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Brief presentation of the abc conjecture

The conjecture abc was formulated in 1985 by MM. Joseph Oesterlé and David Masser [START_REF] Oesterlé | Nouvelles approches du « théorème » de fermat[END_REF]. It can be stated briefly as follows : Where rad(abc) = product of all prime numbers dividing a, b and c. For detailed explanations we can see [START_REF] Vojta | Diophantine approximations and value distribution theory[END_REF], [START_REF] Frey | Links between elliptic curves and solutions of a-b=c[END_REF], [START_REF] Granville | Abc means we can count squarefrees[END_REF]. Vojta has stated a more general conjecture which implies this one [START_REF] Vojta | A more general abc conjecture[END_REF]. However, we know exponential increases in the direction of resolution of the abc conjecture following the work of MM. Stewart and Tijdeman [START_REF] Stewart | On the oesterlé-masser conjecture[END_REF], MM. Stewart and Yu [START_REF] Stewart | On the abc conjecture[END_REF], [START_REF] Stewart | On the abc conjecture, ii[END_REF]]. There are also refinements of the conjecture due in particular to M. Baker [START_REF] Baker | Logarithmic forms and the abc-conjecture[END_REF], M. Granville [START_REF] Baker | Logarithmic forms and the abc-conjecture[END_REF], MM. Robert, Stewart and Tenenbaum [START_REF] Robert | A refinement of the abc conjecture[END_REF], as well as MM. Browkin et Brzezinski [START_REF] Browkin | Some remarks on the abc-conjecture[END_REF]. As for the serious claims on its resolution, only two works stand out : those of Mr. Lucien Szpiro, shared during a conference on L-functions and automorphisms and those of Mr. Sinichi Mochizuki shared in his own website [START_REF] Mochizuki | Inter-universal techmüller theory i : Construction of hodge theatres[END_REF], [START_REF] Mochizuki | Inter-universal techmüller theory ii : Hodge-arakelov-theoretic evaluation[END_REF], [START_REF] Mochizuki | Inter-universal teichmüller theory iii : Canonical splittings of the log-thetalattice[END_REF], [START_REF] Mochizuki | Inter-universal teichmüller theory iv :log-volume computation and settheorethic foundations[END_REF]. Szpiro's method was to use a and b to construct an elliptic curve in order to study its characteristics and to be able to conclude with the absurd. This has unfortunately not succeeded. The idea as a whole was not bad, because taking into account a and b, we will see it, guarantees to have a proper path. But the subtleties that exist between a, b and c make this method of procedure unsuitable for obtaining a result in the right intervals. Mr. Mochizuki is taking another path. He adapts Techmuller's theory to the case of numbers associated with an elliptic curve, he completely rebuilds the arena of numbers and over the four articles demonstrates a theorem whose consequences imply both the conjecture abc and the conjecture of Vojta. The general ideas used here are also found in his work, albeit in a completely different formulation. But his results are not unanimous yet. But it will not take longer. Mr Osterlé, for his part, showed at a seminar the expected behavior of the constant appearing in the conjecture [START_REF] Oesterlé | Nouvelles approches du « théorème » de fermat[END_REF]. For our part, we set ourselves the challenge of saying if C( ) does exist and determine it. And that's what we are going to do in the following lines.

Notation and Definition of Concepts used

Before starting, we will clarify the notations that we will use to gain simplicity and economy : -The radical of the product abc noted up to then rad(abc) will be just now noted rad.

max(|a|, |b|, |c|) will be written c only, because we can always reduce ourselves to an addition on only positive numbers and c is then the result of this sum.

π = product of all prime numbers dividing c.

π(min)= product of all prime numbers dividing ab.

-Note also that we mean by product of all prime numbers the product of distinct prime factors. In other words, it is the square-free part.

Ex : N = 857500 → N = 2 2 .5 4 .7 3 → π(N ) = 2.5.7 = 70 -Indecision over the superiority or inferiority of one value over another will be noted ><.

Thus if x and y are two unknowns variables which we do not know if x is greater or less than y, we write : x >< y to mark this indecision.

Statement of the problem

What do we know about the problem ? The radical essentially measures the degree of decomposition of its constituents. The smaller it is, the more the numbers are highly decomposable. For c to be greater than rad, a and b must be highly decomposable, but most importantly c has a minimal footprint in rad, which requires it to be highly decomposable. The conjecture claims that there are very few integers c that satisfy this criterion and that are greater than rad, and that prime numbers in their multiplications are sensitive to the addition of sets. How can we show it ? Where to start ? The statement involves two equations, one of which is the condition of realization of the other. We already notice, as underlined above, that to simplify one must place a + b + c = 0 in Z * and write a + b = c (this is the first observation). We also see that we start from a + b = c to end up with C( )(rad) 1+ ≥ c (this is the second observation). There is transformation of the sum of the left member into product. The essential idea is to find an operator capable to do this. The only known one in R * is related to the given family of basic exponential functions. So we say that the logarithm will play a determining role in the solution of the problem (this is the third observation). Another simple idea that comes is that we must find a way to leave a footprint of c in the left-hand side, since rad also depends on c. We must have a bijection. It will therefore be necessary to study the nature of the functions involved and to make them bijective if necessary, highlighting the possible constants (this is the fourth observation). So we have 4 wires that jump to the eyes :

-Start from an equality.

-Put in Z * to access the properties of R * .

-Use the logarithm.

-Study the bijections. The point is to develop a strategy that will allow us to translate them into hypotheses.

Resolution Strategy

The smallest equation in abc is probably 1 + 2 = 3, from which we can draw the minimum values of c and rad. And so c ∈ [3, +∞, rad ∈ [6, +∞[. We can thus introduce 2 curves associated with these values : Let C 1 be the curve associated with c and C 2 that associated with rad. We make no assumptions about the characteristics of these curves. We would like to be reassured that C 1 = C 2 (this is the first hypothesis : illustrated in 54) in order that we need an application φ that at any point in C 1 associates at least one element of C 2 and its reciprocal τ (this is the second hypothesis : illustrated in 55) :

φ, τ : N → N : ∃z 1 and z 2 ∈ N/z 1 C 1 = z 2 C 2
We would like to determine the numbers of images that each point has in order to separate the bijections if there are from the others. For that, let's evaluate the number of images N (rad) of c in C 2 . We find N (rad) ≤ c 2 . Indeed, we can count at most c 2 equations abc for all c. The number of all c that give the same rad is ∞. The condition of uniqueness of the image, necessary to have a function, is not verified : there is no function that makes us go from c to rad directly. On the other hand, for a and b fixed, we have a function, because every c under (a, b) gives indeed a unique radical : we have in fact a surjective function. But in return, we are left with 4 equations. Indeed, if we have a + b = c, nothing prevents us from also having :

a r 1 b s 1 = c x 1 -1 (1) a r 2 c s 2 = b x 2 -1 (2) b r 3 c s 3 = c x 3 -1 (3) 
The theorem of Euler [START_REF] Euler | Theoremata arithmetica nova methodo demonstrata[END_REF] allows us to affirm that :

ab|(c x 1 -1) if f x = LCM (a -1, b -1) (4) 
And so the values of a and b enter in the evaluation of the power of c. The four equations are all in abc. We can not therefore solve the conjecture adequately by basing ourselves solely on the equation a + b = c. Because even if a + b = c does not check the condition of the conjecture abc nothing prevents the other 3 from checking it. An example with the triplet (2,3,5) :

2 + 3 = 5 (5) 2 4 -1 = (3).(5) (6) 
3 4 -1 = (2 4 ).(5) (7)

5 2 -1 = (2 3 ).(3) (8) 
The equation 7 is the only one to check the condition of the conjecture, since we have rad = 30 < c = 81. However, nothing prevents us from considering the equations 1, 2 and 3 as having no connection with each other and with the equation a + b = c since in the end we have different c according to the equations, but in view of the link raised by Euler's theorem, it is wiser to consider the four equations at the same time. We thus go from an equation abc to four equations abc, the first of which can be considered as the condition of realization of the other three. The exponential functions introduced here are not more convenient to manipulate than the original linear equation, but they allow us to understand that in the presence of an abc equation whose question is about specific properties of each member, to change perspective and introduce an element that facilitates resolution. Indeed, starting from the equation 1, we have, by naming the factors of a xπ a , those of b yπ b , with π a , π b and π the parts without square factors of a, b and c, the following :

a r 1 b s 1 = c x 1 -1 (9) 
Where

x 1 = LCM (a -1, b -1)π → x 1 = (xπ a -1)(yπ b -1)π (10) → x 1 = (xπ a yπ b -xπ a -yπ b + 1)π (11) → x 1 = xyπ a π b π -xππ a -yππ b + π (12) → x 1 = xy(rad) -x rad π b -y rad π a + rad π a π b (13) → x 1 = rad xy - x π b - y π a + 1 π a π b (14) Let us then put z = (xy - x π b - y π a + 1 π a π b
), it comes in 9 by adding +1 to the right-hand side and entering the logarithm :

z(rad) log(c) > r log(a) + s log(b) (15) 
So we have done the same for the other two equations and obtain the system :

z 1 (rad) log(c) > r 1 log(a) + s 1 log(b) (16) 
z 2 (rad) log(a) > r 2 log(b) + s 2 log(c) (17) 
z 3 (rad) log(b) > r 3 log(c) + s 3 log(a) (18) 
And by addition :

[z 1 log(c) + z 2 log(a) + z 3 log(b)](rad) > ((r 1 + s 3 ) log(a) + (r 2 + s 1 ) log(b) + (r 3 + s 2 ) log(c) (19)
Multiplying the two members by c(rad) :

[z 1 log(c)+z 2 log(a)+z 3 log(b)]c(rad) 1+ > c(rad) [(r 1 +s 3 ) log(a)+(r 2 +s 1 ) log(b)+(r 3 +s 2 ) log(c)] (20) 
Multiply by a number w the right-hand side to have an equality :

[z 1 log(c)+z 2 log(a)+z 3 log(b)]c(rad) 1+ = cw(rad) [(r 1 +s 3 ) log(a)+(r 2 +s 1 ) log(b)+(r 3 +s 2 ) log(c)] (21) If [z 1 log(c) + z 2 log(a) + z 3 log(b)]c(rad) 1 2 (1+ ) = π 1 2 (α-) , and w(rad) [(r 1 + s 3 ) log(a) + (r 2 + s 1 ) log(b) + (r 3 + s 2 ) log(c)] = (π(min)) 1 2 (1+ ) .
We then find ourselves with the expression that we will find in a more useful way lower in 55 :

π 1 2 (α-) (rad) 1 2 (1+ ) = c(π(min)) 1 2 (1+ )
There would be more missing then the other two hypotheses given below in 61 and 62 to conclude. Which reinforces us in our approach. The introduction of an adequate calculus intermediate like w can serve as a decisive thread in the abc equations. What we can still illustrate by considering the equation of type abc n = p 1 + p 2 , where n is an even number and p 1 and p 2 are two prime numbers. This is Goldbach's Conjecture which asserts that any even number greater than 2 is a sum of two primes [START_REF] Wang | The Goldbach Conjecture[END_REF], [START_REF] Liu | On the vinogradov bound in the three primes goldbach conjecture[END_REF], [START_REF] Sinisalo | Checking the goldbach conjecture up to 4.10 1 1[END_REF], [START_REF] Oliveira E Silva | Empirical verification of the even goldbach conjecture and computation of prime gaps up to 4[END_REF], [START_REF] Chukadov | On the goldbach problem[END_REF]. We will actually demonstrate the much stronger proposal :

MVULA

Proposal I Any even number greater than or equals to 14 is always the sum of two prime numbers in at least two different ways

Proof. Let's start from Goldbach's Proposal :

n = p 1 + p 2 (22) 
Let's introduce α, n 1 , n 2 ∈ N such that ∀n 2 > n 1 we have :

n 1 = n 2 -α ( 23 
)
n 2 = n 2 + α ( 24 
)
α is even if n 2 is odd and we write it α p , and odd denoted α i in the other case. Then

α p ∈ [0, n 2 -1] et α i ∈ [1, n 2 ]
. We end up with 3 equations by counting the equation 22 that we generalize to any integer less than n :

n 1 + n 2 = n ( 25 
)
n 1 + 2α = n 2 (26 
)

n 1 + α = n 2 (27) 
We will focus on the equation 26, since it implicitly contains the other two. Without mentioning too that when α is prime we find ourselves in the conditions of Lemoine's Conjecture which stipulates that any odd number greater than or equal to 7 is written as p 1 + 2p 2 = n [START_REF] Kiltinen | Goldbach, lemoine, and a know/don't know problem[END_REF], [START_REF] Hodges | A lesser-known goldbach conjecture[END_REF] which we will not tackle here but which resolves in a rather similar way. n 1 and n 2 can be first or compound. The point is whether the two can be prime at the same time. For example :

n = 14 → n 2 = 7
And so :

α p = 0, 2, 4, 6
We have :

7 + 2.0 = 7 5 + 2.2 = 9 3 + 2.4 = 11 1 + 2.6 = 13
We see that the n 1 decrease while the n 2 increase symmetrically compared to n 2 . Let's name the n 1 generators and the n 2 produits, products, and arr means that we round up by excess where arr' rounds down by default, π(n) is the usual prime-counting function less than or equal to n [START_REF] Gorowski | Prime counting function π[END_REF], [START_REF] Kotnik | The prime-counting function and its analytic approximations[END_REF]. We then note the following in 26 :

1. If a prime p|n then it can not generate a prime number ∀α > 0.

2. The number of abc equations N (e) contained in 26 is given by N (e) = arr( N 4 ), because we evaluate with respect to n 2 and there is 1 2 n 2 possible equations abc. So in the exemple with n=14, we have N (e) = arr( 14 4 ) that is 4 abc equations going from 7 to 1 .

3. The number of factors produced N f = π( n 3 ) -1 because it is 3 the smallest prime factor that dictates the largest acceptable factor for having a lower product to n. We deduct 1 because of 2, the only even prime number. So in the example with n = 14, we have N (f ) = π(arr ( 143 )) that is only 1 prime factor which is 3, which corresponds to the second line with 5 . 4. 0 < N f ≤ N (e) because there are not only prime numbers between n 2 and n but also composite numbers.Thus in the example with n = 14, the second line generates a composite number 9 .

5. All prime factors are also generators. Since the prime factors are smaller than the numbers they compose, they must be in a lower line, and the n i decrease, so they are part of the generators.

6. If a composite number n c generated by a prime p G produces a prime factor p, then the generator (p

G -2mp), ∀m ∈ N/0 ≤ m < [ p G 2p
] will divide also p .

Indeed : If p G + 2α G = pr, then ∀n G = p G -2mp, ∃α G = α G + mp (28) → p|(n G + 2α G ) (29) 
This observation reduces the number of real generators or free generators, that is to say those that generate without depending on another generator. Call this constraint on the generators justification and so p is a justifier and (n G + 2α G ) is a justified.

7. Following the observation 6,a product cannot be justified by its generator. This is due to the equation 28.

8. Following the observation 6, a justified cannot justify his justifier. This is due to the equation 28. 10. The last line is always justified. 1 being not a prime number, even if it generates a prime number, it does not count for the analysis. Thus in the example with n=14, 13 is generated by 1 and does not fulfill the criterion of additivity of prime numbers.

From the observation 5, we draw that the set of generators that can be noted G contains all prime numbers less than or equal to n 2 . Let's call j all prime that are justified. Because of the equation 26, we therefore have an application of G on j in which each element of j has at least one antecedent in G : we clearly have an surjective function. From the observations 4 and 9, we draw that there are always at least two prime factors produced. Let π G be the number of prime generators in G and π j the number of prime numbers justified. Goldbach's conjecture amounts to saying that :

π G -π j = 1, ∀n ≥ 4. ( 30 
)
It means that there is always a prime number that is not justified ; so that we always have a sum of two prime numbers for any even number greater than or equal to 4. Or in other words, all the elements of G are not also the elements of j. Therefore, under the justification property, there is no formal automorphism in G. We have therefore succeeded in reformulating the problem MVULA into a much more direct question between the most concerned members, n becoming a simple evaluation parameter. The equation 30 is much simpler to manipulate than the starting equation n = p 1 + p 2 because it poses the problem in terms of counting prime numbers. To solve this conjecture, it is enough now to evaluate π G and π j and to check their difference. Let π J be the number of prime justifiers, we have because of the observations 3, 4, 6, 7, 8 and 10 :

π j = π n 3 -1 -π J + 1 (31) 
→ π j = π n 3 -π J ( 32 
)
Indeed the observations 3 and 4 which guarantee that we have justified by the prime numbers products (so π( n 2 )) are counterbalanced by the observations 6, 7 and 8 which require justifiers for the existence of the prime numbers justified from which it is necessary to subtract π J and to add 1 following to the statement 10. Let's call f(n), the number of factors of n, the prime generators counting-function is then given by :

π G = π n 2 -1 -f (n) -1 (33) 
→ π G = π n 2 -f (n) -2 (34) 
Indeed the statement 5 guarantees the number of the first generators of the order of π( n 2 ) which must be subtracted f (n) following the observation 1. Due to the observed surjective function, the difference between 32 and 34 is necessarily greater than or equal to 0. We thus have :

π G -π j ≥ 0 ( 35 
)
If 30 is false, 35 resolves into an equality. Let's develop 34, we find :

π n 2 -f (n) -2 -π n 3 + π J ≥ 0 (36) 
In the minimal and extreme case, we can say that the even number is itself the source of all the prime numbers justified, and therefore :

π J = f (n) (37) 
Hence :

π n 2 -π n 3 ≥ 2 (38)
And so we find a stronger form than Goldbach's conjecture. The minimum number that obeys 38 is 14 precisely because we have : We can therefore state :

Theorem I Any even number greater than 12 is always the sum of two prime numbers in at least two different ways. This theorem implies the Goldbach conjecture for any even number greater than 12 and even for even numbers smaller than 14, by modifying the minimum condition given in 37.

An interesting consequence is the following corollary :

Corollary I There are always more prime numbers from 0 to n 2 than n 2 to n. What we also write :

π(n) ≤ 2π n 2 (39)
Proof. Since there is a bijection between the elements of n 1 and those n 2 and all the products are generators, the prime numbers of the right-hand member can produce at least a prime number left. There are more elements left than right.

And if we name the number of primes between n 2 and n π m n 2 , then it comes :

π n 2 + π m n 2 ≤ 2π n 2 (40) → π(n) ≤ π n 2 + π n 2 (41) 
It is the MM. Rosen et Schoenfeld Theorem [START_REF] Barkley | Approximate formulas for some functions of prime numbers[END_REF], following an idea of M. Landau in 1901 [START_REF] Landau | Handbuch der Lehre von der Verteilung der Primzahlen[END_REF].

What is generalized by the following second corollary :

Corollary II the sum of the prime-counting functions of n and m π(n) and π(m) is always greater than the prime-counting function of their sum m + n π(m + n)

Proof. Just write the expression 26 of the number m+n for m and n odd, so we will have an isomorphism between n taken from 1 to n and n taken m+2 to m+n. Corollary I asserts that there are always fewer elements on the right than on the left, whatever the n considered. Which is enough to conclude.

We write therefore :

π(m + n) ≤ π(m) + π(n) (42)
Or in other words, the prime-counting function is subadditive. This is the second Hardy-Littlewood conjecture, which we did not expect to achieve [START_REF] Hardy | Some problems of 'partitio numerorum' ; iii : On the expression of a number as a sum of primes[END_REF], [START_REF] Richards | On the incompatibility of two conjecture concerning primes[END_REF], [START_REF] Karanikolov | On some properties of function π(x)[END_REF], [?], [START_REF] Stanford | On π(x + y) ≤ π(x) + π(y)[END_REF].

In fact we can do better still with and find a minimal function of number of the sums of the prime numbers for each even number, we can also solve the twin prime conjecture, but that would go beyond the scope of this article. Note just in the case of twin primes, that a transformation of the problem leads, if we define a sterile number or saint n st. as an even number such that n st. ± 1 are both composite (example : 64), then by naming c the square root of a number, m the number of terms less than c that end in 4 and 6, δ m the number of terms that end in 4 and 6 among multiples of prime numbers less than c, and δ st. the number of sterile numbers smaller than c contained among the multiples of prime numbers, then the number of twin primes π 2 for c tending towards infinity is minimally limited by the elegant expression :

1 2 π 2 (c + 2) ≥ c 6 -m -c ∞ s P (t)dt + 6sπ( √ c) + δ m + δ st. - 1 12 (43) 
An expression where P (t) is the Prime zeta function. . We know how to show that the right-hand member tends to infinity, which implies that the left-hand member also tends to infinity. This is an expression we will come back to in an upcoming article with great detail. For the moment, we just wanted to illustrate how to deal with the problems of the type abc. And surjective function allowed us to move from equality to inequality. The conjecture was reinterpreted in order to reveal the bijections and to separate them from the others, which made it possible to solve the question. We will also be interested in showing the bijections in the problem that interest us because we have also by analogy as we have emphasized above a surjective function when we take into account a and b to connect c to rad. Now a bijection already exists between C 1 and C 2 by definition of rad, but it is embedded in the contributions of a and b. We will just reinforce it by using an application θ which at any point in C 1 associates only one image of C 2 and vice versa (this is the third hypothesis :illustrated in61) :

θ : N → R : z 1 → C 2 /∃C(c) ∈ R, z 2 → C 1 /∃f (C 1 ) : f (C 1 ) = f (C 1 )f i,s (44) 
C(c) is a constant derived from c and f i,s translates the injective or surjective character if it exists. Which is always the case if C 1 = C 2 . We will then have :

C 1 z(C 2 ) = C(c)C 2 z 1 (C 2 )z 2 (i, s) (45)
We end up with one unknown z 2 (i, s). Studying questions about C 1 and C 2 is about discussing the behavior of z 2 (i, s). 2 considerations are then decisive since we have a formal equality :

z 2 (i, s) ≥ 1 and z 2 (i, s) < 1. Indeed if in 45 z 2 (i, s) ≥ 1 then : C 1 z(C 2 )z 2 (i, s) ≥ C(c)C 2 z 1 (C 2 )z 2 (i, s) (46) C 1 z(C 2 ) ≥ C(c)C 2 z 1 (C 2 ) (47) C 1 C 2 ≥ C(c)C 2 (C 2 ) α (48) C 1 ≥ C(c)(C 2 ) α (49)
And so :

C 1 C (c) ≥ (C 2 ) α (50)
Which confines z 2 (i, s) to the interval ]0, 1[. In this interval, we need an interesting application ψ which at the same time transforms z 2 (i, s) → z 2 (i, s)/ :

ψ(z 2 (i, s)) < -z 2 (i, s) and ψ(z 2 (i, s)) = z 2 (i, s)
and a product in a sum (this is the fourth hypothesis : illustrated in 62). Which focusing on the bijection found in 45

C 1 = z 1 (C 2 )z 2 (i, s) would result under ψ : ψ(C 1 ) = ψ(z 1 (C 2 )) + ψ(z 2 (i, s)) (51) -→ ψ(C 1 ) -ψ(z 2 (i, s)) = ψ(z 1 (C 2 )) (52) -→ ψ(C 1 ) + z 2 (i, s)) ≥ ψ(z 1 (C 2 )) ( 53 
)
This would conclude on the ratio between C 1 and C 2 . Thus, 4 hypotheses should suffice to achieve this. It only remains to establish the nature of z 2 (i, s) for the resolution to be complete. As we see, this approach to the subject must therefore lead to the demonstration of the abc conjecture, provided that we can establish the 4 necessary hypotheses.

Making hypotheses

We will establish 4 hypotheses that will serve us to show that the conjecture is true. The first hypothesis is a statement of practical utility which is necessary for the existence of the conjecture. As we have in the strategy, we would like to reassure ourselves that c and rad are different. It defines the criterion of appreciation of the radical : a good radical is the one who obeys this hypothesis. Indeed, we must necessarily have for the interesting case [START_REF] Nitaj | Algorithms for finding good examples for the abc and szpiro conjectures[END_REF] :

rad 1+ ≤ c (54)
Because if we had the opposite, there would be no need to talk about an abc problem.

The second hypothesis is a result of the first hypothesis. Since we have 54 then we can always write, if c

= ζ i p α 1 p β 2 p γ 3 ...p ζ i , the following : π 1 2 (α-) rad 1 2 (1+ ) = cπ(min) 1 2 (1+ ) (55) 
Where

π α 2 = ζ i p α-1 2 1 p β-1 2 1 p γ-1 1 ...p ζ-1 2 1
.

That is to say that :

c = π 1 2 (α+1) (56) 
We thus establish a formal equality between c and rad, as desired above.

The third hypothesis comes from the property of successive odd numbers :

MVULA Property The sum of any sequence of successive odd numbers starting with 1 is a square. [START_REF] Conway | The Book of Numbers[END_REF] Ex : 1 3 → 4 1 3 5 → 9 1 3 5 7 → 16 Let us call s this square and N (i) the number of successive odd numbers in a sequence, we know that :

N (i) = √ s (57)
Or if we call t f the nth term of the sequence :

√ s = 1 + t f 2 (58) 
From where we draw :

t f = 2 √ s -1 (59) 
And so for any term of the sequence :

t ≤ 2 √ s -1 (60) 
From which, as well as hypothesis 1, we can assume by replacing s by c :

3 rad 1+ ≤ (2 √ c -1) 2 (61) 
That's why we took 1 2 α in 55 instead of α to benefit 61. The last hypothesis is written :

∀r ∈]0, 1[, | log 2 (1 -r)| < 1 1 -r (62)
This is in fact a consequence of the fact that the natural logarithm function is a reciprocal function of the exponential function. So in a given base b, the logarithm in b of the powers of b actually counts the order of each power in the sequence of powers. And the order of a power is always lower than the power it represents. Hence the fact that the logarithm of a number is less than this number, which leads to the expression 62. We use the binary logarithm 2 in order to manipulate an allowable base value in N. And 2 is precisely the smallest of the admissible values. We will simply note now log the binary logarithm.

Thesis

c ≤ 4 1+ +( ω) -1 rad 1+ (63)

Illustration of the strategy

Proof. Knowing that : 1.

rad 1+ ≤ c (64) 2. Any π(i) ≤ 2 √ c -1 (65) 3. ∃α/π α-rad 1+ = c(π(min)) 1+ (66) 
We can then write :

π 1 2 (α-) rad 1 2 (1+ ) = c(π(min)) 1 2 (1+ ) (67) 
And so by introducing π p ∈ Q and K ∈ R such as :

π p → √ c ( 68 
)
and π p K = rad 1 2 (1+ ) ( 69 
)
π p is the closest possible rational fraction to √ c. Knowing that rad 1 2 (1+ ) ≤ c, we can see that K < 1.Indeed if K ≥ 1 then : 4c rad 1 2 (1+ ) = 4 1-cπ p K (70) → rad 1 2 (1+ ) = 4 -π p K (71)
Which gives by multiplying the left-hand member only by K :

→ rad 1 2 (1+ ) K ≥ 4 -π p K (72) → 4 rad 1 2 (1+ ) K ≥ π p K (73) → 4 rad 1 2 (1+ ) ≥ π p (74) → 4 rad 1 2 (1+ ) ≥ √ c ( 75 
)
And so :

16 rad 1+ ≥ c (76)
What can constitute the following weak theorem :

Théorème II ∀a, b, c ∈ Z/ gcd(a, b) = 1, a + b + c = 0, ∃ C( ) = 16 , ∀ > 0, if K ≥ 1 then : max(|a|, |b|, |c|) ≤ 16 (rad(abc)) 1+ (77) 
So we work with K < 1.

Then take :

π p K = 2rad 1 2 (1+ ) (78) 
So we necessarily have :

K ≤ 2.
K can be greater than or less than 1 without any ambiguity and thus be able to include the result obtained in 76. We can write by introducing a certain K 1 such as :

K = 1 ± K 1 (79) MVULA -→ K 1 < 1 (80)
Let's apply the logarithm on both sides of 78 :

log(π p ) + log(K) = 1 + 1 + 2 log(rad) (81) log( π p rad 1 2 (1+ ) ) = 1 -log(K) (82) 
Using 62, we get :

log( π p rad 1 2 (1+ ) ) < 1 + 1 K (83) log( π K p rad K 1 2 (1+ ) ) < K + 1 (84) π K p 1 rad 1 2 (1+ ) K < 2 K+1 (85)
Applying then the Kth root on both sides we find :

π p 1 rad 1 2 (1+ ) < 2 1+ 1 K (86) π p < 2 1+ 1 K rad 1 2 (1+ ) (87) 
√ c ≤ 2 1+ + 1 K rad 1 2 (1+ ) (88) 
And so by raising both members squared :

c ≤ 4 1+ + 1 K rad 1+ (89) 
The question now is whether we can replace K by . In other words K ≥ . From 69, can actually draw :

= 2 log(π K p ) -2 log(rad) -1 (90) 
Multiply by π p the 2 members :

π p = 2π p log(π p K) -2π p log(rad) -π p (91)
Then multiply by (1 + K) on the left and by (1 + ) on the right : 

π p (1 + K) >< ( 1 
Which gives two possibilities :

1. If rad K -2 > 4 1+ -→ (K -) > 0 (110) -→ K -> 0 -→ K > (111) 2. If rad K -2 < 4 1+ -→ (K -) log(rad) < 2(1 + ) (112) -→ log(rad) < 2(1 + ) (K -) (113) Now : log(rad) > 0 -→ K -> 0 -→ K > (114)
114 = 111 : we arrive at the same result. We show that K > is independent of the result of 109. From where : K > (115)

And so :

rad 2 rad 1 2 (1+ ) -πp 2 4 2πp(1+ ) > 1 (116) 
Putting back 2π p (1 + ) to the second member of 95, this becomes : And so because of 115, we conclude that :

(2π p + 2 rad 1 2 (1+ ) + π p ) log(rad) >< (1 + )
K = (123)
We can therefore validly replace in 89, K by :

c ≤ 4 (1+( ) -1 + ) rad 1+ (124) 
Which demonstrates the conjecture abc.

We can further improve the result by decreasing the exponent 1 by introducing the number of rad factors noted N f . Indeed, starting from 60, using K 1 for r divide the two members by π p :

| log(K)| π p < 1 Kπ p (125) -→ 2 rad 1 2 (1+ ) | log(K)| < π p (126)
This means that | log(K)| is insufficient to equal π p by multiplying it by 2 rad 1 2 (1+ ) . So let us introduce a number M r to write :

2 rad 1 2 (1+ ) | log(K)|M r = π p (127)
And so necessarily M r > 1, because of 126. Hence, by introducing N f instead of rad, we have :

N f | log(K)|M r ≤ π p (128) Since N f < rad 1 2 ( 
1+ ) , following the same justification as in 62, somehow counts the order of the prime numbers which is always inferior to their product. If N f < M r then in 127 we can write :

2 rad

1 2 (1+ ) | log(K)|N f ≤ π p (129)
It is therefore a question of solving the following :

N f >< M r ( 130 
)
We multiply on both sides by

| log(K)| 2 rad 1 2 (1+ ) : | log(K)| 2 rad 1 2 (1+ ) N f >< M r | log(K)|2 rad 1 2 (1+ ) (131) 
We find by using 127 :

| log(K)| 2 rad 1 2 (1+ ) N f >< π p (132)
Multiply by K the two members of 122 :

K| log(K)| 2 rad 1 2 (1+ ) N f >< Kπ p (133) -→ K| log(K)| 2 rad 1 2 (1+ ) N f >< 2 rad 1 2 (1+ ) (134) 
-→ K| log(K)|N f >< 1 (135)

-→ | log(K)|N f >< 1 K (136) -→ | log(K) N f | >< log(2 1 K ) (137) -→ K N f >< 2 1 K (138)
Now K < 1 so K n < 1, ∀n > 0. Hence :

K N f < 2 1 K (139)
And so :

N f < M r ( 140 
)
Where as expected : 2 rad 

Riemann Hypothesis

It would be interesting in all the above to see if the same thing can be applied to the Riemann Hypothesis [START_REF] Conrey | The riemann hypothesis[END_REF], [START_REF] Dudek | On the riemann hypothesis ans the difference between primes[END_REF]. Indeed, just like the real part of s in ζ(s), we have to consider K varying in the interval ]0, 1[. Indeed, starting from the function ζ(s) we can make appear the radical by use of the eulerian product :

ζ(s) = ∞ i = 1 1 1 -p -s i (147) ζ(s) = ∞ i = 1 p s i p s i -1 (148) 
We can introduce the infinite radical rad s ∞ = p s i and write :

ζ(s) = ∞ i = 1 rad s ∞ p s i -1 ( 149 
)
Once this is done, we can then rely on the following proposal demonstrated above : It would then remain only to show that when we have rad s for s = α + βi, if α ∈]0, 1[ then α = 1 2 . Then show that π p can only approach √ c and no other power of c in the interval ]0, 1[. And then taking µ as the complex part of s would imply that Re(s) = 1 2 . We would have for s = α + µ : This will be done in the second article.

π p µ = rad

Conclusion

The combined analysis of the 3 hypotheses allows, as announced, to resolve the abc conjecture. The first hypothesis made it possible to establish the equality between the radical and c by interposed adjustment coefficients. We created a bridge between c and rad because there was no definite function between the two in the absence of a and b. The second then introduced K which obeys the criterion of the third hypothesis in order to be able to forge N f and thus to conclude. We thus obtain C( ) as a consequence of the bijections established between the curves of the values c and rad. This also leads to some solutions to number problems such as Goldbach's Conjecture, which is seen here as a special case of a larger theorem, and the distribution of twin prime numbers. Finally, the milestones of Riemann Hypothesis are laid and an upcoming demonstration is to be expected. This opens new perspectives in number theory.

  ∀a, b, c ∈ Z/gcd(a, b) = 1, a + b + c = 0 : ∃C( ), ∀ > 0/ max (|a|, |b|, |c|) ≤ C( )rad(abc) 1+

2 

 2 odd squares. So there are a lot fewer squares than there are abc equations.

1 2 (-→ 2 rad 1 2 1 2

 211 1+ ) | log(K)|N f ≤ π p (141) MVULA (1+ ) | log(K)|N f ≤rad N f ω for consistency with , we find :C( ) = 4 1+( ω) -1 + (145)124 finally becomes :c ≤ 4 1+( ω) -1 + rad 1+(146)We thus find 63, with the constant C( ) has the behavior expected by M. Oesterlé :lim →0 4 1+( ω) -1 + = +∞

Théorème

  III ∀µ > 0, ∀a, b, c/a + b = c et pgcd(a, b) = 1, ∃π p ∈ Q which approximates √c, such as :π p µ = rad 1 2 +µ (150) Proof. Just put µ = 2, and apply 123 in 69.

  Rather than canceling the last two terms of the right-hand member, let us multiply the last one by zero (which does not challenge the indecision !) And see what conclusion we reach after this manipulation :

	-→ (2π p + 2 rad	1 2 (1+ ) + π p ) log(rad) >< (1 + ) 2 π p log(rad) -2π p (1 + )	(95)
	-→ (2π p + 2 rad	1 2 (1+ ) + π p ) log(rad) >< (1 + ) 2 π p log(rad) -log(4 2πp(1+ ) )	(96)
			-→ log(rad) 2πp +2 rad	1 2 (1+ ) +πp >< log(	rad (1+ ) 2 πp 4 2πp(1+ ) )	(97)
			-→ rad 2πp +2 rad	1 2 (1+ ) +πp ><	rad (1+ ) 2 πp 4 2πp(1+ )	(98)
			-→ rad 2πp +2 rad	1 2 (1+ ) +πp 4 2πp(1+ ) >< rad (1+ ) 2 πp	(99)
		-→ rad 2πp +2 rad	1 2 (1+ ) +πp-πp-2πp -πp 2 4 2πp(1+ ) >< 1	(100)
						-→ rad 2 rad	1 2 (1+ ) -πp 2 4 2πp(1+ ) >< 1	(101)
	Let's compare the 2 terms of the member on the left :
						rad 2 rad	1 2 (1+ ) -πp 2 >< 4 2πp(1+ )	(102)
	Let us apply again the logarithm of both sides of 102 :
			2 rad	1 2 (1+ ) log(rad) >< 2π p (1 + ) + π p	2 log(rad)	(103)
	Multiply 103 by K :			
		2K rad	1 2 (1+ ) log(rad) >< 2Kπ p (1 + ) + Kπ p	2 log(rad)	(104)
	2K rad	1 2 (1+ ) log(rad) >< 4(1 + )rad	1 2 (1+ ) + 2 2 rad	1 2 (1+ ) log(rad)	(105)
			K log(rad) >< 2(1 + ) + 2 log(rad)(53)	(106)
						+ )2π p log(π p K) -2π p (1 + ) log(rad) log(rad) K >< log(4 1+ ) + log(rad)	-π p (1 + )	(92)
	-→ π p + 2 rad	1 2 (1+ ) + π p + π p ><	(1 + )2π p log(π p K) -2π p (1 + ) log(rad)	(93)
	-→ (π p + 2 rad	1 2 (1+ ) + π p + π p ) log(rad) >< (1 + )2π p	1 + 2	log(rad) -2π p (1 + ) + 2π p (1 + ) (94)

2

(107)

log(rad) K -2 >< log(4 1+ ) (108) rad K -2 >< 4 1+
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