indexes of the sources present at the point (t 0 , f 0 ). The goal is to identify the sources that are present at the point (t 0 , f 0 ), i.e. 1 , . . . , K , and to estimate the TFD of each of these contributing sources.

Experiment: Underdetermined blind source separation

In the first experiment, four TF disjoint source signals (n = 4) are generated with sampling frequency 1 Hz such that: an SNR of 40 dB (Fig. 23). From Fig. 22, we can observe that the overlapping points are randomly allocated for one source, when utilizing the cluster-based algorithm. However, by using the subspace-based algorithm, the intersection points are redistributed to their corresponding two sources. In general, overlapping points in the non-disjoint case have been explicitly treated. This provides a visual performance comparison.

s 1 (t) = exp -j2π 0 
The above results can be reproduced using the codes provided in [START_REF] Boashash | Multisensor time-frequency signal processing software MATLAB package: An analysis tool for multichannel nonstationary data[END_REF].

Discussion

The performance and limitations of BSS algorithms and their applications are further reviewed below. 

Number of sources for UBSS clustering step

In the UBSS algorithm using vector clustering the number of sources n is assumed known in the clustering step (k-means). However, there exist other clustering methods that perform the class estimation as well as the estimation of the number n [START_REF] Frank | The data analysis handbook[END_REF]. Nevertheless, the results observed indicate that by using this kind of clustering method most of the time the number of classes is overes- timated, leading to poor source separation quality. Hence, robust estimation of the number of sources in the UBSS case remains a difficult open problem that deserves particular attention in future studies.

Number of overlapping sources

In the subspace based UBSS algorithm, one has to evaluate the number K of overlapping sources at a given (t, f ) point. This can be done by finding out the number of non-zero eigenvalues of ρ zz (t, f ) using criteria such as MDL or AIC [START_REF] Wax | Detection of signals by information theoretic criteria[END_REF]. It is also possible to consider a fixed (maximum) value of K that is used for all autosource (t, f ) points. Indeed, if the number of overlapping sources is less than K, one would estimate close-to-zero source (t, f ) values. For example, if we assume K = 2 sources are present at a given (t, f ) point while only one source is effectively contributing, then one estimates one close-to-zero source (t, f ) values. This approach increases slightly the estimation error of the source signals (especially at low SNRs) but has the advantage of simplicity compared to using information theoretic-based criterion.

Separation quality versus number of sources

Although we are in the underdetermined case, the number of sources n should not exceed too much the number of sensors. Indeed, when n increases, the level of source interference increases, and hence, the source disjointness assumption is ill satisfied. Moreover, for a large number of sources, the likelihood of having two sources closely spaced, i.e., such that the spatial directions a i and a j are "close" to linear dependency, increases. In that case, vector clustering performance degrades significantly. In brief, sparseness and spatial separation are the two limiting factors against increasing the number of sources.

Overdetermined case

The class of UBSS algorithms presented in Section 3.3 can be further simplified in the overdetermined case where m ≥ n. In that context, the algorithm can be reduced to the mixing matrix estimation step, the noise thresholding then source estimation using the mixing matrix pseudo-inversion.

Improved BSS using high-resolution MTFDs

In the case where the received multisensor signal presents high cross-terms, the BSS may become a challenging. Therefore, in order to improve the robustness against cross-terms of separation procedure based on joint diagonalization (JD, JOD and JBD), we can use the hight resolution TFDs introduced in Section 2.3.2 instead of MWVD. Indeed, despite its many desirable properties, the MWVD has some drawbacks that require a precise handling such as cross-terms.

Such cross-terms are undesirable in BSS application. Then, cross-terms can be reduced by using high resolution TFDs such as EMBD, CKD or MDD. 

This means that, it takes ∆t seconds less for one signal to reach an antenna in the two element array relative to the first one. In the frequency domain, such delays appear as a phase shift in the signals received by the elements i.e.:

e -jω∆t = e -j2πfc( d c ) cos(θ) = e -j2πfc( d cos(θ) λfc ) = e -j2π( d λ ) cos(θ) , ( 63 
)
where f c is the center frequency and λ is the wavelength of the signal [START_REF] Van Trees | Detection, Estimation, and Modulation Theory[END_REF]. With direction of the signal is estimated from Eq. ( 62). This is the basic principle of spatial spectrum estimation techniques.

For an m antennas array, the steering vector given in Eq. ( 13) can be defined as: θi) , where

a (θ i ) = 1, e -j2π( d λ ) cos(θi) , e -j2π( 2d λ ) cos(θi) , • • • , e -j2π( (m-1)d λ ) cos(
{θ i } n i=1
is the angle of arrival of the i th source signal.

Time domain DOAs estimation

The covariance matrix of the observation vector z(t) is given by R zz = E z (t) z H (t) such that (see Section 2.3.1):

R zz = A R ss A H + σ 2 η I m . ( 64 
)
Let us consider the case where R ss = E s (t) s H (t) is a full rank matrix.

This occurs by assuming (1) non-coherence9 of the n incoming signals, and

(2) that the set of n vectors in A are linearly independent. The eigenvalue decomposition of the covariance matrix is then carried out as the DOAs are determined by the eigen-structure of the matrix. Let 1 ≥ 2 ≥ . . . ≥ m denote the eigenvalues of the matrix R zz , and λ 1 ≥ λ 2 ≥ . . . ≥ λ m those of the matrix AR ss A H , respectively. Eq. ( 64)

yields i = λ i + σ 2 η , i = 1, 2, . . . , m.
Since, the matrix A is full column rank n, the (m -n) smallest eigenvalues of

R zz equal σ 2 η : i =      λ i + σ 2 η i = 1, 2, . . . , n, σ 2 η i = n + 1, n + 2, . . . , m. (65) 
The eigenvalue decomposition of the covariance matrix R zz then reduces to:

R zz = n i=1 λ i + σ 2 η v i v H i + m i=n+1 σ 2 η v i v H i , (66) 
where v H i v j = δ i,j are the orthogonal eigenvectors of the matrix R zz (i.e., R zz v i = i v i for i = 1, 2, . . . , m). Eq.( 66) will then simplify to

R zz v i = σ 2 η v i , i = n + 1, n + 2, . . . , m or, equivalently, R zz -σ 2 η I m v i = 0, i = n + 1, n + 2, . . . , m. (67) 
Eq.( 64) can be rewritten as R zz -σ 2 η I m = AR ss A H ; Eq.( 67) then becomes:

AR ss A H v i = 0, i = n + 1, n + 2, . . .

, m, which yields:

A H v i = 0, i = n + 1, n + 2, . . . , m. (68) 
Eq. [START_REF] Blinowska | Review of the methods of determination of directed connectivity from multichannel data[END_REF] shows that the subspace spanned by the eigenvectors {v n+1 , v n+2 , . . . , v m } is orthogonal to the complement subspace spanned by the steering vectors in matrix A. Therefore, from the eigenvectors of R zz , one can obtain the signal DOAs by finding those steering vectors that are orthogonal to the noise subspace.

Time Domain MUSIC Algorithm

Spectral-based DOA estimation methods are based on maximizing the power of signal projected on the signal subspace. One of the standard DOA techniques, MUSIC (Multiple SIgnal Classification) [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF], performs an eigenvalue decomposition of the unknown covariance matrix R zz estimated as:

R zz = 1 T T 0 z (τ ) z H (τ ) dτ, ( 69 
)
where T is the signal duration. Let use express the eigenvector estimates as

{ v 1 , v 2 , .
. . , v m } such that the singular value decomposition of R zz is given by:

R zz = V Λ V H , ( 70 
) with V = [ v 1 , v 2 , . . . , v m ].
Using Eq.( 68), MUSIC then estimates the signal directions as the peaks of the spatial spectrum estimate expressed by [START_REF] Van Trees | Detection, Estimation, and Modulation Theory[END_REF]:

P MUSIC (θ) = 1 m i=n+1 |a (θ) v i | 2 , ( 71 
)
where a (θ) is a column vector of the steering matrix defined by Eq.( 13). The MUSIC spectrum is estimated from a single realization of the random process represented by the observations z (t) for t = 1, 2, . . . , T . MUSIC estimates were shown to be consistent and they converge to the true source bearings as the number of observations increases to infinity [START_REF] Cardoso | Asymptotic performance analysis of directionfinding algorithms based on fourth-order cumulants[END_REF].

Time Domain ESPRIT Algorithm

ESPRIT stands for Estimation of Signal Parameters via Rotational Invariance Techniques [START_REF] Paulraj | A subspace rotation approach to signal parameter estimation[END_REF][START_REF] Krim | Two decades of array signal processing research: the parametric approach[END_REF]. The aim of the ESPRIT algorithm is to exploit the rotational invariance in the signal subspace which is created by two arrays with a translational invariance structure. ESPRIT inherently assumes narrowband signals so as to know the translational phase relationship between the multiple arrays to be used. The ESPRIT algorithm is more robust with respect to array imperfections than MUSIC [START_REF] Stoica | Performance comparison of subspace rotation and music methods for direction estimation[END_REF][START_REF] Ottersten | Performance analysis of the total least squares esprit algorithm[END_REF]. Computation complexity and storage requirements are lower than MUSIC as it does not perform an extensive search throughout all possible steering vectors [START_REF] Krim | Two decades of array signal processing research: the parametric approach[END_REF]. The ESPRIT algorithm is summarized as follows:

• Estimate the correlation matrix R zz by using Eq. ( 69) and compute its eigendecomposition in order to get the eigenvector { v 1 , v 2 , . . . , v m }.

• From the n principal eigenvectors { v 1 , v 2 , . . . , v n }, representing the signal subspace, form the matrix

V s = [ v 1 , v 2 , . . . , v n ].
Then, from the matrix V s form the matrices V 1 and V 2 such that:

V s =   V 1 last row   =   first row V 2   . ( 72 
)
• Solve in a least square sense the relation V 2 = V 1 Ψ in order to estimate the matrix Ψ.

• Find the eigenvalues {ψ 1 , ψ 2 , . . . , ψ n } of the matrix Ψ. Then, DOA estimates are obtained by [START_REF] Van Trees | Detection, Estimation, and Modulation Theory[END_REF]:

θ i = arccos jλ log ψ i 2πd ( 73 
)
4.2. Time-frequency DOAs estimation

Time-Frequency MUSIC Algorithm

As noted in Section 2.3.1, the linear model given in Eq. ( 21) has the same structure as the covariance matrix based on the linear model given in Eq. ( 64).

This similarity suggests that the MUSIC algorithm can be simply extended for direction finding using the subspace decomposition of an averaged MTFD matrix. The steps needed to find the averaged MTFD matrix ρ zz are given in Table 1. After estimating the averaged MTFD matrix ρ zz , TF-MUSIC can therefore simply extend Eq.( 71) to get:

P TF-MUSIC (θ) = 1 M i=n+1 |a (θ) v TFi | 2 , (77) 
where v TFi is the i th eigenvector of the averaged MTFD matrix ρ zz . A difference between the averaged MTFD matrix ρ zz and the sample covariance R zz is that the former is obtained by averaging selected high signal energy points by rejecting noise contributions while the later is obtained by averaging all available points including noise contributions. Hence, the averaged MTFD matrix ρ zz based directional estimation technique P TF-MUSIC (θ) is expected to improve performance. In addition, the TF approach allows the estimation of the covariance matrix of each source separately (e.g. by using a multi-component IF 2. Select auto-TFDs ρz i,i (t, f ) m i=1 and compute the spatial averaged TFD as:

ρavg (t, f ) = 1 m m i=1 ρz i,i (t, f ) . (74) 
3. Select high energy (t, f ) points as Eq.( 52):

Select the point (t i , f i ) if ρavg (t i , f i ) > t (75) 
and reject the (t, f ) points with negligible energy (e.g. noise) to improve the SNR.

The threshold t is a user defined parameter; in this study the value for t is selected such that: t ≥ 0.05 × max(ρavg).

4.

Compute the averaged MTFD matrix ρ zz using averages of the selected (t, f ) points in the previous step as:

ρ zz = 1 n points n points i=1 ρ zz (t i , f i ) . (76) 
where n points represents the total number of selected (t, f ) points.

approach). This is significant as it then allows the formulation of estimates of DOAs even in the case where there are more sources than sensors (case discussed later in Section 4.4).

Time-Frequency ESPRIT Algorithm

As for TF-MUSIC, one can extend the ESPRIT algorithm to TF-ESPRIT for direction finding based on MTFD matrices by considering the subspace decomposition of an averaged MTFD matrix (see Table 1). After estimating the averaged MTFD matrix ρ zz , TF-ESPRIT uses ρ zz instead of Rzz in the subspace technique given in Section 4.1.2 to get the DOA estimates. The advantage of this approach, like TF-MUSIC, is to exploit the accuracy and robustness of the averaged MTFD matrix ρ zz over the basic sample covariance Rzz approach. The above results can be reproduced using the codes provided in [START_REF] Boashash | Multisensor time-frequency signal processing software MATLAB package: An analysis tool for multichannel nonstationary data[END_REF].

Underdetermined DOAs estimation using MTFDs

Another advantage of TF source localization is its ability to address the problem of sources localization in the underdetermined case [START_REF] Ouelha | Improving DOA estimation algorithms using high-resolution time-frequency distributions[END_REF]. The TF approach allows the estimation of the covariance matrix of each source separately, and therefore yields estimates of DOAs, even in the case of more sources than sensors. Indeed, as presented in Section 3. the binary masking, one can use the TF-DOA estimation algorithms presented in Section 4.2 to estimate the DOA of each source. After a clustering step, one can apply the TF binary masking operation defined as:

ρ si,si (t, f ) = ρ zz (t, f ) Ω i (t, f ), (78) 
such that:

Ω i (t, f ) =      1, if (t, f ) ∈ C i 0, otherwise. (79) 
where ρ si,si is the estimated TFD of the i th source, ρ zz represents the averaged MTFD introduced in Section 4.2.1.

-
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Figure 30: Normalized mean square error of DOA estimation with respect to SNR.

Discussion

The performance and limitations of the above DOA estimation algorithms and their applications are further discussed below.

Signal subspace dimension

In the presented DOA estimation methods the number of sources n is assumed known. Then, an important problem is the determination of n, the number of source signals. Based on the fact that the number of source signals is equal to the number of large eigenvalues of the covariance matrix, one can obtain relatively simple non-parametric algorithms for estimating n. The idea is to determine the multiplicity of the smallest eigenvalue, which theoretically equals m -n. A statistical hypothesis test can be used based on information theoretic criteria, such AIC and MDL [START_REF] Wax | Detection of signals by information theoretic criteria[END_REF]. The estimation of the number of sources can be done by using Akaike's criterion according to:

n AIC = arg min k            T (m -k) log       m i=k+1 i (m -k) m i=k+1 1 m-k i       + k (2m -k)            . (80) 
or using MDL criterion according to:

n MDL = arg min k            T (m -k) log       m i=k+1 i (m -k) m i=k+1 1 m-k i       + (k (2m -k) + 1) log( √ T )            . ( 81 
)
where value i , i = 1, . . . , m represent the eigenvalues of the covariance matrix R zz . Unfortunately, the aforementioned approach is very sensitive to the assumption of a spatially white noise field [START_REF] Xu | Bias analysis of the music location estimator[END_REF].

Let us consider the case of a uniform linear array having six sensors (m = 6).

Two source signals (n = 2) arrive on this array from directions θ 1 = 10 • and θ 2 = 30 • , respectively. Fig. 31 represents the estimated number of sources with respect to the SNR for AIC and MDL criteria. We can observe that both methods well estimated the number of sources from SNR grater thant -4 dB with a bias for AIC method. The same observation can be made for Fig. 32, where we consider the case of a uniform linear array having six sensors (m = 6) and three source signals (n = 3) arrive on this array from directions θ 1 = 10 • , θ 2 = 30 • and θ 3 = 50 • , respectively.

Spatial resolution

The spatial resolution is defined as the ability to distinguish two or more sources with very close incident angle. As for MUSIC and TF-MUSIC algorithms, the resolution ability is one of their weakness. It is not hard to understand that we cannot decide the exact number of signal from one peak in the graph of MUSIC and TF-MUSIC algorithms. A small step of scanning can improve the resolution ability but cannot solve this problem totally. However, (1) in brain studies, the concept of cross channel causality can be used to characterize the propagation of a seizure location across EEG channels, therefore providing a key information about the time-varying information flow scalp [START_REF] Omidvarnia | Measuring time-varying information flow in scalp EEG signals: Orthogonalized partial directed coherence[END_REF];

(2) In wireless communication, it characterizes the varying spatial location of a moving user (mobile) in cell by exploiting the multi-antenna array of the base station;

(3) In aeronautics, a primary design goal for helicopter engineers is to utilize vibrations measured from a multichannel system to identify the excitation sources or faults of a rotating system [START_REF] Ning | Multichannel coherence analysis of helicopter vibrations[END_REF].

Cross-channel causality and phase synchrony

The cross channel causality describes the dependence relationship between multichannel signals. This dependence can be quantified using various approaches, from simple linear correlation to more advanced TF based approaches.

Cross-correlation between two zero mean signals x i (t) and x j (t) under the weaksense stationarity assumption is defined as:

r ij (τ ) = E x i (t) x j (t + τ ) * E x i (t) 2 E x j (t + τ ) 2 such that -1 ≤ r ij (τ ) ≤ 1. ( 82 
)
The cross-correlation is typically utilized to assess the linear relationship between different signals; however, a simple correlation coefficient at the zeroth lag is limited in its ability to assess the interactions of these signals, as it can only quantify the linear relationships and capture mostly the amplitude-based relationships.

Another useful measure between multichannel signals is the coherence function defined as:

C ij (f ) = S ij (f ) S ii (f )S jj (f ) such that 0 ≤ |C ij (f )| ≤ 1. ( 83 
)
where S ij (f ) is the cross-spectral density between x i (t) and x j (t) given by:

S ij (f ) = F τ →f E{x i (t)x j (t + τ ) * } (84) 
and S ii (f ) and S jj (f ) the auto-spectral density of x i (t) and x j (t) respectively.

The coherence function provides a measure that quantifies linear relationships in the frequency domain between two wide sense stationary signals [START_REF] Koopmans | of Probability and Mathematical Statistics[END_REF][START_REF] White | Cross spectral analysis of nonstationary processes[END_REF]. The magnitude squared coherence function measures the degree to which one signal can be represented as the output of a linear filter operating on the other signal and varies from 0 for two statistically independent signals to 1, when one signal is the result of linear filtering performed on the other. The coherence function finds many useful applications but the results based on coherence depend on several factors like stationarity of the signal, segment length, number of segments, etc. [START_REF]Random Data, 4th Edition, Analysis and Measurement Procedures[END_REF]. A short but broad review that includes linear as well as non-linear measures is given in [START_REF] Pereda | Nonlinear multivariate analysis of neurophysiological signals[END_REF][START_REF] Blinowska | Review of the methods of determination of directed connectivity from multichannel data[END_REF].

In order to mitigate these limitations and address the analysis of nonstationary signal, phase synchrony analysis can be used [START_REF] Assous | Evaluation of the modified s-transform for timefrequency synchrony analysis and source localisation[END_REF]. Phase synchrony analysis is a useful measure of linear dependence between multichannel signals.

This approach is based on the concept of phase synchronization of chaotic oscillators [START_REF] Rosenblum | Phase synchronization of chaotic oscillators[END_REF][START_REF] Pikovsky | Phase synchronization in regular and chaotic systems[END_REF]. The phase synchrony (coefficient) takes on values between 0, for two signals at different frequencies, and 1, for signals that exhibit a constant difference in instantaneous phase (representing the situation where a signal and its time-shifted version are observed). So, phase synchrony refers to the interdependence between the instantaneous phases of two signals; the instantaneous phases may be strongly synchronized even when the amplitudes of the two signals are statistically independent [START_REF] Rosenblum | Phase synchronization of chaotic oscillators[END_REF][START_REF] Pikovsky | Phase synchronization in regular and chaotic systems[END_REF].

The degree of synchrony between two signals is usually assessed via estimation of instantaneous phase around a particular frequency, which is usually accomplished via the Hilbert transform such that [START_REF] Boashash | Estimating and interpreting the instantaneous frequency of a signal. i. fundamentals[END_REF]:

ϕ(t) = arg [z(t)] = arg [x (t) + j H {x (t)}] (85) 
Then, in the case of non-stationary signals, TF methods become naturally more suitable for the calculation of synchrony between two signals [START_REF] Aviyente | A phase synchrony measure for quantifying dynamic functional integration in the brain[END_REF][START_REF] Omidvarnia | A time-frequency based approach for generalized phase synchrony assessment in nonstationary multivariate signals[END_REF]. Several approaches exist. A Morlet wavelet-based method was used in [START_REF] Lachaux | Measuring phase synchrony in brain signals[END_REF], but here for continuity with above sections, we present a recently proposed method based on quadratic TFDs [START_REF] Aviyente | A phase synchrony measure for quantifying dynamic functional integration in the brain[END_REF] [1, Section 16.4].

Phase synchrony estimation using a complex TFD

Let us consider the QTFD of a signal based on the reduced-interference Rihaczek TFD, defined for a monosensor signal z(t) as:

ρ z (t, f ) = R 2 e -ν 2 τ 2 σ e -jπντ A z (ν, τ ) e -j2π(f τ -νt) dνdτ (86) 
where A z (ν, τ ) is the ambiguity function defined in Section 2.3.2 and given by:

A z (ν, τ ) = R z t + τ 2 z * t - τ 2 e -j2πνt dt (87) 
The factor e -jπντ is the kernel for the Rihaczek distribution, and e -ν 2 τ 2 σ is an exponential kernel used to reduce the effect of the cross-terms. Other kernels can be used as long as they remove the cross-terms in the Rihaczek amplitude spectrum.

Therefore, by extending the previous formulation of Rihaczek distributions, the Rihaczek MTFD for the signal vector z(t) can be defined as:

ρ zz (t, f ) = F τ →f F -1 ν→t g(ν, τ )A zz (ν, τ ) , (88) 
where A zz (ν, τ ) is the spatial ambiguity function defined by Eq.( 26) and g(ν, τ )

is the Doppler-lag kernel defined by:

g(ν, τ ) = e -ν 2 τ 2 σ e -jπντ (89) 
Since the TFD localizes spectral components in the (t, f ) domain, the cross correlation of specific events on two spatially separated TFDs gives the phase difference and hence the phase synchrony can be estimated. The amplitude of the cross TFD indicates coincident or partly overlapped signals. The phase of the cross TFD at local maxima indicates the phase difference between them.

The phase of the TFD product of two signals z i (t) and z j (t) is then defined as follows [START_REF] Aviyente | A phase synchrony measure for quantifying dynamic functional integration in the brain[END_REF] [1, Section 16.4]:

ϕ ij (t, f ) = arg ρ zi,zi (t, f )ρ * zj,zj (t, f ) (90) 
Based on the estimate of a time-varying phase spectrum as shown above, a synchrony measure still needs to be defined. For this, the phase-locking value (PLV) is considered. The PLV between two signals, averaged across realizations/trials, can be defined as [START_REF] Aviyente | A phase synchrony measure for quantifying dynamic functional integration in the brain[END_REF]:

P ij (t, f ) = 1 T r T r k=1 e j ϕ (k) ij (t,f ) (91) 
where P ij (t, f ) is the ij th element of the matrix P(t, f ), T r is the number of trials/realizations, and ϕ (k) ij (t, f ) is the time-varying phase estimate between z i (t) and z j (t) for the k th trial. The PLV measures the intertrial/interrealization variations of phase differences at time t and frequency f . A PLV close to 1 indicates a small phase difference across trials/realizations. For a single trial, a so-called single-trial PLV is calculated, denoting the consistency of the phase across time.

Lastly, the described phase synchrony measure assesses the instantaneous phase differences between signals in the (t, f ) domain using the complex Rihaczek distribution [START_REF] Aviyente | A time-frequency-based approach to phase and phase synchrony estimation[END_REF]. In some applications, such as biomedical signal processing, one would expect to have a "number" which shows whether the channels are synchronized. Then, based on the PLV definition, the channel synchronization can be quantified by using the mean value over time and frequency, such that:

P ij = 1 Card{Ω} (t,f )∈Ω e j ϕij (t,f ) , (92) 
where P ij is the ij th element of the mean PLV matrix P which quantifies the synchronization between the i th and the j th sensors.

Therefore, the PLV defined by Eq. ( 92) tends to 1 which is consistent under phase locked signal assumption. In other hand, the cross TFD of z i (t) and z j (t) can be expressed as:

ρ zi,zj (t, f ) = ρ zi,zi (t, f ) e -jφ
Then, knowing that ρ zi,zi (t, f ) is real, the phase of cross TFD defined in Eq. ( 93) is given by:

ϕ ij (t, f ) = arg ρ zi,zj (t, f ) 2 = -2φ
In the same way the resulting PLV also tends to 1 10 . One can conclude that the two methods of time-varying phase estimation lead to the same theoretical behavior of the PLV for the phase locked signals. However, the method defined by Eq. ( 93) makes it possible to extract additional information on the phase shift of the two signals where the method defined by Eq. ( 90) is invariant with respect to the phase shift.

Illustrative examples

This simulation uses a forward model11 generated from an atlas of neonatal MRI data. The relevant surfaces, a 3D cortex mesh, and the coregistration of the Electrical Geodesics, Inc (EGI) hydrocell caps orientation on the infants head are generated by using the MATLAB software, Brainstorm [START_REF] Tadel | Brainstorm: A userfriendly application for MEG/EEG analysis[END_REF][START_REF]Brainstorm toolbox[END_REF]. Once these surfaces are generated, OpenMEEG is then used to generate the lead-field matrix from this model [START_REF] Gramfort | OpenMEEG: opensource software for quasistatic bioelectromagnetics[END_REF][START_REF] Kybic | A common formalism for the integral formulations of the forward EEG problem[END_REF]. A simulator then takes the lead-field matrix and generates virtual sources centered on a single cortical volume. To do so, a virtual source signal is given, along with a cortical volume and dipole orientation for m = 64 electrodes. The signal is then propagated through the lead-field matrix, and additive noise is included. To establish brain connectivity matrices, the definitions given by Eqs. ( 90) and ( 93) are used to calculate the time-varying phase spectra and the corresponding PLV values for all EEG channels.

Experiment 1

This experiment was conducted for different values of SNR, in order to asses the robustness of PLV estimation methods. In this experiment, three synthetic signals (n = 3); two of them are Gaussian pulse expressed as:

s 1 (t) = exp -40 (t -2.8) 2 exp (-j2π (5 t -14)) , s 2 (t) = exp -128 (t -7) 2 exp (-j2π (6 t -42)) ,
and the third is an LFM signal generated as:

s 3 (t) = exp -j2π 1 2 t 2 + t t ∈ [1.8, 4.5],
The generated signals are passed through the lead-field matrix and then received on 64 sensors (m = 64). As depicted in Fig. 34, the signals are selected in such a way that they do not have cross-terms, so as to avoid the cross-terms in the PLV estimation. 

Experiment 2

This experiment was conducted for source signals with cross-terms, in order to assess the robustness of PLV estimation using high resolution TFDs. Then, in this experiment, three synthetic signals (n = 3); one LFM signal and two quadratic FM signal, generated as: and their corresponding instantaneous frequencies (IFs) are given by: (see e.g. Figs 35, 36 and 37 of Experiment 1), as many spurious connections also appear. Therefore, to concentrate on the most relevant connections, we thresholded the connectivity matrices to keep only the 5% strongest connections. One can observe from Fig. 39 that connectivity matrices based on PLV estimation using the CKD provide a better resolution to describe the cross-channel causality in presence of cross-terms. Indeed, in this experiment the WVD introduces pseudo-information in the (t, f ) domain in the form of inner cross-terms (see 

s 1 (t) = exp -j2π 4 t - 25 32 t 2 , s 2 (t) = exp -j2π 9 t - 1 64 t 3 , s 3 (t) = exp -j2π t + 1 64 t 3 , ( 
IF s1 (t) = 1 2π dϕ s1 dt (t) = -4 + 25 16 t, IF s2 (t) = 1 2π dϕ s2 dt (t) = -9 + 3 64 t 2 , IF s3 (t) = 1 2π dϕ s3 dt (t) = -1 - 3 64 t 2 , ( 

38(d))

. One can observe from Figs. 39(c) and 39(d) that the CKD provides a more accurate PLV than that obtained by using the WVD.

directly attached to the scalp. Despite its superior temporal resolution, the spatial resolution of EEG is less than other functional brain imaging methods such as fMRI. This is due to the separation between EEG electrodes and the current sources inside the head, i.e. neurons, by several layers with different conductivity profiles [START_REF] Srinivasan | Methods to improve the spatial resolution of EEG[END_REF]. In addition, since various source arrangements inside the brain or cortex can result in a similar potential distribution on the scalp, the visual interpretation of EEG cannot provide an accurate location of neural generators [START_REF] Grova | Evaluation of EEG localization methods using realistic simulations of interictal spikes[END_REF].

Some of the well-documented methods are based on the convenient but inaccurate assumption that EEG signals are stationary or at least quasi-stationary [START_REF] Liu | Detection of neonatal seizures through computerized EEG analysis[END_REF][START_REF] Gotman | Evaluation of an automatic seizure detection method for the newborn EEG[END_REF][START_REF] Faul | An evaluation of automated neonatal seizure detection methods[END_REF]. To account for the non-stationary characteristic EEG seizure, a number of time-frequency methods have been proposed [START_REF] Hassanpour | Time-frequency based newborn EEG seizure detection using low and high frequency signatures[END_REF][START_REF] Assous | Evaluation of the modified s-transform for timefrequency synchrony analysis and source localisation[END_REF][START_REF] Boashash | A methodology for time-frequency image processing applied to the classification of non-stationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals[END_REF]. Most studies have focused on only single channel EEG or on single channels at a time when using multichannel EEGs. However, to improve precision and performance, the problem of analyzing multichannel EEGs should be approached more precisely using recently developed TF methods for analyzing multisensor data in the context of array signal processing [START_REF] Boashash | A methodology for time-frequency image processing applied to the classification of non-stationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals[END_REF][START_REF] Latif | Partially constrained blind source separation for localization of unknown sources exploiting nonhomogeneity of the head tissues[END_REF]. Once an abnormality has been detected and classified in multichannel EEG, the solution of the inverse problem can be used to locate the sources of that abnormality in the brain.

The following extends the MTFD concepts presented earlier to an application dealing with EEG signals enhancement and diagnosis; specifically, we use TF-BSS and TF-MUSIC methods for artifacts removal and source localization. The EEG forward problem aims at predicting the scalp potentials that result from the hypothetical dipoles, or more generally from current distributions inside the head at any location, orientation and amplitude values [START_REF] Grech | Review on solving the inverse problem in EEG source analysis[END_REF]. Because most studies of EEG deal with frequencies between 0.1 Hz and 100 Hz [START_REF] Baillet | Electromagnetic brain mapping[END_REF],

the forward model can be described by the quasi-static versions of Maxwell's equations [START_REF] Hämäläinen | Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain[END_REF]. In this condition Poisson's equation gives the potentials at any position in a volume conductor due to current source distribution as [START_REF] De Munck | Mathematical dipoles are adequate to describe realistic generators of human brain activity[END_REF][START_REF] Latif | Localization of abnormal EEG sources using blind source separation partially constrained by the locations of known sources[END_REF]:

∇. (µ∇ϑ) = ∇.J s , in Ω, (94) 
where ∇ is a partial differential vector operator, Ω denotes ohm (unit of the resistance of a conductor), µ is the electrical conductivity, ϑ are the electrical potentials and J s are the electric current sources. Eq. ( 94) indicates that for a given configuration of electric sources, the mapping from the electric sources within the head to the scalp recordings on the outside of the scalp can be represented by a lead field matrix [START_REF] Grech | Review on solving the inverse problem in EEG source analysis[END_REF].

There are two main numerical methods for solving the forward model and obtaining the lead field matrix, namely; boundary element method (BEM) [START_REF] Banerjee | Boundary element methods in engineering science[END_REF][START_REF] Gençer | Forward problem solution of electromagnetic source imaging using a new BEM formulation with high-order elements[END_REF] and finite element method (FEM) [START_REF] Zienkiewicz | The finite element method[END_REF][START_REF] Zhang | A second-order finite element algorithm for solving the three-dimensional EEG forward problem[END_REF][START_REF] Bagshaw | Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method[END_REF]. Boundary element methods assume that each layer is homogeneous and isotropic in conductivity. Finite element methods can be extended to model anisotropic and inhomogeneous tissues such as skull and white matter. However, It has been shown that when piecewise constant conductivity is used (instead of a spatially varying anisotropic conductivity model), both methods perform similar in terms of the accuracy of the solution [START_REF] Darvas | Mapping human brain function with MEG and EEG: methods and validation[END_REF].

Formulation

Let us define z i (t) as the electric field measured at sensor i at time instant t.

The vector z (t) = [z 1 (t) , z 2 (t) , . . . , z m (t)] T then presents the set of measurements collected by m sensors. Let's assume n current dipole sources generate the electric field. The magnitude of the i th dipole source movement is s i (t) and the source magnitude vector is defined as: s (t) = [s 1 (t) , s 2 (t) , . . . , s n (t)] T . For m sensors and n dipole sources, the relationship between z (t) and s (t) can be expressed by Eq.( 12) using matrix A such that z (t) = A s (t) + η (t), where A represents the lead-field matrix of dimension m × n [89] that includes both the effect of location Λ and orientation Φ of the dipoles as A = ΛΦ. Each column of the lead-field matrix is called a lead field and it defines the current flow for a given sensor through each dipole position [START_REF] Grech | Review on solving the inverse problem in EEG source analysis[END_REF].

Hence, the above model can be used to solve the problem of EEG source localization and artifacts removal using the approaches presented earlier.

6.2. Application of BSS to EEG artifacts removal 6.2.0. Background and motivation

In this section, the advanced BSS algorithms discussed earlier in the text are applied to the analysis of multichannel EEG signals for artifacts removal.

Artifacts cause a major problem in the implementation of fully automated EEG signal classification systems; e.g. respiratory artifacts look like seizures and can be misinterpreted by the automatic abnormality detection system thus resulting in false alarms. One option is to apply machine learning algorithms to first detect and then reject EEG segments corrupted by artifacts, but this approach results in a loss of EEG data [START_REF] Boashash | Time-frequency processing of nonstationary signals: Advanced TFD design to aid diagnosis with highlights from medical applications[END_REF][START_REF] Boashash | Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study[END_REF]. Another approach for removing artifacts is to correct EEG signals without discarding any EEG segments. Some artifacts can be corrected by simple frequency domain filtering, e.g. band pass filtering can remove low-frequency movement related artifacts or a notch filter can remove 50 Hz noise. This approach does not require any reference signals.

For more complex cases, when the spectrum of artifacts overlaps with the spectrum of EEG signals, BSS algorithms can be used. In this approach, signals that are corrupted by artifacts are identified either manually or automatically using correlation from a reference signal [START_REF] Vos | Automated artifact removal as preprocessing refines neonatal seizure detection[END_REF]. The artifact free signal is then synthesized by combining only artifact free components.

Based on the model presented in Section 6.1.1 the instantaneous BSS methods can be considered to tackle the problem of artifacts removal. Therefore, an EEG artifact removal algorithm can be designed by using the BSS algorithm presented in Section 3 with a selected high resolution time-frequency distribution to extract close signal components (see results in Section 6.4). exploit the fact that the lead-field matrix A = ΛΦ is orthogonal to the noise subspace of the received covariance matrix [START_REF] Grech | Review on solving the inverse problem in EEG source analysis[END_REF]. To find the locations of abnormalities, the covariance matrix is estimated from the received multichannel EEG signals, and instead of using steering vectors, in Eq.( 71) the eigenvectors are projected on the columns of the lead field matrix A.

More precisely, the TF-MUSIC algorithm, as indicated in Section 4.2.1, starts with calculating the MTFD of the processed EEG data ρ zz (t, f ), followed by the average procedure described in Table 1. To estimate the locations of the sources, the TF-MUSIC algorithm takes advantage of the fact that span (A) = span (V s ) (where V s is the signal subspace of ρ zz (t, f )) and the orthogonality of signal subspace and noise subspace. These can thus be obtained by checking the orthogonality between the lead field matrix and the noise subspace projector. Then, the final TF-MUSIC metric is derived as a measure of orthogonality between the noise subspace and the lead-field matrix [START_REF] Sekihara | Estimating neural sources from each time-frequency component of magnetoencephalographic data[END_REF]:

J = 1 λ min (A H V V H A, A H A) (95) 
where λ min is the minimum generalized eigenvalue of the matrix pair A H V V H A and A H A, and V is the noise subspace defined as V = [v n+1 , . . . , v m ] in which v i is the i th eigenvector of the averaged MTFD matrix. Calculating this metric over all grid points (source space) then results in a map with a peak at or near the location of the source.

Results and discussion

In this section, numerical and experimental results will be discussed where we apply the concepts of TF BSS and TF-MUSIC on EEG signals for artifacts removal and source localization. nificant localization error, as described in [START_REF] Akalin Acar | Effects of forward model errors on EEG source localization[END_REF]. The best case is to have an anatomically accurate physical model of the head available with particular emphasis on the geography and composition of the surfaces of the scalp, outer skull, inner skull and cortex, and accurately localized electrode locations. This is generally best done using a brain magnetic resonance image and either manual or automated segmentation of the surfaces.

In this simulation the MATLAB software, Brainstorm [START_REF] Tadel | Brainstorm: A userfriendly application for MEG/EEG analysis[END_REF][START_REF]Brainstorm toolbox[END_REF], was used to generate a forward model from an atlas of neonatal MRI data. The relevant surfaces, a 3D cortex mesh, and the coregistration of the EGI hydrocell caps 
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 1 Figure 1: a) Single-Input Single-Output (SISO) b) Multiple-Input Single-Output (MISO).
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 2 Figure 2: Two sensors and one point source.
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 3 Figure 3: Multi-sensor array and multiple sources.
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 4 Figure 4: Instantaneous mixing model: m sensors receiving linear combinations of n source signals.
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 i=15 Figure 5: Convolutive mixing model: m sensors receiving linear combinations of delayed (filtered) n source signals.

Figure 6 :

 6 Figure 6: Depiction of three source signals having (t, f ) signatures located on different regions.

7 and 8 .

 8 The auto-MTFDs in the MWVD diagonal plots in Fig. 7 illustrate the ideal representation of the WVD for mono-component LFM signals, and the deleterious effect of inner cross-terms when representing nonlinear FM signals. Furthermore, the cross-MTFDs in the MWVD off-diagonal plots in Fig. 7 do not represent the intersections between the synthetic signals time-frequency signatures. On the other hand, auto-MTFDs in the CKD, diagonal plots in Fig. 8, illustrate the tradeoff between resolution and cross-terms suppression, when representing different classes of signals. In addition, the cross-MTFD in the CKD off-diagonal plots in Fig. 8 successfully represent the intersections between the synthetic signals time-frequency signatures.
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 7 Figure 7: Multisensor Wigner-Ville distribution (MWVD).
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 89 Figure 8: Multisensor compact kernel distribution (CKD): (Tradeoff between resolution and cross-terms suppression).
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 10 Figure 10: Diagram of the BSS algorithm for instantaneous mixtures based on MTFDs.
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 1112 Figure 11: Blind source separation of three source signals (n = 3) based on MTFDs.

Fig. 13 .

 13 The generated signals are passed through a noisy convolutive invariant filter with length K = 1 representing the mixing model and then received on four sensors (m = 4) with 40 dB SNR (Fig.14).The received mixtures are whitened, and their MTFD is computed using WVD for the selection of auto-terms. The estimated sources are obtained by applying a separation matrix given by the joint block diagonalization of selected autoterms with window size K = 2. Estimated filtered sources are then classified using their TF correlation with the original signals, as depicted in the last three rows of Fig.13.In the second experiment, a pair of one seconds soundtracks (n = 2), car start-up and seagull sounds, are used as illustrated in the first row of Figs.15 and 16. Other one seconds soundtracks can be obtained from[START_REF] Boashash | Multisensor time-frequency signal processing software MATLAB package: An analysis tool for multichannel nonstationary data[END_REF], while their original full length can be downloaded from[45]. The used sounds are passed through a noisy convolutive invariant filter, describing the mixing model, to be received on three sensors (m = 3), as shown in Fig.17

  . The received mixtures
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 13 Figure 13: Blind source separation of two source signals based on MTFDs.
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 14 Figure 14: Received mixed signal (received signal on sensor 2 with SNR=40dB).
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 15 Figure 15: Blind source separation of two audio source signals based on MTFDs (timefrequency representation).

3 Figure 16 :

 316 Figure 16: Blind source separation of two audio source signals based on MTFDs (time domain representation).
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 17 Figure 17: Received mixed signal (received signal on sensor 3 ): (time-frequency representation of the convolutive mixture of two audio sources).

Figure 18 :

 18 Figure 18: A time-frequency distribution of a multicomponent non-stationary signal: (Compact kernel distribution (CKD) with parameters c = 1, D = 0.1 and E = 0.1).

Figure 19 :

 19 Figure 19: (t, f ) orthogonal sources; the (t, f ) supports of two sources are disjoint.

Figure 20 :

 20 Figure 20: Diagram of the UBSS algorithm.

Fig. 21 .

 21 The generated signals are then mixed using an instantaneous noisy uniform linear array model, to be received on three sensors (m = 3) with an SNR of 30 dB. The MTFDs of the received mixtures are computed and the separation is achieved by using a clustering method as depicted in the second row of Fig. 21. In the second experiment, four non-disjoint source signals (n = 4) are generated using crossing LFMs. The first two signals are crossing LFMs interchangeably changing from 0.05 Hz to 0.2 Hz, while the third and fourth signals are LFMs interchangeably changing from 0.3 Hz to 0.45 Hz, as depicted in the first row of Fig. 22. The generated signals are then mixed using an instantaneous noisy uniform linear array model, to be received on three sensors (m = 3) with

Figure 21 :

 21 Figure 21: Underdetermined blind source separation of four source signals (n = 4) based on MTFDs received from an array of three sensors (m = 3) using clustering based method: (The first row represents the source signals, while the second row represents the estimated sources using UBSS clustering method).
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 41 Auto-term selectionIn a noisy environment, the selection of auto-term TF points by the procedures presented in Sections 3.1 and 3.2 may become challenging when the signals are highly corrupted by noise. The spatial diversity, embedded in the MTFD matrix, can reduce noise and enhance the TF signatures of the signals of interest. This can be achieved by averaging the TFDs over all receiver sensors[START_REF] Mu | Bilinear signal synthesis in array processing[END_REF].

Figure 22 :

 22 Figure 22: Underdetermined blind source separation of four non-disjoint source signals (n = 4) based on MTFDs received from an array of three sensors (m = 3) using clustering and subspace projection based methods: (The red circles highlight the overlaping point where the clustering methods fails to adequately estimate the sources).

Figure 23 :

 23 Figure 23: Received mixed signal (received signal on sensor 1 with SNR=40dB ).

Figure 25 :

 25 Figure 25: Received mixed signal: Received Signal on Sensor 3 with SNR = 30dB computed using CKD with parameters c = 1, D = 0.1 and E = 0.1.

Figure 26 :

 26 Figure 26: Basic principle of DOA estimation (an array of antenna receiving a signal from a far field source).

Figure 27 :

 27 Figure 27: DOA estimation of two sources using MUSIC and TF-MUSIC (average spatial spectrum).
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 328 Figs. 28 and 29 represent the histograms of estimated angles by using MU-SIC, TF-MUSIC, ESPRIT and TF-ESPRIT for SNRs -10dB and -5dB respectively. The results indicate that TF methods outperforms their time-domain counterparts in terms of error estimation. This conclusion, is confirmed by Fig. 30 which represents the normalized mean square error of angle estimation with respect to SNR for MUSIC, TF-MUSIC, ESPRIT and TF-ESPRIT algorithms.

Figure 29 :

 29 Figure 29: DOA estimation of two sources using MUSIC, TF-MUSIC, ESPRIT and TF-ESPRIT for SNR=-5dB (histogram of estimated angles): TF-MUSIC and TF-ESPRIT provide a more accurate DOA estimate than MUSIC and ESPRIT, respectively.

Figure 31 :

 31 Figure 31: Estimated number of sources with respect to SNR for n = 2 sources and m = 6 sensors using AIC and MDL criteria.

Figure 32 :

 32 Figure 32: Estimated number of sources with respect to SNR for n = 3 sources and m = 6 sensors using AIC and MDL criteria.

Figure 33 :

 33 Figure 33: Normalized mean square error of DOA estimation with respect to spatial resolution between the sources δθ: ESPRIT and TF-ESPRIT provide a more accurate DOA estimate than MUSIC and TF-MUSIC, respectively.

  The resulting PLV is represented in Figs.[START_REF] Belouchrani | Blind separation of nonstationary sources[END_REF], 36 and 37 for received signals with SNR 10 dB, 30 dB and 50 dB respectively. To describe the cross-channel causality of obtained multichannel EEG signals, we compare for each SNR obtained the PLV by using the standard definition in Eq. (90) and the MTFD based one given by Eq. (93). For the MTFD based PLV definition we used three TFDs; Rihaczek, Wigner-Ville and compact kernel distribution (CKD). One can observe from Figs. 35, 36 and 37 that the MTFD based PLV definition has better resolution to describe the cross-channel causality and greater noise robustness compared to the PLV estimation based on Eq. (90).

Figure 34 :

 34 Figure 34: TFDs of received mixed signal for experiment 1: (a) ideal TF representation; (b) Rihaczek distibution; (c) Wigner-Ville distibution; (d) Compact kernel distribution (CKD) with parameters c = 1, D = 0.1 and E = 0.1.

Figure 35 :

 35 Figure 35: Brain networks representation (newborne): brain connectivity matrices representing the mean PLV matrices P for SNR = 10 dB using (a) standard definition Eq. (90) based on Rihaczek distribution; (b) Rihaczek distibution with cross MTFD terms; (c) Wigner-Ville distibution with cross MTFD terms; (d) Compact kernel distribution (CKD) with parameters c = 1, D = 0.1 and E = 0.1 using cross MTFD terms.

Figure 37 :

 37 Figure 37: Brain networks representation (newborne): brain connectivity matrices representing the mean PLV matrices P for SNR = 50 dB using (a) standard definition Eq. (90) based on Rihaczek distribution; (b) Rihaczek distibution with cross MTFD terms; (c) Wigner-Ville distibution with cross MTFD terms; (d) Compact kernel distribution (CKD) with parameters c = 1, D = 0.1 and E = 0.1 using cross MTFD terms.

Figure 38 :

 38 Figure 38: TFDs of received mixed signal for experiment 2: (a) ideal TF representation; (b) Rihaczek distibution; (c) Wigner-Ville distibution; (d) Compact kernel distribution (CKD) with parameters c = 1, D = 0.1 and E = 0.08.
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 38 Fig.38(c)), which becomes problematic for the PLV estimation. To reduce the cross-terms while keeping a high (t, f ) resolution separable kernel methods, presented in Section 2.3.2 can be used. This experiment used the compact kernel distribution (CKD) with parameters c = 1, D = 0.1 and E = 0.08 (see Fig.
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 3631 TF-MUSIC applied to source localization of brain EEG abnormalities 6.3.0. Background and motivation In this section, the advanced DOA estimation algorithms discussed above are applied to the analysis of multichannel EEG signals. EEG source localization (ESL) is an important tool used to estimate the intracerebral generators of the potentials observed on the scalp in both clinical and research in cognitive neuroscience. While there is an increasing interest in studying motor evoked potentials (EVP) by means of ESL, epilepsy has been the main focus of the clinical application of ESL in neurology [101]. Similarly, cognitive neuroscience studies have used ESL to investigate temporal information in the event related potentials (ERP), and psychiatry and psychopharmacology has employed ESL to study sources in specific frequency bands [101]. Source localization of EEG abnormality using TF-MUSIC In the context of the brain application, where the aim is to estimate the locations of EEG abnormalities, localization algorithms (such as MUSIC, ESPRIT)

6. 4 . 1 .

 41 Experiment: application of BSS to EEG artifacts removalIn order to illustrate the application of BSS to EEG artifacts removal we propose the following experiment. A 5 seconds segment of clean multichannel EEG was obtained from a publicly available database described in[START_REF] Klados | REG-ICA: A new hybrid method for EOG artifact rejection[END_REF]. The obtained EEG segment is recorded using nineteen electrodes, which were placed according to the 10-20 International System. The extracted EEG segment is down-sampled to 100 Hz, and then combined with synthetic multichannel EEG artifacts as depicted in Fig.40. The TFDs of clean EEG signal and corrupted EEG signal are represented in Figs 42a and 42b respectively. The multichannel contaminated signals are whitened, and their MTFDs are computed for the selection of auto and cross-terms. After that, two independent sources are estimated using the joint diagonalization/joint off-diagonalization algorithm, and artifactual components are identified using a maximum likelihood detector that utilizes an independent template. Finally, clean multichannel EEG is estimated and compared with the original clean EEG, as depicted in Fig.41(TFD of the estimated EEG signal is given in Fig.42c).

Figure 40 :

 40 Figure 40: Multichannel clean and corrupted EEG signals (EEG contamination with multichannel artifacts).

Figure 42 :

 42 Figure 42: TFDs of EEG signal: a) Clean EEG signal b) EEG signal corrupted by artifact c) Estimated EEG signal (by using BSS algorithm).
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 43228321234303233 Figure 43: Localization of abnormality sources from 64 EEG channels using TF-MUSIC (newborn).
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  , R 2 and R 3 , as well as the complement region R c . When we select (t, f ) points for averaging that are within the noise only region R c (such as (t 1 , f 1 )),

	6. Let us consider three sources 1, 2
	and 3 arriving on a multisensor array. Source 1 occupies the (t, f ) region R 1 ,
	Source 2 the (t, f ) region R 2 and Source 3 the (t, f ) region R 3 . The (t, f ) region
	characteristics (signatures) of the three sources intersect (i.e., region R 12 , R 13 ,
	R 23 and region R 123 ), but each source still has its own particular (t, f ) region
	that has no overlap with other sources. On the other hand, the noise is spread
	over R 1 then no useful information about the sources is available. But, if we constrain
	the selection of (t, f ) points to R 1 , R 2 or R 3 , such as (t 2 , f 2 ), then only the noise
	contribution in these regions is counted. The effect of removing the (t, f ) points
	that are outside the (t, f ) signatures region of the signal arrivals is to increase

  1, let us assume that an n-dimensional vector s(t) = [s 1 (t), . . . , s n (t)] T represents n non-stationary source signals denoted s i (t), i = 1, . . . , n. These signals propagate through a medium and arrive at an array of m sensors which records a set of mixed signals described by an m-dimensional vector z(t) = [z 1 (t), . . . , z m (t)] T . This situation is described by the data model

presented in Section 2.2.1 Eq.(

12

) such that z (t) = A s (t) + η (t).

Table 1 :

 1 Algorithm to estimate the averaged MTFD matrix 1. Compute the MTFD matrix ρ zz (t, f ) as given in Eq.(21).

It is assumed, without loss of generality, that x i (t) has zero mean for i = 1, . . . , m.

For greater clarity, convenience, and without loss of generality, we focus on the use of quadratic TFDs (QTFDs) as they form a class that encompass most of the useful TFDs used in practice, including the spectrogram and standard filterbank (also called sonogram). Note also that the spectrogram is the square modulus of the short time Fourier transform.

The instantaneous auto-correlation function is used to define the instantaneous correlation of signal z(t) for different lags τ [1, Chapter 2].

If the physical size of the sensor array is very small compared to the distance between the source and sensor array (i.e., the source is in the far-field), the received wavefront may be considered as a plane across the array.

g(ν, τ ) is defined in Eq.[START_REF] Amin | Direction finding based on spatial time-frequency distribution matrices[END_REF]. For some standard QTFDs g(0, 0) = 1, but this is not always the case. It is a requirement for the marginal property to hold[START_REF] Boashash | Time-frequency signal analysis and processing, 2nd Edition[END_REF].

The BSS methods based on the assumption of statistical independence of source signals aim to maximize the non-Gaussianity of estimated sources. It follows that, if all source signals are Gaussian, this BSS methods will not work.

The block diagonal characteristic comes from the property that cross-terms between s i (t) and s i (t-d) are not zero as they relate to the local correlation structure of the signal.

If s i (t) and s j (t) are non-coherent signals, then E{s i (t)s j (t) * } = 0.

By replacing ϕ ij (t, f ) = -2φ for ∀(t, f ) in Eq. (92) the PLV tends to 1.

The forward model is a conduction model describing how signals originating from particular locations within the brain traverse the tissues of the head and are received at the EEG electrodes (see Section 6.1.1).
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In order to model the received signal under this assumption, let us define the following sub-vector and sub-matrix:

Then, under the (t, f ) nondisjoint assumption the instantaneous model reduces to the following

Consequently, given that ρ ss (t, f ) is of full rank, we obtain Range {ρ zz (t, f )} = Range à [START_REF] Paulraj | A subspace rotation approach to signal parameter estimation[END_REF] Let Q = I m -VV H be the orthogonal projection matrix onto the noise subspace of ρ zz (t, f ), where V is the matrix formed by the K principal singular eigenvectors of ρ zz (t, f ). Then, from Eq. ( 58), we obtain:

Assuming that the mixing matrix A has been estimated by methods such as the clustering based method presented in Section 3.3.2, the observation in Eq.

(59) can be used to identify the indexes 1 , . . . , K and therefore, the sources present at (t 0 , f 0 ). To implement this and account for the additive noise, one can detect these indexes by selecting the K smallest values from the set { Q a i |i = 1, . . . , n}, as mathematically expressed by:

The MTFD values of the K sources at (t 0 , f 0 ) are calculated as the diagonal elements of the following matrix:

where ( # ) represents the Moore-Penrose's pseudo-inversion operator [START_REF] Moore | On the reciprocal of the general algebraic matrix[END_REF]. gorithms and then the separation quality (see Fig. 24). The results presented in this section can be reproduced using the codes provided in [START_REF] Boashash | Multisensor time-frequency signal processing software MATLAB package: An analysis tool for multichannel nonstationary data[END_REF].

Direction of arrival estimation using MTFDs

Background and motivation

The topic of direction of arrival (DOA) estimation has received considerable attention in past studies over the last three decades (see [START_REF] Krim | Two decades of array signal processing research: the parametric approach[END_REF] and [START_REF] Van Trees | Detection, Estimation, and Modulation Theory[END_REF]). In this section, a brief overview of some of the most important and fundamental approaches to DOA estimation is provided to serve as background for a detailed tutorial presentation of more recent advances.

This section focuses on DOA estimation techniques, starting with the details of traditional time-domain algorithms. These traditional algorithms provide a

Phase synchrony estimation using MTFDs

The above derivation shows that we can use the cross spectral property to estimate the PLV between two signals as a function of t and f . Therefore, a similar attempt can be made by taking advantage of MTFDs definition and using the cross TFD terms to define the phase of the cross TFD as:

This definition, calculates the phase of the square of cross TFD in order to remain homogeneous with respect to the phase definition given by Eq. ( 90)

and to avoid the sign indeterminacy in the real case. Then, the PLV can be estimated from this new definition of phase of cross TFD and following the definition given in Eq. ( 91).

The method of a time-varying phase estimation presented in Eq. ( 90) requires the use of the Rihaczek distribution, due to the fact that the Rihaczek distribution is a complex distribution. However, one of the disadvantages of the Rihaczek distribution is the existence of cross-terms for multicomponent signals.

These cross-terms are located at the same time and frequency locations as the original signals and will lead to biased energy and phase estimates. To get rid of these cross-terms a reduced interference version of the Rihaczek distribution is used in Eq. ( 86) by applying a kernel function to filter the cross-terms in the ambiguity domain. On the other hand, the method of a time-varying phase estimation presented in Eq. ( 93) allows us to exploit the whole class of TFDs which is the fact that the cross TFDs are intrinsically complex and convey a phase information. Therefore, this time-varying phase estimation method enables to choose the best TFD according to the used signals in order to optimize the trade-off between cross-terms reduction and resolution.

In order to assess the behaviour of phase synchrony and PLV, let consider a simple case of two phase locked signals z i (t) and z j (t) such that z j (t) = z i (t) e jφ .

In this case, one can observe that ρ zi,zi (t, f ) = ρ zj,zj (t, f ). Then, the phase of the TFD product of the two signals z i (t) and z j (t) define in Eq. ( 90) will be: 

Application: multisensor time-frequency analysis of EEG signals

The relationship between functional brain activity and anatomical sources is important in many clinical situations such as presurgical analysis, and is one of the scientific cutting edge topics of brain research. Electroencephalography (EEG) is a non-invasive method for acquiring neural information that measures electrical potential corresponding to neural activities using sensors

Original Clean EEG Estimated EEG

NA A orientation on the infants head are generated by using the Brainstorm toolbox.

Artifact Detection Mask

Once these surfaces were generated, OpenMEEG was then used to generate the lead-field matrix from this model [START_REF] Gramfort | OpenMEEG: opensource software for quasistatic bioelectromagnetics[END_REF][START_REF] Kybic | A common formalism for the integral formulations of the forward EEG problem[END_REF]. A simulation has been developed which takes the lead-field matrix and generates virtual sources centered on a single cortical volume. To do so a virtual source signal, in this demonstration a Gaussian pulse, is given, along with a cortical volume and dipole orientation for 64 electrodes. The signal is then propagated through the lead-field matrix, and additive noise is included.

MUSIC and TF-MUSIC algorithms are applied to estimate the source locations for several noise realisations with SNR=3dB. Fig. 43 shows the location of three virtual signals on the cortical volume, highlighted in black, and the esti-

Summary and conclusions

This study presents a rigorous tutorial review of multisensor high-resolution time-frequency distributions (MTFDs) and a discussion of their area of application, with a special EEG feasibility case study. MTFDs effectively combine time-frequency analysis and array signal processing and are formulated by:

• Extending the principles of single-variable TFDs to multisensor/multichannel TFDs,

• Extending conventional stationary array processing to the non-stationary case using time-frequency methods.

• Using principles of high-resolution TFD design [START_REF] Boashash | An improved design of high-resolution quadratic time-frequency distributions for the analysis of nonstationary multicomponent signals using directional compact kernels[END_REF].

To demonstrate the benefits of MTFDs, this study considered several appli- The meaning in the list below should be assumed unless the symbol is otherwise defined in context.