
HAL Id: hal-01770408
https://hal.science/hal-01770408v1

Preprint submitted on 19 Apr 2018 (v1), last revised 28 Nov 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Gröbner basis computation and polynomial
reduction for generic bivariate ideals

Joris van der Hoeven, Robin Larrieu

To cite this version:
Joris van der Hoeven, Robin Larrieu. Fast Gröbner basis computation and polynomial reduction for
generic bivariate ideals. 2018. �hal-01770408v1�

https://hal.science/hal-01770408v1
https://hal.archives-ouvertes.fr

Fast Gröbner basis computation and
polynomial reduction for generic bivariate ideals

JORIS VAN DER HOEVENa, ROBIN LARRIEUb

Laboratoire d'informatique de l'École polytechnique
LIX, UMR 7161 CNRS

Campus de l'École polytechnique
1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
a. Email: vdhoeven@lix.polytechnique.fr
b. Email: larrieu@lix.polytechnique.fr

Preliminary version of April 19, 2018

Let A,B∈𝕂[X,Y] be two bivariate polynomials over an effective field 𝕂, and let G be the reduced
Gröbner basis of the ideal I ≔ ⟨A, B⟩ generated by A and B with respect to the usual degree
lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm
for the reduction of P ∈ 𝕂[X, Y] modulo G, where “quasi-optimal” is meant in terms of the size
of the input A, B, P. Immediate applications are an ideal membership test and a multiplication
algorithm for the quotient algebra 𝔸 ≔ 𝕂[X, Y]/⟨A, B⟩, both in quasi-linear time. Moreover, we
show that G itself can be computed in quasi-linear time with respect to the output size.

1. INTRODUCTION

Gröbner bases, also known as standard bases, are a powerful tool for solving systems of polyno-
mial equations, or to compute modulo polynomial ideals. The research area dedicated to their
computation is very active, and there is an abundant literature on efficient algorithms for this task.
See for example [5, 6, 8] and references therein. Although this problem requires exponential space
in the worst case [21], it is in fact tractable for many practical instances. For example, computer
algebra systems often implement Faugère's F5 algorithm [6] that is very efficient if the system has
sufficient regularity. In this case, a polynomial complexity bound (counting the number of field
operations in terms of the expected output size) was established in [1].

The F5 algorithm and all other currently known fast algorithms for Gröbner basis computa-
tions rely on linear algebra, and it may seem surprising that fast FFT-based polynomial arithmetic
is not used in this area. This can be seen as an illustration of how difficult it is to compute standard
bases, but there is another explanation: traditionnally, Gröbner basis algorithms consider a large
number of variables and the degree of the generating polynomials is kept small; but fast polyno-
mial arithmetic works best in the opposite regime (a fixed number of variables and large degrees).
Even in this setting, it is not clear how to use FFT techniques for Gröbner basis computation. As
a first step, one may consider related problems, such as the reduction of multivariate polyno-
mials. It was shown in [16] that reduction can be done in quasi-linear time with respect to the size
of the equation P=Q0 G0+⋯+Qn Gn+R. However, this equation is in general much larger than
the intrinsic complexity of the problem, given by the size of P and the degree D of the ideal (which
is linked to the size of the generating polynomials). Recent work in the bivariate setting [17]

1

gave an asymptotically optimal reduction algorithm for a particular class of Gröbner bases. This
algorithm relies on a terse representation of G≔(G0,…,Gn) in Õ(D) space, where Õ stands for the
“soft Oh” notation (that hides poly-logarithmic factors) [11]. Assuming that this representation
has been precomputed, the extended reduction can be performed in time Õ(|P| + D), instead of
the previous Õ(|P|+ |G|) where |G|=Θ(nD).

Instead of making regularity assumptions on the Gröbner basis itself, one may focus on the
generating polynomials. If the ideal is defined by generic polynomials given in total degree, then
the Gröbner basis presents a particular structure, as studied for example in [10, 22]. This situation
is often used as a benchmark for polynomial system solving: see the PoSSo problem [7]. In this
paper, we restrict ourselves to the bivariate case, as studied for example in [20]. In what follows,
A,B∈𝕂[X,Y] are generic polynomials of degree n,m respectively. We denote by ⟨A,B⟩ the ideal
they generate, and we consider its Gröbner basis with respect to the graded lexicographic order.
The computation of such a basis is classical, but the hypotheses from [17] are not satisfied. How-
ever, we show in this paper that a similar terse representation does exist in this case. Therefore,
reduction in quasi-linear time remains possible, and it even turns out that the suitable represen-
tation can be computed in time Õ(D) from the input A, B. Combining these two algorithms, we
obtain an ideal membership test P ∈? ⟨A, B⟩ in quasi-linear time Õ(|P| + D), without any precom-
putation. Similarly, there is a quasi-linear multiplication algorithm for 𝔸≔𝕂[X,Y]/⟨A,B⟩ (again
without precomputation). Finally, we show that the reduced Gröbner basis can be computed in
quasi-linear time with respect to the output size.

Notations and terminology. We assume that the reader is familiar with the theory of Gröbner
basis and refer to [11, 2] for basic expositions. We denote the set of monomials in r variables by
ℳ ≔ X1

ℕ ⋯ Xr
ℕ = {X1

i1 ⋯ Xr
ir: i1, …, ir ∈ ℕ}. A monomial ordering ≺ on ℳ is a total ordering

that is compatible with multiplication. Given a polynomial in r variables P = ∑M∈ℳ PM M ∈
𝕂[X1, …, Xr], its support supp P is the set of monomials M ∈ ℳ with PM ≠ 0. If P ≠ 0, then supp P
admits a maximal element for ≺ that is called its leading monomial and that we denote by lm(P).
If M ∈suppP, then we say that PM M is a term in P. Given a tuple A=(A0,…,An) of polynomials
in 𝕂[X1, …, Xr], we say that P is reduced with respect to A if supp P contains no monomial that is
a multiple of the leading monomial of one of the Ai.

Unless stated otherwise, we will always work in the bivariate setting when r = 2, and
use X and Y as our main indeterminates instead of X1 and X2. In particular, ℳ ≔ Xℕ Yℕ =
{Xa Y b : a,b∈ℕ}. Moreover, we only consider the usual degree lexicographic order with X ≺Y,
that is

Xa Yb ≺XuYv ⇔a+b<u+v or (a+b=u+v and b<v).

2. PRESENTATION OF THE SETTING

We consider an ideal I ⊂ 𝕂[X, Y] generated by two generic polynomials A, B of total degree
n, m and we assume n ⩽ m. Here the adjective “generic” should be understood as “no acci-
dental cancellation occurs during the computation”. This is typically the case if A, B are chosen
at random: assuming 𝕂 has sufficiently many elements, the probability of an accidental cancel-
lation is small. In this generic bivariate setting, it is well known that the reduced Gröbner basis
Gred =(G0

red,…,Gn
red) of I with respect to ≺ can essentially be computed as follows:

• G0
red ≔A, G1

red ≔B remA.

• Gi
red ≔Spol(Gi−2

red,Gi−1
red) rem(G0

red,…,Gi−1
red) for all i∈[2,…,n].

2 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

Remark 1. For simplicity we neglected technical details to actually have the reduced Gröbner
basis. First, one should set G1

red ≔ B rem A, G0
red ≔ A rem G1

red to ensure that no term in G0
red is

divisible by the leading term of G1
red (which may happen if n = m). Moreover, elements of the

reduced basis must be monic; this means a division by the leading coefficient is missing in the
given formulas.

We will show next how to construct another (non-reduced) Gröbner basis G=(G0,…,Gn) with
even simpler recurrence relations. Based on these recurrence relations, we will design a variant
of the algorithm from [17] that computes the reduction modulo G in quasi-linear time.

DEFINITION 2. For a polynomial P = ∑ Pi, j X i Y j ∈ 𝕂[X, Y] of total degree d, we define its dominant
diagonal Diag(P)∈𝕂[Z] by Diag(P)=∑j⩽d Pd− j, j Z j.

We have the trivial properties that Diag(X P) = Diag(P) and Diag(Y P) = Z Diag(P). For
generic A and B, the diagonals Diag(A) and Diag(B) are also generic. Then the remainders during
the Euclidean algorithm follow a normal sequence (that is the degrees decrease by exactly 1 at
each step).

Remark 3. When we say “A, B are generic”, we actually make two assumptions. The first one is
that the remainders follow a normal sequence as we just mentioned. The second one is simply
that the coefficient of Yn in A is nonzero, so that Yn is the leading monomial of A.

Let us consider the sequence G0,…,Gn defined as:

• G0 ≔A, G1≔B remA,

• Gi ≔Xdi Gi−2− (ui Y +wi X)Gi−1 for all i∈[2,…,n] where (with the notation Di ≔Diag(Gi))

ui Z+wi ≔Di−2 quoDi−1, and di ≔{{{{{{{{{{{{{{{{{{{{{{{{ m−n+1 if i=2
2 if i>2 .

Let us first notice that the term Xdi Gi−2 − ui Y Gi−1 corresponds to the S-polynomial of Gi−2 and
Gi−1, as in the classical Buchberger algorithm [3]. We observe next that D1=Diag(B)remDiag(A),
and for i ⩾ 2, Di = Di−2 rem Di−1, so that the diagonals are the successive remainders in the
Euclidean algorithm (hence the quotients of degree 1). From these two facts, we deduce that
the Gi have the same leading monomials as the Gi

red, so G ≔ (G0, …, Gn) is a Gröbner basis of
⟨A, B⟩ with respect to ≺. Of course, any P ∈ 𝕂[X, Y] has the same normal form with respect
to G and Gred.

With this construction, it is easy to deduce higher order recurrence relations Gi+k = Ui,k Gi +
Vi,k Gi+1 for each i, k (with i + k ⩽ n). As we will see in section 4, the polynomials Ui,k and Vi,k
have a size that can be controlled as a function of i, k. More precisely, they are homogeneous
polynomials of degree roughly k.

3. ALGORITHMIC PREREQUISITES

In this section, we quickly review some basic complexities for fundamental operations on polyno-
mials over a field 𝕂. Notice that results presented in this section are not specific to the bivariate
case. Running times will always be measured in terms of the required number of field operations
in 𝕂.

JORIS VAN DER HOEVEN, ROBIN LARRIEU 3

3.1. Polynomial multiplication
We denote byM(d) the cost of multiplying two dense univariate polynomials of degree d in 𝕂[X].
Over general fields, one may take [24, 23, 4]

M(d)=O(d logd log logd).
In the case of fields of positive characteristic, one may even take M(d) = O�d log d 4log∗ d�, where
log∗d denotes the iterated logarithm [13, 14]. We make the customary assumptions that Μ(d)/d is
increasing and that M(2d)=O(M(d)), with the usual implications, such as Μ(d)+Μ(e)�Μ(d+ e).

For multivariate polynomials, the cost of multiplication depends on the geometry of the sup-
port. The classical example involves dense “block” polynomials in 𝕂[X1,…,Xr] of degree <di
in each variable Xi. This case can be reduced to multiplication of univariate polynomials of
degree <2r−1d1⋯dr using the well known technique of Kronecker substitution [11]. More gen-
erally, for polynomials such that the support of the product is included in an initial segment
with d elements, it is possible to compute the product in time O(M(d)) [18]. Here an initial seg-
ment of ℳ is a (finite) subset 𝒮 such that for any monomial M ∈𝒮, all its divisors are again in 𝒮.

For the purpose of this paper, we need to consider dense polynomials P in 𝕂[X,Y] whose
supports are contained in sets of the form Sl,h ≔ {M ∈ ℳ: l ⩽ deg M < h}. Modulo the change of
variables X a Y b →T a+b Ub, such a polynomial can be rewritten as P(X,Y)=T l P̃(T,U), where the
support of P̃ is an initial segment with the same size as Sl,h. For a product of two polynomials
of this type with a support of size d, this means that the product can again be computed in time
O(M(d)).

3.2. Relaxed multiplication
For the above polynomial multiplication algorithms, we assume that the input polynomials are
entirely given from the outset. In specific settings, the input polynomials may be only partially
known at some point, and it can be interesting to anticipate the computation of the partial output.
This is particularly true when working with (truncated) formal power series f = f0 + f1 z + ⋯ ∈
𝕂[[z]] instead of polynomials, where it is common that the coefficients are given as a stream.

In this so-called “relaxed (or online) computation model”, the coefficient (f g)d of a product of
two series f ,g∈𝕂[[z]] must be output as soon as f0,…, fd and g0,…,gd are known. This model has
the advantage that subsequent coefficients fd+1, fd+2, … and gd+1,gd+2,… are allowed to depend
on the result (f g)d. This often allows us to solve equations involving power series f by rewriting
them into recursive equations of the form f = Φ(f), with the property that the coefficient Φ(f)d+1
only depends on earlier coefficients f0,…, fd for all d. For instance, in order to invert a power series
of the form 1 + z g with g ∈ 𝕂[[z]], we may take Φ(f) = 1 − z f g. Similarly, if 𝕂 has characteristic
zero, then the exponential of a power series g ∈ 𝕂[[z]] with g0 = 0 can be computed by taking
Φ(f)=1+∫ f g′.

From a complexity point of view, let R(d) denote the cost of the relaxed multiplication of two
polynomials of degree <d. The relaxed model prevents us from directly using fast “zealous” mul-
tiplication algorithms from the previous section that are typically based on FFT-multiplication.
Fortunately, it was shown in [15, 9] that

R(d)=O(M(d) logd). (1)

This relaxed multiplication algorithm admits the advantage that it may use any zealous multipli-
cation as a black box. Through the direct use of FFT-based techniques, the following bound has
also been established in [19]:

R(d)=d logdeO� log log d� �.

4 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

In the sequel, we will only use a suitable multivariate generalization of the algorithm from [15, 9],
so we will always assume that

R(d)≍M(d) logd.
In particular, we have R(d)+R(e)⩽R(d+ e).

3.3. Polynomial reduction
Let us now consider a Gröbner basis of an ideal in 𝕂[X1, …, Xr], or, more generally, an auto-
reduced tuple A = (A0, …, An) of polynomials in 𝕂[X1, …, Xr]. Then for any P ∈ 𝕂[X1, …, Xr], we
may compute a relation

P=Q0 A0+⋯+Qn An +R

such that R is reduced with respect to A. We call (Q0, …, Qn, R) an extended reduction of P with
respect to A.

The computation of such an extended reduction is a good example of a problem that can be
solved efficiently using relaxed multiplication and recursive equations. For a multivariate poly-
nomial T with dense support of any of the types discussed in section 3.1, let |T| denote a bound for
the size of its support. With R(d) as in (1), it has been shown1 in [16] that the quotients Q0,…,Qn
and the remainder R can be computed in time

R(|Q0 A0|)+⋯+R(|Qn An|)+O(|R|). (2)

This implies in particular that the extended reduction can be computed in quasi-linear time in the
size of the equation P = Q0 A0 + ⋯ + Qn An + R. However, as pointed out in the introduction, this
equation is in general much larger than the input polynomial P.

Extended reductions (Q0,…,Qn,R) are far from being unique (only R is unique, and only if A
is a Gröbner basis). The algorithm from [16] for the computation of an extended reduction relies
on a selection strategy that uniquely determines the quotients. More precisely, for every monomial
M ∈ℳ , we define the set ℐM ≔{i∈{0,…,n}: lm(Ai) |M}; then we need a rule to chose a particular
index iM ∈ℐM (assuming ℐM is non-empty). The initial formulation [16] used the simplest such
strategy by taking iM = min ℐM, but the complexity bound (2) holds for any selection strategy.
Now the total size of all quotients Q0,…,Qn may be much larger than the size of P for a general
selection strategy. One of the key ingredients of the fast reduction algorithm in this paper is the
careful design of a “dichotomic selection strategy” that enables us to control the degrees of the
quotients.

Remark 4. The notion of selection strategy is somewhat similar to the concept of involutive division
introduced for the theory of involutive bases [12], although our definition is more permissive.

4. CONCISE REPRESENTATION FOR GRÖBNER BASES

The ideal ⟨A, B⟩ has a degree D ≔ n m, and the reduced Gröbner basis Gr takes space Θ(n D).
This overhead compared to D can be reduced: it was shown in [17] that special bases called
vanilla Gröbner bases admit a terse representation in space Õ(D) that allow for efficient reduc-
tion. Obtaining such a terse representation can be expensive, even if the Gröbner basis is known,
but this can be seen as a precomputation. However, for the graded lexicographic order, neither
Gr nor G are vanilla, so the results from [17] do not apply. Nevertheless, we show in this section
that G does admit a concise representation which is analogous to the concept of terse represen-
tation. This representation is compatible with a new reduction algorithm detailed in section 5,
and it turns out that it can even be computed in time Õ(D) from the input A,B.

1. The results from [16] actually apply for more general types of supports, but this will not be needed in this paper.

JORIS VAN DER HOEVEN, ROBIN LARRIEU 5

4.1. Definition
As detailled in section 2, the basis G is constructed such that there are recurrence relations of the
form Gi+k = Ui,k Gi + Vi,k Gi+1 for each i,k (with i + k ⩽ n). Equivalently, it is more convenient to
write this in matrix notation

((((((((((((Gi+k
Gi+k+1))))))))))))=Mi,k((((((((((((Gi

Gi+1)))))))))))) (3)

(where we set Gn+1 ≔ 0 to avoid case distinction). This matrix notation has the advantage that
the Mi,k can be computed from one another using Mi,k+ℓ = Mi+k,ℓ Mi,k. Moreover, the size of the
coefficients of the Mi,k can be controlled as a function of i,k.

DEFINITION 5. For each i ∈ {2, …, n}, let ui Z + vi ≔ Di−2 quo Di−1 be the successive quotients in the
euclidean algorithm for the dominant diagonals D0≔Diag(G0) and D1≔Diag(G1) (as in section 2). For
each i,k with i+k⩽n, define the matrix Mi,k by

M0,1 ≔ ((((((((((((((
0 1

Xm−n+1 −u2 Y −v2 X)))))))))))))),

Mi,1 ≔ ((((((((((((((
0 1

X2 −ui+2 Y −vi+2 X)))))))))))))), for 0< i<n−1,

Mn−1,1 ≔ ((((((((((((0 1
0 0)))))))))))),

Mi,k+1 ≔ Mi+k,1 Mi,k.

PROPOSITION 6. Let the matrices Mi,k be as in Definition 5. For all i,k with i+ k⩽n, we then have

((((((((((((Gi+k
Gi+k+1))))))))))))=Mi,k((((((((((((Gi

Gi+1)))))))))))).

Also, Mi,k+ℓ=Mi+k,ℓMi,k for all i,k, ℓ with i+k+ℓ⩽n.
Now consider the polynomials Ui,k,Vi,k, Ũi,k, Ṽi,k such that

Mi,k =((((((((((((((
Ui,k Vi,k
Ũi,k Ṽi,k)))))))))))))).

With the convention that the zero polynomial is homogeneous of any degree, we have

• For all i, Vi,k is homogeneous of degree k−1 and Ṽi,k is homogeneous of degree k.

• U0,k is homogeneous of degree m−n−1+k and Ũ0,k is homogeneous of degree m−n+k.

• For all i⩾1, Ui,k is homogeneous of degree k and Ũi,k is homogeneous of degree k+1.

Proof. This is an immediate induction on k using Mi,k+1 =Mi+k,1 Mi,k. □

As in [17], we use a dichotomic selection strategy to control the degrees of the quotients in the
extended reduction, together with rewriting rules to evaluate the combination Q0 G0+⋯+Qn Gn.
Then it is sufficient to know enough head terms of each Gi to compute the reduction. Finally,
we observe that if Gi and Gi+1 are known with sufficient precision, then Gi+k and Gi+k+1 can be
computed with the same precision using the relation (3) above. More formally, we define the
precision as follows:

6 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

DEFINITION 7. Given a polynomial P∈𝕂[X,Y], we define its upper truncation with precision p as the
polynomial P#=𝜋p

#(P) such that

• P#∈⟨X,Y⟩deg P−p;

• deg(P−P#)<degP−p.

In other words, P and P# have the same terms of degree at least degP−p, but all terms of P# of degree less
than degP−p are zero.

With the dichotomic selection strategy that we plan to use, we have deg Qi < 3 × 2val2(i) for
0< i<n, so it is a priori sufficient to compute Gi with this precision. However, the rewriting rules
between the Gi involve two consecutive elements, so that G2 j and G2 j+1 need to be known with
the same precision.

DEFINITION 8. The concise representation of G=(G0,…,Gn) consists of the following data:

• The sequence of truncated elements G0
#,…,Gn

#, where

∘ for i∈{0,1,n}, Gi
#≔Gi;

∘ for all other i, Gi
#≔𝜋3×2v(i)

(Gi), with the notation v(i)≔max(val2 i, val2(i−1));

• The collection of rewriting matrices ℳ𝜆 for each 𝜆 ∈ {0, …, ⌈log2 n⌉} where the notation ℳ𝜆 is
defined as follows: with the matrices Mi,k as in Definition 5, we set

ℳ𝜆≔(M0,2𝜆,M2𝜆,2𝜆,…,M2𝜆q,r),

with q≔(n−1)quo2𝜆 and r≔(n−1) rem2𝜆+1.

As expected, the concise representation requires quasi-linear space with respect to the degree
of the ideal.

PROPOSITION 9. The concise representation requires space O(nm logn).

Proof. It is easy to see that Gi has degree at most n+ i⩽2 n in the variable Y, and at most m+ i⩽2 m
in the variable X and in total degree. Then for i ∈ {0, 1, n}, each non-truncated element Gi

≔ Gi
takes O(n m) space. Similarly, for 1 < i < n, each truncated element Gi

requires O(m 2v(i)) space.
For each 𝜆 ∈ {1, …, ⌈log2 n⌉}, there are roughly 2 n/2𝜆 indices i such that v(i) = 𝜆, so all elements
together require O(mn logn) space.

There are ⌈n/2𝜆⌉ elements in ℳ𝜆, each consisting of four homogeneous polynomials of degree
roughly 2𝜆 (by Proposition 6), except for M0,2𝜆 that has two polynomial entries of degree roughly
2𝜆 and two entries of degree roughly m−n+2𝜆. Hence ℳ𝜆 requires O(m) space and the collection
of all ℳ𝜆 takes O(m logn) space. □

4.2. Computation
The definition of the concise representation as above is constructive, but the order of the computa-
tion must be carefully chosen to achieve the expected quasi-linear complexity. First, by exploiting
the recurrence relations Mi,k+ℓ = Mi+k,ℓ Mi,k, it is easy to compute ℳ𝜆+1 from ℳ𝜆 using the fol-
lowing auxilliary function:

JORIS VAN DER HOEVEN, ROBIN LARRIEU 7

Algorithm 1
Input: ℳ𝜆 as in Definition 8.
Output: ℳ𝜆+1 as in Definition 8.

Set L≔#ℳ𝜆.
For each j<Lquo2:

Set (ℳ𝜆+1)j ≔(ℳ𝜆)2 j+1(ℳ𝜆)2 j.
If L rem2=1:

Set (ℳ𝜆+1)Lquo2≔(ℳ𝜆)L−1.
Return ℳ𝜆+1.

LEMMA 10. Algorithm 1 is correct and takes time O(M(m)).

Proof. Recall that Mi,k+ℓ = Mi+k,ℓ Mi,k for all i, k, ℓ with i + k + ℓ ⩽ n. In particular, taking k = ℓ = 2𝜆

shows that (ℳ𝜆+1)j = (ℳ𝜆)2 j+1 (ℳ𝜆)2 j if 2 j + 1 < L − 1. Concerning the last element of ℳ𝜆+1 (that
is, j=Lquo2−1 if L is even, j=Lquo2 otherwise), define

q ≔ (n−1)quo2𝜆,
r ≔ (n−1)rem2𝜆 +1,

q′ ≔ (n−1)quo2𝜆+1,
r′ ≔ (n−1)rem2𝜆+1+1.

If L rem2=0, then q is odd, that is q′=(q−1)/2 and r′= r+2𝜆, so that M2𝜆+1q′,r′ =M2𝜆q,r M2𝜆(q−1),2𝜆

is indeed the product of the last two elements of ℳ𝜆. Conversely if L rem2=1, then q′=q/2 and
r′= r so that ℳ𝜆 and ℳ𝜆+1 have the same last element.

The complexity bound is obtained with the same argument as for Proposition 9. □

The algorithm to compute the concise representation can be decomposed in three steps. First a
euclidean algorithm gives recurrence relations of order 1. A second elementary step is to deduce
higher order relations by the above algorithm. Finally, one has to compute the truncated basis
elements Gi

#. Starting with those of highest precision avoids computing unnecessary terms, so
that quasi-linear complexity can be achieved.

Algorithm 2
Input: (A,B), two generic bivariate polynomials of total degrees n and m with n⩽m.
Output: (G#,ℳ), the concise representation of a Gröbner basis of I ≔⟨A,B⟩ with respect to ≺.

Set G0
≔A and G1

#≔B remA.
Set D0≔Diag(G0

#) and D1 ≔Diag(G1
#).

For each i∈{2,…,n}:
Set Di ≔Di−2remDi−1 and ui Z+vi ≔Di−2quoDi−1. // Fail if the quotient has degree >1
If i=2, then set di ≔m−n+1, otherwise set di ≔2.

Set Mi−2,1≔((((((((((((((
0 1

Xdi −ui Y −vi X)))))))))))))).

Set Mn−1,1 ≔((((((((((((0 1
0 0)))))))))))) and ℳ0≔(M0,1,…,Mn−1,1).

For each 𝜆∈{0,…,⌈log2 n⌉−1}:
Compute ℳ𝜆+1 from ℳ𝜆 using Algorithm 1.

Compute ((((((((((((((Gn
#

0))))))))))))))≔M0,n(((((((((((((((((
G0

#

G1
))))))))))))))))). // use ℳ ⌈log2 n⌉=(M0,n)

8 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

For each 𝜆∈{⌈log2 n⌉−1,…,1}:
For each i∈{2,…,n−1} with irem2𝜆+1 =2𝜆, set // Use ℳ𝜆 =(M0,2𝜆,M2𝜆,2𝜆,…,)

(((((((((((((((((
Gi

#

Gi+1
)))))))))))))))))≔𝜋3×2𝜆

(((((((((((((((((Mi−2𝜆,2𝜆(((((((((((((((((
Gi−2𝜆

#

Gi−2𝜆+1
)))))))))))))))))))))))))))))))))).

Return G# ≔(G0
#,…,Gn

#) and (ℳ0,…,ℳ ⌈log2 n⌉).

THEOREM 11. Algorithm 2 is correct and takes time O(R(m2)+M(nm) log(n))

Proof. The reduction G1
≔ B rem A can be done in a relaxed way at a cost of O(R(m2)). The first

loop is clearly correct and each step requires O(M(n)) operations. Alternatively, all the successive
quotients can be computed with a fast Euclidean algorithm (see for example [11]) at a cost of
O(M(n) logn) operations.

In the last loop on 𝜆, since the precision decreases at each step and since there is no accidental
cancellation, the invariant

(((((((((((((((((
Gi

#

Gi+1
)))))))))))))))))=𝜋3×2𝜆

((((((((((((Gi
Gi+1)))))))))))) for all i with i rem2𝜆+1 =2𝜆

holds. Indeed, regarding upper truncations, it is clear that 𝜋u
#(P Q)=𝜋u

#(𝜋v
#(P) Q) as soon as u⩽v.

Then we have (handle the case i=2𝜆 separately)

𝜋3×2𝜆
(((((((((((((((((Mi−2𝜆,2𝜆 (((((((((((((((((

Gi−2𝜆
#

Gi−2𝜆+1
))))))))))))))))))))))))))))))))))=𝜋3×2𝜆

((((((((((((Mi−2𝜆,2𝜆 ((((((((((((Gi−2𝜆

Gi−2𝜆+1)))))))))))))))))))))))),

which proves the correctness. Let us now evaluate the complexity of this loop. For each index
i such that i rem 2𝜆+1 = 2𝜆, we have to estimate the support of Gj

and Gj+1
(where j ≔ i − 2𝜆). For

i=2𝜆, Gj
and Gj+1

are completely known, with a support of size O(mn). In all other cases Gj
and

Gj+1
are upper truncations, with a support of size O(m 2𝜆). Consequently, each iteration of the

loop requires O(M(nm)) operations. □

5. FAST REDUCTION ALGORITHM

In this section, we present a variant of the algorithm from [17] that performs the reduction in
quasi-linear time using the concise representation of G. The general idea is the same: reduce
modulo the truncated basis to compute the quotients faster, and to compute the remainder, use
the recurrence relations to maintain sufficient precision. However, crucial differences with the
setting of vanilla Gröbner bases from [17] make the new reduction algorithm more cumbersome.

5.1. General idea
To understand the difficulties we have to overcome in this section, let us recall how reduction
algorithms work. Say that P is to be reduced modulo G; then the most common way is to succes-
sively reduce the terms of P in decreasing order with respect to the relevant monomial ordering.
This is in particular how the relaxed algorithm from section 3.3 works (see [16] for the details).
If we decompose the set of all monomials into slices of constant degree, we see that the different
slices are handled one after the other (starting with those of highest degrees).

JORIS VAN DER HOEVEN, ROBIN LARRIEU 9

In the setting of vanilla Gröbner bases from [17], these slices are roughly parallel to the
Gröbner stairs. This implies that the quotients with respect to the truncated basis G# are also
valid with respect to the full basis G (under the assumption that the degrees of the quotients
are controlled, and that each Gi

is known with the appropriate precision). Then the reduction
algorithm decomposes in two phases:

1. Compute the quotients Q0, …, Qn by reducing modulo G#. Here the speedup comes from
the fact that the equation

P=Q0 G0
+⋯+QnGn

+R#

is much smaller (in terms of the number of coefficients) than the equation

P=Q0G0+⋯+QnGn+R. (4)

2. Rewrite equation (4) to compute the remainder R. First, find new quotients S0, S1, Sn such
that

S0G0+S1G1+SnGn=Q0 G0+⋯+Qn Gn,

then compute R as

R≔P−S0G0−S1G1−SnGn. (5)

As we said earlier, Gröbner bases in the setting of this paper are not vanilla. In particular, the
slices of constant degree are not parallel to the Gröbner stairs: the former have a slope of −1,
while the latter have a slope of −1/2. For this reason, even with the bound on the degree of the
Qi, there are terms of Qi (Gi −Gi

#) that are not in normal form with respect to G. This implies that
the quotients with respect to G# are not valid with respect to G. To maintain sufficient precision to
compute the remainder, the two phases must be merged, and equation (4) is rewritten “on the fly”
during the reduction algorithm. More precisely, as soon as the quotient Qj is known, the product
Qj Gj is replaced by some Si Gi +Si+1 Gi+1, where Gi,Gi+1 are known with precision larger than Gj.

5.2. Dichotomic selection strategy
To control the degrees of the quotients, we use a dichotomic selection strategy as presented in
Figure 1. The idea is to reduce each monomial preferably against one end of the Gröbner basis
(G0 or Gn), or the Gi where i has the highest valuation. To describe the reduction algorithm, it is
convenient to introduce the function ΦG (depending on the leading terms of the Gi) defined as
follows:

ΦG(t)≔

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{
{
{ (0, t/lt(G0)) If lt(G0)divides t

(n, t/lt(Gn)) If lt(Gn)divides t (and lt(G0) does not)
(i, t/lt(Gi)) If lt(Gi)divides t with val2(i) maximal
(−1, t) If no lt(Gi) divides t

Notice that this definition is non-ambiguous: there is only one index i with val2(i) maximal such
that lt(Gi) divides t. Indeed, if i < j have the same valuation 𝜆, then there is some k with i < k < j
and val2 k>𝜆. Moreover, if lt(Gi) and lt(Gj) both divide t, then so does lt(Gk).

Intuitively, if ΦG(t)=(i, t′), then the term t is reduced against Gi and leads to the term t′ in Qi.
The case i=−1 corresponds to monomials that are already in normal form with respect to G.

10 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

Figure 1. The dichotomic selection strategy (n = m = 10): monomials falling in each area are reduced against
the corresponding basis element.

LEMMA 12. Let (i, t′)≔ΦG(t). If 0< i<n, then deg(t′)<3×2val2(i) −1.

Proof. Let X a Yb ≔ t′, and denote ℓ≔2val2 i. Then we observe that b<ℓ: if not, then lt(Gi−ℓ) would
divide t, whereas val2 (i − ℓ) > val2 i. A similar reasoning with Gi+ℓ (or Gn, whenever i + ℓ > n)
shows that a<2ℓ. □

5.3. Reduction algorithm
Recall that Definition 5 gives recurrence relations between the Gi: for any indices i,k with i+k⩽n,
we have

((((((((((((Gi+k
Gi+k+1))))))))))))=Mi,k((((((((((((Gi

Gi+1)))))))))))). (6)

This allows for substitutions in the expression P = Q0 G0 + ⋯ + Qn Gn + R that are analogous
to those used in the reduction algorithm from [17]. In our setting, the substitutions used in the
reduction algorithm are based on the following result:

LEMMA 13. Let G0, …, Gn be a Gröbner basis with recurrence relations defined by the matrices Mi,k as in
Definition 5 (for all indices i,k such that i+k⩽n). Given quotients Qi+k,Qi+k+1 define

(Si,Si+1)≔(Qi+k,Qi+k+1)Mi,k.
Then we have

Si Gi +Si+1Gi+1 =Qi+k Gi+k +Qi+k+1Gi+k+1. (7)

Assume now that 𝜆 is such that Qi+k,Qi+k+1 have degree less than 3×2𝜆−1 −1 and k<2𝜆. Then:

• If i>0, then Si,Si+1 have degree less than 3×2𝜆 −1 and can be computed in time O(M(4𝜆)).
• If i = 0, then deg(Si) < m − n + 3 × 2𝜆, deg(Si+1) < 3 × 2𝜆 − 1 and they can be computed in time

O(M((m−n)2𝜆 +4𝜆)).

Proof. Equation (7) is an immediate consequence of the recurrence relations (6) between the Gi.
Similarly, the bounds on degSi are consequences of the degree bounds from Proposition 6. □

We can now adapt the extended reduction algorithm from [16] to perform these replacements
during the computation.

JORIS VAN DER HOEVEN, ROBIN LARRIEU 11

Algorithm 3
Input: (P,G#,ℳ), where P is a bivariate polynomial of degree d, and (G#,ℳ) is the concise repre-
sentation of a Gröbner basis G (as in Definition 8).
Output: (Q0,…,Qn,R), the extended reduction of P with respect to G.

Set (Q0,…,Qn)≔(0,…,0)
Set (S0,…,Sn)≔(0,…,0) // new quotients after substitutions as in Lemma 13
Set Psubs ≔P and ℐ ≔{i⩽n: deg(Gi)⩽d}∪{n} // ℐ: active indices for relaxed multiplications
For i∈{0,…,n}, set Ti

≔Gi
#− lt(Gi

#).
For d′∈{d,…,0}:

𝒥 ≔{i∈ℐ:(i=0)∨(i=n)∨(d′<deg(Gi)+3×2val2 i)} // keep only the indices with Qi ≠0
For a∈{0,…,d′}:

Let t be the term of Xa Yd′−a in Psubs − ∑i∈𝒥 Qi Ti
#, computed using relaxed multiplica-

tions.
Let (i, t′)≔ΦG(t).
If i<0, then update R+= t′, else update Qi ≔Qi + t′.

For all j such that d′=deg(Gj): // See Remark 14
If j<n, then update Sj +=Qj and ℐ ≔ℐ ∖{j} and Psubs−=Qj Gj

#

If 1< j<n and 𝜆≔val2(j)>0, then:
Set k≔ j−2𝜆.
Set (Δk,Δk+1)≔(Sj,Sj+1)Mk,2𝜆.
Update (Sk,Sk+1)+=(Δk,Δk+1).
Update Psubs−=Δk Gk

+Δk+1 Gk+1
−Sj Gj

−Sj+1 Gj+1
#

Set (Sj,Sj+1)≔(0,0).
Return (Q0,…,Qn,R)

Remark 14. Recall that G0 has degree n and Gi has degree m+ i−1 for i⩾1. Therefore, the loop on j
such that d′=deg(Gj) is trivial: the set of such j contains at most 1 element, except when d′=n=m,
in which case there are 2 elements 0 and 1.

THEOREM 15. Algorithm 3 is correct and runs in time

O(R(d2)+R(nm) logn).

Proof. Let us first explain why the relaxed strategy can indeed be used. We regard the quo-
tients Qi as streams of coefficients. These coefficients are produced by the updates Qi≔Qi+ t′ and
consumed in the relaxed evaluation of the products Qi Ti

#. Since our reduction process is essen-
tially based on the same recursive functional equation as in [16], the production of coefficients
always occurs before their consumption.

We will show that Algorithm 3 computes the same result as the traditional relaxed reduction
algorithm from [16], because the term t that is considered at each step is the same in both cases.
More precisely, we must show that for each d′, at the start of each iteration of the loop on a, we
have

(((((((((((((((((Psubs − �
i∈𝒥

Qi Ti
#

)))))))))))))))))a,d′−a

=((((((((((((((P−�
i⩽n

Qi Ti))))))))))))))a,d′−a

(8)

where Ti ≔Gi − lt(Gi) is the non-truncated analogous of Ti
#.

12 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

Let us start with the description of a few invariants at the start of the main loop on d′. To avoid
case distinctions, let v be the function on {0,…,n} defined by

v(i)≔{{{{{{{{{{{{{{{{{{{{{{{{ ⌈log2 n⌉ if i⩽1
max(val2 i,val2 (i−1)) otherwise.

Then the following invariants hold:
1. Psubs=P−∑i⩽nSi Gi

#.
2. ∑i⩽n Si Gi =∑i∉ℐ Qi Gi.
3. deg(Si) and deg(Si+1) are at most 3×2val2(i)−1 for all even i∈{1,…,n−1}.
4. For some i0 ⩽n+1, we have ℐ ={0,…, i0−1}∪{n}.
5. With i0 as above, if j⩾n or i> i0 or (i⩾ i0 with i0 even), then Si =0.

Invariant 1 is immediate. Invariants 2 and 3 follow from Lemma 13, using deg(Qi)<3×2val2(i)−1
by Lemma 12. For invariant 4, we recall that deg(Gk)⩽deg(Gk+1) for all k<n. Finally, invariant 5
is an immediate consequence of the definition of the index j.

Let us now prove the main claim (8). Notice first that if 0 < i < n and i ∈ ℐ , then deg(Gi) ⩽ d′.
Recall also that deg(Qi)<3×2val2(i)−1 for 0< i<n. This means deg(Qi Gi)<d′ for i∈ℐ ∖𝒥 . Since
by definition

G0
#=G0,Gn

=Gn,and Gi
=𝜋3×2val2(i)

(Gi) for 0< i<n,
we deduce that

(((((((((((((((((�
i∈𝒥

Qi Ti
#

)))))))))))))))))a,d′−a

=((((((((((((((�
i∈ℐ

Qi Ti
#))))))))))))))a,d′−a

=((((((((((((((�
i∈ℐ

Qi Ti))))))))))))))a,d′−a

.

To complete the proof (by invariant 1), we show that

((((((((((((((�
i⩽n

Si Gi
#))))))))))))))a,d′−a

=((((((((((((((�
i⩽n

Si Gi))))))))))))))a,d′−a

=((((((((((((((�
i∉ℐ

Qi Gi))))))))))))))a,d′−a

=((((((((((((((�
i∉ℐ

Qi Ti))))))))))))))a,d′−a

.

For the first identity, we contend that Si Gi and Si Gi
have the same terms of degree d′ because of

invariants 3 and 5. This is clear if Si = 0, or if i ⩽ 1 since G0 = G0
and G1 = G1

#. Assume therefore
that i>1 and Si ≠0. By invariant 5, the index i0 ≔min{i∈ℕ, i∉ℐ} verifies i⩽ i0 <n, hence i0 was
removed from ℐ during a previous iteration of the loop on d′. Since deg(Gk+1) = deg(Gk) + 1 for
all 0 < k < n, this actually happened during the previous iteration (with d′ + 1 instead of d′). It
follows that deg(Gi)⩽d′+1=deg(Gi0). By definition of Gi

and invariant 3, the polynomials Si Gi
and Si Gi

have the same terms of degree at least deg(Gi)−3×2val2(i)+deg(Si)⩽d′.
The second identity follows immediately from invariant 2. The last identity follows from the

implication i∉ℐ ⇒d′<deg(Gi), so that Qi Gi and Qi Ti have the same terms of degree d′.
For the complexity, relaxed multiplications are used to compute the coefficients of the Qi Ti

#,
whose support is a subset of the support of Qi Gi

#. Then the relaxed multiplications take time

R(|Q0 G0
#|)+⋯+R(|Qn Gn

#|)=O(R(d2)+R(nm) logn).
It remains to evaluate the cost of the zealous multiplications during the rewriting steps. For
each index k∈{0,…,n−1} with k even, and for each 𝜆 < v(k), there is an update of Sk, Sk+1 at
a cost of O(M(4𝜆)), followed by an evaluation of the products Sk Gk

and Sk+1 Gk+1
at a cost of

O(M(m 2v(k))) operations. This totals for O(M(m 2v(k)) log2 n) operations. Summing for all k,
we get a total cost of O(M(n m) log2 n) for all rewriting steps. This fits in the announced com-
plexity bound, by our assumption that R(d)≍M(d) logd. □

JORIS VAN DER HOEVEN, ROBIN LARRIEU 13

Remark 16. The reduction algorithm can be optimized by delaying the substitutions (Sk,Sk+1)+=
(Sj,Sj+1)Mk,2𝜆 until more quotients are known. This allows to decrease by a logarithmic factor
the number of products Sk Gk

#, but leads to various technical complications. A priori, this does not
change the asymptotic complexity; however, with a bound for relaxed multiplication better than
R(d)≍M(d) logd, these zealous products would become predominant without this optimization.

6. APPLICATIONS

Under some regularity assumptions, we provided a quasi-linear algorithm for polynomial reduc-
tion, but unlike in [17], it does not rely on expensive precomputations. This leads to significant
improvements in the asymptotic complexity for various problems. To illustrate the gain, let us
assume to simplify that n = m, and neglect logarithmic factors. Then, ideal membership test and
modular multiplication are essentially quadratic in n. Also, computing the reduced Gröbner basis
has cubic complexity. In all these examples, the bound is intrinsically optimal, and corresponds
to a speed-up by a factor n compared to the best previously known algorithms.

6.1. Ideal membership
From any fast algorithms for Gröbner basis computation and (multivariate) polynomial reduc-
tion, it is immediate to construct an ideal membership test:

Algorithm 4
Input: (A,B,P), bivariate polynomials of degrees n, m, and d with n⩽m and A,B generic.
Output: true if P∈⟨A,B⟩, false otherwise.

Let (G#, ℳ) be the concise representation of the Gröbner basis G of ⟨A, B⟩ with respect to ≺,
computed using Algorithm 2.
Let (Q0,…,Qn,R) be an extended reduction of P modulo G, computed using Algorithm 3.
Return true if R=0, false otherwise.

THEOREM 17. Algorithm 4 is correct and takes time O(R(m2 +d2)+R(mn) logn).

6.2. Multiplication in the quotient algebra
We designed a practical representation of the quotient algebra 𝔸 ≔ 𝕂[X, Y] / ⟨A, B⟩ that does
not need more space (up to logarithmic factors) than the algebra itself, while still allowing for
efficient computation. The main difference with the terse representation from [17] is that said
representation is easy to compute, so that multiplication in 𝔸 can be done in quasi-linear time,
including the cost for the precomputation:

Algorithm 5
Input: (A, B, P, Q), bivariate polynomials, with A, B generic of degrees n ⩽ m and P,Q∈𝔸 of
degree at most m+n (typically in normal form).
Output: PQ∈𝔸 in normal form.

Let (G#, ℳ) be the concise representation of the Gröbner basis G of ⟨A, B⟩ with respect to ≺,
computed using Algorithm 2.
Compute PQ using any (zealous) multiplication algorithm.
Let (Q0,…,Qn,R) be an extended reduction of PQ modulo G, computed using Algorithm 3.
Return R.

14 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

THEOREM 18. Algorithm 5 is correct and takes time O(R(m2)+R(mn) logn).

Remark 19. If we assume m=n or simply m=O(n), then the algebra 𝔸 has dimension D=O(n2)
and the above bound can be rewritten O(R(D) log D). In the general case, we have D = m n, and
one might wish to discard the term R(m2) to achieve complexity O(R(D) log D) = Õ(D). This
term includes the computation of B rem A during the call to Algorithm 2 (which can be seen as
precomputation), the multiplication P Q, and the term R(d2) in the complexity of the reduction
(since here d = 2 (m + n)). If P and Q are given in normal form with respect to G, then P Q has in
fact degree 2 (m+n) in the variable X and only 2 n in Y. In this case, P Q can be computed in time
O(M(D)), and a refined analysis of the reduction algorithm should reduce the term R(d2) to R(D)
by observing that the degree in Y remains O(n).

6.3. Reduced Gröbner basis
Since we can reduce polynomials in quasi-linear time, we deduce a new method to compute the
reduced Gröbner basis: first compute the non-reduced basis, together with additional information
to allow the efficient reduction (which can be done fast); then reduce each element with respect to
the others.

Algorithm 6
Input: (A,B), generic bivariate polynomials of total degrees n and m with n⩽m.
Output: Gred ≔(G0

red,…,Gn
red) the reduced Gröbner basis of ⟨A,B⟩ with respect to ≺.

Let (G#,ℳ) be the concise representation of G, computed using Algorithm 2.
For all i∈{0,…,n}:

If i⩽1, set Gi ≔Gi
#, else compute Gi using

((((((((((((Gi−1
Gi))))))))))))=Mi−2,1((((((((((((Gi−2

Gi−1)))))))))))).

Set c ≔lc(Gi), t≔lt(Gi) and Ti ≔Gi − t.
Let (Q0,…,Qn,R) be an extended reduction of Ti modulo G, computed using Algorithm 3.
Set Gi

red ≔(R+ t)/c.
Return (G0

red,…,Gn
red).

THEOREM 20. Algorithm 6 is correct and takes time O(R(m2)n logn).

Proof. Clearly Gi
red is in the ideal and has the same leading monomial as Gi. Moreover, Gi

red is
monic and none of its terms is divisible by the leading term of any Gj, j ≠ i. This proves Gred is
indeed the reduced Gröbner basis of ⟨A,B⟩ with respect to ≺.

For the complexity, the call to Algorithm 2 takes time O(R(m2) + M(n m) log n). Then, for
each i, computing Gi requires O(M(m2)) operations, and the reduction O(R(m2) +R(n m) log n)
further operations. The assumption n⩽m now yields the desired bound. □

Remark 21. The input A, B has size Θ(n2 + m2), and the output Gred needs Θ(n2 m), while Algo-
rithm 6 runs in time Õ(n m2). Our complexity bound is therefore quasi-optimal only if m≍n. We
expect that a truly quasi-linear bound can still be obtained in general through a refined analysis
(as for Remark 19).

JORIS VAN DER HOEVEN, ROBIN LARRIEU 15

6.4. Perspectives
As we noted in different remarks, the announced bounds could be slightly improved at the
expense of some technicalities. For example, the optimization mentioned in Remark 16 would
lead to a tighter bound when considering even faster relaxed multiplication (as in [19]). Also, as
noted in Remarks 19 and 21, a refined analysis is required when n≪m to give a truly quasi-linear
complexity. Apart from this, several more theoretically challenging extensions can be considered.

First we notice that Algorithm 2 fails if the Euclidean algorithm raises a quotient with degree
larger than 1. Generically, this should not happen, but this restriction can be limiting in practice,
especially in the case of small finite fields. It is then natural to ask how to handle the case of
non-normal degree sequences. We conjecture that our algorithm extends (and remains quasi-
linear) to the case where the quotients have a bounded degree, with only a logarithmic number
of them being larger than 1.

It would also be interesting to extend our ideas to the case of r>2 variables. Whishful thinking
suggests that this might possible for fixed r, but with a dependency polynomial in r! (as the ratio
between the volumes of a pyramid and a parallelepiped based on the same vectors). Extending
the dichotomic selection strategy to higher dimension is rather straightforward, but the question
of the successive substitutions is more subtle.

BIBLIOGRAPHY

[1] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of the F5 Gröbner basis algorithm.
Journal of Symbolic Computation, pages 1–24, sep 2014.

[2] Thomas Becker and Volker Weispfenning. Gröbner bases: a computational approach to commutative algebra, volume
141 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1993.

[3] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen
Polynomideal. PhD thesis, Universitat Innsbruck, Austria, 1965.

[4] David G Cantor and Erich Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Informatica,
28(7):693–701, 1991.

[5] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied
Algebra, 139(1–3):61–88, 1999.

[6] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In
Proceedings of the 2002 international symposium on Symbolic and algebraic computation, ISSAC '02, pages 75–83. New
York, NY, USA, 2002. ACM.

[7] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault. Polynomial systems solving by fast
linear algebra. ArXiv preprint arXiv:1304.6039, 2013.

[8] Jean-Charles Faugère, Patrizia Gianni, Daniel Lazard, and Teo Mora. Efficient computation of zero-dimensional
Gröbner bases by change of ordering. Journal of Symbolic Computation, 16(4):329–344, 1993.

[9] M. J. Fischer and L. J. Stockmeyer. Fast on-line integer multiplication. Proc. 5th ACM Symposium on Theory of
Computing, 9:67–72, 1974.

[10] Ralf Fröberg and Joachim Hollman. Hilbert series for ideals generated by generic forms. Journal of Symbolic Com-
putation, 17(2):149 – 157, 1994.

[11] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 3rd edition, 2013.
[12] Vladimir P. Gerdt and Yuri A. Blinkov. Involutive bases of polynomial ideals. Mathematics and Computers in Sim-

ulation, 45(5):519–541, 1998.
[13] D. Harvey and J. van der Hoeven. Faster integer and polynomial multiplication using cyclotomic coefficient rings.

Technical Report, ArXiv, 2017. http://arxiv.org/abs/1712.03693.
[14] David Harvey, Joris van der Hoeven, and Grégoire Lecerf. Faster polynomial multiplication over finite fields.

Technical Report, ArXiv, 2014. http://arxiv.org/abs/1407.3361.
[15] J. van der Hoeven. Relax, but don't be too lazy. JSC, 34:479–542, 2002.
[16] J. van der Hoeven. On the complexity of polynomial reduction. In I. Kotsireas and E. Martínez-Moro, editors,

Proc. Applications of Computer Algebra 2015, volume 198 of Springer Proceedings in Mathematics and Statistics, pages
447–458. Cham, 2015. Springer.

[17] J. van der Hoeven and R. Larrieu. Fast reduction of bivariate polynomials with respect to sufficiently regular
Gröbner bases. Technical Report, HAL, 2018. http://hal.archives-ouvertes.fr/hal-01702547.

16 FAST GRÖBNER BASIS COMPUTATION AND POLYNOMIAL REDUCTION FOR GENERIC BIVARIATE IDEALS

http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1712.03693
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://arxiv.org/abs/1407.3361
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547
http://hal.archives-ouvertes.fr/hal-01702547

[18] J. van der Hoeven and É. Schost. Multi-point evaluation in higher dimensions. AAECC, 24(1):37–52, 2013.
[19] Joris van der Hoeven. Faster relaxed multiplication. In Proc. ISSAC '14, pages 405–412. Kobe, Japan, Jul 2014.
[20] Romain Lebreton, Eric Schost, and Esmaeil Mehrabi. On the complexity of solving bivariate systems: the case of

non-singular solutions. In ISSAC: International Symposium on Symbolic and Algebraic Computation, pages 251–258.
Boston, United States, Jun 2013.

[21] Ernst Mayr. Membership in polynomial ideals over q is exponential space complete. STACS 89, pages 400–406,
1989.

[22] Guillermo Moreno-Socías. Degrevlex gröbner bases of generic complete intersections. Journal of Pure and Applied
Algebra, 180(3):263 – 283, 2003.

[23] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Infor., 7:395–398,
1977.

[24] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292, 1971.

JORIS VAN DER HOEVEN, ROBIN LARRIEU 17

	1. Introduction
	2. Presentation of the setting
	3. Algorithmic prerequisites
	3.1. Polynomial multiplication
	3.2. Relaxed multiplication
	3.3. Polynomial reduction

	4. Concise representation for Gröbner bases
	4.1. Definition
	4.2. Computation

	5. Fast reduction algorithm
	5.1. General idea
	5.2. Dichotomic selection strategy
	5.3. Reduction algorithm

	6. Applications
	6.1. Ideal membership
	6.2. Multiplication in the quotient algebra
	6.3. Reduced Gröbner basis
	6.4. Perspectives

	Bibliography

