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The article presents a paradox in the foundation of transfinite mathematics. A paradox is set up using concepts within transfinite mathematics. The aim of the paper is to suggest a case for a critical examination of mathematical reasoning at the bounds of finitude rather than being just a critique of transfinite mathematics.

Introduction

This article sets up a paradox in the realm of the mathematical infinite. Latching on the machinery of transfinite mathematics, a proof is made to an effect that finds inconsistency with the bases of transfinite mathematics. This is done despite numerous warnings against such attempts. 1 Motivation comes from certain philosophical considerations of the infinite and the directions of critique of set-theoretic foundations of mathematics. 2 A general indication that our mathematical reasoning has certain bounds 3 is given as a conclusion, which is grounded in the specificity of the argument provided here that reveals a paradox.

Sets under consideration

P = { x | x is a prime number } N = { x | x is a natural number } Ep= { x | x = p n
where p is some element of P and n ε N } B = { x | x = Eν where ν ε P } Lemma 1. For any ν, Eν~ N.

Proof: A bijection from N to Eν is available in α(n) = ν n . This establishes the proposition of the lemma.

Some more sets

Using the above bijection, we partition Ep into two sets, Ep odd = { x | x = p (2n-1) } and Ep even = { x | x = p (2n) } Lemma 2. Ep odd ~ Ep even ~ N Proof: N ~ Ep odd and Ep even ~ N considering the functions β(n) = p (2n-1) and γ(n)= p (2n) . Since the relation here is an equivalence relation, we get the proposition of the lemma.

1 Warnings are given to the effect that beginners, students and cranks tend to make such mistakes when it comes to the unassailable truth of Cantor's great theorems. See [START_REF] Fraenkel | Abstract Set Theory[END_REF], [START_REF] Dudley | Mathematical Cranks[END_REF], Hodges (1998). 2 One such marked direction is in [START_REF] Weaver | Is Set Theory Indispensable?[END_REF]. 3 The philosophical perspective of this paper aligns with [START_REF] Priest | Beyond the Limits of Thought[END_REF], where paradoxes are located at the limits of thought.

Definition 1. Given any set F ~ N under some function δ(n) from N to F, we can partition F into F odd = {x | x = δ(2n-1)} and F even = { x | x = δ(2n)}. This principle of partition we shall call Part.OE. Definition 2. Given any set F ~ N under some function ε(n), we call a set S ⊂ F a 1st descendant of F if S is one of the partitions of the operations of Part.OE on F. Partitioning the 1st descendants of F with Part.OE would give the 2nd descendants of F. Generalizing, we define m th descendants as the sets that are results of partitioning the (m-1) th descendants of F, where m is the cardinality of some set M. Lemma 3. Given any denumerable set S which is an m th descendant of F, we can partition S to yield the (m+1) th descendants.

Proof: Since S is denumerable we can find a function ζ: N → S that indexes the elements of S. We can then partition S with Part.OE grouping elements of S indexed by odd numbers into one partition and those indexed by even numbers into another partition to yield the (m+1) th descendants.

Lemma 4. The descendants of F are all denumerable.

Proof: We shall prove lemma 4 by induction on the number of operations of Part.OE. 1st descendants of F are F odd = {x | x = δ(2n-1)} and F even = { x | x = δ(2n)}. Suppose one of them is finite, say F odd. The consequence of this supposition, taken with the supposition F ~ N, is that there is a greatest odd (2n-1). This has the further consequence that there is a greatest even 2n. These contradict with N being denumerable. Let the m th descendants of F be denumerable. Applying Part. OE on these descendants we get the (m+1) th descendants. If any one of them is finite, then we meet a difficulty as is faced in the base case. Hence, the proposition in lemma 4. Lemma 5. F can be denumerably partitioned with Part.OE.

Proof: From lemma 3 it follows that there are no finite bounds to partitioning F under Part.OE. Given any n ∊ N, we can find a corresponding descendant of F. If we define a set T to be the family of sets of partitions under each application of Part.OE, we can find a bijection from N to T. N ~ T. This means that F can be denumerably partitioned with Part.OE.

One more set. We consider one more set, O = { x | x is any denumerably partitioned descendant of any Eν ε B }. 

  Lemma 6. O is not finite, i.e., |O| ≥ |N| Proof: Let O be finite. Then, its cardinality |O| = n for some n ∊ N. Each partition of a set under Part.OE yields two sets. So, n=2 m for some finite number of application m of Part.OE. This contradicts with the construction of O as a set of denumerably partitioned descendant of the elements of B. Theorem: Cardinality of O is greater than cardinality of N i.e., |O| > |N|. Proof: By lemma 6, |O| ≥ |N|. Let there be a bijection between N and O so that O ~ N or |O| = |N|. We choose any o ∊ O. By lemma 4, o is denumerable. By Lemma 3, o can be further partitioned to get descendants which escape the assumed bijection. Our assumption is thus defeated. Therefore, |O| > |N|. Conclusion: Choosing the least element of each disjoint o ∊ O, we create a set C. It is evident that C = P. It follows that C ⊆ N, which means that |C| ≤ |N|. But it is clear from the construction of C that C ~ O. We then have a paradox where |O| > |N| and |O| ≤ |N|. This paradox, more than being a critique of the foundations of transfinite mathematics, should rather inform the need to rethink the nature of paradoxes and their interpretation in the context of mathematical reasoning.