N
N

N

HAL

open science

The Hardy-Schrodinger operator on the Poincaré Ball:
compactness and multiplicity
Nassif Ghoussoub, Saikat Mazumdar, Frédéric Robert

» To cite this version:

Nassif Ghoussoub, Saikat Mazumdar, Frédéric Robert. The Hardy-Schrodinger operator on the
Poincaré Ball: compactness and multiplicity. 2018. hal-01770803v1

HAL Id: hal-01770803
https://hal.science/hal-01770803v1

Preprint submitted on 19 Apr 2018 (v1), last revised 31 Mar 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01770803v1
https://hal.archives-ouvertes.fr

THE HARDY-SCHRODINGER OPERATOR ON THE POINCARE
BALL: COMPACTNESS AND MULTIPLICITY FOR INTERIOR

SINGULARITY.

NASSIF GHOUSSOUB, SAIKAT MAZUMDAR, AND FREDERIC ROBERT

ABSTRACT. Let Qpn be a a compact smooth domain in the Poincaré ball model
of the Hyperbolic space B™, n > 5. Let 0 < s < 2 and write 2*(s) := % for

the corresponding critical Sobolev exponent. We show that if v < % —4
and A > % (# — ’y) , then the following Dirichlet boundary value
problem:
{ —Apnu —yVau —Au = Vau(y w2 ()=2¢4  in Qgn
u =0 on 0Qpn,

has infinitely many solutions. Here —Apn is the Laplace-Beltrami operator

. . . _ 4 . .
associated with the metric ggn = T2 9Eucl’ V5 is the corresponding
Hardy-type potential that behaves like %2 at the origin, while Vo« () is the

Hardy-Sobolev weight, which behaves like T% at the origin. The solutions
belong to C2(Qpn \ {0}) while around 0 they behave like

K
u(x) ~ for some K € R.
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Consider the Poincaré ball model of the Hyperbolic space B™, n > 3, which is
the Euclidean unit ball B1(0) := {z € R™ : |z| < 1} endowed with the metric
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2
gBr = (ﬁ) IEucl’ Let

(1 _ T2)n—2 1
(1) f(r):= R — and G(r) := f)dt,
-
n
where 7 = , [ > 2% denotes the Euclidean distance from a point x to the origin.

i=1
1
NWn—1

The function G(r) is then a fundamental solution of the Hyperbolic Laplacian

Apgnu = divgn (Vgnu). Moreover, if we consider the hyperbolic scaling of a given
function u : B™ — R, defined for A > 0 by

ux(r) = A" 2u (G7HAG(1))),
and

then for any radially symmetric u € H!(B") > 1, one has the following

invariance property:

(2) /\V]Bnu)\|p dvg,, :/|Vmgnu\pdvgw and /Vp|uA\pdng :/Vp|u|pdv%n,
Br Br Br Br
where

_ P —r)?
¥ ) e

The weights V}, have the following asymptotic behaviors: for n > 3 and p > 1,

Vo(r) = %(Ho(l)) as T — 0
W W= :)1(7(2712)?()13—2)/2 (1+0(1)) asr— 1.

2
In particular for n > 3, the weight Va(r) = 4(n£2)2 (f(%(lf)rz)) ~r0 ﬁ7 while at

r = 1 it has a finite positive value. In other words, V5 is qualitatively similar to the
Euclidean Hardy potential, which led Sandeep—Tintarev to establish the following
Hyperbolic Hardy inequality on B™ (Theorem 3.4 of [32]):

2
(5) @/%‘UF dvgg, < /|V[Bnu|2 dvg,, for any u € H*(B"™).
Bn Bn
They also show the following Hyperbolic Sobolev inequality: ffor some constant
C > 0.
2/2*
6) C /VQ*W* dvgen g/mw
]BTI,

B

2 dv,,, for any u € H'(B").

By interpolating between these two inequalities, then one easily obtain for 0 < s <
2, the following Hyperbolic Hardy-Sobolev inequality [11]:

Ifv< (”12)2, then there exists a constant C' > 0 such that for any v € H*(B"),
2/2*(s)

@ C| [ Vol du,, < [ 1Vanaf? dug, — [ ValuP oy
]Bn ]Bn BVI
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where 2*(s) := 2% Note that Va.(s) behaves like & at the origin, making (7
(n—2) (s) r

the exact analogue of the Euclidean Hardy-Sobolev inequality:

2/2* (s

)

|u|2*(8) 2 U2 o)

C P dx < [ |Vul® de —~ B dx  for any u € C°(Q).
Q Q Q

In this paper, we are interested in the question of existence and multiplicity of
solutions to the following Dirichlet boundary value problem:

{ —Apru —YVou — Au = VQ*(S)|u|2*(s)_2u in Opn

(8) u =0 on Ogn,

where {p» is a compact smooth subdomain of B", n > 3, such that 0 € Qp~, but
Qp» does not touch the boundary of B™. It is clear that (8) is the Euler-Lagrange
equation for the following energy functional on H}(Qpn):

Qf <|V13nu|2 — yVou? — )\u2> dvg,.,
__ BT

j’y,s,)\(u) = 2/2*(5)
< f |u2*(3)V2*(s)dUgEn>

b

Qpn

where HJ (Qpn) is the completion of C'°(Qpn) with respect to the norm given by
lall =/ Jo Va0 dvgs..

The existence of a positive ground state solution for (8) has already been addressed
in [11] and is stated below for comparison purposes. This paper is dedicated to the
proof of the second part, which is concerned with the multiplicity of higher energy
solutions.

Theorem 1.1. Let Qpn € B™, n > 5, be a smooth compact domain containing 0
and let 0 < s < 2. Suppose \ > =2 (% — 7), then

n—4

(1) If v < % —1, then (8) has a positive solution that is a ground state for
j’y,s-

(2) Ify < % —4, then (8) has an infinite number of solutions corresponding
to higher energy critical levels for J, s.

These solutions belong to C?(Qg~ \ {0}) while around 0 they behave like

1_ 17 K
9)  ulz)~K G(|z])®? V* 027 ~ — for some K € R.
|:I;|n;2_ /(nf4 ) —

We also note that for v > % — 1, the existence of positive ground state solu-
tions in Part 1) was also established in [11] under a global condition requiring the
positivity of the Hardy-singular boundary mass of the compact subdomain Qg~». We
do not know whether there is a corresponding condition that yields the multiplic-
ity result of Part 2) in low dimensions. This said, we can show that compactness
holds for non-negative solutions of the subcritical problem, when the non-linearities
approach 2*(s).
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In order to prove Theorem 1.1, we shall use a conformal transformation

n—2

4 2 2
ger = pn—2Eucld where ¢ = )
1—1r2

to reduce equation (8) to a Dirichlet boundary value problem on Euclidean space.
We recall the following result from [11]

Lemma 1. u € H(Qpn) satisfies (8) if and only if v := pu € HE () satisfies

U2*(s)—1 .
(10) —Av — (# + h%,\(aj)) v o=ba) e inQ
v =0 on 082,
2)7=2
where b(z) is a positive function in C°(Q) with b(0) = (71227_1 Moreover,

when n > 5, b € C1(Q) and Vb(0) = 0. In addition, there exists c3,cy € R such
that

477 +c3 4 O(r) when n =3,
(11) hya(z) = hya(r) = 8ylog L + ¢y + O(r) when n = 4,

%74—4)\—71(71—2) when n > 5,
Moreover, the hyperbolic operator —Agn — vVo — X\ is coercive if and only if the

corresponding Euclidean operator —A — (# + h%,\(x)) is coercive.

Our multiplicity result will therefore follow from the following more general Eu-
clidean statement. In this paper D2(Q2) — or Hg(Q) if the domain is bounded — is
the completion of C2°(Q) with respect to the norm given by ||u||* = [ |Vu|? dz.

Q

Theorem 1.2. Let © be a smooth bounded domain of R™, n > 3, such that 0 €
and assume that 0 < s < 2 and 0 <0 < 2. Let h and b be two real-valued functions
with the following properties:

o hisin CH(Q\{0}) with lin}) |z|°h(x) = c and lin%) |z|%(z, Vh(x)) = —c for
z— T —
some ¢ € R, and the operator —A — # — h(x) is coercive in ().
e b is a non-negative function in C1(Q) such that b(0) > 0 and Vb(0) = 0,
while if 0 = 0, we shall simply assume that b is a positive constant.

If v < % —(2-10)? and |li‘m0 |z|?h(x) > 0, then the boundary value problem
z|—

(12) —Au -5tz — h(@)u b(m)‘“lzl*;# in Q\ {0},
u = 0 on 082,

has an infinite number of possibly sign-changing solutions in H}(Q). Moreover,
these solutions belong to C*(Q\ {0}) while around 0 they behave like

K
n—2 [ (n—=2)2
2 Va7 7

The multiplicity result will follow from standard min-max arguments once we prove
the required compactness, which relies on blow-up analysis techniques. The proof
consists of analyzing the asymptotic behaviour of a family of solutions to the related

u(x) ~ for some K € R.

|z
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subcritical equations —potentially developing a singularity at zero— as we approach
the critical exponent.

Theorem 1.3. Let 2 be a smooth bounded domain of R™, n > 3, such that 0 € Q)
and assume that 0 < s < 2 and 0 < 0 < 2—-2/2*(s). Suppose that the functions h(z)
and b(x) satisfies the hypothesis of Theorem (1.2), and let (p:)e>o be in the interval
[0,2*(s) — 2) in such a way that Eli_r)r})pe = 0. Consider a sequence of functions

(ue)eso that is uniformly bounded in HE(Q)) and such that for each € > 0, u. is a
solution to the equation:

|ug|2*(3)_2_p5ug

u: = 0 on 0.

If v < % —(2-0)? and ¢ = Ilim |z|h(z) > 0, then the sequence (uc)eso is

|—0

pre-compact in the space H}(Q).

As to the regularity of the solutions, this will follow from the following result
2
established by Ghoussoub-Robert in [21,22]. Assuming that v < @, note that
the function x + |x|=# is a solution of

(14) (—A — #)u:() on R\ {0},

if and only if 8 € {8-(7), B8+ ()}, where

(15) Bi(r) = n;2 " (n;2)2

Actually, one can show that any non-negative solution u € C*(R™ \ {0}) of (14) is
of the form

(16) w(z) = C_|z| 7P~ + Oy |z|7P+O) for all z € R™\ {0},
where C_,Cy > 0.

— 7.

We collect the following important results from the papers [21,22] which we shall
use repeatedly in our work.

Theorem 1.4 (Optimal regularity and Hopf Lemma). Let v < % and let
f: QxR —= R be a Caratheodory function such that

|,U|2*(s)—2

|f(z,0)| < C|v] <1—|— )for all z € Q and v € R.

|z[*
(1) Let u € DY2(Q) be a weak solution of

_ 7+ 0(")
|z[?

for some T > 0. Then, there exists K € R such that

(17) Au u:f(x,u),

o u(z)
(1) lim 0~ K

Moreover, if u > 0 and u # 0, we have that K > 0.
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(2) As a consequence, one gets that if u € DV2(R") is a weak solution for

‘2*(8)_2U

Au- Lu= Ju in R™\ {0},
x

||®
then there exists K1, K5 € R such that

K1 Kl

u(x) ~|z1-0 W and  u(x) ~z)-too W’

and therefore there exists a constant C > 0 such that for all z in R™\ {0},

C
M 4 [z]Pr

(19) )] < g

The next theorem describes the properties of the Green’s function of the Hardy-
Schrédinger operator in a bounded smooth domain. To prove this theorem one can
argue as in the case 8 = 0 like in [22].

Theorem 1.5 (Green’s function). Let Q be a smooth bounded domain of R™ such

that 0 € Q is an interior point. Let v < % and let h € C1(Q\ {0}) satisfy the
hypothesis of Theorem (1.2) such that the operator —A — ﬁ — h(z) is coercive in
Q.

(1) There exists then H € C=(Q\ {0}) such that
—AH — g H —h(x)H =0 in Q\ {0}

(20) H>0 nQ\{0}
H=0 ondf.
These solutions are unique up to a positive multiplicative constant, and
C

there exists C > 0 such that H(x) ~;_0 FERGE

(2) Then there exists
G (Q\ {0\ {(z,2)/z € Q\ {0}} = R
such that
(i) For any p € Q\ {0}, G, = G(p,") € H2(Q\ Bs(p)) for all 6 > 0,
Gp € C**(Q\{0,p})
(ii) For all f € LP(Q), p > n/2, and all ¢ € H} ((Q) such that
—Ap — <£Z|2+h(93))<ﬁ:f in Q; o =0,

we have

(21) o(p) = /Q Gp,)f(z) dz

In addition, G > 0 is unique and
(iii) For all p € Q\ {0}, there exists Co(p) > 0 such that

Co(p) 1

22 ~ — ~
(22) Gp(T) ~z-0 |- and Gy(z) ~posp (n— 2)wn_1|z — p[n—2

(iv) There exists C > 0 such that
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max X 67(7)
(23) 0<Gy)<C (M) o

(v) For all w @ Q, there exists C(w) > 0 such that

max{lpl, e} \ "7
(24) C(w) (min{|p|, B ) |z — p| < Gp(z) for all p,x € w\ {0}.

Via the conformal transformation the above regularity result will yield that the
corresponding solutions for equation (8) in the Hyperbolic Sobolev Space H}(Qpn)
will satisfy

@)
(29) o Gl ~ R
where
(26) () =532

2 14 (=22

which amounts to the regularity claimed in Theorem 1.1.
A general remark, in this paper every convergence is up to a subsequence.

2. SETTING THE BLOW-UP

Throughout this paper, £ will denote a smooth bounded domain of R™, n > 3,
2
such that 0 € Q. We will always assume that v < ("_42) , s €(0,2), and Bi(y) :=

”T_Q + 4/ @ — . We now describe the compactness result that will be needed
for the proof:
For £ > 0, we let p. € [0,2*(s) — 2) be such that

(27) lim p. = 0.
e—0

We also consider

(28)
h e C*(Q\ {0}) with ili% |z|h(z) = ¢ and ili% |z|% (z, Vh(x)) = —cf for some
0 <0 < 2 and ¢ € R, such that the operator —A — # — h(z) is coercive in €.

and
(29) a non-negative function b in C*(Q) with b(0) > 0 and Vb(0) = 0.

Consider a sequence of functions (uc).so in HE(Q) such that for all € > 0 the
function u. is a solution to the Dirichlet boundary value problem:

~Au—qpE — b = W@)EEEET mDie), g
u. = 0 on 0f). )

where (p), h(z) and b(x) is such that (27), (28) and (29) holds.
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By the regularity theorem (1.4), u. € C%(Q\ {0}) and there exists K. € R such
that lin% |z~ Py, (z) = K.. In addition, we assume that the sequence (). is
r—

bounded in Hg(£2) and we let A > 0 be such that

|ug |2 (5)—Pe
(30) / —dx <A for all € > 0.

|z[*

It then follows from the weak compactness of the unit ball of HE(£2) that there
exists up € H}(Q) such that

(31) Ue — Ug weakly in H}(Q) as € — 0.
Then ug s a solution to the Dirichlet boundary value problem
“Aug v — h(@)ug = bla) ey 01\ fo),
ug = 0 on 0N).

Again from the regularity theorem (1.4), ug € C*?(Q\{0}) and lin%J |z|P- Mg () =
z—
Ky € R. Fix now 7 € R such that

(32) B(y)<r< ”T*Q

The following Proposition shows that the sequence (u.) is pre-compact in Hg ()
if |2|"u. is uniformly bounded in L ().

Proposition 1. Let € be a smooth bounded domain of R", n > 3, such that 0 € Q
and assume that 0 < s <2, v < %. We let (ue), (pe), h(x) and b(x) be such
that (E¢), (27), (28), (29) and (30) holds. Suppose that there exists C > 0 such
that |x|"|ue(x)| < C for all x € Q and for all € > 0. Then up to a subsequence,

lim u. = ug in H}(Q) where ug is as in (31).
e—0

Proof: We have assumed that |z|"|u.(z)| < C for all z € © and for all £ > 0. So
the sequence (u.) is uniformly bounded in L°°(Q') for any Q' cC Q\ {0}. Then by
standard elliptic estimates and from (31) it follows that u. — ug in CZ_(Q\ {0}).
Now since |z|7|uc(z)| < C for all z € Q and for all £ > 0 and since 7 < 252, we
have

|ug |2 (5)—Pe |ue |?

(33) lim lim b(x) dx =0 and lim lim
500 |x|* 500 ||?
Bs(0) Bs(0)

dz = 0.

Therefore

2% (s)—pe 2*(s) 2 2
lim b(aﬂ)Ld&zﬁ:/b(%)‘uOI dx and hm/ \u€| = ||1;0|2 dzx
Q

=0 |z[* |z[*
Q

From (E.) and (31) we then obtain
lim |Vu|? — us — h(z)u? | do = |Vug|* — g — h(z)ud | dx
=0 TP ) RREE '
Q Q

and so then lim/|Vu€|2 = 1im/|Vu0|2.
e—0 e—=0
0 0
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And hence lim u. = ug in H}(Q). O
e—0

From now on, we shall assume that
(34) tim 1] el o= ) = +o0,

and work towards a contradiction. We shall say that blow-up occurs whenever (34)
holds.

3. SOME SCALING LEMMAS

In this section we state and prove two scaling lemmas which we shall use many
times in our analysis.

Lemma 2. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € Q and

assume that 0 < s < 2 and v < %. Let (u.), (pe), h(x) and b(x) be such that
(E.), (27), (28), (29) and (30) holds. Let (y.)e € Q\ {0} and let

n—2

1_2*(“) 2
5=
ve

= |U'E(y5)|7 le == Ve

Suppose liII(l] ¥e = 0 and lir% ve = 0. Assume that for any R > 0 there exists
E—r E—r

C(R) > 0 such that for alle >0

LY
and ke = |ye|” " e fore>0

3 @l <0 Bl foralls € Brn, (1) (0)
Then
(36) lye] = O(¥.) as e — 0.
Proof of Lemma 2: We proceed by contradiction and assume that
. |y£| _
(37) Im s =

Then it follows from the definition of k. that

(38) hH(l) ke =0, lim ,Z— = +o00 and lim —=

e—0 e—0 |ye|

=0.

Fix a p > 0. We define for all ¢ > 0

n—-2
V() = ve 2 ue(Ye + Ke) for x € By,(0)
Note that this is well defined since hm lye] = 0 € ©Q and hm L = = 0. It follows
from (35) that there exists C(p) >0 such that all e > 0

1
T Va € Ba,(0)

(39) lve(z)| < C(p )‘ .
Iy AR

using (38) we then get as e — 0
[ve(z)] < Clp) (1 +0(1)) Vo & Byy(0).

From equation (E.) we obtain that v. satisfies the equation

2 2*(s)—2—p.
K ~ v Ve
TAve - |y €|2 5 Ve — Hz h(ye + Kex) ve = b(ye + /‘Lsx)|6|—s
€
|y6\ + 1 el \usl 1y Tyl &
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weakly in B, (0) for all ¢ > 0. With the help of (38), (28) and standard elliptic
theory it then follows that there exists v € C''(Bz,(0)) such that

lim v, = v in C*(B,(0)).
e—0

In particular,

(40) v(0) = ;1_% ve(0) =1

and therefore v # 0.

On the other hand, change of variables and the definition of k. yields

/ |u€|2*(3’)7p5 e \us(y5)|2*(%)fpiﬁ? / |ve |2*(5)*p5 .

|| |ye|*
Bpe- (4e) : B0y |l T WTE
n—2 *
:e—(1+7z*fjfj;lpi) |9/c | s(*32) / |ve|2 (s)—pe o
1= 66 + S
B,(0) \ysl \ \
s(*32) 2*(s)—pe
> (I@ésl) / V| .
e + &
B0 |t Ie

Using the equation (E.), (30), (37), (38) and passing to the limit ¢ — 0 we get
that fB ©) [v]2"() dz = 0, and so then v = 0 in B,(0), a contradiction with (40).

Thus (37) cannot hold. This proves that y. = O(¢.) when £ — 0, which proves the
lemma. O

Lemma 3. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € Q and
2

assume that 0 < s < 2 and v < @, Let (ue), (pe), h(x) and b(x) be such that

(E.), (27), (28), (29) and (30) holds. Let (y.). € Q\ {0} and let

_n-2 1—

__Pe
ve 2 = luc(ys)| and b i=wve T

fore >0
Suppose ve — 0 and |y-| = O(L:) as e — 0.

For € > 0 we rescale and define

We(x) == ve * uc(lex) for x € 0210\ {0}.
Assume that for any R > § > 0 there exists C(R,6) > 0 such that for alle >0
(41) |we(z)| <C(R, ) for all z € Br(0) \ Bs(0).
Then there exists w € DM2(R™) N C1(R™\ {0}) such that
We — W weakly in D¥*(R™)  ase — 0
We = W in CL.(R™\ {0}) ase —0
And w satisfies weakly the equation

|w‘2*(s)—2w )

|z[*

—Aw—%w—b()
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Moreover if w # 0, then

*

. _27(s)
WO (s (®) ) T
2 =\ 5(0)

and there exists t € (0,1] such that lirr(l) vPe =1.
E—

Proof of Lemma 3: The proof proceeds in four steps.
Step 3.1: Let n € C2°(R™). One has that nw. € H}(R") for € > 0 sufficiently
small. We claim that there exists w, € D'?(R™) such that upto a subsequence

nwe — wy, weakly in D12(R™) as € — 0,
nwes — wy(x) a.e iIn R" ase — 0.

We prove the claim. Let © € R™, then

V () () = we (&) Vn(a) - ve * Lo (@) Vo (fea).
Now for any 6 > 0, there exists C'(6) > 0 such that for any a,b > 0

(a+b)? < C0)a® + (1+6)b>
With this inequality we then obtain
JI¥ ) do < (6) [ 1VaPu? dor (4022 [ |Vus(to)? do
R?’L

R’!L R’VL
With Holder inequality and a change of variables this becomes

n—2

n

n—2
I/S *
[t as<conwi, () | [
R Q

(42) +(1+0) (Z)“/ <77 <Z)>2|vu€|2 da.
Q

Since Hu6||Hé(Q) = O(1), so for € > 0 small enough

HnwEHDlv?(R”) < Gy

Where (), is a constant depending on the function 1. The claim then follows from
the reflexivity of D%2(R™).

Step 3.2: Let n; € C°(R™), 0 <17y <1 be a smooth cut-off function, such that

[ 1 for =z e By(1)
M= 0 for zeRBy(2)

For any R > 0 we let ng = n1(«/R). Then with a diagonal argument we can assume
that upto a subsequence for any R > 0 there exists wp € DV?(R") such that

(43)

NRWs — WR weakly in DV2(R") ase — 0
nrwe(z) = wr(z) aex inR" ase —0

Since || Vg2 = ||V |2 for all R > 0, letting e — 0 in (42) we obtain that

/ Vwg|*dz <C  forall R>0
R™
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where C is a constant independent of R. So there exists w € DY2(R™) such that

wR — w weakly in DV2(R") as R — +o0
wr(z) = w(z) aex inR" as R — +oo

Step 3.3: We claim that w € C1(R™\ {0}) and it satisfies weakly the equation
|w|2*(s)—2w
|z[*

We prove the claim. From (E.) it follows that for any ¢ > 0 and R > 0, nrw.
satisfies weakly the equation

(44)

— A (ngw.) — ﬁ (nrw.) — €2 h(tez) (nrw.) = b(£.x)

—Aw— = b(0)

=B in R™\ {0}.

| (nrwe) |2*(S)_2_p5 (nrwe)
||®

From (41) and (28), using the standard elliptic estimates it follows that wg €
C' (Bgr(0) \ {0}) and that up to a subsequence

lmywe =wp i Ch, (Br(0)\ {0}).
Letting ¢ — 0 in eqn (44) gives that wg satisfies weakly the equation

gl

| |2wR = b(O)

—AwR

Again we have that |wgr(z)| < C(R,0) for all x € Br/2(0) \ B2s(0) and then again
from standard elliptic estimates it follows that w € C*(R™\{0}) and thf W =W
—+oo

in CL.(R™\{0}), up to a subsequence. Letting R — 4oc we obtain that w satisfies
weakly the equation

This proves our claim.

Step 3.4: Coming back to equation (42) we have for R > 0

/ IV (nrw)? de < C(6) / <n2Rws>2* dz
n Bo(2R)\Bo(R

(45) +(146) ( ) /ﬂvug da.

Since the sequence (u.). is bounded in Hg (), letting e — 0 and then R — +o0
we obtain for some constant C'

n—2
(46) M/Wwfdz§O<Mn<%>> .
e—0 ée
Rn

Now if w # 0 weakly satisfies the equation

v |w]* (2
CAw— = p(oy
|[? |z[®
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using the definition of . s 0(R™) it then follows that

* _2M(s)
w2 (%) - fiy.5.0(R™) CHOES
— A 0(0) '

Hence lim <Zs> > 0 which implies that

e—0 &

(47) t:= l% vPe > 0.

13

Since 1in% v. = 0, therefore we have that 0 < ¢ < 1. This completes the lemma. [J
e—

4. CONSTRUCTION AND EXHAUSTION OF THE BLOW-UP SCALES

In this section we prove the following proposition:

Proposition 2. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € Q)
2
and assume that 0 < s < 2 and v < %. Let (ue), (pe), h(x) and b(x) be such

that (E¢), (27), (28), (29) and (30) holds. Assume that blow-up occurs, that is

n—2
lim [[[2] e || oo (@) = +00 where B_(7) < T < —5—.
e—0 2

Then, there exists N € N* families of scales (11ic)e>0 such that we have:

(A1) HH(I) ue = ug in C%_(Q\ {0}) where ug is as in(31).
e—

(A2) 0< p1e <...<plng, foralle > 0.

(A3)

. . i+1
lim py e =0 and lim Heit+1
e—=0" e=0 ;¢

=400 foralll<i< N —1.

(A4) For any 1 <i < N and for e > 0 we rescale and define

n—2

ie(x) = p; 2 ue(kicx) forx € k;le \ {0}

)

— Pe
T (s)—2

1
where k; . = p,; . .

Then there exists @; € DV2(R™) NCH(R™\ {0}), @; # 0 such that i; weakly

solves the equation
|ﬂ/i |2* (s)—2,ai

—Ad; — ;= b(0)

|2 |z[*

and
Uie — @ in Cl (R™\ {0}) as € — 0,

Ui e — Uy weakly in D1’2(R") as € — 0.
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(A5) There exists C > 0 such that
2 = Jue ()| = < €
for alle >0 and all x € 2\ {0}.

n—2

7 Jue (z) — uo ()]~ TE= =0,

(A6) limp oo limeg sup |z
\Briy,, (0)

n_2 1- 2*({»5)72
Y x : —
ue(z) — py .7 W (k1’5> ‘ =0.

(A8) For any é >0 and any 1 <i < N — 1, we have

_n=2 x
ue () — Mi-}-l?e Ui+1 (k >

1+1,e

(A7) gli%hmgﬁo SUP B, _(0)\{0} |z| =2

1- 2% (I;E)—z

=0.

n—2

lim lim sup |x| 2
Roto0e=05k, ) o >|a|>Rk; .

(A9) For anyi € {1,..,N} there ewists t; € (0,1] such that lim o pj% = t;.
The proof of this proposition proceeds in five steps.
Since s > 0, the subcriticality 2*(s) < 2* := 2%(0) of equations (E) in O\ {0}
along with (31) yields that u. — ug in CZ (2 \ {0}). So the only blow-up point is
the origin.
Step 4.1: The construction of the y;.’s proceeds by induction. This step is the
initiation.
By the regularity Theorem (1.4) and the definition of 7 it follows that for any € > 0
there exists x1 . € Q\ {0} such that

(48) sup fz|"|ue ()| = 21| |ue (21,)]-
zeQ\{0}

We define yi1 . and k1 . > 0 as follows

n—2

_n—2 1—
(49) pre? = lue(me)| and kyeoi=py

Pe
2*—3
Since blow-up occurs, that is (34) holds, we have

lim g1, =0
e—0

It follows that u. satisfies the hypothesis (35) of lemma (2) with y. = ©1,¢, Ve = fi1¢.
Therefore
|z1] =O (k1) ase— 0.

Infact, we claim that there exists ¢; > 0 such that

. |x175| _

(50) L

Cy.

We argue by contradiction and we assume that |21 c| = o(k1 ) as € — 0. We define
fore >0
n-2
e () = Nlé e (|71,¢|@) for z € |*T1,6|_1Q \ {0}
Using (E.) we obtain that 9, weakly satisfies the equation in |z .|7*Q \ {0}

2—s ‘T}E |2*(s)721~}6

2| ela) e = blJerele) ('“’“')

~ Yo~
“Ab. — L5 —
Ve |.T|2 Ve |JL‘17€ ]{71’5

jz]°
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The definition (48) yields |z|"|0:(x)| < 1 for all z € |z1.|7'Q \ {0}. Standard
elliptic theory then yield the existence of & € C?(R™ \ {0}) such that #. — ¥ in
C? (R™\ {0}) where

loc

“Av— L p=0 R\ {0}

R
In addition, we have that | (|21,.|*1,c)| = 1and so© # 0. Alsosince |2|7|5(z)| <
1 in R™\ {0}, we have the bound
6(x)| < 2|z| 7P+ 4 2|z 7A-O) in R™\ {0}.
The classification of positive solutions of —Av — #v =0 in R™\ {0} (see (16))

yields the existence of A, B € R such that o(x) = Alz|#+) 4+ Blz|=#-() in
R™\ {0}. Then the pointwise control |z|"|0(z)| < 1in R™\ {0} yields A = B =0,
contradicting © Z 0. This proves the claim (50).

We rescale and define
n—2
U1,e(w) = py 2 ue(hr,e) for z € kfiQ \ {0}

It follows from (48) and (50) that ;. satisfies the hypothesis (41) of lemma (3)
with y. = ®1.¢, Ve = p1,.. Then using lemma (3) we get that there exists 4; €
DY2(R™) N CH(R™ \ {0}) weakly satisfying the equation:

|,a1 |2*(s)—2a1

~ 7o~ .
—Aly — —=11 = b(0) in R™\ {0}.
[ jl®
and
Uy e — Uy weakly in DV2(R")  ase — 0

Ute — Uy in CL.(R™\ {0}) ase =0

It follows from the definition that )111’5 (i:)‘ = 1. From (50) we therefore have

that @, # 0. And hence again from lemma (3) we get that

o 2
[ (s R T
ol =\ 0(0)

and there exists ¢; € (0, 1] such that limo e =ty
E—r 7

Next, since |2|#~(a; € CO(R™), we have

li li | n—2 _"152 _ ( €T ) 1_% 0
im lim sup x| |p U1 =
§—0e—0 Bakl,E(O)\{O} l,e k17€
and then using the definitions (48), (49) it follows that

1- 2*(1255)72

. . n—2
lim lim sup |x| 2

§—0e—0 BékLg (0)\{0}

_n=2 x
) = ()
€

Step 4.2: We claim that there exists C' > 0 such that
n-2 1— R _

(51) || 7 Jue (@) 702 < C

for all e > 0 and all z € Q\ {0}.
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Proof of Step 4.3: We argue by contradiction and let (y:)eso € 2\ {0} be such that

(52) Su\lz }|x|n772|ue(z)|172*(p;)_2 = |ys|nT72|ue(ye)‘172*(p:>_2 — +oo ase — 0.
zeQ\{0

By the regularity Theorem (1.4) it follows that the sequence (y:)e>o is well-defined
and moreover lir% ye = 0, since u. — ug in CZ_(Q\ {0}). For € > 0 we let
e—

1— 5P — s 2-s
Ve o= Juc(ye)| 77, L= ve T2 and ke o=y 02T
Then it follows from (52) that
, B o lyel . Re
(53) lim v, =0, lim = +o00 and lim =0.
e—0 e—=0 £, e—0 |y5‘

Let R > 0 and let € Bg(0) be such that y. + ez € Q\ {0}. It follows from the
definition (52) of y. that for all ¢ > 0

e + Fe| "7 |ue(ye + ko) T2 < ye| T Jue(ye) |} T2

and then, for all € > 0

n—2

(|us(ye+n€x)|>12*‘z€)‘2 < 1 ’
|ue (ye)| “\1- |Z§|R

for all z € Br(0) such that y. + x.x € Q\ {0}. Using (53), we get that there exists
C(R) > 0 such that the hypothesis (35) of lemma (2) is satisfied and therefore one
has |y.| = O(f:) when ¢ — 0, contradiction to (53). This proves (51). O

Let Z € N*. We consider the following assertions:
(Bl) 0 < pi1,e < .o < Uzpe-

(B2) lime_yo pez =0 and lim._,o % =+4ooforall1<i<Z-—1

(B3) For all 1 < i < T there exists 4; € DV2(R™) N C?(R™ \ {0}) such that ;
weakly solves the equation

gl @ |* )24,

—A@i; — —i1; = b(0) in R™ \ {0}
|z [? ||
with
N 2% (s)
. b(0) ’
Rn

and

@ —> @ i Cp (R™\ {0}) ase — 0,

Us e — U; weakly in DV2(R") ase — 0.

where for € > 0
n—-2
Ui e(z) == i 2 Ue (kj ) for x € k;jﬂ \ {0}

— Pe
2F(s)—2
€ .

1
with ki“g = /LL

(B4) For all 1 <7 <Z, there exists ¢; € (0,1] such that lim._ ,uf; =1.



HARDY-SCHRODINGER OPERATOR: COMPACTNESS AND MULTIPLICITY 17

We say that 7z holds if there exists 7 sequences (iie)e>0, ¢ = 1,...,Z such that
points (B1), (B2) (B3) and (B4) holds. Note that it follows from Step 4.1 that H;
holds. Next we show the following holds:

Step 4.3 Let I > 1. We assume that Hz holds. Then either Hz; holds or
. . n—2 1— Pe
lim lim sup x| 7 |us(x) — ug(x =2 = (.
Jm tim sup (o] 5 (o)~ )
Proof of Step 4.3: Suppose

lim lim sup |z %2|us(x) - uo(gp)ﬂ‘ﬂ(ﬂﬁ £ 0.

R—+o00e—0 Q\BO(RICI,E)

Then there exists a sequence of points (y:)e>0 € €\ {0} such that

(54) Jim 12!

. n—2 1— P
=400 and lm |ye| 7 |ue(ye) — uo(ye)| @2 =a > 0.
€20 KT ¢ e—0

Since u: — ug in C2,(Q\ {0}) it follows that lirr%) Ye = 0. Then by the regularity
E—

Theorem (1.4) and since 8_(y) < 252, we get
(55) lim [ye| 7 [ue(ye)| "7 = >0

e0 0F ehe
for some positive constant a. In particular, liné |ue(ye )] = +o00. Let

E—

— = O

HZ+1,e = luc(ye)|” =2 and kri1e:= Hzi1e

As a consequence we have

; _ ‘ya|
(56) glg% pz41 =0 and EILO s >0
We rescale and define
n—2
Uz 41,6(2) 1= Nzi1,g“€(kf+l,s z) for z € kz_-‘yl-:l,EQ \ {0}
It follows from (51) that for all € > 0
@7 Jizs1 (@) TG <O forw € bzl 0\ {0}

so hypothesis (41) of lemma (3) is satisfied. Then using lemma (3) we get that
there exists G711 € D¥2(R™) N C1(R™ \ {0}) weakly satisfying the equation:

- 7o~ iz 1> D207, n
—Adziq — Rl = b(0) EE in R™\ {0}.
and
Uz41,e — Uz4+1 weakly in DV2(R") ase — 0

UT41,e = UT4+1 in CL.(R™\ {0}) ase —0
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We denote . := Y From (56) it follows that that HII(I) [9] :== |%o] = @ # 0.
e—

kI+1,s
Therefore |tz41(Jo)| = lime—o |8741,6(J:)| = 1, and hence tz11 # 0. And hence

again from lemma (3) we get

L 2t
/ |tiz41]2 ) > (Hv,s,o(R")> 22
i |lz[s b(0)

and there exists t741 € (0,1] such that lir% ;L%H . = tz41. Moreover, it follows
e— )
from (54) and (56) that

lim Htle _ +oo and lim pz41 = 0.
e=0 U7 e e—0
Hence the families (14 ¢)es0, 1 <@ <Z + 1 satisfy Hziq. O

The next step is equivalent to step 4.3 at intermediate scales.

Step 4.4 Let I > 1. We assume that Hz holds. Then for any 1 <i <Z —1 and
for any § > 0, either Hz,1 holds or

1— Pe
. . n—2 2% (s)-2
lim lim sup |z| 2 =0.

R —0 =
=0 Bk (0\Bri, . (0)

_nT*Q - T
Ue () = fhig e Uit %
i+1,e

Proof of Step 4.4: We assume that there exists an i <Z — 1 and § > 0 such that

1— *PE
lim i sup |:r:\nT_2 ue () ,uinTizﬂ < i ) ne >0
1m 1m e = M1 i+1 .
Rotooes0p, 0\ Bak, . (0) e kit1,e
It then follows that there exists a sequence (yc)e>o € §2 such that
(57) lim [ve| = +00, lye| < Okigp1,e foralle >0
e—0 ki,& ’
n—2 _n=2 Ye 1_#5)72
(58) el ) = e () —a>0.
i+1,e

for some positive constant a. Note that a < 400 since

_n=2 x
ue () — /’Li+1?6 Ui+1 ( )

ki+1,€

n—2
x| 2

is uniformly bounded for all z € Bsy, ., _(0) \ Bru, . (0).

We let 7 € R™ be such that y. = kj11,c 9. It follows from (57) that |g%]| < § for
all e > 0. . We rewrite (58) as

. g B2 ~ % ~ ~x\ 11— 5rEs—

lim ‘ye| 2 |ui+1,6(ye) - ui+1(ys)|1 =2 =a>0.

e—0

Then from point (B3) of Hz it follows that §* — 0 ase — 0. And since |x|?~ a4, €

CO(R™), we get as e — 0
1—2*(2)&% 222_B_(7)

ki+1,€

n—2

= 771;2 - ye
|Ye | i+1le Wit k
1+1,e
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Then (58) becomes
. n—2 1_ _ pe
(59) lim [ye[ "= Jue(ye)| 7072 = a > 0.
e—0

In particular, lim |uc(y.)| = +o00. We let
e—0

1— *Ps 5
ve = [uc(ye)| 72 and fe = vz 7O,
Then we have
(60) lim v, =0 and lim v =a>0.
e—0 e—0 és

We rescale and define
n—2
Ue(z) == ve 2 u.(le 1) for 2 € 0210\ {0}
It follows from (51) that for all € > 0

1— Pe

o2 ()T <0 for € 0210\ {0},

so hypothesis (41) of lemma (3) is satisfied. Then using lemma (3) we get that
there exists @ € D1-2(R™) N CH(R™ \ {0}) weakly satisfying the equation:

2 () =2

S @ .
—At — —1u = b(0)—————— in R"\ {0}.
]2 |z]*

and

Ue — U weakly in DV2(R")  ase — 0

G — 4 in CL.(R™\ {0}) ase — 0
We denote g, := %5 From (59) it follows that that lin%)|g]5\ = |%| = a # 0.

E—r

Therefore |a(go)| zalima_m |te(g:)] = 1, and hence @ # 0. And hence again from
lemma (3) we get
. 2" (o)
/ [ <u7,s,o(w>>
jz[* =\ b(0)
]Rn

and there exists ¢ € (0, 1] such that hII(l] vPe = t. Moreover it follows from(59), (57)
e—

[yel

and since lim =— = 0, that
e—0 Mitl.e
lim 2= = 400 and lim Hitle _ ~+00.
e=0 ;¢ e—=0 Vg
Hence the families (p1,6)ye.., (fhie), (Ve), (fit1.e)ses (Hz,e) satisfy Hzyg. O

The last step tells us that family {#Hz} is finite.

Step 4.5: Let Ny = max{Z : Hz holds }. Then Ny < 400 and the conclusion of
Proposition 2 holds with N = Nj.

Proof of Step 4.5: Indeed, assume that Hz holds. Since p; . = o(uit1,) for all
1 <i< N —1, we get with a change of variable and the definition of @, . that for
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any R> 4§ >0
* T *
|ue|?" () —pe / || (#)—pe
——dx > — g d=
EE 2 3 EE
Brg; . (0\Bsk; . (0)
z 7. |27 (s)—pe
=9 / de,
~ JBro©\Bs0) |7l
z ‘ﬂi€|2*(5)71)5
(61) Then from (30) we have A > Z/ ————dx.
~ JBronBs0) 12l
Passing to the limit ¢ — 0 and then § — 0, R — 400 we obtain using point (B3)
of Hz, that
2* (5)
ny\ -2
A (Hrso®) T.
b(0)
It then follows that Ny < +oo. [l

We let families (f41,6)e>0,---, (14Ny,e)e>0 such that Hy, holds. We argue by contra-
diction and assume that the conclusion of Proposition 2 does not hold with N = Nj.
Assertions (Al), (A2), (A3),(A4), (A5), (AT) and (A9) holds. Assume that (AG)
or (A8) does not hold. It then follows from Steps (4.3), (4.4) and (4.5) that H 41
holds. A contradiction with the choice of N = Ny and the proposition is proved. [

5. STRONG POINTWISE ESTIMATES
The objective of this section is the proof of the following strong pointwise control.

Proposition 3. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € 2

and assume that 0 < s < 2 and v < %. Let (ue), (pe), h(x) and b(x) be such
that (E.), (27), (28), (29) and (30) holds. Assume that blow-up occurs, that is

n—
1' o oo = — .
lim 2" ue|| oo (@) = +00 where B_(y) <T < 5

Consider the i, ..., iN,e from Proposition 2. Then there exists C > 0 such that

foralle >0

N pr)=p )
(62) |uc(z)| < C Hie 121%= D ug|| Lo 0y
B > P Z@Z(v)—ﬁ—(W)|z|ﬁ_(7) + [z]f+ B

for all x € Q\ {0}.
The proof of this estimate proceeds in seven steps.

Step 5.1: We claim that for any o > 0 small and any R > 0, there exists C(«, R) >
0 such that for all £ > 0 sufficiently small
(63)

Br(M—B_(v)

e
fne 15~ D || Lo (@)
[ue(@)] < Cla B) |z[B+ (= |z[B-(+a

for all € Q\ Bpiy..(0).
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Proof of Step 5.1: We fix 7/ such that v < v < @. Since the operator
—-A — # — h(x) is coercive, taking ' close to v it follows that the operator

—A— % — h(z) is also coercive in €. From Theorem (20) it get that there exists
H € C>=(Q\ {0}) such that
~AH - ZoH = h()H =0 inQ\{0}

(64) H>0 inQ\{0}
H=0 on9oN.
And we have the following bound on H: there exists d;, C; > 0 such that
1 1 1
(65) < H(x) < for all z € 3251 (0)

Cy |z[f+0) = || B+ (")

We let )\1’/ > 0 be the first eigenvalue of the coercive operator —A — % —hon
and we let ¢ € H}(Q) be the unique eigenfunction such that
~Ap—dnp—h(@)p =A¢ nQ
(66) e >0  inQ\{0}
¢ =0 on 0f).

It follows from the regularity result, Theorem (1.4) that there exists Cs,d2 > 0 such
that

(67) 1 1
02 |1'|,37("//)
We define the operator
2*(5)_2_115
L. =—A— (’y + h) — b(x)wi

|z[?

< p(x) < Cy for all x € QN Bags, (0).

|x|ﬁf(7/)

(n—2)2

Step 5.1.1: We claim that given any v < +' < there exist 99 > 0 and Ry > 0
such that for any 0 < § < dg and R > Ry, we have for ¢ > 0 sufficiently small

L.H(x) >0, and L.p(z) >0 for all z € B5(0) \ Briy.. (0), if ug # 0.
(68) L.H(x)>0 for all € O\ Bggy..(0), if ug = 0.
As one checks for all e > 0 and z # 0
LH(z) =7
H(x) |z[?

|u8 |2*(S)_2_ps

b(x)

|z[*

and

E !/ 2*(8)_2—]75
ep(r) _ v ) |ue| :
o(z) || |z|
Choose 0 < §p < min{1,d1,d2} such that

(2*(s)—2) (252 -B-(v) B
69)  [bllpm (oot 72! RIS

It follows from point (A6) of Proposition 2 that, there exists Ry > 0 such that for
any R > Ry, we have for all € > 0 sufficiently small

+7.

2% (s)—2 Y =
L=(@) < 52703713

Jug||

1
n— pe - 2% (s)—2 —
1b(2)| 77 || T fue () —uo ()|~ T < <M) for all 2 € N\ Briy . (0)

— \ 22*(s)+2
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With this choice of §yp and Ry we get that for any 0 < § < dg and R > Ry, we have
for € > 0 small enough

[b(@)| [ ue ()72 7P < 22707 2270 ()| ue () — wo () * ()2 P

+ 227 TP 20 b () g ()27

/— JR—
= % for all z € B5(0) \ Briy..(0), if ug # 0

s *(s)—2— Y -
and [b(z)| |z[**|uc(z)|* ) 727Pe < )

for all € Q\ Brpy..(0), if ug = 0.

Hence we obtain that for € > 0 small enough

LH() -~y _

|ug |2 (5)—2—pe

= b(x)
H(x) |[2 |z[®
Y =7 -7
T 4|z[?

>0 for all 2 € B5(0) \ Briy..(0), if ug # 0

(70) and £;{}(Ia€‘)r) >0  forallz € Q\ Bpiy.(0), if ug = 0.
And
Lep(®) 7 =7 4 |ue (92 P
e B |]°
e (e e
> Afaf?
(71) > 0 for all « € B5(0) \ Briy..(0)).

O

Step 5.1.2: Tt follows from point (A4) of Proposition 2 that there exists C1(R) > 0
such that for all € > 0 small

By (=B (+)
Ky, 2
(72) lue(z)| < C{(R)W for all € OBRi._(0)

By estimate (65) on H, we then have for some constant C(R) > 0

Br()—=B_(v")

(73) lue(z)| < Cr(R)py,. * H(x) for all 2 € OBRgyy..(0).

It follows from point (Al) of Proposition 2 and the regularity result (1.4), that
there exists C4(d) > 0 such that for all € > 0 small

27~ g | L= ()

(1) Jue()l < GO

for all x € 9Bs(0), if ug £ 0.

And then by the estimate (67) on ¢ we then have for some constant Cy(5) > 0
(75)  |ue(2)| < C2(8)][|x]P~Pug || L= () ¢(2) for all 2 € AB;(0) if ug # 0..
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We now let for e >0,

Byr(vH)-B_(2")

V(o) = OB T H@ACO e Dugllpep(e)  for o € 2\{0}.
Then (75) and (73) implies that for all € > 0 small

(76) lue(z)] < U (x) for all z € O(Bs(0) \ Briy..(0)), if ug # 0.

and if ug = 0 then

(77) ()] < Wa()  for all & € @\ Brp, (0)):

Therefore when ug # 0 it follows from (68)) and (76) that for all £ > 0 sufficiently
small

ﬁELI/E >0= ﬁsus in B5(O) \FRkN,s (O)

U, > u, on 8(35(0)7\ ERI@N,E (0))
LY, >0=—L.u. in 35(0) \ BRkN,a (0)
U, > —u, on d(B;(0) \ Briy . (0)).

and from (68) and (77), in case ug = 0, we have for £ > 0 sufficiently small

LE\IJS >0= £5u€ in Q \ FRkN,E (0)

W, > u,. on a(Q \ERkN,g (O))
LV >0=—-Lou. in§ \ERICN,E (0)
U, > —u, on 8(Q \ERkN,a (0))

Since U, > 0 and L.V, > 0, it follows from the comparison principle of Berestycki-
Nirenberg-Varadhan [5] that the operator L. satisfies the comparison principle on
Bs(0) \ Briy..(0). Therefore

lue(z)] < W (x) for all 2 € B;(0) \ Briy.. (0),
and |uc(z)| < U (x) for all z € Q\ Bpriy.(0) if up = 0.

Therefore when ug # 0, we have for all € > 0 small

Br(v)—B_(v)

ue ()] < Ci(R)uy. = H(z) + Ca()ll]z]=Pugl| o= (o) ()
for all # € B;5(0) \ Briy.. (0), for R large and § small.
Then when ug # 0, using the estimates (65) and (67) we have or all £ > 0 small

£2GH=- ") 5o
lne ° [[|2]°~ ol (o)
lue(z)| < Cl(R)W +C2(9) [P0

for all z € B;5(0) \ Briy.. (0), for R large and § small.
And if ug =0, then all € > 0 small and R > 0 large

By(¥H=B_(")
Ky, 2 =
lue(z)] < C1(R) |;|ﬁ+(v’) for all z € Q\ Brpy..(0).

Taking ' close to v, along with points (A1) and (A4) of Proposition (2) it then
follows that estimate (63) holds on 2\ Bry._ (0) for all R > 0. O

Step 5.2: Let 1 <17 < N —1. We claim that for any a > 0 small and any R, p > 0,
there exists C'(a, R, p) > 0 such that all ¢ > 0.
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/Lr(v);fx, ™ _,
M'L,s + 1
|x‘l3+(7)—a Pr(N—F-(n)
2
Hiv,e

(78) us(2)] < Cle, R, p)
7a|;17|67(7)+a

for all z € Bl)ki+1,s (0) \ER]%6 (0)

Proof of Step 5.2: We let ¢ € {1,..., N — 1}. We emulate the proof of Step 5.1. Fix

~" such that v < ' < (n=2 2) . Consider the functions H and ¢ defined in Step 5.1
satisfying (64) and (64) respectively. We define the operator

Lo:=-A— <|2 n h) ~ b(a) |ue

‘2* (S)_2_p5

|z[*

Step 5.2.1: We claim that given any v < 7' < there exist pg > 0 and Ry > 0
such that for any 0 < p < pg and R > Ry, we have for € > 0 sufficiently small

(79) L.H(x) >0, and L.p(z) >0 for all # € Bpg,,, .(0) \ Bgs, . (0)
As one checks for all e > 0 and = # 0

(n—2)%
1

o 2*(s)—2—pe
‘CEH(ZE) — ’Y 27 o b(l’) |u€| ’ ,
H(x) || |=]®
o 2% (s)—2—pe
Lep(x) > 27 b e | : .
o(z) |z| Edk

We choose 0 < pg < 1 such that

(2 (s)-2)(252 -5 (’7))”|x|5_( 2% (s)—2 v =

(80)  [[bll==p Vitgl |2 oz < 227 (5)13

It follows from point (A8) of Proposition (2) that there exists Ry > 0 such that for
any R > Ry and any 0 < p < pg, we have for all £ > 0 sufficiently small

1— Pe 1
2% (s)—2 ,7/ — 2¥(s)—2
922* (s)+2

i nc=2 —n=2 T
|b(z)| =2 x|z |uc(z) — Pigr’e Uit <k)

1+1,e

for all x € By, , .. (0) \FRki,a (0).

With this choice of py and Ry we get that for any 0 < p < pg and R > Ry, we have
for € > 0 small enough

2*(8)_2_175

[b() P ue ()| ¥ ()72 7P < 22771 e 20|

_n—2 _ x
U (T) = py 1% Uit (k )

i+1,e
2—s 2% (s)—2—pe
+ 22 ()t (|:c| ) [b()] | @it ( & )
ki+1,5 ki+176

(81) <T— forallz€ By, (0)\ Brx,. (0).
Hence as in Step 5.1 we have that for € > 0 small enough
L.H() Loola) _
H) >0 and () >0 forall € By, .(0)\ Br,.(0).
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Step 5.2.2: let ¢ € {1,..., N — 1}. Tt follows from point (A4) of Proposition 2 that
there exists C7(R) > 0 such that for all £ > 0 small
Br(v)-B_(2)
Mi,s :
|1'|B+('Y/)

(82) luc(2)] < C1(R) for all 2 € ABgy, . (0)

And then by the estimate (65) on H we have for some constant Cy(R) > 0
Byr(vH)—-B_(2")

(83) lue(z)| < Cr(R)p; . * H(z) for all 2 € 0Bgy, . (0).

From point (A4) of Proposition 2 it follows that there exists C%(p) > 0 such that

for all € > 0 small

1
(84) [ue(2)] < C5() 7 for all z € dB,.,, . (0).

|x‘57(7/)

Hiv1e :
Then by the estimate (67) on ¢ we have for some constant C3(4) > 0
p(x)
(85) |U5($)| S Og(p)m fOI‘ all T € 6Bpki+1,5 (0)
Pivre
We let for all e > 0

5 Br(v)=B_(v") <p(x)

Vo) = Ci(R)py. * H(x)+ Calp) for 2 € 2\ {0}

6+ (—B_()
Hiv1e :
Then (83) and (85) implies that for all £ > 0 small
(86) lue ()| < W, () for all @ € O (Byk,;,,..(0) \ Bre,.(0) .

Therefore it follows from (79) and (86) that e > 0 sufficiently small
LV, >0=Lou:  in By, .(0)\ Brx, . (0)

v, ~Z Ue on 0 (Bpki+1,g (Ol\ ERki,E (O))
4:5\115 >0=—-L.u, in BPki+1,a (O) \ BRki,E (O)
\IJE > —Ug on 0 (Bpki+1,g (0) \BRki,E (0)) .

Since U, > 0 and L., > 0, it follows from the comparison principle of Berestycki-
Nirenberg-Varadhan [5] that the operator L. satisfies the comparison principle on
Bykiiy.(0) \ Br, . (0). Therefore

e (@) < Wela)  forall @ € By, . (0)\ Brs, . (0)).

So for all € > 0 small

[3+(’Y/);ﬁ7(7/) @(x)
ue ()] < C(R)p; H(z) + Co(p)—on 5y

Hit1,e :
for all € By, .(0)\ Bgs, . (0), for R large and p small. Then using the estimates
(65) and (67) we have or all € > 0 small
Br(vH)-B_(2")
/’l/i,é‘ 2 02(p)

|I|B+ (’y’) + ﬂ+(“/,);ﬁ7(“f/> ,
Hit1e \x|57(7)

|uc(z)| < C1(R)

for all @ € By, , .(0)\Brs, . (0).

for R large and p small.
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Taking +' close to ~, along with point (A4) of Proposition (2) it then follows
that estimate (78) holds on By, . (0) \ By, . (0) for all R, p > 0. O

Step 5.3: We claim that for any o > 0 small and any p > 0, there exists C'(a, p) > 0
such that all € > 0.

1
Pr—F- _
2 _
/Ll,a |£L"B (M+a

(87)  Jue(2)] < Cla, p)

for all z € By, .(0) \ {0}.

Proof of Step 5.3: Fix /' such that v < ' < @. Consider the function ¢
defined in Step 5.1 satisfying (64). We define

2*(3)_2_175
foim-a (g n) s

|[? |z[*

, ~ : (n—2)°
Step 5.3.1: We claim that given any v < o/ < ==

for any 0 < p < pg we have for € > 0 sufficiently small
(88) Lep(z) >0 for all z € By, . (0) \ {0}

there exist py > 0 such that

We choose 0 < pg < 1 such that

~

/ —
pa~?sup||z|’n| < VT for all € > 0 small and
Q

(2" (5)-2)(252—B- () 2% (s)-2 v =
(9)  bllpy IO gy < T

It follows from point (A7) of Proposition (2) that for any 0 < p < pg, we have for

all e > 0 sufficiently small
1-85= _ N — PO
— \ 22*(s)+2

With this choice of pg we get that for any 0 < p < pp we have for € > 0 small

enough
_n=2 €T
Ua(x)_ul,a2 Uy (kl )
&

2—s 2*(8)—2—pe
. x| _ x
+ 227 ()= 1=pe (l ) b(x ’u ( )
s [b()| |t s

1 n—2 _n=2 x
|b(z)| 72 x| 2 |ue(z) — Pye® U <k )
l,e

for all z € B, . (0) \ {0}.

[b() P ue (2)|* (7277 < 92712 g 20|

(90) <7 ;7 for all & € By, .(0) \ {0}.

Hence similarly as in Step 5.1, we obtain that for € > 0 small enough
L

(91) ;‘éﬁ(;”) >0>0  foralla €€ By, (0)\{0}.
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Step 5.3.2: Tt follows from point (A4) of Proposition 2 that there exists C4(p) > 0
such that for all € > 0 small

1

(92) luec(x)| < C5(p) ORCUETe for all € 9By, _(0)
/”'1,5 : |$‘ﬁ_(’y/)
and then by the estimate (67) on ¢ we have for some constant C5(5) > 0
Us(x)| S CQ(p)m for all c (‘9Bpkl,5 (0)
;Ufl,e :

We let for all e > 0

p(x)

:Ufl,s :

Then (93) implies that for all € > 0 small
(94) luc ()| < ©(x) for all 2 € 0B, . (0).

Therefore it follows from (88) and (94) that € > 0 sufficiently small
LU0 >0=L.u. in By, .(0)\ {0}

00 >y, on 9B, . (0)\ {0}
Eg\pg >0=—-L.u. in BpkLg (O)
W0 > on 0By, . (0).

Since the operator L. satisfies the comparison principle on By, . (0). Therefore
lus ()] < () for all € B, . (0).
And so for all € > 0 small

lue(z)] < Cg(p)& for all z € B, . (0) \ {0}.

AL (D—F_ (")
;Ufl,e :
for p small. Using the estimate (67) we have or all £ > 0 small
Ca(p)
lue(z)] < R for all x € By, . (0) \ {0}.
Ml,s ? “T|57 Q)

for p small. It then follows from point (A4) of Proposition (2) that estimate (87)
holds on = € By, . (0) for all p > 0. O

Step 5.4: Combining the previous three steps, it follows from (63), (78), (87) and
Proposition 2 that for any a > 0 small, there exists C'(a) > 0 such that for all
e > 0 we have

(95)
N Be-B_) o)
Pie * l|2]7="uo| Lo ()
()| <C ’
uele)l = Cle) ; PO PO =22 15~ () v 4 | () ] 5=+

for all z € Q\ {0}.

Next we improve the above estimate and show that one can take o = 0 in (95).

We let Gy be the Green’s function of the coercive operator —A — # —h on Q)

with Dirichlet boundary condition. Green’s representation formula, the pointwise
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bounds on the Green’s function (23) [see Ghoussoub-Robert [22]] yields for any
z €

:/Go(zw)b(w)|Us(n’f)|2*(s)2p5 us(2)

2l
2*(8)_1_175
jue(2)] < / G P
max{lz], [o}\ "1 Jue(w) O
(96) < C/ = dx.
mindlel,Jal} ) Je =2l

Using (95) we then obtain with 0 < o < 2 ES; 2 ([3*(7) b (ﬂ’)) that

ue(2)] <

By(n-p_(n) 2%(s)—=1-pe

C’

3 M-

/(max{l | |z|}> W fie
min{|z|, |z|} |z — 2|"—2|z|* M(_’B*(A’/)_B*(7))_2a|x|5—(7)+a + |z|B+(M—a
Q i,€
(97
B-(7)
s , 1 1
+CH|$|B (v)uOHL )—1— pg/<max{|z| |$}) | d.

min] 2] ]} 7= 22 [af? [o[ - F @ - 1-p)

The first term in the above integral was computed for each bubble in Ghoussoub-
Robert in [22] when p. = 0. The proof goes exactly the same with p. > 0. The last
last term in straightforward to estimate.

We then get that there exists a constant C' > 0 such that for any sequence of
points (z¢) in 2\ {0} we have

(98)
N By(M=B_() 5o
Pie ~ 1]~ ug || Loe ()
us(z:)| < C J +
|ue(ze)| ZMB;(W) B- )|z€|ﬂ*(7)+|25|3+(7) |z |-
This completes the proof of Proposition (3). O

6. PROOF OF COMPACTNESS
In this section we prove our compactness result, Theorem (1.3).

Proposition 4. Let Q be a smooth bounded domain of R™, n > 3, such that 0 € )

and assume that 0 < s < 2 and v < %, Let (ue), (pe), h(x) and b(x) be such
that (E.), (27), (28), (29) and (30) holds. Assume that blow-up occurs, that is

;1_{% [z ve || oo () = +00 where B—(7) < T < T'
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—92)2
Then we have following rate of blow-up when v < % —(2-0)%

-2
UN_ Ay
lim 2% =_<2_6> ¢ 4n-—s) an l[®
t

— —0
e—0 /ngf 2 2*725),2 (n - 2)2
? N

N = g%

Z b(0) f |1 |2* (=)
n—2 ‘Els

i=1 427()=2 Rn

i

Proof of Proposition (4): The proof proceeds in several steps.
Note that v < % — (2 — 0) is equivalent to M >2-—46.
Step 6.1: Let ro := \/inc . We rescale and define for all € > 0

Oe(z) = 1P~V (r. ) for z € r-1Q\ {0}
Then there exists o € C'(R™ \ {0}) such that

lim 9(z) = 0 in Cpoe(R™ \ {0})
where — AU — #f} =0 in R™\ {0}

Proof of step 6.1: From (E.) it follows that 0. weakly satisfies the equation
(99)

or oy B (M =B (1) >
—Av, — #55 - T? h(rex) 0. = r§2 (£)-2) 2 +p5’87(7)b(r5m)

for all € > 0. Using the pointwise estimate (62) we obtain the bound, that there
exists a constant C' > 0 such that for all € > 0

N B (=B () o
0 Pie |2~ ug || Lo ()
) <cl| PO e B-(7)
ol ) ; pt OO - 4 [rozffr ) |rea|f-0)
By (MN=B_(7)
() et~ Do
s T UQ| Lo ()
< C Z KN +
= —B_ B—
— ( l::; )5+(’Y) (v) |x|57(7) n ‘x|6+(7) || (v)
(100)
1 2]~ Mg Lo o _
<C <x|ﬂ+(v) + =) @) for all z € 771Q\ {0}.

Standard elliptic theory then yields the existence of & € C2(R™ \ {0}) such that
0. — © in C}_(R™\ {0}) and then passing to limits in equation (99) we then obtain
that v satisfies the equation

“Ai— L 5=0 inR"\ {0}.

|z[?

and

~ 1 218-My, -
|o(z)] < C <$|B+(7) + [z |x|ﬂ(()"|v)L (Q)> for all z in R™ \ {0}.
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Step 6.2: From the Pohozaev identity (119) with yo = 0 and U. = B,_(0)\ Bz (0)

we get
h
— / h(z) + (V2,x)> u? dx
Br (0\Byz (0)
_ 2*(5)7175
- nos / b(x)7|us| dx
2+(s) \ 2*(s) — p. |z[*
B (0\B,z (0)
1 |u|2*(5)_p5
— b) d
()~ pe R
Bre (O\Byz _(0)
(101) = / F.(z) do — F.(z) do
8B, (0) 0B, (0)
where

, -2
(102) - (x’&iug + nQuE> Oy Ue.
We will estimate each of the terms in the above integral identity and calculate the
limit as € — 0.

Step 6.83: When B, (v) — B_(v) >2—0, we have as € — 0

(103)
_ ~2
h(z) + Yh2) u? de = p3? 20 % / IN g+ o(1)
2 < 2 #o=z J |zff
ty R

where 0 < § < 2 and ¢ € R are such that: lim |z|?h(2) = cand lim |z|?(z, Vh(z)) =
p z—0 z—0
—cf.

Proof of Step 6.3:  When (4 (y) — B-(y) > 2 — 0 it follows from point (2) of
Theorem (1.4) that the for all 1 < i < N, the function —%~ € L*(R"). For any

Iw‘ﬂ/Q

B,.(0\B,z (0)

R, p > 0 we decompose the integral as

(Vh,z)\ o ,

€

B (O\B,z (0)

/

By (O\Brny . (0)

h(z) + W) u? dz +§; / (h(m) - W) u? dx

Brk,; . (0\Bprk, . (0)

<

Bpk,i+1‘5(0)\§ﬁ’,kiyg(0) BPkl,s(O)\Bk% (0)

€
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From the estimate (62), we get as e — 0

_(2_ Vh,x
MNE? ? / ‘h(m) + (72) u

B"‘s (0)\§Rk1\],5 (O)

B+ (v)—=B-(7)

—(2-0) 1 | PN 1
s Cune / Pk [ R e |
Bro (0\Briy . (0)

1 1
=¢ / 2P A= 9

B_re (0)\Br(0)
kN,a

BiL(M—B_(1—(2-0)
1 H’N,E ’
o / 2P - A 4
B1(0)\B gy, (0)

Te

<C (R(m(v)ﬁ(v)(?G)) n uW)

Therefore when 81 (y) — B_(y) >2—16

(o h
(104) lim lim ufo %) / (h(x) + W) u? dx = 0.

R—+o00e—0
BTE (0)\§Rk1\r,5 (0)

Since in this case ‘x?—gm € L*(R") for any 1 <i < N, it follows from Proposition 2
that

R—+4o00 p—+0e—0

lim lim lim ;76(279) / <h(x) + (Wl2’$)> ug dr

Brk; . (0\Bpk; . (0)

2—40 c /ﬂ?
105 Y i I
(105) < 2 )tzusz |]?

4 R™

where 0 < # < 2 and ¢ € R are such that: lin%) |z|?h(z) = cand lin%) 2% (2, Vh(x)) =
T—r T—r
—ch.
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Let 1 <i < N — 1. Using the pointwise estimates of theorem (3), for any R,p > 0
and all € > 0 we have as ¢ — 0

—(2—¢ (Vh,x)
,ui+(1,e ) / ‘h(x) + 5 u? dx
Boki 1, (0\Brx, _(0)
B —B- —(B+(v)=B-(7))
<O 20 S pre T s ’ dx
SO e |0 |x‘2ﬁ+(v) |x|2ﬁ7(v)
Bﬂk1+1,5(0)\§Rki,a(0)
2-0
—(2-0) 1 Hie
SO pigie / |z|0 2|t B+ (1) =B-(1)-2) dr
B kg1 (0\Br(0)
2-0
~(2-6) 1 Hivie
+ Cpigie / 2P - Gr-a-mr
B, (O\B ri; . (0)
Fiti,e
<l (u?;e R+ (0)=P-(=(2=0)) | 26 pﬂ+(v)—67(7)+(2—9)) .
And 50 as B1.(7) — B-(7) > 2
. N —(2—-0) M 2 _
(106) REIEOO ;13% gl_)I% Hiv1e / <h(:c) t uZ dr =0.

Bkt (0\Brr; . (0)

And from the pointwise estimates of theorem (3), we have as € — 0

i [ e T

7 5 u? dx
Bﬁkl,s (O)\Bkis (0)

€

—(B+()=B-(7))

—(2-6) ip’l,s
<C oy, / |z[? |28~ dzx

By, . (0\Byz _(0)

1 1
=¢ / 2P - Gro-a- e
B,(0)\Bu, . (0)

< O pPrN-B-(N+2-0),

Therefore

107 lim lim i 2% hz) + YD 2 gp — o,
1l,e £

p—0e—0 2
Bpklyg (0)\Bk% . (O)

From (104), (105), (106), (107) and Proposition (2) we then obtain (103).



HARDY-SCHRODINGER OPERATOR: COMPACTNESS AND MULTIPLICITY 33

Similarly with the pointwise control of Proposition (3) and by Proposition (2), we
get ase — 0

w2 (5)—pe N b0 )2
(108) / b(:c)|€||x|s de = Z 233322 | ||x|s dz + o(1).
B, (0\By _(0) = "
And using the condition (29) on b we obtain as ¢ — 0
2*(5)_175
—(2—0 Ue
(109) T B e i)
Bre (O\Byz (0)
Next, with a change of variable and the definition of v., we get
/ F.(z) do =
9B, (0)
\VO) 2 ~2 ) -9
rB+(N=A-() / (z,v) (| ;E| - % |ZTz> - <x16ﬂ75 + - > 175> 0,0, do
9B1(0)
(27 (8)=2) (=) 4B (Mpe | e
— pB+(MN=B-(7) / r2 h(r-z) u? — Te ( ’ ) |9c|? (e)=pe do
: c2 2%(s) = pe jz]°
0B1(0)

From the convergence result of Step 6.1 we then have as ¢ — 0

Byr(M=B_(7)
(110) / F.(z) do =0 (,uNﬁ 2 ) .

8B, (0)
Similarly we have
(111) / F.(z) do =0 (ﬂfvfg”)*ﬁ—(”) .
0By, . (0)

(I
Plugging (103), (108), (109) (110) and (111) into the Pohozaev identity (101) yields
ase — 0

_ 2—06 c 3
2 ( ) [ gy (1)
2 12 ||
N R™

2 ( o ) b))

2%(s) \ 2*(s) — pe

By ()=B_(7)
=0 MN,& : :

— dz + o(1)
i=1 tf*“)a“ B [=1°
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In case W > 2 — 6 and since ty # 0, we obtain that
a2
(112) i P :_<2—9> c  4(n—s) Bn
e—0 H?\;g 2 tz*TEs_)s—Z (n — 2)2 JXV: 5(0) |@; |2 (s)
i=1 t?*n:)—2 R lef?
This completes the proof of Proposition (4). O

As a by-product of Proposition (4) one obtains the compactness result for sign-
changing solutions.

Theorem 6.1. Let 2 be a smooth bounded domain of R™, n > 3, such that 0 € Q)

and assume that 0 < s < 2 and v < (”_42)2. Suppose that h(x) and b(x) satisfies

(28) and (29) respectively. Let (pe)eso be such that p. € [0,2*(s) —2) for alle >0

and lir%ps = 0. Consider a sequence of functions (uc)eso that is uniformly bounded
e—

in H}(Q) and satisfies the equation:
{ “Au— s e = b)) {o),
u = 0 on O0N.
Then the sequence (uc)eso s pre-compact in the H}(Q) if lii|11)10|m|9h(x) > 0 for
y< &2 —(2-0)%

Proof of Theorem (6.1): (uc), (pc), h(x) and b(z) be such that (E.), (27), (28),
(29) and (30) holds. Assume that blow-up occurs, that is

1. T oo == — .
61_I>r(1)|||x| Ue|| o (@) = +00 where S (’y)<T< 5

When ~ < {"=2° 2) — (2 — 6)?2, by Proposition (4) we have

lim ps __(2—0) ¢ 4(n-—s)
t

e—0 9 2 PRt (n—2 2 N = 12% (s)
,u ]2\{() 2 ) Z b(0) f |

|[*

2
| =25dx
=]

RTL

n—2
i=142"()=2 Rn
K

Since p. > 0 this a contradiction if ‘lilm |z|?h(x) = ¢ > 0. So blow-up (34) cannot
z|—0
occur in this case and by Proposition (1) we have up to a subsequence liII(l) Ue = Ug
e—

in H}(Q) where ug is as in (31). This completes the proof of Theorem (6.1). O

7. PROOF OF EXISTENCE AND MULTIPLICITY

We are now ready to prove Theorem (1.2). For each 2 < p < 2*(s), we consider
the C2-functional

1 1 [ b(a)|ul?
(113)  Tpqyn(u /|Vu|2dw—f de Q/hudx—f/ (x”f‘ da
Q

p |z|
Q
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on H}(Q), whose critical points are the weak solutions of

|a]*

(114)
u =0 on 0N.

{ —Au—#u—h(m)u = M@l

Recall that b(z) is a positive function in C*(Q) with 5(0) > 0 and Vb(0) = 0 and
while h(z) satisfies (28).

For a fixed u € H}(2), we have since

7/\2 u? )\2 / 5 AP [ b(z)|ulP
I / Vul?dx — 2— dz h(z)u® — = dx
vl ol T2 M Tl
that limity_,o0lp ,n(Au) = —00, which means that for each finite dimensional sub-
space By, C E := H}(Q), there exists Ry > 0 such that
(115) sup{I, n(u);u € Eg, |Ju|| > R} <0,

when p — 2*(s). Let (E%)%2, be an increasing sequence of subspaces of H{ ()
such that dim By, = k and U2 | By, = E := H}(Q2) and define the min-max values:

cp k= inf sup I, , n(9(x)),
9€Hy e E,

where
={g € C(E,E); gisodd and g(v) = v for ||v|| > Ry for some Ry, > 0}.

Proposition 5. With the above notation and assuming n > 3, we have:

(1) For each k €N, cpp >0 and lim ¢ = Cox () := Ci-
p—2*(s)

(2) If 2 < p < 2*(s), there exists for each k, functions u, € HE(Q) such that
Iz/),v<up,k) =0, and I, 5 p(Upk) = Cpic-

(3) For each 2 < p < 2*(s), we have ¢, > Dmpk%% where Dy, , > 0 is such
that hmp_)?(s) Dmp =0.

(4) lim Cr = lim Cox(s),k — +o0.
k— o0 k— o0 ’

Proof: First, note that since the operator —A — # — h(x) is coercive, we have
for some constant Ag > 0

2
(116) / (|vu|2 - f‘? — h(z)u ) dz > A0/|Vu|2 do for all u € HE(Q).
Q Q

Then in view of the Hardy-Sobolev inequalities, we have
AO p—2
Ipyn(u) = IIV 13 = ClIVully = [[Vul3 —CVul;™" ) Za >0,

provided ||ul/g1) = p for some p > 0 small enough. Then the S, = {u €
E; Hu||H1(Q) = p} must intersect every image g(FEx) by an odd continuous func-
tion g. It follows that

cpk > inf{Ip , n(u);u € S,} > a>0.
In view of (115), it follows that for each g € Hy, we have that

sup Ip, 4.n(g9(z)) = sup I, n(g())
rEFE} x€Dy,
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where Dy denotes the ball in Ej, of radius Ry. Consider now a sequence p; — 2*(s)
and note first that for each u € E, we have that I, , n(u) = Io«(s)4.n(u). Since
g(Dy) is compact and the family of functionals (I, 4,1 )p is equicontinuous, it follows

that sup I, ,(g(z)) = sup I« (s),4,n(9()), from which follows that limsup c,, x <
zEE) €N

Sélg Iy (5),4,n(g()). Smce thls holds for any g € Hy, it follows that
zEEy

limsup ¢,k < Cox (), = Ck-
€N
On the other hand, the function f(r) = 1rP — 2*1( )7“2*(3) attains its maximum on

[0,400) at r = 1 and therefore f(r) < 1% for all r > 0. It follows

o)

B b(x) 1 2% (s)
I (@) = () + [ 22 (Sju(@)l? = Sr<lu(@)* @) do
Q/ (s 2(5) )

< Ipoyn(u) + / Tff) (; - z*é)) o

from which follows that ¢ < lim Ii\lnf Cp, iy and claim (1) is proved.
1€

If now p < 2*(s), we are in the subcritical case, that is we have compactness in the
Sobolev embedding H}(Q) — LP(Q; |z|~*dx) and therefore I, ., has the Palais-
Smale condition. It is then standard to find critical points wu, j for I, ., at each
level ¢, i, (see for example the book [17]).

Consider now the functional

(117) Ip00(u /IV 1> de — - [ul? dz

Q |z[®

and its critical values

0
= inf sup [ .
= nE sup Iypolo(x))

It has been shown in [20] (for the case 0 € 9€2, but the same arguments work here)
that (1), (2) and (3) of Proposmon 5 hold, with c  and ) replacing ¢, j and ¢y,
respectively. In particular, khﬁnolo c,c = kl;ngo (32*(3)7,C ~+00.

On the other hand, note that

Ipon(u) > Ay 21, 00(v) for every u € Hi(Q),

where Ag is the coercivity constant from (116)and v = Ag P72 y. Tt then follows

that lim ¢ = hm cg*(g) r = Foo. O
k—o0

To complete the proof of Theorem (1.2), notice that since for each k, we have

lim I, yn(up, k) = lm ¢y, x = ¢k, it follows that the sequence (up, x); is
pi—2%(s) pi—2%(s)
uniformly bounded in Hg (£2). Moreover, since I, .0 (Up, k) = 0, it follows from the
compactness Theorem 6.1 that by letting p; — 2*(s), we get a solution uy of (12)

in such a way that Ip«(g) 4 p(ur) = lim I, p(upr) = lim ¢, x = cp. Since
o p—2*(s) p—2*(s)

the latter sequence goes to infinity, it follows that (12) has an infinite number of
critical levels. g
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8. APPENDIX: POHOZAEV IDENTITY

Let U C R™ be a smooth bounded domain and let u € C?(U). For any yo € R,
the classical Pohozaev identity yields

(118)
_/ ((az — o) Ou + n ; 2u> Au dr = / [(m _ yo,y)@ _ ((x )0+ n ; QU) &,u] oo,
U

ou

where v is the outer normal to the boundary OU.

One has for 1 < j <n and b€ C*(U)

|u|2*(5)_1) J}j 9% (g)— ‘u|2*(s)—2—p
O (b(m) = —sb(z) [u|* ©7P 4 (2% (s) — p)b(x) udju
! ||® |52 |[® !
‘u|2*(5)*17
0;b
+ EB ib()
So
|u|?"(5)—2-p 1 ‘u|2*(s)fp s |u‘2*(s),p
(z — yo, Vu) b(z) U= (x —y0)?0; | b(x)
af* 2(s) EE () —p " Jal?
. 1 2%(s)—p
- g Il O W o g

Then integration by parts gives us

|u|?" (5)—2-p

/(a: — Yo, Vu) b(x)Tu dzx = m /(m —10)70; (b(m)|u|2;(|ss)p> dx

U

s (2, Y0) 2% (s)—
b Pd
oErd AL L
U
1 |u|?" (5)—P
— b) d
2*(8)—])/ |J)|‘5 (SC yOav ) €z
U
n—s |u|2*(s)—p s / (2,90) o* (g}
== Y bl‘idl'—i bx’iu (s) pdl‘
o A o) —p ) a2
U U
1 / |u|?" (5)—P 1 |u|?" ()=
— - T — Yo, Vb dx+7/xfy,ybx7,da
T -p) Y AT g e T T

And similarly we obtain

U 1 . u? u? (33 ZUO)
— 4o, V) —= = —(x — 7o | — = ) 2
(@ =0, Vo) g = 3(= ~ o) J(|x|2)+|x|2 aft "
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u n—2 [ u? (x,90) o
- L LI d
[ oo P g de == 252 [ da [ S
U U

U

1 u?
+§/(.’I;_y0,y)w do
oUu

and

/(x — Yo, Vu) h(z)u de = — n /h(x)u2 dx — %/(Vh,a: — o) u? dx

2
U U U
+ % /(x — yo, V)h(z)u? do.
U
Combining, we obtain
(119)
i n—2 u |u|?" (5)=2-P
/ ((m —y0)'Oiu + 2u) (—Au - ’yW — hu — b(m)Tu dx
U
_ 2*(s)—p
— hqudx—f/Vh,a:— u? dr — L <n i )/bx|u|
e Vhr vl dr= 5 \sm =) ] " Tr
U U U
1 Juf* *)=» /(x,yo) 2
x ,Vb) dz — u“dx
o= e e [
U
_ S (33,310) 2*(s)—p
o AU
U
2 2 2% (s)—p
[ (I 2 b o) "
2 2 |z|? 2 2%(s)—p z|*
U
, n—2
—/ {((x—yo)z&-u—i— 5 u) &,u] do.
U
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