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THE HARDY–SCHRÖDINGER OPERATOR ON THE POINCARÉ

BALL: COMPACTNESS AND MULTIPLICITY FOR INTERIOR

SINGULARITY.

NASSIF GHOUSSOUB, SAIKAT MAZUMDAR, AND FRÉDÉRIC ROBERT

Abstract. Let ΩBn be a a compact smooth domain in the Poincaré ball model

of the Hyperbolic space Bn, n ≥ 5. Let 0 < s < 2 and write 2?(s) :=
2(n−s)
n−2

for

the corresponding critical Sobolev exponent. We show that if γ <
(n−2)2

4
− 4

and λ > n−2
n−4

(
n(n−4)

4
− γ

)
, then the following Dirichlet boundary value

problem:{
−∆Bnu− γV2u− λu = V2?(s)|u|2

?(s)−2u in ΩBn

u = 0 on ∂ΩBn ,

has infinitely many solutions. Here −∆Bn is the Laplace-Beltrami operator
associated with the metric gBn = 4

(1−|x|2)2 gEucl
, V2 is the corresponding

Hardy-type potential that behaves like 1
r2

at the origin, while V2?(s) is the

Hardy-Sobolev weight, which behaves like 1
rs

at the origin. The solutions

belong to C2(ΩBn \ {0}) while around 0 they behave like

u(x) ∼
K

|x|
n−2
2
−
√

(n−2)2

4
−γ

for some K ∈ R.
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1. Introduction

Consider the Poincaré ball model of the Hyperbolic space Bn, n ≥ 3, which is
the Euclidean unit ball B1(0) := {x ∈ Rn : |x| < 1} endowed with the metric
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gBn =
(

2
1−|x|2

)2

g
Eucl

. Let

f(r) :=
(1− r2)n−2

rn−1
and G(r) :=

∫ 1

r

f(t)dt,(1)

where r =

√
n∑
i=1

x2
i denotes the Euclidean distance from a point x to the origin.

The function 1
nωn−1

G(r) is then a fundamental solution of the Hyperbolic Laplacian

∆Bnu = divBn(∇Bnu). Moreover, if we consider the hyperbolic scaling of a given
function u : Bn → R, defined for λ > 0 by

uλ(r) = λ−
1
2u
(
G−1(λG(r))

)
,

then for any radially symmetric u ∈ H1
r (Bn) and p ≥ 1, one has the following

invariance property:∫
Bn

|∇Bnuλ|p dvgBn =

∫
Bn

|∇Bnu|pdvgBn and

∫
Bn

Vp|uλ|pdvgBn =

∫
Bn

Vp|u|pdvgBn ,(2)

where

Vp(r) :=
f(r)2(1− r2)2

4(n− 2)2G(r)
p+2
2

.(3)

The weights Vp have the following asymptotic behaviors: for n ≥ 3 and p > 1,

Vp(r) =
c0(n, p)

rn(1−p/2∗) (1 + o(1)) as r → 0

Vp(r) =
c1(n, p)

(1− r)(n−1)(p−2)/2
(1 + o(1)) as r → 1.(4)

In particular for n ≥ 3, the weight V2(r) = 1
4(n−2)2

(
f(r)(1−r2)

G(r)

)2

∼r→0
1

4r2 , while at

r = 1 it has a finite positive value. In other words, V2 is qualitatively similar to the
Euclidean Hardy potential, which led Sandeep–Tintarev to establish the following
Hyperbolic Hardy inequality on Bn (Theorem 3.4 of [32]):

(n− 2)2

4

∫
Bn

V2|u|2 dvgBn ≤
∫
Bn

|∇Bnu|2 dvgBn for any u ∈ H1(Bn).(5)

They also show the following Hyperbolic Sobolev inequality: ffor some constant
C > 0.

C

 ∫
Bn

V2? |u|2
?

dvgBn

2/2?

≤
∫
Bn

|∇Bnu|2 dvgBn for any u ∈ H1(Bn).(6)

By interpolating between these two inequalities, then one easily obtain for 0 ≤ s ≤
2, the following Hyperbolic Hardy-Sobolev inequality [11]:

If γ < (n−2)2

4 , then there exists a constant C > 0 such that for any u ∈ H1(Bn),

C

 ∫
Bn

V2∗(s)|u|2
∗(s) dvgBn

2/2∗(s)

≤
∫
Bn

|∇Bnu|2 dvgBn − γ
∫
Bn

V2|u|2 dvgBn ,(7)
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where 2?(s) := 2(n−s)
(n−2) . Note that V2?(s) behaves like 1

rs at the origin, making (7)

the exact analogue of the Euclidean Hardy-Sobolev inequality:

C

 ∫
Ω

|u|2∗(s)

|x|s
dx

2/2∗(s)

≤
∫
Ω

|∇u|2 dx− γ
∫
Ω

u2

|x|2
dx for any u ∈ C∞c (Ω).

In this paper, we are interested in the question of existence and multiplicity of
solutions to the following Dirichlet boundary value problem:{

−∆Bnu− γV2u− λu = V2?(s)|u|2
?(s)−2u in ΩBn

u = 0 on ∂ΩBn ,
(8)

where ΩBn is a compact smooth subdomain of Bn, n ≥ 3, such that 0 ∈ ΩBn , but
ΩBn does not touch the boundary of Bn. It is clear that (8) is the Euler-Lagrange
equation for the following energy functional on H1

0 (ΩBn):

Jγ,s,λ(u) :=

∫
ΩBn

(
|∇Bnu|2 − γV2u

2 − λu2
)
dvgBn( ∫

ΩBn

|u|2∗(s)V2?(s)dvgBn

)2/2?(s)
,

where H1
0 (ΩBn) is the completion of C∞c (ΩBn) with respect to the norm given by

‖u‖ =
√∫

ΩBn
|∇Bnu|2dvgBn .

The existence of a positive ground state solution for (8) has already been addressed
in [11] and is stated below for comparison purposes. This paper is dedicated to the
proof of the second part, which is concerned with the multiplicity of higher energy
solutions.

Theorem 1.1. Let ΩBn b Bn, n ≥ 5, be a smooth compact domain containing 0

and let 0 < s < 2. Suppose λ > n−2
n−4

(
n(n−4)

4 − γ
)

, then

(1) If γ ≤ (n−2)2

4 − 1, then (8) has a positive solution that is a ground state for
Jγ,s.

(2) If γ < (n−2)2

4 −4, then (8) has an infinite number of solutions corresponding
to higher energy critical levels for Jγ,s.

These solutions belong to C2(ΩBn \ {0}) while around 0 they behave like

u(x) ∼ K G(|x|)
1
2−
√

1
4−

γ

(n−2)2 ∼ K

|x|
n−2
2 −

√
(n−2)2

4 −γ
for some K ∈ R.(9)

We also note that for γ > (n−2)2

4 − 1, the existence of positive ground state solu-
tions in Part 1) was also established in [11] under a global condition requiring the
positivity of the Hardy-singular boundary mass of the compact subdomain ΩBn . We
do not know whether there is a corresponding condition that yields the multiplic-
ity result of Part 2) in low dimensions. This said, we can show that compactness
holds for non-negative solutions of the subcritical problem, when the non-linearities
approach 2∗(s).
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In order to prove Theorem 1.1, we shall use a conformal transformation

gBn = ϕ
4

n−2 Eucld where ϕ =

(
2

1− r2

)n−2
2

,

to reduce equation (8) to a Dirichlet boundary value problem on Euclidean space.
We recall the following result from [11]

Lemma 1. u ∈ H1
0 (ΩBn) satisfies (8) if and only if v := ϕu ∈ H1

0 (Ω) satisfies{
−∆v −

(
γ
|x|2 + hγ,λ(x)

)
v = b(x) v

2?(s)−1

|x|s in Ω

v = 0 on ∂Ω,
(10)

where b(x) is a positive function in C0(Ω) with b(0) =
(n− 2)

2−s
n−2

22−s . Moreover,

when n ≥ 5, b ∈ C1(Ω) and ∇b(0) = 0. In addition, there exists c3, c4 ∈ R such
that

hγ,λ(x) = hγ,λ(r) =



4γ
r + c3 +O(r) when n = 3,

8γ log 1
r + c4 +O(r) when n = 4,

4(n−2)
n−4 γ + 4λ− n(n− 2) when n ≥ 5,

(11)

Moreover, the hyperbolic operator −∆Bn − γV2 − λ is coercive if and only if the

corresponding Euclidean operator −∆−
(

γ
|x|2 + hγ,λ(x)

)
is coercive.

Our multiplicity result will therefore follow from the following more general Eu-
clidean statement. In this paper D1,2(Ω) – or H1

0 (Ω) if the domain is bounded – is
the completion of C∞c (Ω) with respect to the norm given by ||u||2 =

∫
Ω

|∇u|2 dx.

Theorem 1.2. Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ Ω
and assume that 0 < s < 2 and 0 ≤ θ < 2. Let h and b be two real-valued functions
with the following properties:

• h is in C1(Ω \ {0}) with lim
x→0
|x|θh(x) = c and lim

x→0
|x|θ(x,∇h(x)) = −cθ for

some c ∈ R, and the operator −∆− γ
|x|2 − h(x) is coercive in Ω.

• b is a non-negative function in C1(Ω) such that b(0) > 0 and ∇b(0) = 0,
while if θ = 0, we shall simply assume that b is a positive constant.

If γ < (n−2)2

4 − (2− θ)2 and lim
|x|→0

|x|θh(x) > 0, then the boundary value problem{
−∆u− γ u

|x|2 − h(x)u = b(x) |u|
2?(s)−2u
|x|s in Ω \ {0},

u = 0 on ∂Ω,
(12)

has an infinite number of possibly sign-changing solutions in H1
0 (Ω). Moreover,

these solutions belong to C2(Ω \ {0}) while around 0 they behave like

u(x) ∼ K

|x|
n−2
2 −

√
(n−2)2

4 −γ
for some K ∈ R.

The multiplicity result will follow from standard min-max arguments once we prove
the required compactness, which relies on blow-up analysis techniques. The proof
consists of analyzing the asymptotic behaviour of a family of solutions to the related
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subcritical equations –potentially developing a singularity at zero– as we approach
the critical exponent.

Theorem 1.3. Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ Ω
and assume that 0 < s < 2 and 0 ≤ θ ≤ 2−2/2?(s). Suppose that the functions h(x)
and b(x) satisfies the hypothesis of Theorem (1.2), and let (pε)ε>0 be in the interval
[0, 2?(s) − 2) in such a way that lim

ε→0
pε = 0. Consider a sequence of functions

(uε)ε>0 that is uniformly bounded in H1
0 (Ω) and such that for each ε > 0, uε is a

solution to the equation:

(13)

{
−∆uε − γ uε

|x|2 − h(x)uε = b(x) |uε|
2?(s)−2−pεuε
|x|s in Ω \ {0},

uε = 0 on ∂Ω.

If γ < (n−2)2

4 − (2 − θ)2 and c = lim
|x|→0

|x|θh(x) > 0, then the sequence (uε)ε>0 is

pre-compact in the space H1
0 (Ω).

As to the regularity of the solutions, this will follow from the following result

established by Ghoussoub-Robert in [21, 22]. Assuming that γ < (n−2)2

4 , note that

the function x 7→ |x|−β is a solution of

(14) (−∆− γ

|x|2
)u = 0 on Rn \ {0},

if and only if β ∈ {β−(γ), β+(γ)}, where

β±(γ) :=
n− 2

2
±
√

(n− 2)2

4
− γ.(15)

Actually, one can show that any non-negative solution u ∈ C2(Rn \ {0}) of (14) is
of the form

(16) u(x) = C−|x|−β−(γ) + C+|x|−β+(γ) for all x ∈ Rn \ {0},

where C−, C+ ≥ 0.

We collect the following important results from the papers [21,22] which we shall
use repeatedly in our work.

Theorem 1.4 (Optimal regularity and Hopf Lemma). Let γ < (n−2)2

4 and let
f : Ω× R→ R be a Caratheodory function such that

|f(x, v)| ≤ C|v|
(

1 +
|v|2?(s)−2

|x|s

)
for all x ∈ Ω and v ∈ R.

(1) Let u ∈ D1,2(Ω) be a weak solution of

∆u− γ +O(|x|τ )

|x|2
u = f(x, u),(17)

for some τ > 0. Then, there exists K ∈ R such that

lim
x→0

u(x)

|x|−β−(γ)
= K.(18)

Moreover, if u ≥ 0 and u 6≡ 0, we have that K > 0.
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(2) As a consequence, one gets that if u ∈ D1,2(Rn) is a weak solution for

−∆u− γ

|x|2
u =

|u|2?(s)−2u

|x|s
in Rn \ {0},

then there exists K1,K2 ∈ R such that

u(x) ∼|x|→0
K1

|x|β−(γ)
and u(x) ∼|x|→+∞

K1

|x|β+(γ)
,

and therefore there exists a constant C > 0 such that for all x in Rn \ {0},

|u(x)| ≤ C

|x|β−(γ) + |x|β+(γ)
.(19)

The next theorem describes the properties of the Green’s function of the Hardy-
Schrödinger operator in a bounded smooth domain. To prove this theorem one can
argue as in the case θ = 0 like in [22].

Theorem 1.5 (Green’s function). Let Ω be a smooth bounded domain of Rn such

that 0 ∈ Ω is an interior point. Let γ < (n−2)2

4 and let h ∈ C1(Ω \ {0}) satisfy the
hypothesis of Theorem (1.2) such that the operator −∆− γ

|x|2 − h(x) is coercive in

Ω.

(1) There exists then H ∈ C∞(Ω \ {0}) such that
−∆H − γ

|x|2H − h(x)H = 0 in Ω \ {0}
H > 0 in Ω \ {0}
H = 0 on ∂Ω.

(20)

These solutions are unique up to a positive multiplicative constant, and

there exists C̃ > 0 such that H(x) 'x→0
C̃

|x|β+(γ)
.

(2) Then there exists

G : (Ω \ {0})2 \ {(x, x)/ x ∈ Ω \ {0}} → R

such that

(i) For any p ∈ Ω \ {0}, Gp := G(p, ·) ∈ H2
1 (Ω \ Bδ(p)) for all δ > 0,

Gp ∈ C2,θ(Ω \ {0, p})
(ii) For all f ∈ Lp(Ω), p > n/2, and all ϕ ∈ H2

1,0(Ω) such that

−∆ϕ−
(

γ

|x|2
+ h(x)

)
ϕ = f in Ω ; ϕ|∂Ω = 0,

we have

(21) ϕ(p) =

∫
Ω

G(p, x)f(x) dx

In addition, G > 0 is unique and

(iii) For all p ∈ Ω \ {0}, there exists C0(p) > 0 such that

(22) Gp(x) ∼x→0
C0(p)

|x|β−(γ)
and Gp(x) ∼x→p

1

(n− 2)ωn−1|x− p|n−2

(iv) There exists C > 0 such that
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(23) 0 < Gp(x) ≤ C
(

max{|p|, |x|}
min{|p|, |x|}

)β−(γ)

|x− p|2−n

(v) For all ω b Ω, there exists C(ω) > 0 such that

(24) C(ω)

(
max{|p|, |x|}
min{|p|, |x|}

)β−(γ)

|x− p|2−n ≤ Gp(x) for all p, x ∈ ω \ {0}.

Via the conformal transformation the above regularity result will yield that the
corresponding solutions for equation (8) in the Hyperbolic Sobolev Space H1

0 (ΩBn)
will satisfy

(25) lim
|x|→0

u(x)

G(|x|)α−
= K ∈ R,

where

(26) α−(γ) =
1

2
−

√
1

4
− γ

(n− 2)2
,

which amounts to the regularity claimed in Theorem 1.1.

A general remark, in this paper every convergence is up to a subsequence.

2. Setting the blow-up

Throughout this paper, Ω will denote a smooth bounded domain of Rn, n ≥ 3,

such that 0 ∈ Ω. We will always assume that γ < (n−2)2

4 , s ∈ (0, 2), and β±(γ) :=

n−2
2 ±

√
(n−2)2

4 − γ. We now describe the compactness result that will be needed

for the proof:
For ε > 0, we let pε ∈ [0, 2?(s)− 2) be such that

lim
ε→0

pε = 0.(27)

We also consider

h ∈ C1(Ω \ {0}) with lim
x→0
|x|θh(x) = c and lim

x→0
|x|θ(x,∇h(x)) = −cθ for some

0 ≤ θ < 2 and c ∈ R, such that the operator −∆− γ
|x|2 − h(x) is coercive in Ω.

(28)

and

a non-negative function b in C1(Ω) with b(0) > 0 and ∇b(0) = 0.(29)

Consider a sequence of functions (uε)ε>0 in H1
0 (Ω) such that for all ε > 0 the

function uε is a solution to the Dirichlet boundary value problem:{
−∆uε − γ uε

|x|2 − h(x)uε = b(x) |uε|
2?(s)−2−pεuε
|x|s in D1,2(Ω),

uε = 0 on ∂Ω.
(Eε)

where (pε), h(x) and b(x) is such that (27), (28) and (29) holds.
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By the regularity theorem (1.4), uε ∈ C2(Ω \ {0}) and there exists Kε ∈ R such

that lim
x→0

|x|β−(γ)uε(x) = Kε. In addition, we assume that the sequence (uε)ε>0 is

bounded in H1
0 (Ω) and we let Λ > 0 be such that∫

Ω

|uε|2
?(s)−pε

|x|s
dx ≤ Λ for all ε > 0.(30)

It then follows from the weak compactness of the unit ball of H1
0 (Ω) that there

exists u0 ∈ H1
0 (Ω) such that

(31) uε ⇀ u0 weakly in H1
0 (Ω) as ε→ 0.

Then u0 s a solution to the Dirichlet boundary value problem{
−∆u0 − γ u0

|x|2 − h(x)u0 = b(x) |u0|2
?(s)−2u0

|x|s in Ω \ {0},
u0 = 0 on ∂Ω.

Again from the regularity theorem (1.4), u0 ∈ C2,θ(Ω\{0}) and lim
x→0
|x|β−(γ)u0(x) =

K0 ∈ R. Fix now τ ∈ R such that

β−(γ) < τ <
n− 2

2
.(32)

The following Proposition shows that the sequence (uε)ε is pre-compact in H1
0 (Ω)

if |x|τuε is uniformly bounded in L∞(Ω).

Proposition 1. Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ Ω

and assume that 0 < s < 2, γ < (n−2)2

4 . We let (uε), (pε), h(x) and b(x) be such
that (Eε), (27), (28), (29) and (30) holds. Suppose that there exists C > 0 such
that |x|τ |uε(x)| ≤ C for all x ∈ Ω and for all ε > 0. Then up to a subsequence,
lim
ε→0

uε = u0 in H1
0 (Ω) where u0 is as in (31).

Proof: We have assumed that |x|τ |uε(x)| ≤ C for all x ∈ Ω and for all ε > 0. So
the sequence (uε) is uniformly bounded in L∞(Ω′) for any Ω′ ⊂⊂ Ω \ {0}. Then by
standard elliptic estimates and from (31) it follows that uε → u0 in C2

loc(Ω \ {0}).
Now since |x|τ |uε(x)| ≤ C for all x ∈ Ω and for all ε > 0 and since τ < n−2

2 , we
have

lim
δ→0

lim
ε→0

∫
Bδ(0)

b(x)
|uε|2

?(s)−pε

|x|s
dx = 0 and lim

δ→0
lim
ε→0

∫
Bδ(0)

|uε|2

|x|2
dx = 0.(33)

Therefore

lim
ε→0

∫
Ω

b(x)
|uε|2

?(s)−pε

|x|s
dx =

∫
Ω

b(x)
|u0|2

?(s)

|x|s
dx and lim

ε→0

∫
Ω

|uε|2

|x|2
dx =

∫
Ω

|u0|2

|x|2
dx.

From (Eε) and (31) we then obtain

lim
ε→0

∫
Ω

(
|∇uε|2 − γ

u2
ε

|x|2
− h(x)u2

ε

)
dx =

∫
Ω

(
|∇u0|2 − γ

u2
0

|x|2
− h(x)u2

0

)
dx

and so then lim
ε→0

∫
Ω

|∇uε|2 = lim
ε→0

∫
Ω

|∇u0|2.
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And hence lim
ε→0

uε = u0 in H1
0 (Ω). �

From now on, we shall assume that

(34) lim
ε→0
‖|x|τuε‖L∞(Ω) = +∞,

and work towards a contradiction. We shall say that blow-up occurs whenever (34)
holds.

3. Some Scaling Lemmas

In this section we state and prove two scaling lemmas which we shall use many
times in our analysis.

Lemma 2. Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ Ω and

assume that 0 < s < 2 and γ < (n−2)2

4 . Let (uε), (pε), h(x) and b(x) be such that
(Eε), (27), (28), (29) and (30) holds. Let (yε)ε ∈ Ω \ {0} and let

ν
−n−2

2
ε := |uε(yε)|, `ε := ν

1− pε
2?(s)−2

ε and κε := |yε|s/2 `
2−s
2

ε for ε > 0

Suppose lim
ε→0

yε = 0 and lim
ε→0

νε = 0. Assume that for any R > 0 there exists

C(R) > 0 such that for all ε > 0

|uε(x)| ≤C(R)
|yε|τ

|x|τ
|uε(yε)| for all x ∈ BRκε(yε) \ {0}.(35)

Then

|yε| = O(`ε) as ε→ 0.(36)

Proof of Lemma 2: We proceed by contradiction and assume that

lim
ε→0

|yε|
`ε

= +∞.(37)

Then it follows from the definition of κε that

lim
ε→0

κε = 0, lim
ε→0

κε
`ε

= +∞ and lim
ε→0

κε
|yε|

= 0.(38)

Fix a ρ > 0. We define for all ε > 0

vε(x) := ν
n−2
2

ε uε(yε + κεx) for x ∈ B2ρ(0)

Note that this is well defined since lim
ε→0
|yε| = 0 ∈ Ω and lim

ε→0

κε
|yε| = 0. It follows

from (35) that there exists C(ρ) > 0 such that all ε > 0

|vε(x)| ≤ C(ρ)
1∣∣∣ yε|yε| + κε
|yε|x

∣∣∣τ ∀x ∈ B2ρ(0)(39)

using (38) we then get as ε→ 0

|vε(x)| ≤ C(ρ) (1 + o(1)) ∀x ∈ B2ρ(0).

From equation (Eε) we obtain that vε satisfies the equation

−∆vε −
κ2
ε

|yε|2
γ∣∣∣ yε|yε| + κε
|yε|x

∣∣∣2 vε − κ2
ε h(yε + κεx) vε = b(yε + κεx)

|vε|2
?(s)−2−pεvε∣∣∣ yε|yε| + κε

|yε|x
∣∣∣s
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weakly in B2ρ(0) for all ε > 0. With the help of (38), (28) and standard elliptic
theory it then follows that there exists v ∈ C1(B2ρ(0)) such that

lim
ε→0

vε = v in C1(Bρ(0)).

In particular,

v(0) = lim
ε→0

vε(0) = 1(40)

and therefore v 6≡ 0.

On the other hand, change of variables and the definition of κε yields∫
Bρκε (yε)

|uε|2
?(s)−pε

|x|s
dx =

|uε(yε)|2
?(s)−pεκnε
|yε|s

∫
Bρ(0)

|vε|2
?(s)−pε∣∣∣ yε|yε| + κε
|yε|x

∣∣∣s dx
= `
−
(

1+
2(2−s)

2?(s)−2−pε

)
ε

(
|yε|
`ε

)s(n−2
2 ) ∫

Bρ(0)

|vε|2
?(s)−pε∣∣∣ yε|yε| + κε
|yε|x

∣∣∣s dx
≥
(
|yε|
`ε

)s(n−2
2 ) ∫

Bρ(0)

|vε|2
?(s)−pε∣∣∣ yε|yε| + κε
|yε|x

∣∣∣s dx.
Using the equation (Eε), (30), (37), (38) and passing to the limit ε → 0 we get
that

∫
Bρ(0)

|v|2?(s) dx = 0, and so then v ≡ 0 in Bρ(0), a contradiction with (40).

Thus (37) cannot hold. This proves that yε = O(`ε) when ε→ 0, which proves the
lemma. �

Lemma 3. Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ Ω and

assume that 0 < s < 2 and γ < (n−2)2

4 . Let (uε), (pε), h(x) and b(x) be such that
(Eε), (27), (28), (29) and (30) holds. Let (yε)ε ∈ Ω \ {0} and let

ν
−n−2

2
ε := |uε(yε)| and `ε := ν

1− pε
2?(s)−2

ε for ε > 0

Suppose νε → 0 and |yε| = O(`ε) as ε→ 0.

For ε > 0 we rescale and define

wε(x) := ν
n−2
2

ε uε(`εx) for x ∈ `−1
ε Ω \ {0}.

Assume that for any R > δ > 0 there exists C(R, δ) > 0 such that for all ε > 0

|wε(x)| ≤C(R, δ) for all x ∈ BR(0) \Bδ(0).(41)

Then there exists w ∈ D1,2(Rn) ∩ C1(Rn \ {0}) such that

wε ⇀ w weakly in D1,2(Rn) as ε→ 0

wε → w in C1
loc(Rn \ {0}) as ε→ 0

And w satisfies weakly the equation

−∆w − γ

|x|2
w = b(0)

|w|2?(s)−2w

|x|s
in Rn \ {0}.
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Moreover if w 6≡ 0, then∫
Rn

|w|2?(s)

|x|s
≥
(
µγ,s,0(Rn)

b(0)

) 2?(s)
2?(s)−2

and there exists t ∈ (0, 1] such that lim
ε→0

νpεε = t.

Proof of Lemma 3: The proof proceeds in four steps.
Step 3.1: Let η ∈ C∞c (Rn). One has that ηwε ∈ H1

0 (Rn) for ε > 0 sufficiently
small. We claim that there exists wη ∈ D1,2(Rn) such that upto a subsequence{

ηwε ⇀ wη weakly in D1,2(Rn) as ε→ 0,
ηwε → wη(x) a.e in Rn as ε→ 0.

We prove the claim. Let x ∈ Rn, then

∇ (ηwε) (x) = wε(x)∇η(x) + ν
n−2
2

ε `ε η(x)∇uε(`εx).

Now for any θ > 0, there exists C(θ) > 0 such that for any a, b > 0

(a+ b)2 ≤ C(θ)a2 + (1 + θ)b2

With this inequality we then obtain∫
Rn

|∇ (ηwε)|2 dx ≤ C(θ)

∫
Rn

|∇η|2w2
ε dx+ (1 + θ)νn−2

ε `2ε

∫
Rn

η2 |∇uε(`εx)|2 dx

With Hölder inequality and a change of variables this becomes∫
Rn

|∇ (ηwε)|2 dx ≤ C(θ) ‖∇η‖2Ln
(
νε
`ε

)n−2
 ∫

Ω

|uε|2
?

dx


n−2
n

+ (1 + θ)

(
νε
`ε

)n−2 ∫
Ω

(
η

(
x

`ε

))2

|∇uε|2 dx.(42)

Since ‖uε‖H1
0 (Ω) = O(1), so for ε > 0 small enough

‖ηwε‖D1,2(Rn) ≤ Cη
Where Cη is a constant depending on the function η. The claim then follows from
the reflexivity of D1,2(Rn).

Step 3.2: Let η1 ∈ C∞c (Rn), 0 ≤ η1 ≤ 1 be a smooth cut-off function, such that

η1 =

{
1 for x ∈ B0(1)
0 for x ∈ Rn\B0(2)

(43)

For any R > 0 we let ηR = η1(x/R). Then with a diagonal argument we can assume
that upto a subsequence for any R > 0 there exists wR ∈ D1,2(Rn) such that{

ηRwε ⇀ wR weakly in D1,2(Rn) as ε→ 0
ηRwε(x)→ wR(x) a.e x in Rn as ε→ 0

Since ‖∇ηR‖2n = ‖∇η1‖2n for all R > 0, letting ε→ 0 in (42) we obtain that∫
Rn−
|∇wR|2 dx ≤ C for all R > 0
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where C is a constant independent of R. So there exists w ∈ D1,2(Rn) such that{
wR ⇀ w weakly in D1,2(Rn) as R→ +∞
wR(x)→ w(x) a.e x in Rn as R→ +∞

Step 3.3: We claim that w ∈ C1(Rn \ {0}) and it satisfies weakly the equation

−∆w − γ

|x|2
w = b(0)

|w|2?(s)−2w

|x|s
in Rn \ {0}.

We prove the claim. From (Eε) it follows that for any ε > 0 and R > 0, ηRwε
satisfies weakly the equation

−∆ (ηRwε)−
γ

|x|2
(ηRwε)− `2ε h(`εx) (ηRwε) = b(`εx)

| (ηRwε) |2
?(s)−2−pε (ηRwε)

|x|s
.

(44)

From (41) and (28), using the standard elliptic estimates it follows that wR ∈
C1 (BR(0) \ {0}) and that up to a subsequence

lim
ε→0

ηRwε = wR in C1
loc (BR(0) \ {0}) .

Letting ε→ 0 in eqn (44) gives that wR satisfies weakly the equation

−∆wR −
γ

|x|2
wR = b(0)

|wR|2
?(s)−2−pεwR
|x|s

.

Again we have that |wR(x)| ≤ C(R, δ) for all x ∈ BR/2(0) \B2δ(0) and then again

from standard elliptic estimates it follows that w ∈ C1(Rn\{0}) and lim
R→+∞

w̃R = w̃

in C1
loc(Rn \{0}), up to a subsequence. Letting R→ +∞ we obtain that w satisfies

weakly the equation

−∆w − γ

|x|2
w = b(0)

|w|2?(s)−2w

|x|s
.

This proves our claim.

Step 3.4: Coming back to equation (42) we have for R > 0

∫
Rn

|∇(ηRwε)|2 dx ≤ C(θ)

 ∫
B0(2R)\B0(R)

(η2Rwε)
2∗ dx


n−2
n

+ (1 + θ)

(
νε
`ε

)n−2 ∫
Ω

|∇uε|2 dx.(45)

Since the sequence (uε)ε is bounded in H1
0 (Ω), letting ε → 0 and then R → +∞

we obtain for some constant C∫
Rn

|∇w|2 dx ≤ C
(

lim
ε→0

(
νε
`ε

))n−2

.(46)

Now if w 6≡ 0 weakly satisfies the equation

−∆w − γ

|x|2
w = b(0)

|w|2?(s)−2w

|x|s
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using the definition of µγ,s,0(Rn) it then follows that∫
Rn

|w|2?(s)

|x|s
≥
(
µγ,s,0(Rn)

b(0)

) 2?(s)
2?(s)−2

.

Hence lim
ε→0

(
νε
`ε

)
> 0 which implies that

t := lim
ε→0

νpεε > 0.(47)

Since lim
ε→0

νε = 0, therefore we have that 0 < t ≤ 1. This completes the lemma. �

4. Construction and Exhaustion of the blow-up scales

In this section we prove the following proposition:

Proposition 2. Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ Ω

and assume that 0 < s < 2 and γ < (n−2)2

4 . Let (uε), (pε), h(x) and b(x) be such
that (Eε), (27), (28), (29) and (30) holds. Assume that blow-up occurs, that is

lim
ε→0
‖|x|τuε‖L∞(Ω) = +∞ where β−(γ) < τ <

n− 2

2
.

Then, there exists N ∈ N? families of scales (µi,ε)ε>0 such that we have:

(A1) lim
ε→0

uε = u0 in C2
loc(Ω \ {0}) where u0 is as in(31).

(A2) 0 < µ1,ε < ... < µN,ε, for all ε > 0.

(A3)

lim
ε→0

µN,ε = 0 and lim
ε→0

µε,i+1

µi,ε
= +∞ for all 1 ≤ i ≤ N − 1.

(A4) For any 1 ≤ i ≤ N and for ε > 0 we rescale and define

ũi,ε(x) := µ
n−2
2

i,ε uε(ki,εx) for x ∈ k−1
i,ε Ω \ {0}

where ki,ε = µ
1− pε

2?(s)−2

i,ε .

Then there exists ũi ∈ D1,2(Rn)∩C1(Rn \ {0}), ũi 6≡ 0 such that ũi weakly
solves the equation

−∆ũi −
γ

|x|2
ũi = b(0)

|ũi|2
?(s)−2ũi
|x|s

and

ũi,ε −→ ũi in C1
loc(Rn \ {0}) as ε→ 0,

ũi,ε ⇀ ũi weakly in D1,2(Rn) as ε→ 0.
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(A5) There exists C > 0 such that

|x|
n−2
2 |uε(x)|1−

pε
2?(s)−2 ≤ C

for all ε > 0 and all x ∈ Ω \ {0}.

(A6) limR→+∞ limε→0 sup
Ω\BRkN,ε (0)

|x|n−2
2 |uε(x)− u0(x)|1−

pε
2?(s)−2 = 0.

(A7) lim
δ→0

limε→0 supBδk1,ε (0)\{0} |x|
n−2
2

∣∣∣uε(x)− µ−
n−2
2

1,ε ũ1

(
x
k1,ε

)∣∣∣1− pε
2?(s)−2

= 0.

(A8) For any δ > 0 and any 1 ≤ i ≤ N − 1, we have

lim
R→+∞

lim
ε→0

sup
δki+1,ε≥|x|≥Rki,ε

|x|
n−2
2

∣∣∣∣uε(x)− µ−
n−2
2

i+1,ε ũi+1

(
x

ki+1,ε

)∣∣∣∣1−
pε

2?(s)−2

= 0.

(A9) For any i ∈ {1, ..., N} there exists ti ∈ (0, 1] such that limε→0 µ
pε
i,ε = ti.

The proof of this proposition proceeds in five steps.
Since s > 0, the subcriticality 2?(s) < 2? := 2?(0) of equations (Eε) in Ω \ {0}
along with (31) yields that uε → u0 in C2

loc(Ω \ {0}). So the only blow-up point is
the origin.

Step 4.1: The construction of the µi,ε’s proceeds by induction. This step is the
initiation.

By the regularity Theorem (1.4) and the definition of τ it follows that for any ε > 0
there exists x1,ε ∈ Ω \ {0} such that

sup
x∈Ω\{0}

|x|τ |uε(x)| = |x1,ε|τ |uε(x1,ε)|.(48)

We define µ1,ε and k1,ε > 0 as follows

µ
−n−2

2
1,ε := |uε(x1,ε)| and k1,ε := µ

1− pε
2?−2

1,ε .(49)

Since blow-up occurs, that is (34) holds, we have

lim
ε→0

µ1,ε = 0

It follows that uε satisfies the hypothesis (35) of lemma (2) with yε = x1,ε, νε = µ1,ε.
Therefore

|x1,ε| = O (k1,ε) as ε→ 0.

Infact, we claim that there exists c1 > 0 such that

lim
ε→0

|x1,ε|
k1,ε

= c1.(50)

We argue by contradiction and we assume that |x1,ε| = o(k1,ε) as ε→ 0. We define
for ε > 0

ṽε(x) := µ
n−2
2

1,ε uε(|x1,ε|x) for x ∈ |x1,ε|−1Ω \ {0}

Using (Eε) we obtain that ṽε weakly satisfies the equation in |x1,ε|−1Ω \ {0}

−∆ṽε −
γ

|x|2
ṽε − |x1,ε|2h(|x1,ε|x) ṽε = b(|x1,ε|x)

(
|x1,ε|
k1,ε

)2−s |ṽε|2
?(s)−2ṽε
|x|s

.
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The definition (48) yields |x|τ |ṽε(x)| ≤ 1 for all x ∈ |x1,ε|−1Ω \ {0}. Standard
elliptic theory then yield the existence of ṽ ∈ C2(Rn \ {0}) such that ṽε → ṽ in
C2
loc(Rn \ {0}) where

−∆ṽ − γ

|x|2
ṽ = 0 in Rn \ {0}.

In addition, we have that
∣∣ṽε (|x1,ε|−1x1,ε

)∣∣ = 1 and so ṽ 6≡ 0. Also since |x|τ |ṽ(x)| ≤
1 in Rn \ {0}, we have the bound

|ṽ(x)| < 2|x|−β+(γ) + 2|x|−β−(γ) in Rn \ {0}.
The classification of positive solutions of −∆v − γ

|x|2 v = 0 in Rn \ {0} (see (16))

yields the existence of A,B ∈ R such that ṽ(x) = A|x|−β+(γ) + B|x|−β−(γ) in
Rn \ {0}. Then the pointwise control |x|τ |ṽ(x)| ≤ 1 in Rn \ {0} yields A = B = 0,
contradicting ṽ 6≡ 0. This proves the claim (50).

We rescale and define

ũ1,ε(x) := µ
n−2
2

1,ε uε(k1,εx) for x ∈ k−1
1,εΩ \ {0}

It follows from (48) and (50) that ũ1,ε satisfies the hypothesis (41) of lemma (3)
with yε = x1,ε, νε = µ1,ε. Then using lemma (3) we get that there exists ũ1 ∈
D1.2(Rn) ∩ C1(Rn \ {0}) weakly satisfying the equation:

−∆ũ1 −
γ

|x|2
ũ1 = b(0)

|ũ1|2
?(s)−2ũ1

|x|s
in Rn \ {0}.

and

ũ1,ε ⇀ ũ1 weakly in D1,2(Rn) as ε→ 0

ũ1,ε → ũ1 in C1
loc(Rn \ {0}) as ε→ 0

It follows from the definition that
∣∣∣ũ1,ε

(
x1,ε

k1,ε

)∣∣∣ = 1. From (50) we therefore have

that ũ1 6≡ 0. And hence again from lemma (3) we get that∫
Rn

|ũ1|2
?(s)

|x|s
≥
(
µγ,s,0(Rn)

b(0)

) 2?(s)
2?(s)−2

and there exists t1 ∈ (0, 1] such that lim
ε→0

µpε1,ε = t1.

Next, since |x|β−(γ)ũ1 ∈ C0(Rn), we have

lim
δ→0

lim
ε→0

sup
Bδk1,ε (0)\{0}

|x|
n−2
2

∣∣∣∣µ−n−2
2

1,ε ũ1

(
x

k1,ε

)∣∣∣∣1−
pε

2?(s)−2

= 0

and then using the definitions (48), (49) it follows that

lim
δ→0

lim
ε→0

sup
Bδk1,ε (0)\{0}

|x|
n−2
2

∣∣∣∣uε(x)− µ−
n−2
2

1,ε ũ1

(
x

k1,ε

)∣∣∣∣1−
pε

2?(s)−2

= 0.

�
Step 4.2: We claim that there exists C > 0 such that

|x|
n−2
2 |uε(x)|1−

pε
2?(s)−2 ≤ C(51)

for all ε > 0 and all x ∈ Ω \ {0}.
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Proof of Step 4.3: We argue by contradiction and let (yε)ε>0 ∈ Ω\{0} be such that

sup
x∈Ω\{0}

|x|
n−2
2 |uε(x)|1−

pε
2?(s)−2 = |yε|

n−2
2 |uε(yε)|1−

pε
2?(s)−2 → +∞ as ε→ 0.(52)

By the regularity Theorem (1.4) it follows that the sequence (yε)ε>0 is well-defined
and moreover lim

ε→0
yε = 0, since uε → u0 in C2

loc(Ω \ {0}). For ε > 0 we let

νε := |uε(yε)|−
2

n−2 , `ε := ν
1− pε

2?(s)−2
ε and κε := |yε|s/2 `

2−s
2

ε .

Then it follows from (52) that

lim
ε→0

νε = 0, lim
ε→0

|yε|
`ε

= +∞ and lim
ε→0

κε
|yε|

= 0.(53)

Let R > 0 and let x ∈ BR(0) be such that yε + κεx ∈ Ω \ {0}. It follows from the
definition (52) of yε that for all ε > 0

|yε + κεx|
n−2
2 |uε(yε + κεx)|1−

pε
2?(s)−2 ≤ |yε|

n−2
2 |uε(yε)|1−

pε
2?(s)−2

and then, for all ε > 0(
|uε(yε + κεx)|
|uε(yε)|

)1− pε
2?(s)−2

≤

(
1

1− κε
|yε|R

)n−2
2

for all x ∈ BR(0) such that yε +κεx ∈ Ω \ {0}. Using (53), we get that there exists
C(R) > 0 such that the hypothesis (35) of lemma (2) is satisfied and therefore one
has |yε| = O(`ε) when ε→ 0, contradiction to (53). This proves (51). �

Let I ∈ N?. We consider the following assertions:

(B1) 0 < µ1,ε < ... < µI,ε.

(B2) limε→0 µε,I = 0 and limε→0
µε,i+1

µi,ε
= +∞ for all 1 ≤ i ≤ I − 1

(B3) For all 1 ≤ i ≤ I there exists ũi ∈ D1,2(Rn) ∩ C2(Rn \ {0}) such that ũi
weakly solves the equation

−∆ũi −
γ

|x|2
ũi = b(0)

|ũi|2
?(s)−2ũi
|x|s

in Rn \ {0}

with ∫
Rn

|ũi|2
?(s)

|x|s
≥
(
µγ,s,0(Rn)

b(0)

) 2?(s)
2?(s)−2

,

and

ũi,ε −→ ũi in C1
loc(Rn \ {0}) as ε→ 0,

ũi,ε ⇀ ũi weakly in D1,2(Rn) as ε→ 0.

where for ε > 0

ũi,ε(x) := µ
n−2
2

i,ε uε(ki,εx) for x ∈ k−1
i,ε Ω \ {0}

with ki,ε = µ
1− pε

2?(s)−2

i,ε .

(B4) For all 1 ≤ i ≤ I, there exists ti ∈ (0, 1] such that limε→0 µ
pε
i,ε = ti.
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We say that HI holds if there exists I sequences (µi,ε)ε>0, i = 1, ..., I such that
points (B1), (B2) (B3) and (B4) holds. Note that it follows from Step 4.1 that H1

holds. Next we show the following holds:

Step 4.3 Let I ≥ 1. We assume that HI holds. Then either HI+1 holds or

lim
R→+∞

lim
ε→0

sup
Ω\B0(RkI,ε)

|x|
n−2
2 |uε(x)− u0(x)|1−

pε
2?(s)−2 = 0.

Proof of Step 4.3: Suppose

lim
R→+∞

lim
ε→0

sup
Ω\B0(RkI,ε)

|x|
n−2
2 |uε(x)− u0(x)|1−

pε
2?(s)−2 6= 0.

Then there exists a sequence of points (yε)ε>0 ∈ Ω \ {0} such that

(54) lim
ε→0

|yε|
kI,ε

= +∞ and lim
ε→0
|yε|

n−2
2 |uε(yε)− u0(yε)|1−

pε
2?(s)−2 = a > 0.

Since uε → u0 in C2
loc(Ω \ {0}) it follows that lim

ε→0
yε = 0. Then by the regularity

Theorem (1.4) and since β−(γ) < n−2
2 , we get

lim
ε→0
|yε|

n−2
2 |uε(yε)|1−

pε
2?(s)−2 = a > 0(55)

for some positive constant a. In particular, lim
ε→0
|uε(yε)| = +∞. Let

µI+1,ε := |uε(yε)|−
2

n−2 and kI+1,ε := µ
1− pε

2?(s)−2

I+1,ε .

As a consequence we have

lim
ε→0

µI+1,ε = 0 and lim
ε→0

|yε|
kI+1,ε

= a > 0.(56)

We rescale and define

ũI+1,ε(x) := µ
n−2
2

I+1,εuε(kI+1,ε x) for x ∈ k−1
I+1,εΩ \ {0}

It follows from (51) that for all ε > 0

|x|
n−2
2 |ũI+1,ε(x)|1−

pε
2?(s)−2 ≤ C for x ∈ k−1

I+1,εΩ \ {0}.

so hypothesis (41) of lemma (3) is satisfied. Then using lemma (3) we get that
there exists ũI+1 ∈ D1.2(Rn) ∩ C1(Rn \ {0}) weakly satisfying the equation:

−∆ũI+1 −
γ

|x|2
ũI+1 = b(0)

|ũI+1|2
?(s)−2ũI+1

|x|s
in Rn \ {0}.

and

ũI+1,ε ⇀ ũI+1 weakly in D1,2(Rn) as ε→ 0

ũI+1,ε → ũI+1 in C1
loc(Rn \ {0}) as ε→ 0
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We denote ỹε :=
yε

kI+1,ε
. From (56) it follows that that lim

ε→0
|ỹε| := |ỹ0| = a 6= 0.

Therefore |ũI+1(ỹ0)| = limε→0 |ũI+1,ε(ỹε)| = 1, and hence ũI+1 6≡ 0. And hence
again from lemma (3) we get∫

Rn

|ũI+1|2
?(s)

|x|s
≥
(
µγ,s,0(Rn)

b(0)

) 2?(s)
2?(s)−2

and there exists tI+1 ∈ (0, 1] such that lim
ε→0

µpεI+1,ε = tI+1. Moreover, it follows

from (54) and (56) that

lim
ε→0

µI+1,ε

µI,ε
= +∞ and lim

ε→0
µI+1,ε = 0.

Hence the families (µi,ε)ε>0, 1 ≤ i ≤ I + 1 satisfy HI+1. �

The next step is equivalent to step 4.3 at intermediate scales.

Step 4.4 Let I ≥ 1. We assume that HI holds. Then for any 1 ≤ i ≤ I − 1 and
for any δ > 0, either HI+1 holds or

lim
R→+∞

lim
ε→0

sup
Bδki+1,ε

(0)\BRki,ε (0)

|x|
n−2
2

∣∣∣∣uε(x)− µ−
n−2
2

i+1,ε ũi+1

(
x

ki+1,ε

)∣∣∣∣1−
pε

2?(s)−2

= 0.

Proof of Step 4.4: We assume that there exists an i ≤ I − 1 and δ > 0 such that

lim
R→+∞

lim
ε→0

sup
Bδki+1,ε

(0)\BRki,ε (0)

|x|
n−2
2

∣∣∣∣uε(x)− µ−
n−2
2

i+1,ε ũi+1

(
x

ki+1,ε

)∣∣∣∣1−
pε

2?(s)−2

> 0.

It then follows that there exists a sequence (yε)ε>0 ∈ Ω such that

lim
ε→0

|yε|
ki,ε

= +∞, |yε| ≤ δki+1,ε for all ε > 0(57)

|yε|
n−2
2

∣∣∣∣uε(yε)− µ−n−2
2

i+1,ε ũi+1

(
yε

ki+1,ε

)∣∣∣∣1−
pε

2?(s)−2

= a > 0.(58)

for some positive constant a. Note that a < +∞ since

|x|
n−2
2

∣∣∣∣uε(x)− µ−
n−2
2

i+1,ε ũi+1

(
x

ki+1,ε

)∣∣∣∣1−
pε

2?(s)−2

is uniformly bounded for all x ∈ Bδki+1,ε
(0) \BRki,ε(0).

We let ỹ∗ε ∈ Rn be such that yε = ki+1,ε ỹ
∗
ε . It follows from (57) that |ỹ∗ε | ≤ δ for

all ε > 0. . We rewrite (58) as

lim
ε→0
|ỹ∗ε |

n−2
2 |ũi+1,ε(ỹ

∗
ε )− ũi+1(ỹ∗ε )|1−

pε
2?(s)−2 = a > 0.

Then from point (B3) ofHI it follows that ỹ∗ε → 0 as ε→ 0. And since |x|β−(γ)ũi+1 ∈
C0(Rn), we get as ε→ 0

|yε|
n−2
2

∣∣∣∣µ−n−2
2

i+1,ε ũi+1

(
yε

ki+1,ε

)∣∣∣∣1−
pε

2?(s)−2

= O

(
|yε|
ki+1,ε

)n−2
2 −β−(γ)

= o(1)
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Then (58) becomes

lim
ε→0
|yε|

n−2
2 |uε(yε)|1−

pε
2?(s)−2 = a > 0.(59)

In particular, lim
ε→0
|uε(yε)| = +∞. We let

νε := |uε(yε)|−
2

n−2 and `ε := ν
1− pε

2?(s)−2
ε .

Then we have

lim
ε→0

νε = 0 and lim
ε→0

|yε|
`ε

= a > 0.(60)

We rescale and define

ũε(x) := ν
n−2
2

ε uε(`ε x) for x ∈ `−1
ε Ω \ {0}

It follows from (51) that for all ε > 0

|x|
n−2
2 |ũε(x)|1−

pε
2?(s)−2 ≤ C for x ∈ `−1

ε Ω \ {0}.

so hypothesis (41) of lemma (3) is satisfied. Then using lemma (3) we get that
there exists ũ ∈ D1.2(Rn) ∩ C1(Rn \ {0}) weakly satisfying the equation:

−∆ũ− γ

|x|2
ũ = b(0)

|ũ|2?(s)−2ũ

|x|s
in Rn \ {0}.

and

ũε ⇀ ũ weakly in D1,2(Rn) as ε→ 0

ũε → ũ in C1
loc(Rn \ {0}) as ε→ 0

We denote ỹε :=
yε
`ε

. From (59) it follows that that lim
ε→0
|ỹε| := |ỹ0| = a 6= 0.

Therefore |ũ(ỹ0)| = limε→0 |ũε(ỹε)| = 1, and hence ũ 6≡ 0. And hence again from
lemma (3) we get ∫

Rn

|ũ|2?(s)

|x|s
≥
(
µγ,s,0(Rn)

b(0)

) 2?(s)
2?(s)−2

and there exists t ∈ (0, 1] such that lim
ε→0

νpεε = t. Moreover it follows from(59), (57)

and since lim
ε→0

|yε|
ki+1,ε

= 0, that

lim
ε→0

νε
µi,ε

= +∞ and lim
ε→0

µi+1,ε

νε
= +∞.

Hence the families (µ1,ε),..., (µi,ε), (νε), (µi+1,ε),..., (µI,ε) satisfy HI+1. �

The last step tells us that family {HI} is finite.

Step 4.5: Let N0 = max{I : HI holds }. Then N0 < +∞ and the conclusion of
Proposition 2 holds with N = N0.

Proof of Step 4.5: Indeed, assume that HI holds. Since µi,ε = o(µi+1,ε) for all
1 ≤ i ≤ N − 1, we get with a change of variable and the definition of ũi,ε that for
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any R > δ > 0∫
Ω

|uε|2
?(s)−pε

|x|s
dx ≥

I∑
i=1

∫
BRki,ε (0)\Bδki,ε (0)

|uε|2
?(s)−pε

|x|s
dx

≥
I∑
i=1

∫
BR(0)\Bδ(0)

|ũi,ε|2
?(s)−pε

|x|s
dx.

Then from (30) we have Λ ≥
I∑
i=1

∫
BR(0)\Bδ(0)

|ũi,ε|2
?(s)−pε

|x|s
dx.(61)

Passing to the limit ε → 0 and then δ → 0, R → +∞ we obtain using point (B3)
of HI , that

Λ ≥
(
µγ,s,0(Rn)

b(0)

) 2?(s)
2?(s)−2

I.

It then follows that N0 < +∞. �

We let families (µ1,ε)ε>0,..., (µN0,ε)ε>0 such that HN0
holds. We argue by contra-

diction and assume that the conclusion of Proposition 2 does not hold with N = N0.
Assertions (A1), (A2), (A3),(A4), (A5), (A7) and (A9) holds. Assume that (A6)
or (A8) does not hold. It then follows from Steps (4.3), (4.4) and (4.5) that HN+1

holds. A contradiction with the choice of N = N0 and the proposition is proved. �

5. Strong Pointwise Estimates

The objective of this section is the proof of the following strong pointwise control.

Proposition 3. Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ Ω

and assume that 0 < s < 2 and γ < (n−2)2

4 . Let (uε), (pε), h(x) and b(x) be such
that (Eε), (27), (28), (29) and (30) holds. Assume that blow-up occurs, that is

lim
ε→0
‖|x|τuε‖L∞(Ω) = +∞ where β−(γ) < τ <

n− 2

2
.

Consider the µ1,ε, ..., µN,ε from Proposition 2. Then there exists C > 0 such that
for all ε > 0

|uε(x)| ≤ C

 N∑
i=1

µ
β+(γ)−β−(γ)

2
i,ε

µ
β+(γ)−β−(γ)
i,ε |x|β−(γ) + |x|β+(γ)

+
‖|x|β−(γ)u0||L∞(Ω)

|x|β−(γ)

(62)

for all x ∈ Ω \ {0}.

The proof of this estimate proceeds in seven steps.

Step 5.1: We claim that for any α > 0 small and any R > 0, there exists C(α,R) >
0 such that for all ε > 0 sufficiently small

|uε(x)| ≤ C(α,R)

µ
β+(γ)−β−(γ)

2 −α
N,ε

|x|β+(γ)−α +
‖|x|β−(γ)u0||L∞(Ω)

|x|β−(γ)+α

 for all x ∈ Ω \BRkN,ε(0).

(63)
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Proof of Step 5.1: We fix γ′ such that γ < γ′ < (n−2)2

4 . Since the operator
−∆ − γ

|x|2 − h(x) is coercive, taking γ′ close to γ it follows that the operator

−∆− γ′

|x|2 − h(x) is also coercive in Ω. From Theorem (20) it get that there exists

H ∈ C∞(Ω \ {0}) such that −∆H − γ′

|x|2H − h(x)H = 0 in Ω \ {0}
H > 0 in Ω \ {0}
H = 0 on ∂Ω.

(64)

And we have the following bound on H: there exists δ1, C1 > 0 such that

1

C1

1

|x|β+(γ′)
≤ H(x) ≤ C1

1

|x|β+(γ′)
for all x ∈ B2δ1(0).(65)

We let λγ
′

1 > 0 be the first eigenvalue of the coercive operator −∆− γ′

|x|2 − h on Ω

and we let ϕ ∈ H1
0 (Ω) be the unique eigenfunction such that −∆ϕ− γ′

|x|2ϕ− h(x)ϕ = λγ
′

1 ϕ in Ω

ϕ > 0 in Ω \ {0}
ϕ = 0 on ∂Ω.

(66)

It follows from the regularity result, Theorem (1.4) that there exists C2, δ2 > 0 such
that

1

C2

1

|x|β−(γ′)
≤ ϕ(x) ≤ C2

1

|x|β−(γ′)
for all x ∈ Ω ∩B2δ2(0).(67)

We define the operator

Lε := −∆−
(

γ

|x|2
+ h

)
− b(x)

|uε|2
?(s)−2−pε

|x|s
.

Step 5.1.1: We claim that given any γ < γ′ < (n−2)2

4 there exist δ0 > 0 and R0 > 0
such that for any 0 < δ < δ0 and R > R0, we have for ε > 0 sufficiently small

LεH(x) > 0, and Lεϕ(x) > 0 for all x ∈ Bδ(0) \BRkN,ε(0), if u0 6≡ 0.

LεH(x) > 0 for all x ∈ Ω \BRkN,ε(0), if u0 ≡ 0.(68)

As one checks for all ε > 0 and x 6= 0

LεH(x)

H(x)
=
γ′ − γ
|x|2

− b(x)
|uε|2

?(s)−2−pε

|x|s

and

Lεϕ(x)

ϕ(x)
=
γ′ − γ
|x|2

− b(x)
|uε|2

?(s)−2−pε

|x|s
+ λγ

′

1 .

Choose 0 < δ0 < min{1, δ1, δ2} such that

||b||L∞(Ω)δ
(2?(s)−2)(n−2

2 −β−(γ))
0 ‖|x|β−(γ)u0||2

?(s)−2
L∞(Ω) ≤

γ′ − γ
22?(s)+3

(69)

It follows from point (A6) of Proposition 2 that, there exists R0 > 0 such that for
any R > R0, we have for all ε > 0 sufficiently small

|b(x)|
1

2?(s)−2 |x|
n−2
2 |uε(x)−u0(x)|1−

pε
2?(s)−2 ≤

(
γ′ − γ

22?(s)+2

) 1
2?(s)−2

for all x ∈ Ω\BRkN,ε(0)
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With this choice of δ0 and R0 we get that for any 0 < δ < δ0 and R > R0, we have
for ε > 0 small enough

|b(x)| |x|2−s|uε(x)|2
?(s)−2−pε ≤ 22?(s)−1−pε |x|2−s|b(x)||uε(x)− u0(x)|2

?(s)−2−pε

+ 22?(s)−1−pε |x|2−s|b(x)||u0(x)|2
?(s)−2−pε

≤ γ′ − γ
4

for all x ∈ Bδ(0) \BRkN,ε(0), if u0 6≡ 0

and |b(x)| |x|2−s|uε(x)|2
?(s)−2−pε ≤ γ′ − γ

4
for all x ∈ Ω \BRkN,ε(0), if u0 ≡ 0.

Hence we obtain that for ε > 0 small enough

LεH(x)

H(x)
=
γ′ − γ
|x|2

− b(x)
|uε|2

?(s)−2−pε

|x|s

≥ γ′ − γ
|x|2

− γ′ − γ
4|x|2

> 0 for all x ∈ Bδ(0) \BRkN,ε(0), if u0 6≡ 0

and
LεH(x)

H(x)
> 0 for all x ∈ Ω \BRkN,ε(0), if u0 ≡ 0.(70)

And

Lεϕ(x)

ϕ(x)
≥ γ′ − γ
|x|2

− b(x)
|uε|2

?(s)−2−pε

|x|s
.

≥ γ′ − γ
|x|2

− γ′ − γ
4|x|2

> 0 for all x ∈ Bδ(0) \BRkN,ε(0)).(71)

�

Step 5.1.2: It follows from point (A4) of Proposition 2 that there exists C ′1(R) > 0
such that for all ε > 0 small

|uε(x)| ≤ C ′1(R)
µ
β+(γ′)−β−(γ′)

2

N,ε

|x|β+(γ′)
for all x ∈ ∂BRkN,ε(0)(72)

By estimate (65) on H, we then have for some constant C1(R) > 0

|uε(x)| ≤ C1(R)µ
β+(γ′)−β−(γ′)

2

N,ε H(x) for all x ∈ ∂BRkN,ε(0).(73)

It follows from point (A1) of Proposition 2 and the regularity result (1.4), that
there exists C ′2(δ) > 0 such that for all ε > 0 small

|uε(x)| ≤ C ′2(δ)
‖|x|β−(γ)u0||L∞(Ω)

|x|β−(γ)
for all x ∈ ∂Bδ(0), if u0 6≡ 0.(74)

And then by the estimate (67) on ϕ we then have for some constant C2(δ) > 0

|uε(x)| ≤ C2(δ)‖|x|β−(γ)u0‖L∞(Ω) ϕ(x) for all x ∈ ∂Bδ(0) if u0 6≡ 0..(75)
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We now let for ε > 0 ,

Ψε(x) := C1(R)µ
β+(γ′)−β−(γ′)

2

N,ε H(x)+C2(δ)‖|x|β−(γ)u0||L∞(Ω)ϕ(x) for x ∈ Ω\{0}.

Then (75) and (73) implies that for all ε > 0 small

|uε(x)| ≤ Ψε(x) for all x ∈ ∂(Bδ(0) \BRkN,ε(0)), if u0 6≡ 0.(76)

and if u0 ≡ 0 then

|uε(x)| ≤ Ψε(x) for all x ∈ ∂(Ω \BRkN,ε(0)).(77)

Therefore when u0 6≡ 0 it follows from (68)) and (76) that for all ε > 0 sufficiently
small 

LεΨε ≥ 0 = Lεuε in Bδ(0) \BRkN,ε(0)
Ψε ≥ uε on ∂(Bδ(0) \BRkN,ε(0))
LεΨε ≥ 0 = −Lεuε in Bδ(0) \BRkN,ε(0)
Ψε ≥ −uε on ∂(Bδ(0) \BRkN,ε(0)).

and from (68) and (77), in case u0 ≡ 0, we have for ε > 0 sufficiently small
LεΨε ≥ 0 = Lεuε in Ω \BRkN,ε(0)
Ψε ≥ uε on ∂(Ω \BRkN,ε(0))
LεΨε ≥ 0 = −Lεuε in Ω \BRkN,ε(0)
Ψε ≥ −uε on ∂(Ω \BRkN,ε(0)).

Since Ψε > 0 and LεΨε > 0, it follows from the comparison principle of Berestycki-
Nirenberg-Varadhan [5] that the operator Lε satisfies the comparison principle on
Bδ(0) \BRkN,ε(0). Therefore

|uε(x)| ≤ Ψε(x) for all x ∈ Bδ(0) \BRkN,ε(0),

and |uε(x)| ≤ Ψε(x) for all x ∈ Ω \BRkN,ε(0) if u0 ≡ 0.

Therefore when u0 6≡ 0, we have for all ε > 0 small

|uε(x)| ≤ C1(R)µ
β+(γ′)−β−(γ′)

2

N,ε H(x) + C2(δ)‖|x|β−(γ)u0||L∞(Ω)ϕ(x)

for all x ∈ Bδ(0) \BRkN,ε(0), for R large and δ small.

Then when u0 6≡ 0, using the estimates (65) and (67) we have or all ε > 0 small

|uε(x)| ≤ C1(R)
µ
β+(γ′)−β−(γ′)

2

N,ε

|x|β+(γ′)
+ C2(δ)

‖|x|β−(γ)u0‖L∞(Ω)

|x|β−(γ′)

for all x ∈ Bδ(0) \BRkN,ε(0), for R large and δ small.

And if u0 ≡ 0, then all ε > 0 small and R > 0 large

|uε(x)| ≤ C1(R)
µ
β+(γ′)−β−(γ′)

2

N,ε

|x|β+(γ′)
for all x ∈ Ω \BRkN,ε(0).

Taking γ′ close to γ, along with points (A1) and (A4) of Proposition (2) it then
follows that estimate (63) holds on Ω \BRkε,N (0) for all R > 0. �

Step 5.2: Let 1 ≤ i ≤ N −1. We claim that for any α > 0 small and any R, ρ > 0,
there exists C(α,R, ρ) > 0 such that all ε > 0.
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|uε(x)| ≤ C(α,R, ρ)

µ β+(γ)−β−(γ)

2 −α
i,ε

|x|β+(γ)−α +
1

µ
β+(γ)−β−(γ)

2 −α
i+1,ε |x|β−(γ)+α

(78)

for all x ∈ Bρki+1,ε
(0) \BRki,ε(0).

Proof of Step 5.2: We let i ∈ {1, ..., N − 1}. We emulate the proof of Step 5.1. Fix

γ′ such that γ < γ′ < (n−2)2

4 . Consider the functions H and ϕ defined in Step 5.1
satisfying (64) and (64) respectively. We define the operator

Lε := −∆−
(

γ

|x|2
+ h

)
− b(x)

|uε|2
?(s)−2−pε

|x|s
.

Step 5.2.1: We claim that given any γ < γ′ < (n−2)2

4 there exist ρ0 > 0 and R0 > 0
such that for any 0 < ρ < ρ0 and R > R0, we have for ε > 0 sufficiently small

LεH(x) > 0, and Lεϕ(x) > 0 for all x ∈ Bρki+1,ε
(0) \BRki,ε(0)(79)

As one checks for all ε > 0 and x 6= 0

LεH(x)

H(x)
=
γ′ − γ
|x|2

− b(x)
|uε|2

?(s)−2−pε

|x|s
,

Lεϕ(x)

ϕ(x)
≥ γ′ − γ
|x|2

− b(x)
|uε|2

?(s)−2−pε

|x|s
.

We choose 0 < ρ0 < 1 such that

||b||L∞ρ
(2?(s)−2)(n−2

2 −β−(γ))
0 ‖|x|β−(γ)ũi+1||2

?(s)−2
L∞(B2(0)∩Rn) ≤

γ′ − γ
22?(s)+3

(80)

It follows from point (A8) of Proposition (2) that there exists R0 > 0 such that for
any R > R0 and any 0 < ρ < ρ0, we have for all ε > 0 sufficiently small

|b(x)|
1

2?(s)−2 |x|
n−2
2

∣∣∣∣uε(x)− µ−
n−2
2

i+1,ε ũi+1

(
x

ki+1,ε

)∣∣∣∣1−
pε

2?(s)−2

≤
(
γ′ − γ

22?(s)+2

) 1
2?(s)−2

for all x ∈ Bρki+1,ε(0) \BRki,ε(0).

With this choice of ρ0 and R0 we get that for any 0 < ρ < ρ0 and R > R0, we have
for ε > 0 small enough

|b(x)||x|2−s|uε(x)|2
?(s)−2−pε ≤ 22?(s)−1−pε |x|2−s|b(x)|

∣∣∣∣uε(x)− µ−
n−2
2

i+1,ε ũi+1

(
x

ki+1,ε

)∣∣∣∣2?(s)−2−pε

+ 22?(s)−1−pε
(
|x|

ki+1,ε

)2−s

|b(x)|
∣∣∣∣ũi+1

(
x

ki+1,ε

)∣∣∣∣2?(s)−2−pε

≤ γ′ − γ
4

for all x ∈ Bρki+1,ε(0) \BRki,ε(0).(81)

Hence as in Step 5.1 we have that for ε > 0 small enough

LεH(x)

H(x)
> 0 and

Lεϕ(x)

ϕ(x)
> 0 for all x ∈ Bρki+1,ε

(0) \BRki,ε(0).

�
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Step 5.2.2: let i ∈ {1, ..., N − 1}. It follows from point (A4) of Proposition 2 that
there exists C ′1(R) > 0 such that for all ε > 0 small

|uε(x)| ≤ C ′1(R)
µ
β+(γ′)−β−(γ′)

2
i,ε

|x|β+(γ′)
for all x ∈ ∂BRki,ε(0)(82)

And then by the estimate (65) on H we have for some constant C1(R) > 0

|uε(x)| ≤ C1(R)µ
β+(γ′)−β−(γ′)

2
i,ε H(x) for all x ∈ ∂BRki,ε(0).(83)

From point (A4) of Proposition 2 it follows that there exists C ′2(ρ) > 0 such that
for all ε > 0 small

|uε(x)| ≤ C ′2(ρ)
1

µ
β+(γ′)−β−(γ′)

2
i+1,ε |x|β−(γ′)

for all x ∈ ∂Bρki+1,ε
(0).(84)

Then by the estimate (67) on ϕ we have for some constant C2(δ) > 0

|uε(x)| ≤ C2(ρ)
ϕ(x)

µ
β+(γ′)−β−(γ′)

2
i+1,ε

for all x ∈ ∂Bρki+1,ε
(0).(85)

We let for all ε > 0

Ψ̃ε(x) := C1(R)µ
β+(γ′)−β−(γ′)

2
i,ε H(x) + C2(ρ)

ϕ(x)

µ
β+(γ′)−β−(γ′)

2
i+1,ε

for x ∈ Ω \ {0}

Then (83) and (85) implies that for all ε > 0 small

|uε(x)| ≤ Ψ̃ε(x) for all x ∈ ∂
(
Bρki+1,ε(0) \BRki,ε(0

)
.(86)

Therefore it follows from (79) and (86) that ε > 0 sufficiently small
LεΨ̃ε ≥ 0 = Lεuε in Bρki+1,ε(0) \BRki,ε(0)

Ψ̃ε ≥ uε on ∂
(
Bρki+1,ε

(0) \BRki,ε(0)
)

LεΨ̃ε ≥ 0 = −Lεuε in Bρki+1,ε(0) \BRki,ε(0)

Ψ̃ε ≥ −uε on ∂
(
Bρki+1,ε

(0) \BRki,ε(0)
)
.

Since Ψ̃ε > 0 and LεΨ̃ε > 0, it follows from the comparison principle of Berestycki-
Nirenberg-Varadhan [5] that the operator Lε satisfies the comparison principle on
Bρki+1,ε(0) \BRki,ε(0). Therefore

|uε(x)| ≤ Ψ̃ε(x) for all x ∈ Bρki+1,ε
(0) \BRki,ε(0)).

So for all ε > 0 small

|uε(x)| ≤ C1(R)µ
β+(γ′)−β−(γ′)

2
i,ε H(x) + C2(ρ)

ϕ(x)

µ
β+(γ′)−β−(γ′)

2
i+1,ε

for all x ∈ Bρki+1,ε(0)\BRki,ε(0), for R large and ρ small. Then using the estimates
(65) and (67) we have or all ε > 0 small

|uε(x)| ≤ C1(R)
µ
β+(γ′)−β−(γ′)

2
i,ε

|x|β+(γ′)
+

C2(ρ)

µ
β+(γ′)−β−(γ′)

2
i+1,ε |x|β−(γ′)

for all x ∈ Bρki+1,ε
(0)\BRki,ε(0).

for R large and ρ small.
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Taking γ′ close to γ, along with point (A4) of Proposition (2) it then follows
that estimate (78) holds on Bρki+1,ε(0) \BRki,ε(0) for all R, ρ > 0. �

Step 5.3: We claim that for any α > 0 small and any ρ > 0, there exists C(α, ρ) > 0
such that all ε > 0.

|uε(x)| ≤ C(α, ρ)
1

µ
β+(γ)−β−(γ)

2 −α
1,ε |x|β−(γ)+α

for all x ∈ Bρk1,ε(0) \ {0}.(87)

Proof of Step 5.3: Fix γ′ such that γ < γ′ < (n−2)2

4 . Consider the function ϕ
defined in Step 5.1 satisfying (64). We define

Lε := −∆−
(

γ

|x|2
+ h

)
− b(x)

|uε|2
?(s)−2−pε

|x|s
.

Step 5.3.1: We claim that given any γ < γ′ < (n−2)2

4 there exist ρ0 > 0 such that
for any 0 < ρ < ρ0 we have for ε > 0 sufficiently small

Lεϕ(x) > 0 for all x ∈ Bρk1,ε(0) \ {0}(88)

We choose 0 < ρ0 < 1 such that

ρ2−θ
0 sup

Ω
||x|θh| ≤ γ′ − γ

4
for all ε > 0 small and

||b||L∞ρ
(2?(s)−2)(n−2

2 −β−(γ))
0 ‖|x|β−(γ)ũ1||2

?(s)−2
L∞(B2(0)∩Rn) ≤

γ′ − γ
22?(s)+3

(89)

It follows from point (A7) of Proposition (2) that for any 0 < ρ < ρ0, we have for
all ε > 0 sufficiently small

|b(x)|
1

2?(s)−2 |x|
n−2
2

∣∣∣∣uε(x)− µ−
n−2
2

1,ε ũ1

(
x

k1,ε

)∣∣∣∣1−
pε

2?(s)−2

≤
(
γ′ − γ

22?(s)+2

) 1
2?(s)−2

for all x ∈ Bρk1,ε(0) \ {0}.

With this choice of ρ0 we get that for any 0 < ρ < ρ0 we have for ε > 0 small
enough

|b(x)||x|2−s|uε(x)|2
?(s)−2−pε ≤ 22?(s)−1−pε |x|2−s|b(x)|

∣∣∣∣uε(x)− µ−
n−2
2

1,ε ũ1

(
x

k1,ε

)∣∣∣∣2?(s)−2−pε

+ 22?(s)−1−pε
(
|x|
k1,ε

)2−s

|b(x)|
∣∣∣∣ũ1

(
x

k1,ε

)∣∣∣∣2?(s)−2−pε

≤ γ′ − γ
4

for all x ∈ Bρk1,ε(0) \ {0}.(90)

Hence similarly as in Step 5.1, we obtain that for ε > 0 small enough

Lεϕ(x)

ϕ(x)
> 0 > 0 for all x ∈ x ∈ Bρk1,ε(0) \ {0}.(91)

�
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Step 5.3.2: It follows from point (A4) of Proposition 2 that there exists C ′2(ρ) > 0
such that for all ε > 0 small

|uε(x)| ≤ C ′2(ρ)
1

µ
β+(γ′)−β−(γ′)

2
1,ε |x|β−(γ′)

for all x ∈ ∂Bρk1,ε(0)(92)

and then by the estimate (67) on ϕ we have for some constant C2(δ) > 0

|uε(x)| ≤ C2(ρ)
ϕ(x)

µ
β+(γ′)−β−(γ′)

2
1,ε

for all x ∈ ∂Bρk1,ε(0).(93)

We let for all ε > 0

Ψ0
ε(x) := C2(ρ)

ϕ(x)

µ
β+(γ′)−β−(γ′)

2
1,ε

for x ∈ Ω \ {0}.

Then (93) implies that for all ε > 0 small

|uε(x)| ≤ Ψ0
ε(x) for all x ∈ ∂Bρk1,ε(0).(94)

Therefore it follows from (88) and (94) that ε > 0 sufficiently small
LεΨ0

ε ≥ 0 = Lεuε in Bρk1,ε(0) \ {0}
Ψ0
ε ≥ uε on ∂Bρk1,ε(0) \ {0}
LεΨ0

ε ≥ 0 = −Lεuε in Bρk1,ε(0)
Ψ0
ε ≥ −uε on ∂Bρk1,ε(0).

Since the operator Lε satisfies the comparison principle on Bρk1,ε(0). Therefore

|uε(x)| ≤ Ψ0
ε(x) for all x ∈ Bρk1,ε(0).

And so for all ε > 0 small

|uε(x)| ≤ C2(ρ)
ϕ(x)

µ
β+(γ′)−β−(γ′)

2
1,ε

for all x ∈ Bρk1,ε(0) \ {0}.

for ρ small. Using the estimate (67) we have or all ε > 0 small

|uε(x)| ≤ C2(ρ)

µ
β+(γ′)−β−(γ′)

2
1,ε |x|β−(γ′)

for all x ∈ Bρk1,ε(0) \ {0}.

for ρ small. It then follows from point (A4) of Proposition (2) that estimate (87)
holds on x ∈ Bρk1,ε(0) for all ρ > 0. �

Step 5.4: Combining the previous three steps, it follows from (63), (78), (87) and
Proposition 2 that for any α > 0 small, there exists C(α) > 0 such that for all
ε > 0 we have

|uε(x)| ≤ C(α)

 N∑
i=1

µ
β+(γ)−β−(γ)

2 −α
i,ε

µ
(β+(γ)−β−(γ))−2α
i,ε |x|β−(γ)+α + |x|β+(γ)−α

+
‖|x|β−(γ)u0||L∞(Ω)

|x|β−(γ)+α


(95)

for all x ∈ Ω \ {0}.
Next we improve the above estimate and show that one can take α = 0 in (95).

We let G0 be the Green’s function of the coercive operator −∆ − γ
|x|2 − h on Ω

with Dirichlet boundary condition. Green’s representation formula, the pointwise
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bounds on the Green’s function (23) [see Ghoussoub-Robert [22]] yields for any
z ∈ Ω

uε(z) =

∫
Ω

G0(z, x)b(x)
|uε(x)|2?(s)−2−pε uε(x)

|x|s
dx

|uε(z)| ≤
∫
Ω

G0(z, x)|b(x)| |uε(x)|2?(s)−1−pε

|x|s
dx

≤ C

∫
Ω

(
max{|z|, |x|}
min{|z|, |x|}

)β−(γ)
1

|x− z|n−2

|uε(x)|2?(s)−1−pε

|x|s
dx.(96)

Using (95) we then obtain with 0 < α < 2?(s)−2
2?(s)−1

(
β+(γ)−β−(γ)

2

)
that

|uε(z)| ≤

C

N∑
i=1

∫
Ω

(
max{|z|, |x|}
min{|z|, |x|}

)β−(γ)
1

|x− z|n−2|x|s

 µ
β+(γ)−β−(γ)

2 −α
i,ε

µ
(β+(γ)−β−(γ))−2α
i,ε |x|β−(γ)+α + |x|β+(γ)−α

2?(s)−1−pε

dx

+ C‖|x|β−(γ)u0||2
?(s)−1−pε
L∞(Ω)

∫
Ω

(
max{|z|, |x|}
min{|z|, |x|}

)β−(γ)
1

|x− z|n−2|x|s
1

|x|(β−(γ)+α)(2?(s)−1−pε)
dx.

(97)

The first term in the above integral was computed for each bubble in Ghoussoub-
Robert in [22] when pε = 0. The proof goes exactly the same with pε > 0. The last
last term in straightforward to estimate.

We then get that there exists a constant C > 0 such that for any sequence of
points (zε) in Ω \ {0} we have

|uε(zε)| ≤ C

 N∑
i=1

µ
β+(γ)−β−(γ)

2
i,ε

µ
β+(γ)−β−(γ)
i,ε |zε|β−(γ) + |zε|β+(γ)

+
‖|x|β−(γ)u0||L∞(Ω)

|zε|β−(γ)

 .

(98)

This completes the proof of Proposition (3). �

6. Proof of Compactness

In this section we prove our compactness result, Theorem (1.3).

Proposition 4. Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ Ω

and assume that 0 < s < 2 and γ < (n−2)2

4 . Let (uε), (pε), h(x) and b(x) be such
that (Eε), (27), (28), (29) and (30) holds. Assume that blow-up occurs, that is

lim
ε→0
‖|x|τuε‖L∞(Ω) = +∞ where β−(γ) < τ <

n− 2

2
.
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Then we have following rate of blow-up when γ <
(n− 2)2

4
− (2− θ)2.

lim
ε→0

pε

µ2−θ
N,ε

= −
(

2− θ
2

)
c

t
n−θ

2?(s)−2

N

4(n− s)
(n− 2)2

∫
Rn

ũ2
N

|x|θ dx

N∑
i=1

b(0)

t

n−2
2?(s)−2
i

∫
Rn

|ũi|2?(s)
|x|s

Proof of Proposition (4): The proof proceeds in several steps.

Note that γ < (n−2)2

4 − (2− θ) is equivalent to β+(γ)−β−(γ)
2 > 2− θ.

Step 6.1: Let rε :=
√
µN,ε . We rescale and define for all ε > 0

ṽε(x) := rβ−(γ)
ε uε(rε x) for x ∈ r−1

ε Ω \ {0}

Then there exists ṽ ∈ C1(Rn \ {0}) such that

lim
ε→0

ṽε(x) = ṽ in C1
loc(Rn \ {0})

where −∆ṽ − γ

|x|2
ṽ = 0 in Rn \ {0}

Proof of step 6.1: From (Eε) it follows that ṽε weakly satisfies the equation

−∆ṽε −
γ

|x|2
ṽε − r2

ε h(rεx) ṽε = r
(2?(s)−2)

β+(γ)−β−(γ)

2 +pεβ−(γ)
ε b(rεx)

|ṽε|2
?(s)−2−pε ṽε
|x|s

(99)

for all ε > 0. Using the pointwise estimate (62) we obtain the bound, that there
exists a constant C > 0 such that for all ε > 0

|ṽε(x)| ≤ C

 rβ−(γ)
ε

N∑
i=1

µ
β+(γ)−β−(γ)

2
i,ε

µ
β+(γ)−β−(γ)
i,ε |rεx|β−(γ) + |rεx|β+(γ)

+ rβ−(γ)
ε

‖|x|β−(γ)u0||L∞(Ω)

|rεx|β−(γ)



≤ C

 N∑
i=1

(
µi,ε
µN,ε

) β+(γ)−β−(γ)

2

(
µi,ε√
µN,ε

)β+(γ)−β−(γ)

|x|β−(γ) + |x|β+(γ)

+
‖|x|β−(γ)u0||L∞(Ω)

|x|β−(γ)



≤ C

(
1

|x|β+(γ)
+
‖|x|β−(γ)u0||L∞(Ω)

|x|β−(γ)

)
for all x ∈ r−1

ε Ω \ {0}.

(100)

Standard elliptic theory then yields the existence of ṽ ∈ C2(Rn \ {0}) such that
ṽε → ṽ in C2

loc(Rn \{0}) and then passing to limits in equation (99) we then obtain
that ṽ satisfies the equation

−∆ṽ − γ

|x|2
ṽ = 0 in Rn \ {0}.

and

|ṽ(x)| ≤ C

(
1

|x|β+(γ)
+
‖|x|β−(γ)u0||L∞(Ω)

|x|β−(γ)

)
for all x in Rn \ {0}.

�
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Step 6.2: From the Pohozaev identity (119) with y0 = 0 and Uε = Brε(0)\Bk21,ε(0)
we get

−
∫

Brε (0)\B
k21,ε

(0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx

− pε
2?(s)

(
n− s

2?(s)− pε

) ∫
Brε (0)\B

k21,ε
(0)

b(x)
|uε|2

?(s)−pε

|x|s
dx

− 1

2?(s)− pε

∫
Brε (0)\B

k21,ε
(0)

|u|2?(s)−pε

|x|s
(x,∇b) dx

=

∫
∂Brε (0)

Fε(x) dσ −
∫

∂B
k21,ε

(0)

Fε(x) dσ(101)

where

Fε(x) := (x, ν)

(
|∇uε|2

2
− γ

2

u2
ε

|x|2
− h(x)

2
u2
ε −

b(x)

2?(s)− pε
|uε|2

?(s)−pε

|x|s

)
−
(
xi∂iuε +

n− 2

2
uε

)
∂νuε.(102)

We will estimate each of the terms in the above integral identity and calculate the
limit as ε→ 0.

Step 6.3: When β+(γ)− β−(γ) > 2− θ, we have as ε→ 0

∫
Brε (0)\B

k21,ε
(0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx = µ2−θ

N,ε

 (2− θ
2

)
c

t
n−θ

2?(s)−2

N

∫
Rn

ũ2
N

|x|θ
dx+ o(1)

 .
(103)

where 0 ≤ θ < 2 and c ∈ R are such that: lim
x→0
|x|θh(x) = c and lim

x→0
|x|θ(x,∇h(x)) =

−cθ.

Proof of Step 6.3: When β+(γ) − β−(γ) > 2 − θ it follows from point (2) of
Theorem (1.4) that the for all 1 ≤ i ≤ N , the function ũi

|x|θ/2 ∈ L
2(Rn). For any

R, ρ > 0 we decompose the integral as∫
Brε (0)\B

k21,ε
(0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx =

∫
Brε (0)\BRkN,ε (0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx+

N∑
i=1

∫
BRki,ε (0)\Bρki,ε (0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx

+

N−1∑
i=1

∫
Bρki+1,ε

(0)\BRki,ε (0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx+

∫
Bρk1,ε (0)\B

k21,ε
(0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx.
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From the estimate (62), we get as ε→ 0

µ
−(2−θ)
N,ε

∫
Brε (0)\BRkN,ε (0)

∣∣∣∣h(x) +
(∇h, x)

2

∣∣∣∣u2
ε dx

≤ C µ
−(2−θ)
N,ε

∫
Brε (0)\BRkN,ε (0)

1

|x|θ

[
µ
β+(γ)−β−(γ)
N,ε

|x|2β+(γ)
+

1

|x|2β−(γ)

]
dx

≤ C

∫
B rε
kN,ε

(0)\BR(0)

1

|x|θ
1

|x|n+(β+(γ)−β−(γ)−2)
dx

+ C

∫
B1(0)\BRkN,ε

rε

(0)

1

|x|θ
µ
β+(γ)−β−(γ)−(2−θ)

2

N,ε

|x|n−(β+(γ)−β−(γ)+2)
dx

≤ C
(
R−(β+(γ)−β−(γ)−(2−θ)) + µ

β+(γ)−β−(γ)−(2−θ)
2

N,ε

)
.

Therefore when β+(γ)− β−(γ) > 2− θ

lim
R→+∞

lim
ε→0

µ
−(2−θ)
N,ε

∫
Brε (0)\BRkN,ε (0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx = 0.(104)

Since in this case ũi
|x|θ/2 ∈ L

2(Rn−) for any 1 ≤ i ≤ N , it follows from Proposition 2

that

lim
R→+∞

lim
ρ→0

lim
ε→0

µ−(2−θ)
i,ε

∫
BRki,ε (0)\Bρki,ε (0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx


=

(
2− θ

2

)
c

t
n−θ

2?(s)−2

i

∫
Rn

ũ2
i

|x|θ
dx.(105)

where 0 ≤ θ < 2 and c ∈ R are such that: lim
x→0
|x|θh(x) = c and lim

x→0
|x|θ(x,∇h(x)) =

−cθ.



32 NASSIF GHOUSSOUB, SAIKAT MAZUMDAR, AND FRÉDÉRIC ROBERT

Let 1 ≤ i ≤ N − 1. Using the pointwise estimates of theorem (3), for any R, ρ > 0
and all ε > 0 we have as ε→ 0

µ
−(2−θ)
i+1,ε

∫
Bρki+1,ε

(0)\BRki,ε (0)

∣∣∣∣h(x) +
(∇h, x)

2

∣∣∣∣u2
ε dx

≤ C µ
−(2−θ)
i+1,ε

∫
Bρki+1,ε

(0)\BRki,ε (0)

1

|x|θ

[
µ
β+(γ)−β−(γ)
i,ε

|x|2β+(γ)
+
µ
−(β+(γ)−β−(γ))
i+1,ε

|x|2β−(γ)

]
dx

≤ C µ
−(2−θ)
i+1,ε

∫
B ρki+1,ε

ki,ε

(0)\BR(0)

1

|x|θ
µ2−θ
i,ε

|x|n+(β+(γ)−β−(γ)−2)
dx

+ C µ
−(2−θ)
i+1,ε

∫
Bρ(0)\B Rki,ε

ki+1,ε

(0)

1

|x|θ
µ2−θ
i+1,ε

|x|n−(β+(γ)−β−(γ)+2)
dx

≤ C µ
−(2−θ)
i+1,ε

(
µ2−θ
i,ε R−(β+(γ)−β−(γ)−(2−θ)) + µ2−θ

i+1,ερ
β+(γ)−β−(γ)+(2−θ)

)
.

And so as β+(γ)− β−(γ) > 2

lim
R→+∞

lim
ρ→0

lim
ε→0

µ
−(2−θ)
i+1,ε

∫
Bρki+1,ε

(0)\BRki,ε (0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx = 0.(106)

And from the pointwise estimates of theorem (3), we have as ε→ 0

µ
−(2−θ)
1,ε

∫
Bρk1,ε (0)\B

k21,ε
(0)

∣∣∣∣h(x) +
(∇h, x)

2

∣∣∣∣u2
ε dx

≤ C µ
−(2−θ)
1,ε

∫
Bρk1,ε (0)\B

k21,ε
(0)

1

|x|θ
µ
−(β+(γ)−β−(γ))
1,ε

|x|2β−(γ)
dx

≤ C

∫
Bρ(0)\Bk1,ε (0)

1

|x|θ
1

|x|n−(β+(γ)−β−(γ)+2)
dx

≤ C ρβ+(γ)−β−(γ)+(2−θ).

Therefore

lim
ρ→0

lim
ε→0

µ
−(2−θ)
1,ε

∫
Bρk1,ε (0)\B

k21,ε
(0)

(
h(x) +

(∇h, x)

2

)
u2
ε dx = 0.(107)

From (104), (105), (106), (107) and Proposition (2) we then obtain (103).
�
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Similarly with the pointwise control of Proposition (3) and by Proposition (2), we
get as ε→ 0 ∫

Brε (0)\B
k21,ε

(0)

b(x)
|uε|2

?(s)−pε

|x|s
dx =

N∑
i=1

b(0)

t
n−2

2?(s)−2

i

∫
Rn

|ũi|2
?(s)

|x|s
dx+ o(1).(108)

And using the condition (29) on b we obtain as ε→ 0

µ
−(2−θ)
N,ε

∫
Brε (0)\B

k21,ε
(0)

(x,∇b) |uε|
2?(s)−pε

|x|s
dx = o(1).(109)

Next, with a change of variable and the definition of ṽε, we get∫
∂Brε (0)

Fε(x) dσ =

rβ+(γ)−β−(γ)
ε

∫
∂B1(0)

(x, ν)

(
|∇ṽε|2

2
− γ

2

ṽ2
ε

|x|2

)
−
(
xi∂iṽε +

n− 2

2
ṽε

)
∂ν ṽε dσ

− rβ+(γ)−β−(γ)
ε

∫
∂B1(0)

r2
ε

h(rεx)

2
u2
ε −

r
(2?(s)−2)

(
β+(γ)−β−(γ)

2

)
+β−(γ)pε

ε

2?(s)− pε
|ṽε|2

?(s)−pε

|x|s
dσ

From the convergence result of Step 6.1 we then have as ε→ 0∫
∂Brε (0)

Fε(x) dσ = O

(
µ
β+(γ)−β−(γ)

2

N,ε

)
.(110)

Similarly we have ∫
∂Bk1,ε (0)

Fε(x) dσ = O
(
µ
β+(γ)−β−(γ)
N,ε

)
.(111)

�
Plugging (103), (108), (109) (110) and (111) into the Pohozaev identity (101) yields
as ε→ 0

−µ2−θ
N,ε

 (2− θ
2

)
c

t
n−θ

2?(s)−2

N

∫
Rn

ũ2
N

|x|θ
dx+ o(1)

−
pε

2?(s)

(
n− s

2?(s)− pε

) N∑
i=1

b(0)

t
n−2

2?(s)−2

i

∫
Rn

|ũi|2
?(s)

|x|s
dx+ o(1)


= O

(
µ
β+(γ)−β−(γ)

2

N,ε

)
.
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In case β+(γ)−β−(γ)
2 > 2− θ and since ũN 6≡ 0, we obtain that

lim
ε→0

pε

µ2−θ
N,ε

= −
(

2− θ
2

)
c

t
n−θ

2?(s)−2

N

4(n− s)
(n− 2)2

∫
Rn

ũ2
N

|x|θ dx

N∑
i=1

b(0)

t

n−2
2?(s)−2
i

∫
Rn

|ũi|2?(s)
|x|s

(112)

This completes the proof of Proposition (4). �

As a by-product of Proposition (4) one obtains the compactness result for sign-
changing solutions.

Theorem 6.1. Let Ω be a smooth bounded domain of Rn, n ≥ 3, such that 0 ∈ Ω

and assume that 0 < s < 2 and γ < (n−2)2

4 . Suppose that h(x) and b(x) satisfies
(28) and (29) respectively. Let (pε)ε>0 be such that pε ∈ [0, 2?(s)− 2) for all ε > 0
and lim

ε→0
pε = 0. Consider a sequence of functions (uε)ε>0 that is uniformly bounded

in H1
0 (Ω) and satisfies the equation:{

−∆u− γ u
|x|2 − h(x)u = b(x) |u|

2?(s)−2−pεu
|x|s in Ω \ {0},

u = 0 on ∂Ω.

Then the sequence (uε)ε>0 is pre-compact in the H1
0 (Ω) if lim

|x|→0
|x|θh(x) > 0 for

γ < (n−2)2

4 − (2− θ)2.

Proof of Theorem (6.1): (uε), (pε), h(x) and b(x) be such that (Eε), (27), (28),
(29) and (30) holds. Assume that blow-up occurs, that is

lim
ε→0
‖|x|τuε‖L∞(Ω) = +∞ where β−(γ) < τ <

n− 2

2
.

When γ < (n−2)2

4 − (2− θ)2, by Proposition (4) we have

lim
ε→0

pε

µ2−θ
N,ε

= −
(

2− θ
2

)
c

t
n−θ

2?(s)−2

N

4(n− s)
(n− 2)2

∫
Rn

ũ2
N

|x|θ dx

N∑
i=1

b(0)

t

n−2
2?(s)−2
i

∫
Rn

|ũi|2?(s)
|x|s

Since pε ≥ 0 this a contradiction if lim
|x|→0

|x|θh(x) = c > 0. So blow-up (34) cannot

occur in this case and by Proposition (1) we have up to a subsequence lim
ε→0

uε = u0

in H1
0 (Ω) where u0 is as in (31). This completes the proof of Theorem (6.1). �

7. Proof of Existence and Multiplicity

We are now ready to prove Theorem (1.2). For each 2 < p ≤ 2?(s), we consider
the C2-functional

(113) Ip,γ,h(u) =
1

2

∫
Ω

|∇u|2 dx− γ

2

∫
Ω

u2

|x|2
dx− 1

2

∫
Ω

hu dx− 1

p

∫
Ω

b(x)|u|p

|x|s
dx
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on H1
0 (Ω), whose critical points are the weak solutions of

(114)

{
−∆u− γ

|x|2u− h(x)u = b(x)|u|p−2u
|x|s on Ω

u = 0 on ∂Ω.

Recall that b(x) is a positive function in C1(Ω) with b(0) > 0 and ∇b(0) = 0 and
while h(x) satisfies (28).

For a fixed u ∈ H1
0 (Ω), we have since

Ip,γ,h(λu) =
λ2

2

∫
Ω

|∇u|2 dx− γλ2

2

∫
Ω

u2

|x|2
dx− λ2

2

∫
Ω

h(x)u2 − λp

p

∫
Ω

b(x)|u|p

|x|s
dx

that limitλ→∞Ip,γ,h(λu) = −∞, which means that for each finite dimensional sub-
space Ek ⊂ E := H1

0 (Ω), there exists Rk > 0 such that

(115) sup{Ip,γ,h(u);u ∈ Ek, ‖u‖ > Rk} < 0,

when p → 2?(s). Let (Ek)∞k=1 be an increasing sequence of subspaces of H1
0 (Ω)

such that dimEk = k and ∪∞k=1Ek = E := H1
0 (Ω) and define the min-max values:

cp,k = inf
g∈Hk

sup
x∈Ek

Ip,γ,h(g(x)),

where

Hk = {g ∈ C(E,E); g is odd and g(v) = v for ‖v‖ > Rk for some Rk > 0}.

Proposition 5. With the above notation and assuming n ≥ 3, we have:

(1) For each k ∈ N, cp,k > 0 and lim
p→2?(s)

cp,k = c2?(s),k := ck.

(2) If 2 < p < 2?(s), there exists for each k, functions up,k ∈ H1
0 (Ω) such that

I ′p,γ(up,k) = 0, and Ip,γ,h(up,k) = cp,k.

(3) For each 2 < p < 2?(s), we have cp,k ≥ Dn,pk
p+1
p−1

2
n where Dn,p > 0 is such

that limp→2?(s)Dn,p = 0.
(4) lim

k→∞
ck = lim

k→∞
c2?(s),k = +∞.

Proof: First, note that since the operator −∆ − γ
|x|2 − h(x) is coercive, we have

for some constant Λ0 > 0∫
Ω

(
|∇u|2 − γ u

2

|x|2
− h(x)u2

)
dx ≥ Λ0

∫
Ω

|∇u|2 dx for all u ∈ H1
0 (Ω).(116)

Then in view of the Hardy-Sobolev inequalities, we have

Ip,γ,h(u) ≥ Λ0

2
‖∇u‖22 − C‖∇u‖

p
2 = ‖∇u‖22

(
Λ0

2
− C‖∇u‖p−2

2

)
≥ α > 0,

provided ‖u‖H1
0 (Ω) = ρ for some ρ > 0 small enough. Then the Sρ = {u ∈

E; ‖u‖H1
0 (Ω) = ρ} must intersect every image g(Ek) by an odd continuous func-

tion g. It follows that

cp,k ≥ inf{Ip,γ,h(u);u ∈ Sρ} ≥ α > 0.

In view of (115), it follows that for each g ∈ Hk, we have that

sup
x∈Ek

Ipi,γ,h(g(x)) = sup
x∈Dk

Ip,γ,h(g(x))
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where Dk denotes the ball in Ek of radius Rk. Consider now a sequence pi → 2?(s)
and note first that for each u ∈ E, we have that Ipi,γ,h(u) → I2?(s),γ.h(u). Since
g(Dk) is compact and the family of functionals (Ip,γ,h)p is equicontinuous, it follows
that sup

x∈Ek
Ip,γ(g(x))→ sup

x∈Ek
I2?(s),γ,h(g(x)), from which follows that lim sup

i∈N
cpi,k ≤

sup
x∈Ek

I2?(s),γ,h(g(x)). Since this holds for any g ∈ Hk, it follows that

lim sup
i∈N

cpi,k ≤ c2?(s),k = ck.

On the other hand, the function f(r) = 1
pr
p − 1

2?(s)r
2?(s) attains its maximum on

[0,+∞) at r = 1 and therefore f(r) ≤ 1
p −

1
2?(s) for all r > 0. It follows

I2?(s),γ,h(u) = Ip,γ,h(u) +

∫
Ω

b(x)

|x|s

(
1

p
|u(x)|p − 1

2?(s)
|u(x)|2

?(s)

)
dx

≤ Ip,γ,h(u) +

∫
Ω

b(x)

|x|s

(
1

p
− 1

2?(s)

)
dx

from which follows that ck ≤ lim inf
i∈N

cpi,k, and claim (1) is proved.

If now p < 2?(s), we are in the subcritical case, that is we have compactness in the
Sobolev embedding H1

0 (Ω) → Lp(Ω; |x|−sdx) and therefore Ip,γ,h has the Palais-
Smale condition. It is then standard to find critical points up,k for Ip,γ,h at each
level cp,k (see for example the book [17]).

Consider now the functional

(117) Ip,0,0(u) =
1

2

∫
Ω

|∇u|2 dx− 1

p

∫
Ω

|u|p

|x|s
dx

and its critical values

c0p,k = inf
g∈Hk

sup
x∈Ek

Ip,0,0(g(x)).

It has been shown in [20] (for the case 0 ∈ ∂Ω, but the same arguments work here)
that (1), (2) and (3) of Proposition 5 hold, with c0p,k and c0k replacing cp,k and ck
respectively. In particular, lim

k→∞
c0k = lim

k→∞
c02?(s),k = +∞.

On the other hand, note that

Ip,γ,h(u) ≥ Λ
p
p−2

0 Ip,0,0(v) for every u ∈ H1
0 (Ω),

where Λ0 is the coercivity constant from (116)and v = Λ
− 1
p−2

0 u. It then follows
that lim

k→∞
ck = lim

k→∞
c2?(s),k = +∞. �

To complete the proof of Theorem (1.2), notice that since for each k, we have
lim

pi→2?(s)
Ipi,γ,h(upi,k) = lim

pi→2?(s)
cpi,k = ck, it follows that the sequence (upi,k)i is

uniformly bounded in H1
0 (Ω). Moreover, since I ′pi,γ,h(upi,k) = 0, it follows from the

compactness Theorem 6.1 that by letting pi → 2?(s), we get a solution uk of (12)
in such a way that I2?(s),γ,h(uk) = lim

p→2?(s)
Ip,γ,h(up,k) = lim

p→2?(s)
cp,k = ck. Since

the latter sequence goes to infinity, it follows that (12) has an infinite number of
critical levels. �
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8. Appendix: Pohozaev identity

Let U ⊂ Rn be a smooth bounded domain and let u ∈ C2(U). For any y0 ∈ Rn,
the classical Pohozaev identity yields

−
∫
U

(
(x− y0)i∂iu+

n− 2

2
u

)
∆u dx =

∫
∂U

[
(x− y0, ν)

|∇u|2

2
−
(

(x− y0)i∂iu+
n− 2

2
u

)
∂νu

]
dσ,

(118)

where ν is the outer normal to the boundary ∂U .

One has for 1 ≤ j ≤ n and b ∈ C1(U)

∂j

(
b(x)
|u|2?(s)−p

|x|s

)
= − s b(x)

xj

|x|s+2
|u|2

?(s)−p + (2?(s)− p)b(x)
|u|2?(s)−2−p

|x|s
u∂ju

+
|u|2?(s)−p

|x|s
∂jb(x).

So

(x− y0,∇u) b(x)
|u|2?(s)−2−p

|x|s
u =

1

2?(s)− p
(x− y0)j∂j

(
b(x)
|u|2?(s)−p

|x|s

)
+

s

2?(s)− p
b(x)
|u|2?(s)−p

|x|s

− s

2?(s)− p
(x, y0)

|x|s+2
b(x)|u|2

?(s)−p − 1

2?(s)− p
|u|2?(s)−p

|x|s
(x− y0,∇b) .

Then integration by parts gives us∫
U

(x− y0,∇u) b(x)
|u|2?(s)−2−p

|x|s
u dx =

1

2?(s)− p

∫
U

(x− y0)j∂j

(
b(x)
|u|2?(s)−p

|x|s

)
dx

+
s

2?(s)− p

∫
U

b(x)
|u|2?(s)−p

|x|s
dx

− s

2?(s)− p

∫
U

(x, y0)

|x|s+2
b(x)|u|2

?(s)−pdx

− 1

2?(s)− p

∫
U

|u|2?(s)−p

|x|s
(x− y0,∇b) dx.

=− n− s
2?(s)− p

∫
U

b(x)
|u|2?(s)−p

|x|s
dx− s

2?(s)− p

∫
U

b(x)
(x, y0)

|x|s+2
|u|2

?(s)−pdx

− 1

2?(s)− p

∫
U

|u|2?(s)−p

|x|s
(x− y0,∇b) dx+

1

2?(s)− p

∫
∂U

(x− y0, ν)b(x)
|u|2?(s)−p

|x|s
dσ

And similarly we obtain

(x− y0,∇u)
u

|x|2
=

1

2
(x− y0)j∂j

(
u2

|x|2

)
+

u2

|x|2
− (x, y0)

|x|4
u2
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U

(x− y0,∇u)
u

|x|2
dx =− n− 2

2

∫
U

u2

|x|2
dx−

∫
U

(x, y0)

|x|4
u2dx

+
1

2

∫
∂U

(x− y0, ν)
u2

|x|2
dσ

and ∫
U

(x− y0,∇u)h(x)u dx =− n

2

∫
U

h(x)u2 dx− 1

2

∫
U

(∇h, x− y0)u2 dx

+
1

2

∫
∂U

(x− y0, ν)h(x)u2 dσ.

Combining, we obtain

∫
U

(
(x− y0)i∂iu+

n− 2

2
u

)(
−∆u− γ u

|x|2
− hu− b(x)

|u|2?(s)−2−p

|x|s
u

)
dx

(119)

−
∫
U

h(x)u2 dx− 1

2

∫
U

(∇h, x− y0)u2 dx− p

2?(s)

(
n− s

2?(s)− p

)∫
U

b(x)
|u|2?(s)−p

|x|s
dx

− 1

2?(s)− p

∫
U

|u|2?(s)−p

|x|s
(x− y0,∇b) dx− γ

∫
U

(x, y0)

|x|4
u2dx

− s

2?(s)− p

∫
U

(x, y0)

|x|s+2
b(x)|u|2

?(s)−p dx

=

∫
∂U

[
(x− y0, ν)

(
|∇u|2

2
− γ

2

u2

|x|2
− h(x)

2
u2 − b(x)

2?(s)− p
|u|2?(s)−p

|x|s

)]
dσ

−
∫
∂U

[(
(x− y0)i∂iu+

n− 2

2
u

)
∂νu

]
dσ.
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[28] Peter Li and Jiaping Wang, Weighted Poincaré inequality and rigidity of complete manifolds,
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