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Abstract In this paper, we propose analytical formulas that involve second-order

statistics for separating two signals. The method utilizes source decorrelation

and correlation function diversity. In particular, the proposed SOBAS (Second-

Order Blind Analytical Separation) algorithm differs from the ASOBI (Analytical

Second-Order Blind Identification) algorithm in that it does not require prior

knowledge or estimation of the noise variance. Computer simulations demonstrate

the effectiveness of the proposed method.
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1 Introduction

Blind source separation (BSS) aims to identify a linear system from the observation

of its output. When an array of sensors samples the field radiated by narrow-band

sources, its output is classically modeled as an instantaneous spatial mixture of

several independent sources, possibly corrupted by additive noise. Source separa-

tion can be achieved by first identifying the directional vectors associated with

each source and then identifying source signals. In contrast with classical array

processing, blind source separation performs identification without resorting to

the knowledge of the array manifold. Hence, blind source separation is essentially

unaffected by errors in the propagation model or in array calibration.

The term blind refers to a wide class of problems in signal and image processing,

where one needs to extract the underlying sources from a set of observed mixtures.

Almost no prior knowledge exists about the sources, nor about the mixing, hence

the name blind. The mixing can be linear, nonlinear, instantaneous or convolutive.

BSS is now a well-established area in Signal Processing with solid theoretical

foundations and many potential applications.

In fact, BSS has become a very important topic of research and development in

many areas, especially biomedical engineering and medical imaging [6,10], speech

and audio processing [2,3], remote sensing [8], communications systems [1,7] and

radar processing [11].

The particular case of two-inputs-two-outputs (TITO) systems is addressed

in the literature for applications such as separation of speech sources [12]. In
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[5] the TITO ASOBI (Analytical Second-Order Blind Identification) algorithm is

proposed. It supplies a closed-form solution to the BSS problem. However, in [5],

it is assumed that the noise variance is known.

In this paper, we propose a closed-form solution for the two-inputs-two-outputs

BSS problem that differs from the one in [5]. In particular, our approach, referred

to as SOBAS (Second-Order Blind Analytical Separation), works without prior

knowledge (or estimation) of the noise variance. One main difference between

ASOBI and SOBAS is that the former uses an average of correlations at different

lags, including the zero lag, while the latter fully exploits the vector of non-zero

lag correlations.

The paper is organized as follows. In section II, we describe the ASOBI algo-

rithm. In section III, the proposed SOBAS is introduced. In section IV, simulations

show the good behavior of SOBAS, and section V presents conclusions.

2 Background: Analytical Solution for Second-Order Blind

Identification (ASOBI) Algorithm

In this section, we briefly recall the analytical solution for second-order blind iden-

tification (ASOBI) presented in [5] and introduce some notations. Let us consider

an array of two sensors receiving two stationary, mutually uncorrelated and zero

mean signals. The array outputs, denoted by xi(t) (i = 1, 2), form a 2× 1 random

vector. They are corrupted by additive white noise, denoted by n(t). Then, letting

si(t) denote the ith source signal and xj(t) the observation on the jth sensor, the

model for the observed vector at discrete time t (t = 1, . . . , T − 1) is given by

x(t) = A s(t) + n(t), (1)
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where s(t) = [s1(t) s2(t)]T and x(t) = [x1(t) x2(t)]T . Entry (i, j) of the 2 × 2

unknown channel matrix A will be denoted by aij . Note that, in the same way,

mij will denote entry (i, j) of any given matrix M. n(t) is a white noise process

with covariance matrix σ2I2, where I2 is the 2 × 2 identity matrix. The purpose

of blind source separation is to recover the source signals from the array output

x(t) without any prior knowledge about the mixture matrix A. Source separation

techniques based on second-order statistics assume uncorrelated source signals. In

a blind context, it is well known that A can only be identified up to a permutation

and multiplication by a scaling of its columns. Source indexing and energy are

then transformed accordingly, that is, in such a way that observation x(t) remains

unchanged [6]. The crucial point is that these indeterminacies do not impede source

separation.

From observations {xi(t)}t=0,...,T−1 (i = 1, 2), we will need to calculate co-

variances among vectors in the form

– xi,t = [xi(t), . . . , xi(t+N − 1)]T , t = 0, . . . T −N,

where superscript (·)T denotes the transpose of a vector and N is the number

of correlation lags that will be involved in computations. We also introduce the

following notations:

– si,t = [si(t), . . . , si(t+N − 1)]T ,

– Rsisj = E[si,t s
T
j,t],

– Rxixj = E[xi,t x
T
j,t],
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where E[·] denotes the expectation operator. Then we get

Rx1x1 = a211Rs1s1 + a212Rs2s2 + σ2IN

Rx2x2 = a221Rs1s1 + a222Rs2s2 + σ2IN

Rx1x2 = a11a21Rs1s1 + a12a22Rs2s2 .

(2)

We assume that T vectors x(t) are available. Then, letting T = NK where K

represents the number of non-overlapping vectors xi,t, Rxixj can be estimated by

R̂xixj =
1

K

K−1∑
k=0

xi,Nk x
T
j,Nk. (3)

Alternatively, one could average overlapping vectors to get a more precise estimate

of Rxixj , but at the expense of higher computational complexity. To track possible

non-stationarity, these correlation matrix estimates can be updated adaptively.

Operators tr(·) and off(·) calculate means of diagonal and off-diagonal entries of

a matrix, respectively. Then, if G is any square matrix of size N ×N ,

off(G) =
1

N(N − 1)

N∑
i=1

N∑
j=1

j 6=i

gij

tr(G) =
1

N

N∑
i=1

gii.

(4)
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By applying these operators to equation (2), we get the following set of relations:

F1 = off(Rx1x1) = a211R1 + a212R2

F2 = off(Rx2x2) = a221R1 + a222R2

F12 = off(Rx1x2) = a11a21R1 + a12a22R2

T1 = tr(Rx1x1) = a211 + a212 + σ2

T2 = tr(Rx2x2) = a221 + a222 + σ2

T12 = tr(Rx1x2) = a11a21 + a12a22,

(5)

where Ri = off(Rsisi), i = 1, 2. In the last 3 equations of (5), we have used the fact

that, under the assumption of unit-variance source signals, tr(Rsisi) = 1, i = 1, 2.

By solving equations (5), we obtain the following estimate for the mixing matrix

[5]:

Â =


√
F1 − (T1 − σ2)β

γ

(F12 − T12α)
√
γ

γ
√

(T2 − σ2)α− F2

(T12β − F12)
√
γ

γ
√
F1 − (T1 − σ2)β

√
(T2 − σ2)α− F2

γ

 , (6)

where α, β and γ are given in Algorithm 1. The ASOBI algorithm is summarized

in Algorithm 1.
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Algorithm 1 ASOBI Algorithm

Require: Observed signal x(t) and the noise variance σ2.

Ensure: The mixing matrix A and source signals s(t).

1: Estimate the matrices R̂xixj =
1

K

K−1∑
k=0

xi,Nk x
T
j,Nk for i = 1, 2 and j = 1, 2;

2: Compute the coefficients Fi = off(R̂xixi ) for i = 1, 2 and F12 = off(R̂x1x2 );

3: Compute the coefficients Ti = tr(R̂xixi ) for i = 1, 2 and T12 = tr(R̂x1x2 );

4: Compute the coefficients

a = 2F12T12 − (F1(T2 − σ2) + F2(T1 − σ2))

b = 2(T 2
12 − (T1 − σ2)(T2 − σ2))

c2 = (F1(T2 − σ2)− F2(T1 − σ2))2 +

4(F12(T2 − σ2)− T12F2)(F12(T1 − σ2)− T12F1));

5: Compute the coefficients α = (a+ c)/b, β = (a− c)/b and γ = 2c/b;

6: Estimate the matrix Â =


√
F1 − (T1 − σ2)β

γ

(F12 − T12α)
√
γ

γ
√

(T2 − σ2)α− F2

(T12β − F12)
√
γ

γ
√
F1 − (T1 − σ2)β

√
(T2 − σ2)α− F2

γ

;

7: Estimate the source signals ŝ(t) = Â−1x(t).

Let us note that an estimate of the noise variance σ2 is needed to achieve estimation

of the channel coefficients. It can be obtained by the eigen-decomposition of the

data covariance matrix if a third sensor is available [5]. Alternatively, σ2 can be

estimated using only two sensors before data recording begins. It is also possible

to estimate σ2 by choosing the value that minimizes (in the least-squares sense

w.r.t. σ2) the intercorrelations (at different time lags) between the two outputs of

A(σ2)−1x(t).
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3 Second-Order Blind Analytical Separation (SOBAS) Algorithm

To avoid the requirement of prior knowledge of noise variance for estimating matrix

A and to better benefit from the diversity information contained in the covariance

coefficients of source signals, we propose an alternative algorithm to deal with sep-

aration of 2 sources, named SOBAS (Second-Order Blind Analytical Separation).

Instead of considering averaged correlation coefficients, as done in ASOBI, our

solution involves all non-zero covariance lags. Removing the zero-lag coefficient

makes it possible to work with noise-free statistics.

Note also that in ASOBI source separation cannot be achieved if the Ri, defined

by Ri = off(Rsisi) are equal. In SOBAS, we fully account for the covariance lags of

signals instead of having them averaged, which results in more robustness against

spectral similarity of sources.

In addition, in the literature ASOBI has been derived for the case of real valued

signals, while we shall derive SOBAS in the more general context of complex sig-

nals. Then, the entries of the mixing matrix are complex valued. In the following

Rxixj will stand for E[xi,t xHj,t], where exponent (·)H stands for the transpose-

conjugate operator. Similarly, we will have Rsisi = E[si,t s
H
i,t] and the extension

of Eq.(2) to the complex case can be written as

Rxixj = ai1a
∗
j1Rs1s1 + ai2a

∗
j2Rs2s2 + δijσ

2IN (i, j = 1, 2), (7)

where (·)∗ stands for complex conjugation and δij = 1 if i = j and 0 otherwise.

Furthermore, unlike in the SOBI algorithm [4], the implementation that we propose

here does not require whitening. After whitening, the mixing matrix identification

only amounts to a rotation identification, which requires little computational ef-
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fort. However, this operation relies on a noise-free approximation, which slightly

degrades performance.

To derive the SOBAS algorithm, we denote by offc(G) the first column vector

of matrix G with its first entry g11 removed:

offc(G) = [g21, . . . , gN1]T .

For i, j = 1, 2 we get

fij = offc(Rxixj )

ri = offc(Rsisi).

(8)

Then, applying the offc(·) operator to Eq. (7) yields

f11 = offc(Rx1x1) = |a11|2 r1 + |a12|2 r2

f22 = offc(Rx2x2) = |a21|2 r1 + |a22|2 r2

f12 = offc(Rx1x2) = a11a
∗
21 r1 + a12a

∗
22 r2

f21 = offc(Rx2x1) = a∗11a21 r1 + a∗12a22 r2,

(9)

where |.| stands for the complex modulus. Note that in Eq. (9), all terms are

independent from the noise variance σ2.

The system of equation (9) can be rewritten as

[f11 f12] = [r1 r2] D1 A
H (10)

[f21 f22] = [r1 r2] D2 A
H , (11)

where D1 =

a11 0

0 a12

 and D2 =

a21 0

0 a22

. Matrix A is assumed to be invertible

and since blind source separation relies on a spectral diversity assumption about

sources, matrix [r1 r2] should be rank two. To recover A, we assume first that D2

is invertible, that is rank ([f21 f22]) = 2. Then,

[f21 f22]# [f11 f12]A−H = A−H D̃, (12)
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with D̃ = D−1
2 D1 and (·)# is pseudo-inverse matrix operator such that [f21 f22]# =(

[f21 f22]H [f21 f22]
)−1

[f21 f22]H . Problem (12) is an eigenvector problem where

the eigenvectors of [f21 f22]# [f11 f12] represent the columns of A−H . Let M ∝

[f21 f22]# [f11 f12] be a 2× 2 matrix such that M =

m11 m12

m21 m22

 where

m11 = ‖f22‖22 (fH21f11)− (fH21f22) (fH22f11) (13)

m12 = ‖f22‖22 (fH21f12)− (fH21f22) (fH22f12) (14)

m21 = ‖f21‖22 (fH22f11)− (fH22f21) (fH21f11) (15)

m22 = ‖f21‖22 (fH22f12)− (fH22f21) (fH21f12). (16)

Then, we can estimate A−H as:

A−H =

 m12 m12

λ1 −m11 λ2 −m11

 , (17)

where

λ1 =
1

2

(
m11 +m22 +

√
(m11 +m22)2 − 4 (m11m22 −m12m21)

)
(18)

λ2 =
1

2

(
m11 +m22 −

√
(m11 +m22)2 − 4 (m11m22 −m12m21)

)
. (19)

Now, if D2 is not invertible and D1 is invertible the same procedure can be applied

by taking M ∝ [f11 f12]# [f21 f22]. If both D1 and D2 are not invertible, since A

is invertible we get (a11, a22) = (0, 0) or (a12, a21) = (0, 0) and thus no separation

is needed. As noted before, rank properties upon D1 and D2 are immediately

available since rank(D1) = rank ([f11 f12]) and rank(D2) = rank ([f21 f22]).

The SOBAS algorithm is summarized in Algorithm 2.
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Algorithm 2 SOBAS Algorithm

Require: Observed signal x(t).

Ensure: The mixing matrix A and source signals s(t).

1: Estimate the matrices R̂xixj =
1

K

K−1∑
k=0

xi,Nk x
T
j,Nk for i = 1, 2 and j = 1, 2;

2: Compute the vectors fij = offc(R̂xixj ) for i = 1, 2 and j = 1, 2;

3: Compute ε1 =
|fH11 f12|

‖f11‖2 ‖f12‖2
and ε2 =

|fH22 f21|
‖f22‖2 ‖f21‖2

;

4: if ε1 < ε2 then

5: Compute the matrix M = [f11 f12]# [f21 f22];

6: else

7: Compute the matrix M = [f21 f22]# [f11 f12];

8: end if

9: Estimate the matrix Â−1 =

m∗12 λ∗1 −m∗11
m∗12 λ

∗
2 −m∗11

 with

λ1 =
1

2

(
m11 +m22 +

√
(m11 +m22)2 − 4 (m11m22 −m12m21)

)
λ2 =

1

2

(
m11 +m22 −

√
(m11 +m22)2 − 4 (m11m22 −m12m21)

)
;

10: Estimate the source signals ŝ(t) = Â−1x(t).

The numerical complexities of ASOBI and SOBAS are very close. It is the

same in terms of multiplications: both require O(3(K + 1)N2) multiplications. It

is slightly different for additions: ASOBI requires O(3(K + 1)N2) additions and

SOBAS O(3KN2) additions.

4 Simulation results

To assess SOBAS performance, a comparison with SOBI [4] and ASOBI [5] is

performed in the following situations: First, we assume that signals si(t) (i = 1, 2)
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are AR(1) complex processes defined by difference equations in the form:

si(t) = φi si(t− 1) + wi(t). (20)

The wi (i = 1, 2) are independent white noise with normal distributions. The AR

coefficients φi (i = 1, 2) are generated such that φi = % ej2πfi . We set resonance

frequencies equal to f1 = 0.02 and f2 ∈ {0.04, 0.10}. Note that the spacing of

resonance frequencies is representative of dissimilarity between spectra. This can

be checked by considering the Itakura-Saito distance [9]. In the particular case of

AR(1) models, straightforward calculations show that this distance increases as a

function of f1 − f2:

dIS(s1, s2) = log

(
1 +

1 + %2(1− 2 cos(2π(f1 − f2))

1− %2

)
. (21)

Performance levels are evaluated over Nk = 1000 Monte-Carlo runs and estimation

performance levels are given by the normalized mean-square error criterion :

NMSE =
1

Nk

Nk∑
k=1

2∑
i=1

1−

(
ŝTi,k si

‖ŝi,k‖2 ‖si‖2

)2

,

where ŝi,k denotes the estimated source vector at the kth Monte-Carlo run. For

these simulations, we compare the performance of SOBAS with the SOBI algo-

rithm due to the fact that ASOBI was developed under the real signal assumption.

In Figures 1 and 2 we fix % = 0.9 and we generate the complex mixing matrix A

randomly at each Monte-Carlo run. From these figures, we can observe the superi-

ority of SOBAS against the SOBI algorithm. Clearly, avoiding the use of statistics

affected by noise variance enables significant NMSE performance improvement.

In Figures 3 and 4 we fix the AR parameters f1 = 0.02, f2 = 0.10 and % = 0.9.

We generate the mixing matrix A by using the following model A =

 1 1

ejθ1 ejθ2





An analytical derivation for second-order blind separation of two signals 13

0 5 10 15 20 25 30 35 40
−30

−25

−20

−15

−10

−5

0

SNR (dB)

N
M

S
E

 (
d
B

)

 

 
SOBAS
SOB I

Fig. 1 Comparison of normalized mean-square error (NMSE) versus SNR for blind source

separation system with 2 AR(1) sources, 2 sensors, T = 1000, f1 = 0.02, f2 = 0.10 and

% = 0.9.
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Fig. 2 Comparison of normalized mean-square error (NMSE) versus SNR for blind source

separation system with 2 AR(1) sources, 2 sensors, T = 1000, f1 = 0.02, f2 = 0.04 and

% = 0.9.
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such that θ1 =
π

12
and θ2 = θ1 + δθ. As expected, NMSE performance improves

as vector angle increases. SOBI shows limited performance for large angles, which

can be explained by whitening matrix error and noise estimation error.

π/4 π/2 3π/4 π

−15

−10

−5

0

Spati al di stance (δ θ )

N
M

S
E

 (
d
B

)

 

 
SOBAS
SOB I

Fig. 3 Comparison of normalized mean-square error (NMSE) versus δθ for blind source sep-

aration system with 2 AR(1) sources, 2 sensors, T = 1000, f1 = 0.02, f2 = 0.10, % = 0.9 and

SNR = 15dB.

In Figures 5 and 6 we consider the blind separation of two audio sources sampled

at 8 kHz. W generate the real mixing matrix A randomly. By applying the SOBAS

algorithm, we obtain the results shown in Figure 5 at SNR= 25 dB which repre-

sents the original sources, the two mixture signals and the audio sources estimated

by the SOBAS algorithm, respectively. In Figure 6, we compare the performance of

SOBAS with SOBI and ASOBI. For ASOBI we have consider the perfect knowl-

edge the noise variance. This figure confirms the superiority of SOBAS against

SOBI and ASOBI in the context of audio source separation.
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Fig. 4 Comparison of normalized mean-square error (NMSE) versus δθ for blind source sep-

aration system with 2 AR(1) sources, 2 sensors, T = 1000, f1 = 0.02, f2 = 0.10, % = 0.9 and

SNR = 30dB.

5 Conclusions

In this paper we have proposed an analytical formula for blind separation of a

mixture of two sources observed by two sensors.The proposed SOBAS algorithm

circumvents the assumption of known noise variance that was made in the ASOBI

algorithm. In addition, it outperforms both SOBI and ASOBI in term of NMSE.

Extensions of this approach to a higher number of sources and sensors will be

worth addressing in further work.
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Fig. 5 Blind audio source separation of two sources from two mixtures by using SOBAS. Row

1: original sources; row 2: mixture signals; row 3: audio sources estimated by SOBAS.
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