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For closed and oriented hyperbolic surfaces, a formula of Witten establishes an equality between two volume forms on the space of representations of the surface in a semisimple Lie group. One of the forms is a Reidemeister torsion, the other one is the power of the Atiyah-Bott-Goldman symplectic form. We introduce an holomorphic volume form on the space of representations of the circle, so that, for surfaces with boundary, it appears as peripheral term in the generalization of Witten's formula. We compute explicit volume and symplectic forms for some simple surfaces and for the Lie group SL N (C).

Introduction

Along this paper S = S g,b denotes a compact, oriented, connected surface with nonempty boundary, of genus g and with b ≥ 1 boundary components. We assume that χ(S) = 2 -2gb < 0. The fundamental group π 1 (S) is a free group F k of rank k = 1χ(S) ≥ 2.

Let G be a connected, semisimple, complex, linear group with compact real form G R , e.g. G = SL N (C) and G R = SU(N). We also assume that G is simply connected; notice that since π 1 (S) is free, their representations lift to the universal covering of the Lie group.

Fix a nondegenerate symmetric bilinear G-invariant form on the Lie algebra B∶ g × g → C , such that the restriction of B to g R , the Lie algebra of G R , is positive definite. This means that B is a negative multiple of the Killing form. Let R(S, G) denote the set of conjugacy classes of representations of π 1 (S) ≅ F k into G. We are only interested in irreducible representations for which the centralizer coincides with the center of G. Following Johnson and Millson [START_REF] Johnson | Deformation spaces associated to compact hyperbolic manifolds[END_REF] we call such representations good (see Definition 10), and we use the notation R * (S, G) to denote the corresponding open subset of R(S, G).

For a closed surface Σ, the bilinear form B induces two C-valued differential forms on R * (Σ, G), a holomorphic volume form Ω Σ defined as a Reidemeister torsion and the Atiyah-Bott-Goldman (holomorphic) symplectic form ω. Witten has shown the following theorem for compact groups, here we state its complexification: Theorem 1 (Witten, [START_REF] Witten | On quantum gauge theories in two dimensions[END_REF]). If Σ is a closed, oriented and hyperbolic surface, then

Ω Σ = ω n n! on R * (Σ, G), where n = 1 2 dim R * (Σ, G) = -1 2 χ(Σ) dim(G).
For surfaces with boundary S, we need to consider also R(S, ∂S, G) ρ 0 , the relative set of conjugacy classes of representations (for each peripheral curve we require its image to be in a fixed conjugacy class), see Subsection 2.2. Let R * (S, ∂S, G) ρ 0 denote the corresponding open subset of good representations. The holomorphic volume form Ω S is defined on R * (S, G) but the holomorphic symplectic form ω is defined on R * (S, ∂S, G) ρ 0 . To relate both spaces and both forms, we need to deal with each component of ∂S, which are circles.

We identify the variety of representations of the circle S 1 with G, by mapping each representation to the image of a fixed generator of π 1 (S 1 ). We restrict to regular representations, namely that map the generator of π 1 (S 1 ) to regular elements. Then R reg (S 1 , G) ≅ G reg G. Using that G is simply connected (see Remark 20 when G is not simply connected), one of the consequences of Steinberg's theorem [START_REF] Steinberg | Regular elements of semisimple algebraic groups[END_REF] is that

R reg (S 1 , G) ≅ G reg G ≅ C r ,
where r = rank G, and that there is a natural isomorphism (Corollary 19):

H 1 (S 1 ; Ad ρ) ≅ T [ρ] R reg (S 1 , G).
In Section 4.3 we show the existence of a form ν∶ ⋀ r H 1 (S 1 , Ad ρ) → C defined by the formula

(1) ν(∧v) = ± TOR(S 1 , Ad ρ, o, u, v) ⟨∧v, ∧u⟩.

Here u and v denote bases of H 0 (S 1 , Ad ρ) and H 1 (S 1 , Ad ρ) respectively and ∧u and ∧v their exterior product. Moreover, TOR denotes the Turaev's sign refined torsion, o an homology orientation of H * (S 1 ; R) (see Section 4.2), and ⟨. , .⟩ the duality pairing H 1 (S 1 , Ad ρ) × H 0 (S 1 , Ad ρ) → C. We prove in Lemma 29 that the value ν(∧v) ∈ C is independent of u. Steinberg theorem ( [START_REF] Steinberg | Regular elements of semisimple algebraic groups[END_REF], see also [START_REF] Steinberg | Conjugacy classes in algebraic groups[END_REF][START_REF] Vladimir | Cross-sections, quotients, and representation rings of semisimple algebraic groups[END_REF]) provides an isomorphism

(σ 1 , . . . , σ r )∶ G reg G ≅ → C r ,
where σ 1 , . . . , σ r denotes a system of fundamental characters of G, which also proves the isomorphism G G ≅ C r . When G = SL N (C), then r = N -1 and (σ 1 , . . . , σ r ) are the coefficients of the characteristic polynomial.

Proposition 2. When G is simply connected, then

ν = ±C d σ 1 ∧ ⋯ ∧ d σ r ,
for some constant C ∈ C * depending on G and B. In addition, for G = SL N (C) and B(X, Y ) =tr(XY ) for X, Y ∈ sl N (C),

C = ±(-1) (N -1)(N -2) 4 √ N .
Let ρ 0 ∈ R * (S, G) be ∂-regular, i.e. the image of each peripheral curve is a regular element of G (Definitions 15 and 16). We have an exact sequence (Corollary 19):

0 → T [ρ] R * (S, ∂S, G) ρ 0 → T [ρ] R * (S, G) → b ⊕ i=1 T [ρ(∂ i )] R reg (∂ i , G) → 0,
where ∂S = ∂ 1 ⊔ ⋯ ⊔ ∂ b denote the boundary components of S. For a ∂-regular representation ρ∶ π 1 (S) → G we let ν i denote the form corresponding to the restriction ρ π 1 (∂ i ) ∶ π 1 (∂ i ) → G as in [START_REF] Bismut | Symplectic geometry and the Verlinde formulas[END_REF] on ∂ i ≅ S 1 . Set d = dim G, r = rank G, and b > 0 be the number of components of ∂S. The following generalizes Theorem 1 to surfaces with boundary, [START_REF] Witten | On quantum gauge theories in two dimensions[END_REF] see also [START_REF] Bismut | Symplectic geometry and the Verlinde formulas[END_REF]Theorem 5.40].

Theorem 3. Let ρ 0 ∈ R(S, G) be a good, ∂-regular representation. Then on T [ρ 0 ] R * (S, G) we have:

Ω π 1 (S) = ± ω n n! ∧ ν 1 ∧ ⋯ ∧ ν b ,
where n = 1 2 dim R * (S, ∂S, G) ρ 0 = 1 2 (-χ(S) db r). Notice that we write Ω π 1 (S) instead of Ω S , as the simple homotopy type of S only depends on π 1 (S). Following Witten [START_REF] Witten | On quantum gauge theories in two dimensions[END_REF] in the closed case, the proof of Theorem 3 is based on Franz-Milnor duality for Reidemeister torsion.

The formula of Theorem 3 is homogeneous in the bilinear form B∶ g × g → C: if B is replaced by λ 2 B for some λ ∈ C * , then ω is replaced by λ 2 ω, ν i by λ r ν i and Ω π 1 (S) by λ 2 n+b r Ω π 1 (S) , as 2 n + b r = -χ(S)d = dim R(S, G).

We focus now on G = SL N (C), which is simply connected and has rank r = N -1. We fix a bilinear form on the Lie algebra: Convention 4. Along this paper, when G = SL N (C) we always assume B(X, Y ) = -tr(XY ) for X, Y ∈ sl N (C).

We compute explicit volume forms for spaces of representations of free groups in SL 2 (C) and SL 3 (C). We start with a pair of pants S 0,3 . The fundamental group π 1 (S 0,3 ) ≅ F 2 is free on two generators γ 1 and γ 2 . By Fricke-Klein theorem, X(F 2 , SL 2 (C)) ≅ C 3 and the coordinates are precisely the traces of the peripheral elements γ 1 , γ 2 , and γ 1 γ 2 , denoted by t 1 , t 2 , and t 12 respectively. In this case the relative character variety is just a point, and the symplectic form is trivial. Thus, by applying Theorem 3 and equality ν = ± √ 2 d tr γ (Proposition 2), we have

Ω F 2 = Ω π 1 (S 0,3 ) = ±2 √ 2 d t 1 ∧ d t 2 ∧ d t 12 , on R * (F 2 , SL 2 (C)).
By [START_REF] González-Acuña | On the character variety of group representations in SL(2, C) and PSL(2, C)[END_REF], for k ≥ 3, the 3k -3 trace functions t 1 , t 

T ∶ R * (F k , SL 2 (C)) ∖ crit(T ) → C 3k-3 , where crit(T ) = ⋃ i≥3 {t 12i = t 21i } ∪ {t 12 12 = 2}. Here, t i 1 ⋯i l ∶ R * (F k , SL 2 (C)) → C stands for the trace function tr γ if γ = γ i 1 ⋯γ i l with the convention γī = γ -1 i . Theorem 5. The holomorphic volume form on R * (F k , SL 2 (C)) ∖ crit(T ) is Ω SL 2 (C) F k = ±T * Ω, where Ω = ±2 √ 2 d t 1 ∧ d t 2 ∧ d t 12 k ⋀ i=3 √ 2 d t i ∧ d t 1i ∧ d t 2i t 12i -t 21i .
Next we deal with SL 3 (C). To avoid confusion with SL 2 (C), the trace functions in SL 3 (C) are denoted by τ i 1 ⋯i k ; notice that τ¯i ≠ τ i . Lawton obtains in [START_REF] Lawton | Generators, relations and symmetries in pairs of 3×3 unimodular matrices[END_REF] an explicit description of the variety of characters X(F 2 , SL 3 (C)). It follows from his result that

T ∶= (τ 1 , τ1, τ 2 , τ2, τ 12 , τ12, τ 1 2, τ1 2 )∶ R * (F 2 , SL 3 (C)) ∖ {τ 12 12 = τ 21 21} → C 8
defines a local parameterization. Using the computation of the symplectic form in [START_REF] Lawton | Poisson geometry of SL(3, C)-character varieties relative to a surface with boundary[END_REF], we prove in Proposition 39 that, on

R * (F 2 , SL 3 (C)) ∖ {τ 21 21 = τ 12 12} the volume form is Ω SL 3 (C) F 2 = T * Ω,
where

Ω = ± 3 √ -3 τ 21 21 -τ 12 12 d τ 1 ∧ d τ1 ∧ d τ 2 ∧ d τ2 ∧ d τ 12 ∧ d τ12 ∧ d τ 1 2 ∧ d τ1 2 .
This is generalized to a free group of arbitrary rank. First we start with the generic local parameters: Proposition 6. For k ≥ 3, the 8k -8 trace functions T = (τ 1 , τ1, τ 2 , τ2, . . . , τ k , τk, τ 12 , τ12, τ 13 , τ13, . . . , τ 1k , τ1k, τ 23 , τ23, . . . , τ 2k , τ2k,

τ 1 2, τ1 2 , τ 1 3, τ1 3 , . . . , τ 1 k , τ1 k ) define a local parameterization T ∶ R * (F k , SL 3 (C)) ∖ crit(T ) → C 8k-8 , with crit(T ) = ⋃ i≥2 {τ 1i 1ī = τ i1 ī1} ∪ ⋃ i≥3 {∆ 1 2i = 0}, ∆ 1 2i = (τ 12i -τ 1i2 )(τ12ī -τ1ī2) -(τ 1 2ī -τ 1 ī2)(τ1 2i -τ1 i2
). Next we provide the holomorphic volume form:

Theorem 7. The volume form on R * (F k , SL 3 (C)) ∖ crit(T ) is Ω SL 3 (C) F k = ±T * Ω, for Ω = ω 12 ∧ ν 1 ∧ ν 2 ∧ ν 12 k ⋀ i=3 ω 1i ∧ ν i ∧ ν 1i ∧ ν 2i 3∆ 1 2i
where

ν i = √ -3 d τ i ∧ d τī, ν ℓi = √ -3 d τ ℓi ∧ d τl¯i, ω 1i = 1 τ 1i 1ī -τ i1 ī1 d τ 1 ī ∧ d τ1 i ,
and ∆ 1 2i is as in Proposition 6. The paper is organized as follows. In Section 2 we review the results on spaces of representations that we need, in particular we describe the relative variety of representations. In Section 3 we recall the tools of Reidemeister torsion, including the duality formula, on which Theorem 3 is based. In Section 4 we describe all forms and we prove Theorem 3. Section 5 is devoted to formulas for SL N (C), the form ν and as well as the volume form for the free groups of rank 2 in SL 2 (C) and SL 3 (C). In Section 6 we use Goldman's formula for the Poisson bracket to give the symplectic form in terms of trace functions for the relative varieties of representations of S 0,4 and S 1,1 in SL 2 (C). Finally, in Section 7 we compute volume forms on spaces of representations of free groups of higher rank in SL 2 (C) and SL 3 (C). Acknowledgements. We are indebted to Simon Riche for helpful discussions and for pointing out Steinberg results to us.

Varieties of representations

Throughout this article G denotes a simply-connected semisimple complex linear Lie group. We let d denote the dimension of G, and r its rank. Also recall that along this paper S = S g,b denotes a compact, oriented, connected surface with nonempty boundary, of genus g and with b ≥ 1 boundary components, [START_REF] Onishchik | Lie groups and algebraic groups[END_REF]Chap.4,§1.2] that G is algebraic, and hence R(S, G) is an affine algebraic set (it has a natural algebraic structure independent of the choice of the isomorphism

∂S = ∂ 1 ⊔ ⋯ ⊔ ∂ b . We assume that χ(S) = 2-2g-b < 0. The fundamental group of S is a free group F k of rank k = 1-χ(S) ≥ 2.

The variety of good representations. The set of representations of π

1 (S) ≅ F k in G is R(S, G) = hom(π 1 (S), G) ≅ G k . It follows from
π 1 (S) ≅ F k ).
The group G acts on R(S, G) by conjugation and we are interested in the quotient

R(S, G) = R(S, G) G .
This is not a Hausdorff space, so we need to restrict to representations with some regularity properties. Following [START_REF] Johnson | Deformation spaces associated to compact hyperbolic manifolds[END_REF], we define:

Definition 8. A representation ρ ∈ R(S, G) is irreducible if its image is not contained in a proper parabolic subgroup of G.
For ρ ∈ R(S, G), its centralizer is

Z(ρ) = {g ∈ G gρ(γ) = ρ(γ)g, ∀γ ∈ π 1 (S)} .
Proposition 9 (Proposition 1.1 of [START_REF] Johnson | Deformation spaces associated to compact hyperbolic manifolds[END_REF]). The representation ρ ∈ R(S, G) is irreducible if and only if the orbit O(ρ) is closed in R(S, G) and Z(ρ) is finite.

Definition 10. A representation ρ ∈ R(S, G) is good if it is irreducible and its centralizer Z(ρ) is the center of the group G, i.e. Z(ρ) = Z(G).
The set of good representations is denoted by R * (S, G), and its orbit space by R * (S, G) = R * (S, G) G.

Proposition 11 (Proposition 1.2 and 1.3 of [START_REF] Johnson | Deformation spaces associated to compact hyperbolic manifolds[END_REF]). The set of good representations

R * (S, G) is a Zariski open subset of R(S, G). Furthermore the action of G on R * (S, G) is proper.
The variety of characters is the quotient in the algebraic category:

X(S, G) = R(S, G) G .
Namely, it is an algebraic affine set defined by its ring of polynomial functions, as the ring of functions on R(S, G) invariant by conjugation.

The projection R(S, G) → X(S, G) factors through a surjective map R(S, G) → X(S, G). For good representations we have: Proposition 12. The natural map restricts to an injection

R * (S, G) ↪ X(S, G)
whose image is a Zariski open subset and a smooth complex manifold.

For the proof, see for instance [12, §1], or [START_REF] Newstead | Introduction to moduli problems and orbit spaces[END_REF]Proposition 3.8] for injectivity, as irreducibility is equivalent to stability in GIT [12, §1]. For smoothnesses see [START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF].

Given a representation ρ ∈ R(S, G), the Lie algebra g turns into an π 1 (S)-module via Ad ○ρ. If there is no ambiguity this module is denoted just by g, and the coefficients in cohomology are denoted by Ad ρ. Proposition 13. Let ρ ∈ R * (S, G) be a good representation. Then there is a natural isomorphism

T [ρ] R * (S, G) ≅ H 1 (S; Ad ρ). In particular the dimension of R * (S, G) is -χ(S) d.
This proposition can be found for instance in [24, Corollary 50], but we sketch the proof as it may be useful for the relative case.

Proof. Let Z 1 = Z 1 (S; Ad ρ) denote the space of crossed morphisms from π 1 (S) to g, i.e. maps d∶ π 1 (S) → g satisfying d(γµ) = d(γ) + Ad ρ(γ) d(µ), ∀γ, µ ∈ π 1 (S). Let B 1 = B 1 (S; Ad ρ) denote the subspace of inner crossed morphisms: for a ∈ g the corresponding inner morphism maps γ ∈ π 1 (S) to Ad ρ(γ) (a) -a. Weil's construction identifies Z 1 with T ρ R(S, G) (usually Z 1 is the Zariski tangent space to a scheme, possibly non-reduced, but as π 1 (S) is free, R(S, G) is a smooth algebraic variety). The subspace B 1 corresponds to the tangent space to the orbit Ad G (ρ). Then, in order to identify the tangent space to R * (S, G) with the cohomology group H 1 (S; Ad ρ) = Z 1 B 1 , we use a slice, for instance an étale slice provided by Luna's theorem [START_REF]Linear algebraic groups. Invariant theory, A translation of ıt Algebraic geometry[END_REF]Theorem 6.1], or an analytic slice (cf. [START_REF] Johnson | Deformation spaces associated to compact hyperbolic manifolds[END_REF]). In the setting of a good representation ρ, a slice is a subvariety S ⊂ R(S, G) containing ρ, invariant by Z(ρ) = Z(G), such that the conjugation map

G Z(G) × S → R(S, G)
is locally bi-analytic at (e, ρ) and the projection S → X(S, G) is also bi-analytic at ρ. (If ρ was not good, we should take care of the action of Z(ρ) Z(G). In addition, for Γ not a free group the description is more involved). Then the assertion follows easily from the properties of the slice.

The relative variety of representations. Let

∂S = ∂ 1 ⊔ ⋯ ⊔ ∂ b
denote the decomposition in connected components. By abuse of notation, we also let ∂ i denote an element of the fundamental group represented by the corresponding oriented peripheral curve. This is well defined only up to conjugacy in π 1 (S), but our constructions do not depend on the representative in the conjugacy class. Definition 14 ([13] §4.3). For ρ 0 ∈ R(S, G), the relative variety of representations is

R(S, ∂S, G) ρ 0 = {[ρ] ∈ R(S, G) ρ(∂ i ) ∈ O(ρ 0 (∂ i )), i = 1, . . . , b} .
Here O(ρ 0 (∂ i )) denotes the conjugacy class of ρ 0 (∂ i ). We also denote

R * (S, ∂S, G) ρ 0 = R(S, ∂S, G) ρ 0 ∩ R * (S, G) .
Besides considering good representations, we restrict our attention to representation which map peripheral elements to regular elements of G. Definition 15 ([26] §3.5). An element g ∈ G is called regular if its centralizer Z(g) has minimal dimension among centralizers of elements of G. Equivalently, its conjugacy class O(g) has maximal dimension. This minimal dimension is r the rank of G [26, §3.5, Proposition 1]. In SL N (C), a diagonal matrix is regular if and only if all eigenvalues are different. More generally, g ∈ SL N (C) is regular if and only if its minimal polynomial is of degree N [26, §3.5, Proposition 2]. In particular the companion matrix of a monic polynomial is regular.

Definition 16. A representation ρ ∈ R(S, G) is called ∂-regular if the elements ρ(∂ 1 ), . . . , ρ(∂ b ) are regular. Proposition 17. Let ρ 0 ∈ R * (S, G) be a good, ∂-regular representation. (a) R * (S, ∂S, G) ρ 0 is a complex smooth manifold of dimension d 0 = -d χ(S) -b r = d(2g(S) -2) + b(d -r). (b) For [ρ] ∈ R * (S, ∂S, G) ρ 0 ,
there is a natural isomorphism:

T [ρ] R * (S, ∂S, G) ρ 0 ≅ ker H 1 (S; Ad ρ) → H 1 (∂S; Ad ρ) .
Proof. We first show that the map H 1 (S; Ad ρ) → H 1 (∂S; Ad ρ) is a surjection. By Poincaré duality H 2 (S, ∂S; Ad ρ) ≅ H 0 (S; Ad ρ) ≅ g Ad ρ(π 1 (S)) , that vanishes because Z(ρ) is finite. Thus, by the long exact sequence of the pair (S, ∂S), the map H 1 (S; Ad ρ) → H 1 (∂S; Ad ρ) is a surjection.

res S ∶ S → R(∂S, G) = b i=1 R(∂ i , G) = G b
is transverse to the products of orbits by conjugation

O = b i=1 O(ρ(∂ i )) .
Namely, (res S ) * (T ρ S) + T res(ρ) O = T res(ρ) G b . It follows from the rank theorem [16, C.4

.1] that O(ρ(∂ i )) ⊂ G is a complex analytic subvariety of dimension d -r because ρ is ∂- regular. Thus (res S ) -1 (O) is an analytic C-submanifold of codimension dim G b -dim O = b i=1 dim G -dim O(ρ(∂ i )) = b r .
Now the proposition follows from the properties of the slice.

Steinberg map.

In order to understand the space of conjugacy classes of regular representations of Z we identify each representation with the image of its generator, so that

R reg (Z, G) = G reg and R reg (Z, G) = G reg G. Consider the Steinberg map (2) (σ 1 , ⋯, σ r )∶ G → C r
where σ 1 , ⋯, σ r denote the characters corresponding to a system of fundamental representations (for SL N (C) those are the coefficients of the characteristic polynomial).

Theorem 18. (Steinberg, [START_REF] Steinberg | Regular elements of semisimple algebraic groups[END_REF]) If G is simply connected, then the map (2) is a surjection and has a section s∶ C r → G reg so that s(C r ) is a subvariety that intersects each orbit by conjugation in G reg precisely once.

For instance, when G = SL N (C) the section in Theorem 18 can be chosen to be the companion matrix (see [26, p. 120] and [START_REF] Humphreys | Conjugacy classes in semisimple algebraic groups[END_REF]Sec. 4.15]).

Corollary 19. If G is simply connected, then:

(i) The map (2) induces natural isomorphisms between the space of regular orbits by conjugation, the variety of characters, and C r :

R reg (S 1 , G) ≅ X(S 1 , G) ≅ C r .
(ii) The Steinberg map induces a natural isomorphism

H 1 (S 1 , Ad ρ) ≅ T [ρ] R reg (S 1 , G) ≅ C r .
Moreover, for each good, ∂-regular representation ρ 0 ∈ R * (S, G) and [ρ] ∈ R * (S, ∂S, G) ρ 0 there is an exact sequence

0 → T [ρ] R * (S, ∂S, G) ρ 0 → T [ρ] R * (S, G) → b ⊕ i=1 T [ρ(∂ i )] R reg (∂ i , G) → 0.
Proof. For (i), notice that what we aim to prove is the isomorphism

G reg G ≅ G G ≅ C r ;
which is straightforward from the existence of the section in Theorem 18. For (ii), by the existence of the section we also know that the differential of Steinberg's map Z 1 (Z, Ad ρ) ≅ g → C r is surjective whenever ρ is regular [11, §4.19]. In addition it maps B 1 (Z, Ad ρ) to 0, because Steinberg map is constant on orbits by conjugation.

Thus we have a well defined surjection H 1 (S 1 , Ad ρ) → C r , which is an isomorphism because of the dimension. The exact sequence follows from the long exact sequence in cohomology of the pair (S, ∂S) and the identification of cohomology groups with tangent spaces, cf. Proposition 17.

Remark 20. When G is not simply connected, then the universal covering G → G is finite and π 1 (G) can be identified with a (finite) central subgroup Z of G. The center of G acts on the quotient G G and we obtain a commutative diagram

G → G G ϕ G → G G where (G G, ϕ) is a quotient for the action of Z on G G (see [21, Lemma 2.5]). Notice that ϕ is a finite branched covering.
Then part (ii) of Corollary 19 can be easily adapted for those [g] ∈ G G which are outside the branch set of ϕ.

Reidemeister torsion

Let ρ ∈ R(S, G) be a representation; recall that we consider the action of π 1 (S) on g via the adjoint of ρ. Most of the results in this section apply not only to g but to its real form g R , provided that the image of the representation is contained in G R . Recall also that we assume that B restricted to the compact real form g R is positive definite.

Consider a cell decomposition K of S. If C * ( K; Z) denotes the simplicial chain complex on the universal covering, one defines

(3) C * (K; Ad ρ) = hom π 1 (S) (C * ( K; Z), g).
We consider the so called geometric basis. Start with a B-orthonormal C-basis {m 1 , . . . , m d } of g. For each i-cell e i j of K we choose a lift ẽi j to the universal covering K, then

c i = {(ẽ i j ) * ⊗ m k } jk is a basis of C i (K; Ad ρ), called the geometric basis. Here, (ẽ i j ) * ⊗ m k ∶ C * ( K; Z) → g is the unique π 1 (S)-homomorphism given by (ẽ i j ) * ⊗ m k (ẽ i l ) = δ jl m k . On the other hand, if B i = Im(δ∶ C i-1 (K; Ad ρ) → C i (K; Ad ρ)) is the space of cobound- aries, chose b i a basis for B i ⊂ C i and chose lift bi to C i-1 by the coboundary map. For a basis h i of H i (K; Ad ρ), consider also representatives hi ∈ C i (K; Ad ρ). Then the disjoint union b i+1 ⊔ hi ⊔ b i
is also a basis for C i (K; Ad ρ). Notice that we are interested in the case where the zero and second cohomology groups vanish, so we assume that h0 = h2 = ∅.

Reidemeister torsion is defined as

(4) tor(S, Ad ρ, h 1 ) = [ b2 ⊔ h1 ⊔ b 1 ∶ c 1 ] [ b1 ∶ c 0 ][b 2 ∶ c 2 ] ∈ C * {±1}
Here, for two bases a and b of a vector space, [a ∶ b] denotes the determinant the matrix whose colons are the coefficients of the vectors of a as linear combination of b.

Remark 21. The choice of the bilinear form B is relevant, as we use a B-orthonormal basis for g and χ(S) ≠ 0. Namely, if we replace B by λ 2 B, then the orthonormal basis will be 1 λ {m 1 , . . . , m d } and the torsion will be multiplied by a factor λ -χ(S)d = λ dim R(S,G) . For an ordered basis a = {a 1 , . . . , a m } of a vector space, denote

∧a = a 1 ∧ ⋯ ∧ a m . Since ∧a = [a ∶ b](∧b), the notation [a ∶ b] = ∧a ∧b
is often used in the literature (cf. [START_REF] Milnor | A duality theorem for Reidemeister torsion[END_REF]).

3.1.

The holomorphic volume form. The tangent space to R * (S, G) at [ρ] is identified to t H 1 (S; Ad ρ), by Proposition 13. There is a natural holomorphic volume form on H 1 (S; Ad ρ): Ω S (∧h) = ± tor(S, Ad ρ, h) where h is a basis for H 1 (S; Ad ρ).

The surface S has the simple homotopy type of a graph. Moreover, graphs that are homotopy equivalenet are also simple-homotopy equivalent, thus this volume form depends only on the fundamental group

Ω π 1 (S) = Ω S . The bilinear form B defines a bi-invariant volume form θ G on the Lie group G in the usual way. Hence (θ G ) k is a volume form on R(π 1 (S), G) ≅ G k .
For a good representation ρ the form θ G induces also a form θ O(ρ) on the orbit O(ρ) by push-forward: the orbit map

f ρ ∶ G → R(π 1 (S), G), f ρ (g) = Ad g ○ρ factors through the quotient G Z(G). The quotient map G → G Z(G)
is a Lie group covering and we get an isomorphism fρ ∶ G Z(G) → O(ρ), and hence [START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF] θ

O(ρ) = (f ρ ) * (θ G ) .
The next lemma justifies why Reidemeister torsion is the natural choice of volume form on the variety of representations up to conjugation.

Lemma 22. Let π∶ R * (S, G) → R * (S, G) denote the projection. Then at ρ ∈ R * (S, G) we have: (θ G ) k = ±θ O(ρ) ∧ π * Ω S .
Proof. We use a graph G with one vertex and k edges to compute the torsion of S. The Reidemeister torsion of this graph is tor(G, Ad

ρ, h) = ±[b 1 ⊔ h ∶ c 1 ] [ b1 ∶ c 0 ]. If we make the choice b1 = c 0 , which is a basis for g, then tor(G, Ad ρ, h) = [δc 0 ⊔ h ∶ c 1 ] = ∧ δc 0 ∧ h ∧c 1 .
We identify the 1-cells with the generators of F k , so that every element in c 1 is viewed as a tangent vector to the variety of representations, and c 1 has volume one,

(θ G ) k (∧c 1 ) = 1
because we started with an B-orthonormal basis for g.

Thus (6) (θ G ) k (∧δc 0 ∧ h) = ± tor(G, Ad ρ, h) = ±Ω S (∧h).
As δc 0 is a basis of the tangent space to the orbit π * (δc 0 ) = 0. Moreover, using π * ( h) = h:

(7) (θ O(ρ) ∧ π * Ω S )(∧δc 0 ∧ h) = θ O(ρ) (∧δc 0 )Ω S (∧h).
By ( 6) and ( 7), to conclude the proof of the lemma we claim that θ O(ρ) (∧δc 0 ) = 1. For that purpose, we use the canonical identification T ρ O(ρ) ≅ B 1 (π 1 (S); Ad ρ). Using this identification, the tangent map of the orbit map

f ρ ∶ G → O(ρ) at e ∈ G, df ρ (e)∶ g → T ρ O(ρ), corresponds to df ρ (e)(X) = -δ(X), where δ∶ g → B 1 (π 1 (S); Ad ρ) denotes the coboundary operator δ(X)(γ) = Ad ρ(γ) (X) -X, for γ ∈ π 1 (S).
Therefore for the basis δc 0 of B 1 (π 1 (S); Ad ρ) we obtain by ( 5):

θ O(ρ) (∧δc 0 ) = θ O(ρ) (∧df ρ (e)c 0 ) = ±θ G (∧c 0 ) = 1.
This concludes the proof of the claim and the lemma.

3.2. The nondegenerate pairing. Consider K ′ the cell decomposition dual to K: for each i-dimensional cell e i j of K there exists a dual (2 -i)-dimensional cell f 2-i j of the dual complex (K ′ , ∂K ′ ). The complex C * (K ′ , ∂K ′ ; Z) yields the relative cohomology of the pair (S, ∂S). This can be generalized to cohomology with coefficients. If C * ( K; Z) denotes the simplicial chain complex on the universal covering, recall from (3) that

C * (K; Ad ρ) = hom π 1 (S) (C * ( K; Z), g),
and we similarly define

C * (K ′ , ∂K ′ ; Ad ρ) = hom π 1 (S) (C * ( K′ , ∂ K′ ; Z), g)
where π 1 (S) acts on g by the adjoint representation.

Following Milnor [START_REF] Milnor | A duality theorem for Reidemeister torsion[END_REF], there is a paring

[. , . ]∶ C i ( K; Z) × C 2-i ( K′ , ∂ K′ ; Z) → Zπ 1 (S) defined by [c, c ′ ] ∶= γ∈π 1 (S) (c ⋅ γc ′ ) γ.
Here "⋅" denotes the intersection number in the universal covering. The main properties of this paring are that for η ∈ Zπ 1 (S) we have:

(8) [ηc, c ′ ] = η[c, c ′ ], [c, ηc ′ ] = [c, c ′ ]η and [∂c, c ′ ] = ±[c, ∂c ′ ].
Here the bar . ∶ Zπ 1 (S) → Zπ 1 (S) denotes the anti-involution that extends Z-linearly the anti-morphism of π 1 (S) that maps γ ∈ π 1 (S) to γ -1 . Notice that the sign ± in equation ( 8) depends only on the dimension of the chains.

For each i-dimensional cell e i j we fix a lift ẽi j to K. Also, we chose a

(2 -i)-dimensional cell f 2-i j which projects to f 2-i j . By replacing f 2-i j
by a translate, we can assume that

ẽi j ⋅ f 2-i k = δ jk . We obtain, for each i-chain c ∈ C i ( K; Z) and each (2 -i)-chain c ′ ∈ C 2-i ( K′ , ∂ K′ ; Z) that c = j [c, f 2-i j ] ẽi j and c ′ = j [ẽ i j , c ′ ] f 2-i j . Given α ∈ C i (K; Ad ρ) and α ′ ∈ C 2-i-1 (K ′ , ∂K ′ ; Ad ρ) the formula (α, α ′ ) ↦ j B α(ẽ i j ), α ′ ( f 2-i j )
defines a nondegenerate pairing

(9) ⟨⋅, ⋅⟩∶ C i (K; Ad ρ) × C 2-i (K ′ , ∂K ′ ; Ad ρ) → C .
By using equation [START_REF] González-Acuña | On the character variety of group representations in SL(2, C) and PSL(2, C)[END_REF], it is easy to see that this pairing satisfies [START_REF] Guruprasad | Group systems, groupoids, and moduli spaces of parabolic bundles[END_REF] ⟨δα, α ′ ⟩ = ±⟨α, δα ′ ⟩ , and therefore it induces a non-singular pairing in cohomology

(11) ⟨⋅, ⋅⟩∶ H 1 (S; Ad ρ) × H 1 (S, ∂S; Ad ρ) → C.
Given a basis h = {h i } i of H 1 (S; Ad ρ) and h ′ = {h ′ i } i a basis of H 1 (S, ∂S; Ad ρ), we introduce the notation [START_REF] Johnson | Deformation spaces associated to compact hyperbolic manifolds[END_REF] ⟨∧h, ∧h ′ ⟩ ∶= det ⟨h i , h ′ j ⟩ ij which is the natural extension of the pairing [START_REF] Humphreys | Conjugacy classes in semisimple algebraic groups[END_REF] 

to d ⋀ H 1 (S; Ad ρ) ⊗ d ⋀ H 1 (S, ∂S; Ad ρ) → C , where d = -χ(S) dim G. 3.3. The duality formula. Let ρ ∈ R(π 1 (S), G) be a representation.
Proposition 23 (Duality formula). Let h = {h i } i be a basis for H 1 (S; Ad ρ), and let h ′ = {h ′ i } i be a basis for H 1 (S, ∂S; Ad ρ). Assume that the cohomology groups H k (S; Ad ρ) and H k (S, ∂S; Ad ρ) vanish in dimension k = 0, 2. Then tor(S, Ad ρ, h) tor(S, ∂S, Ad ρ, h ′ ) = ±⟨∧h, ∧h ′ ⟩ This is E. Witten's generalization of the duality formula of W. Franz and J. Milnor. We reproduce the proof for completeness. In Witten's article [START_REF] Witten | On quantum gauge theories in two dimensions[END_REF] the proof of this particular formula is only given in the closed case, and Milnor [START_REF] Milnor | A duality theorem for Reidemeister torsion[END_REF] and Franz [START_REF] Franz | Torsionsideale, Torsionsklassen und Torsion[END_REF] consider only the acyclic case.

Proof. We chose the geometric basis of C i (K; Ad ρ) and C 2-i (K ′ , ∂K ′ ; Ad ρ) to be dual to each other, by choosing dual lifts of the cells and a B-orthonormal basis of the Lie algebra g. In this way, the matrix of the intersection form [START_REF] Goodman | Symmetry, representations, and invariants[END_REF] with respect the geometric basis is the identity, in particular its determinant is 1: ⟨∧c i , ∧(c 2-i ) ′ ⟩ = 1. Thus we view the product of torsions in the statement of the proposition as three changes of basis, one for each intersection form:

(13) tor(S, Ad ρ, h) tor(S, ∂S, Ad ρ, h ′ ) = ± tor(S, Ad ρ, h) tor(S, ∂S, Ad ρ, h ′ ) ⟨∧c 1 , ∧(c 1 ) ′ ⟩ ⟨∧c 0 , ∧(c 2 ) ′ ⟩⟨∧c 2 , ∧(c 0 ) ′ ⟩ = ± [ b2 ⊔ b 1 ⊔ h ∶ c 1 ] [ (b 2 ) ′ ⊔ (b 1 ) ′ ⊔ h′ ∶ (c 1 ) ′ ] [ b1 ∶ c 0 ][b 2 ∶ c 2 ] [( b1 ) ′ ∶ (c 0 ) ′ ][(b 2 ) ′ ∶ (c 2 ) ′ ] ⟨∧c 1 , ∧(c 1 ) ′ ⟩ ⟨∧c 0 , ∧(c 2 ) ′ ⟩⟨∧c 2 , ∧(c 0 ) ′ ⟩ = ± ⟨∧ b2 ∧ b 1 ∧ h, ∧ (b 2 ) ′ ∧ (b 1 ) ′ ∧ h′ ⟩ ⟨∧ b1 , ∧(b 2 ) ′ ⟩⟨∧b 2 , ∧( b1 ) ′ ⟩ .
Next, following Witten, we may chose the lift of the coboundaries to be orthogonal to the lift of the cohomology of the other complex: ⟨ hi , (b 2 j ) ′ ⟩ = ⟨ b2 i , h′ j ⟩ = 0. In addition, by direct application of [START_REF] Guruprasad | Group systems, groupoids, and moduli spaces of parabolic bundles[END_REF]:

⟨b 1 i , (b 1 j ) ′ ⟩ = ⟨b 1 i , h′ j ⟩ = ⟨ hi , (b 1 j ) ′ ⟩ = 0.
Thus the numerator in [START_REF] Kapovich | Hyperbolic manifolds and discrete groups[END_REF] is the determinant of a matrix with some vanishing blocks, and (13) becomes: [START_REF] Guruprasad | Group systems, groupoids, and moduli spaces of parabolic bundles[END_REF]. Hence ( 14) equals ±⟨∧h, ∧h ′ ⟩, concluding the proof.

(14) ± ⟨∧ b2 , ∧(b 1 ) ′ ⟩⟨∧b 1 , ∧ (b 2 ) ′ ⟩⟨∧h, ∧h ′ ⟩ ⟨∧ b1 , ∧(b 2 ) ′ ⟩⟨∧b 2 , ∧( b1 ) ′ ⟩ . Finally, since δ bi = b i and δ (b i ) ′ = (b i ) ′ , ⟨∧ b2 , ∧(b 1 ) ′ ⟩ = ±⟨∧b 2 , ∧( b1 ) ′ ⟩ and ⟨∧b 1 , ∧ (b 2 ) ′ ⟩ = ±⟨∧ b1 , ∧(b 2 ) ′ ⟩, by
Remark 24. Notice that the proof generalizes in any dimension, after changing the product by a quotient in the odd dimensional case, and taking care of the intersection product in all cohomology groups.

Symplectic form and volume forms

4.1. The symplectic form on the relative variety of representations. For a good and ∂-regular representation ρ 0 , the tangent space to R * (S, ∂S, G) ρ 0 is the kernel of the map i∶ H 1 (S; Ad ρ) → H 1 (∂S; Ad ρ) induced by inclusion (Proposition 17). The long exact sequence in cohomology of the pair is:

0 → H 0 (∂S; Ad ρ) β → H 1 (S, ∂S; Ad ρ) j → H 1 (S; Ad ρ) i → H 1 (∂S; Ad ρ) → 0 For a, b ∈ ker(i), we define (15) ω(a, b) = ⟨ã, b⟩, = ⟨a, b⟩ where ã, b ∈ H 1 (S, ∂S; Ad ρ) satisfy j(ã) = a, j( b) = b.
This form is well defined (independent of the lift), because i and β are dual maps with respect to the pairing [START_REF] Humphreys | Conjugacy classes in semisimple algebraic groups[END_REF], that is ⟨β(⋅), ⋅⟩ = ⟨⋅, i(⋅)⟩. Moreover we have: [START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF][START_REF] Guruprasad | Group systems, groupoids, and moduli spaces of parabolic bundles[END_REF][START_REF] Lawton | Poisson geometry of SL(3, C)-character varieties relative to a surface with boundary[END_REF]). Assume that ρ 0 is a good and ∂-regular. Then the form ω is symplectic on R * (S, ∂S, G) ρ 0 .

Theorem 25 ([
The fact that ω is bilinear and alternating is clear from construction, non-degeneracy follows from Poincaré duality, and the deep result is to prove dω = 0. When S is closed this was proved by Goldman in [START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF]. When ∂S ≠ ∅, the result with real coefficients is due to Guruprasad, Huebschmann, Jeffrey, and Weinstein [START_REF] Guruprasad | Group systems, groupoids, and moduli spaces of parabolic bundles[END_REF], and in [START_REF] Lawton | Poisson geometry of SL(3, C)-character varieties relative to a surface with boundary[END_REF] Lawton explains why it works in the complex case. 4.2. Sign refined Reidemeister torsion for the circle. Let V be a finite dimensional real or complex vector space, and ϕ∶ π 1 (S 1 ) → SL(V ) be a representation. In what follows we use the refined torsion with sign due to Turaev, that we denote TOR(S 1 , ϕ, o, u, v) [28, §3]. This torsion depends on the choice of an orientation o in cohomology with constant coefficients of S 1 and the choice of respective basis u for H 0 (S 1 ; ϕ) and v for H 1 (S 1 ; ϕ). For a circle S 1 , the choice of an orientation determines a fundamental class, hence an orientation in homology.

We start with a cell decomposition K of S 1 , with i-cells e i 1 , . . . , e i a , i = 0, 1, and a (real or complex) basis {m 1 , . . . , m k } for the vector space V . The geometric basis for

C i (K; ϕ) is then c i = {(ẽ i 1 ) * ⊗ m 1 , (ẽ i 1 ) * ⊗ m 2 , . . . , (ẽ i a ) * ⊗ m k }.
As before, let B 1 = Im(δ∶ C 0 (K; ϕ) → C 1 (K; ϕ)) denote the coboundary space and chose b 1 as basis for B 1 and lift it to b1 in C 0 (K; ϕ). Consider also ṽ ⊂ C 1 (K; ϕ) a representative of v and similarly ũ ⊂ C 0 (K; ϕ) for u. Then we define the torsion:

tor(S 1 , ϕ, u, v, c 0 , c 1 ) = [ṽ ⊔ b 1 ∶ c 1 ] [ b1 ⊔ ũ ∶ c 0 ] ∈ C * .
Notice that there is no sign indeterminacy, because we include c i in the notation. In fact sign indeterminacy comes from changing the order or the orientation of the cells of K.

The sign is not affected by the choice of a basis for V , because χ(S 1 ) = 0. Following [28, §3] we consider

α i = ∑ i l=0 dim C l (K; ϕ), β i = ∑ i l=0 dim H l (S 1 ; ϕ) and N = ∑ i≥0 α i β i . We define Tor(S 1 , ϕ, u, v, c 0 , c 1 ) = (-1) N tor(S 1 , ϕ, u, v, c 0 , c 1 ).
This quantity is invariant under subdivision of the cells of K, but it still depends on their ordering and orientation. To make this quantity invariant, Turaev introduces the notion of cohomology orientation, i.e. an orientation of the R-vector space H 0 (S 1 ; R) ⊕ H 1 (S 1 ; R). We consider a geometric basis the complex with trivial coefficients C i (K; R), c i = {(e i 1 ) * , . . . , (e i a ) * }, with the same ordering and orientation of cells. We chose any basis h i of H i (S 1 ; R) that yield the orientation o.

Definition 26. The sign determined torsion is

TOR(S 1 , ϕ, o, u, v) = Tor(S 1 , ϕ, u, v, c 0 , c 1 ) ⋅ sgn Tor(S 1 , 1, h 0 , h 1 , c 0 , c 1 ) dim ϕ
Let -o denote the homology orientation opposite to o. It is straightforward from construction that ( 16)

TOR(S 1 , ϕ, -o, u, v) = (-1) dim ϕ TOR(S 1 , ϕ, o, u, v)
In particular, we do not need the homology orientation when dim ϕ is even. For a circle S 1 , the choice of an orientation determines a fundamental class, hence an orientation in cohomology.

Let ϕ i ∶ π 1 (S 1 ) → SL(V i ) be representations into finite dimensional vector spaces, for i = 1, 2. Then H * (S 1 ; ϕ 1 ⊕ ϕ 2 ) ≅ H * (S 1 ; ϕ 1 ) ⊕ H * (S 1 ; ϕ 2 ). Let u i and v i denote basis for H 0 (S 1 ; ϕ i ) and H 1 (S 1 ; ϕ i ) respectively. The following lemma reduces to an elementary calculation: Let ρ∶ π 1 (S 1 ) → G be regular. Then dim H 0 (S 1 ; Ad ρ) = r, because H 0 (S 1 ; Ad ρ) ≅ g Ad ρ . As the Euler characteristic of S 1 vanishes, dim H 1 (S 1 ; Ad ρ) = r. Furthermore, since G is simply connected, we have

Lemma 27. Let ϕ i ∶ π 1 (S 1 ) → SL(V i ) be representations into finite dimensional vector spaces, for i = 1, 2. Then TOR(S 1 , ϕ 1 ⊕ ϕ 2 , o, u 1 × {0} ⊔ {0} × u 2 , v 1 × {0} ⊔ {0} × v 2 ) = TOR(S 1 , ϕ 1 , o, u 1 , v 1 ) ⋅ TOR(S 1 , ϕ 2 , o, u 2 , v 2 ).
H 1 (S 1 ; Ad ρ) ≅ T [ρ] R reg (S 1 , G) (Corollary 19).
By Poincaré duality, the pairing

⟨⋅, ⋅⟩∶ H 0 (S 1 ; Ad ρ) × H 1 (S 1 ; Ad ρ) → H 1 (S 1 ; C) ≅ C
is non degenerate.

In the next lemma we use the refined torsion with sign due to Turaev (see Section 4.2). By [START_REF] Law | Introduction to complex analytic geometry[END_REF] changing the orientation of S 1 changes the torsion TOR(S 1 , Ad ρ, o, u, v) by a factor (-1) d = (-1) r , as well as ⟨∧v, ∧u⟩ by the same factor.

Let G R denote the compact real form of the semisimple complex linear group G. We will assume that the restriction of the nondegenerate symmetric bilinear G-invariant form B on the Lie algebra to g R is positive definite. This means that B is a negative multiple of the Killing form. In what follows we will denote by Ad R ∶ G R → Aut(g R ) the restriction of Ad to the real form G R .

Lemma 29. If ρ∶ π 1 (S 1 ) → G is a regular representation, and if u and v are bases of H 0 (S 1 ; Ad ρ) and H 1 (S 1 ; Ad ρ) respectively, then the product

TOR(S 1 , Ad ρ, o, u, v) ⟨∧v, ∧u⟩ is independent of u.
Lemma 30. If ρ∶ π 1 (S 1 ) → G R is a regular representation and if u and v are bases of H 0 (S 1 ; Ad R ρ), and H 1 (S 1 ; Ad R ρ) respectively, then

TOR(S 1 , Ad R ρ, o, u, v) ⟨∧v, ∧u⟩ > 0 .
Proof of Lemma 29. Let u and u ′ be bases for H 0 (S 1 ; Ad ρ), and v and v ′ , for H 1 (S 1 ; Ad ρ). We change bases by means of the following formulas:

TOR(S 1 , Ad ρ, o, u ′ , v ′ ) = TOR(S 1 , Ad ρ, o, u, v) [v ′ ∶ v] [u ′ ∶ u] and ⟨∧v ′ , ∧u ′ ⟩ = ⟨∧v, ∧u⟩[v ′ ∶ v][u ′ ∶ u] . Hence (17) TOR(S 1 , Ad ρ, o, u ′ , v ′ )⟨∧v ′ , ∧u ′ ⟩ = TOR(S 1 , Ad ρ, o, u, v)⟨∧v, ∧u⟩[v ′ ∶ v] 2 .
This proves independence of u.

Proof of Lemma 30. We are assuming that the image of ρ is contained in the compact real form, ρ(π 1 (S)) ⊂ G R . By [START_REF] Milnor | Whitehead torsion[END_REF] in the proof of Lemma 29, the sign is independent of v. By regularity, H 0 (S 1 ; Ad R ρ) ⊂ g R is a Cartan subalgebra h, and B restricted to h is positive definite. Hence we may chose an R-basis of g R compatible with the orthogonal decomposition g R = h ⊥ h ⊥ . This is also a decomposition of π 1 (S 1 )-modules, and by Lemma 27 the torsion decomposes accordingly as a product of torsions. We compute the torsion of h first. Since the adjoint action of H on h is trivial, we have natural isomorphisms

(18) H 1 (S 1 ; h) ≅ H 1 (S 1 , R) ⊗ h and H 0 (S 1 ; h) ≅ H 0 (S 1 , R) ⊗ h.
We chose a cell decomposition of S 1 with a single (positively oriented) cell in each dimension. In particular, as the adjoint action of H on h is trivial, the boundary operator δ∶ C 0 (K; h) → C 1 (K; h) vanishes. Chose a B-orthonormal basis for h, this provides geometric basis c 1 and c 0 , and since δ = 0, those are also representatives of basis in cohomology. By choosing those bases (u = c 0 and v = c 1 ),

tor(S 1 , Ad ρ h , c 0 , c 1 , c 0 , c 1 ) = 1.
Following the construction in Section 4.2, we compute α 0 = β 0 = r and α 1 = β 1 = 2r ≡ 0 mod 2. Thus N ≡ r 2 ≡ r mod 2 and Tor(S 1 , Ad ρ h , c 0 , c 1 , c 0 , c 1 ) = (-1) r .

As the torsion for the trivial representation corresponds to the case r = 1, Tor for the trivial representation is -1 and

(19) TOR(S 1 , Ad ρ h , o, c 1 , c 0 ) = (-1) r ⋅ sgn(-1) r = 1.
Also, by construction, ⟨∧c 1 , ∧c 0 ⟩ = 1.

Next we compute the torsion of h ⊥ . We have H * (S 1 ; h ⊥ ) = 0 and, since dim h ⊥ is even,

TOR(S 1 , Ad ρ h ⊥ , o) = tor(S 1 , Ad ρ h ⊥ , c 0 , c 1 ) = det(Ad R (g) -Id) h ⊥ ,
where g ∈ G is the image of a generator of π 1 (S 1 ). Notice that, as dim h ⊥ is even, the sign is independent of the cohomology orientation. Let ∆ G be the Weyl function [START_REF] Goodman | Symmetry, representations, and invariants[END_REF]. Then det(Ad(g) -

Id) h ⊥ = ∆ G (g)∆ G (g -1 ) = ∆ G (g) 2 > 0
(see [9, (7.47)] for details). This finishes the proof of the lemma.

Definition 31. Let ρ∶ π 1 (S 1 ) → G be a regular representation. The form

ν∶ r ⋀ H 1 (S 1 ; Ad ρ) → C
is defined by the formula

(20) ν(∧v) = ± TOR(S 1 , Ad ρ, o, u, v) ⟨∧v, ∧u⟩
for any basis u of H 1 (S 1 ; Ad ρ). (By Lemma 29, it is independent of u.)

We are interested in understanding ν as a differential form on R reg (S 1 , G) for G simply connected. Recall from §2.3 that when G is simply connected, the Steinberg map has coordinates the fundamental characters (σ 1 , . . . , σ r )∶ G → C r .

Proposition 32. For G simply connected, there exists a constant C ∈ C * and a choice of sign for ν such that ν = C dσ 1 ∧ ⋅ ⋅ ⋅ ∧ dσ r .

Proof. Using Steinberg's section s∶ C r → G reg (Theorem 18), consider for each p ∈ C r the subagebra g Ad s(p) of elements fixed by Ad s(p). By the constant rank theorem this defines an algebraic vector bundle g Ad ○s → E(s) → C r .

Since algebraic vector bundles over C r are trivial [START_REF] Quillen | Projective modules over polynomial rings[END_REF][START_REF] Suslin | Projective modules over polynomial rings are free[END_REF], there is a trivialization u = (u 1 , . . . , u r )∶ C r → E(s), so that {u 1 (p), . . . , u r (p)} is a basis for g Ad s(p) , for each p ∈ C r . By the identifications,

T [s(p)] R reg (S 1 , G) ≅ H 1 (S 1 , Ad s(p)) (Corollary 19
), and the identification g Ad s(p) ≅ H 0 (S 1 , Ad s(p)), we have two (r, 0)-forms on C r :

(21) ⟨s * (-), ∧u⟩ and TOR(S 1 , Ad s, o, u, s * (-)).

We claim that these forms are both algebraic. Assuming the claim, they are a polynomial multiple of dz 1 ∧ ⋯ ∧ dz r , for (z 1 , . . . , z r ) the standard coordinate system for C r . Since they vanish nowhere in C r , both forms in (21) are a constant multiple of dz 1 ∧ ⋯ ∧ dz r . Viewed as as forms on R reg (S 1 , G), they are both a constant multiple of dσ 1 ∧ ⋯ ∧ dσ r and the proposition follows, once we have shown the claim.

To prove that the forms in [START_REF] Vladimir | Cross-sections, quotients, and representation rings of semisimple algebraic groups[END_REF] are algebraic, use a CW-decomposition K of S 1 with a 1 and a 0-cell, so that the groups of cochains C i (K, Ad s(p)), for i = 0, 1, are naturally identified with g. We also have a natural isomorphism R s(p) -1 * ∶ T s(p) G → g, which is precisely the tangent map to righ multiplicatiuon by s(p) -1 . This identification maps s

* (∂ z i ) at p ∈ C n to v i (p) = R s(p) -1 * ∂s ∂z i (p) ∈ g,
which is a map algebraic on p ∈ C r . Hence the intersection product is

⟨s * (∂ z 1 ∧ ⋯ ∧ ∂ zr ), ∧u⟩ = det(⟨s * (∂ z i ), u j ⟩ ij ) = det(B(v i , u j ) ij ),
which is polynomial on p ∈ C r . To show that the torsion is algebraic, using again triviality of algebraic bundles on C r , complete u to a section of the trivial bundle (u 1 , . . . , u r , . . . , u d )∶ C r → g. Setting b1 = {u r+1 , . . . , u d }, then u(p)⊔ b1 (p) is a basis for g, for each p ∈ C. We view u(p)⊔ b1 (p) as a basis for C 0 (K, Ad s(p)), so that u(p) projects to a basis for H 0 (S 1 , Ad s(p)), for every p ∈ C r . Fix c 0 = c 1 a basis for g. By construction:

TOR(S 1 , Ad s, o, u, s * (∂ z 1 ∧ ⋯ ∧ ∂ zr )) = ± [v ⊔ ∂ b1 ∶ c 1 ] [u ⊔ b1 ∶ c 0 ] ,
where the sign depends on the orientation in homology, but it is constant on p. Thus this is a quotient of algebraic polynomial functions on C r , but since it is defined everywhere, it is polynomial.

4.4.

Witten's formula. Let ρ∶ π 1 (S) → G be a good ∂-regular representation. Let ν i denote the peripheral form of the i-th component of ∂S (Definition 31), and let ω denote the symplectic form of the relative character variety [START_REF] Lawton | Poisson geometry of SL(3, C)-character varieties relative to a surface with boundary[END_REF]. We aim to prove Theorem 3, namely, that

Ω π 1 (S) = ± 1 n! ω n ∧ ν 1 ∧ ⋯ ∧ ν b .
Proof of Theorem 3. We apply the duality formula (Proposition 23) and the formula of the torsion for the long exact sequence of the pair, Equation ( 23) below. For this purpose we discuss the bases in cohomology. Start with u a basis for H 0 (∂S; Ad ρ). If β denotes the connecting map of the long exact sequence, then complete β(u) to a basis for H 1 (S, ∂S; Ad ρ): β(u) ⊔ h. Next we chose v a basis for H 1 (∂S; Ad ρ) that we lift to ṽ by i, and if we set j( h) = h, then h ⊔ ṽ is a basis for H 1 (S; Ad ρ) (and h is a basis for ker(i) = Im(j)). The bases are organized as follows: [START_REF] Quillen | Projective modules over polynomial rings[END_REF] 0 → H 0 (∂S; Ad ρ)

u β → H 1 (S, ∂S; Ad ρ) β(u)⊔ h j → H 1 (S; Ad ρ) h⊔ṽ i → H 1 (∂S; Ad ρ) v → 0
As the bases have been chosen compatible with the maps of the long exact sequence, the product formula for the torsion [START_REF] Milnor | Whitehead torsion[END_REF] gives: [START_REF]Linear algebraic groups. Invariant theory, A translation of ıt Algebraic geometry[END_REF] tor(S, Ad ρ, h ⊔ ṽ) = ± tor(S, ∂S, Ad ρ, β(u) ⊔ h) tor(∂S, Ad ρ, u, v).

We shall combine [START_REF]Linear algebraic groups. Invariant theory, A translation of ıt Algebraic geometry[END_REF] with the duality formula (Proposition 23): [START_REF] Sikora | Character varieties[END_REF] tor(S, Ad ρ, h ⊔ ṽ) tor(S, ∂S, Ad ρ, β(u

) ⊔ h) = ± ⟨∧(h ⊔ ṽ), ∧(β(u) ⊔ h)⟩ .
We next decompose the right hand side in [START_REF] Sikora | Character varieties[END_REF]. By naturality of the intersection form, ⟨h i , β(u j )⟩ = ⟨i(h i ), u j ⟩ = ⟨i(j( hi )), u j ⟩ = 0 .

Hence the right hand side in [START_REF] Sikora | Character varieties[END_REF] becomes:

⟨∧(h ⊔ ṽ), ∧(β(u) ⊔ h)⟩ = ⟨∧h, ∧ h⟩ ⋅ ⟨∧ṽ, ∧β(u)⟩.
Again by naturality ⟨∧ṽ, ∧β(u)⟩ = ⟨∧i(ṽ), ∧u⟩ = ⟨∧v, ∧u⟩.

In addition, by definition ⟨∧h, ∧ h⟩ = ω(∧h, ∧h).

Thus (25)

⟨∧(h ⊔ ṽ), ∧(β(u) ⊔ h)⟩ = ±⟨∧u, ∧v⟩ ω(∧h, ∧h).

Hence by ( 23), [START_REF] Sikora | Character varieties[END_REF], and (25):

tor(S, Ad ρ, h ⊔ ṽ) 2 = ±ω(∧h, ∧h) TOR(∂S, Ad ρ, u, v)⟨u, v⟩ .

Notice that on the right hand side we use Turaev's sign refined torsion. Next we claim that the sign of this formula is + and not -. It suffices to determine the sign in the compact case. Then the formula will follow in the complex case by a connectedness argument (the variety of characters of a free group is connected and irreducible, and ∂-regularity and being good are Zariski open properties, hence they fail in a set of real codimension ≥ 2). We show that the sign is + in the compact case by showing that all terms are positive. Since TOR(∂S, Ad ρ, u, v)⟨u, v⟩ is positive by Lemma 30, the sign will follow from the equality ( 26)

ω(∧h, ∧h) = 1 n! ω n (∧h) 2 ,
that will also complete the proof of the theorem. We give self-contained proof of ( 26) by completeness. By Darboux's theorem there are local coordinates so that

ω = dx 1 ∧ dx 2 + ⋯ + dx 2n-1 ∧ dx 2n .
Let A be a matrix of size 2n × 2n whose colons are the components of the vectors of h in this coordinate system. Then, if J denotes the matrix of the standard symplectic form,

ω(∧h, ∧h) = det (ω(h i , h j ) ij ) = det(A t JA) = (det A) 2 .
On the other hand

ω n = n! dx 1 ∧ dx 2 ∧ ⋯ ∧ dx 2n , hence 1 n! ω n (∧h) = det A
and we are done.

Formulas for the group SL N (C)

If G = SL N (C) we can give explicit formulas for several volume forms.

5.1. The form ν for SL N (C). We know that ν is a constant multiple of d σ 1 ∧ ⋯ ∧ d σ r and we shall determine the constant, completing the proof of Proposition 2. Recall that we chose the C-bilinear form on sl N (C) to be

B(X, Y ) = -tr(X Y ) ∀X, Y ∈ sl N (C).
In SL N (C) the invariant functions are the symmetric functions on the spectrum: if the eigenvalues of A ∈ SL N (C) are λ 1 , . . . , λ N , then

σ 1 (A) = i λ i , σ 2 (A) = i<j λ i λ j , . . . , σ N -1 (A) = i 1 λ i .
Those symmetric functions are characterized by Cayley-Hamilton theorem:

A N -σ 1 (A)A N -1 + σ 2 (A)A N -2 -⋯ + (-1) N -1 σ N -1 (A)A + (-1) N Id = 0 .
We identify R(S 1 , SL N (C)) with the group SL N (C) by mapping a representation to the image of a generator of π 1 (S), so that σ i is a function on R(S 1 , SL N (C)) invariant under conjugation. On the other hand, σ 1 , . . . , σ N -1 are the coordinates of the isomorphism:

R(S 1 , SL N (C)) ≅ SL N (C) SL N (C) ≅ C N -1 . Proposition 33. Let ν∶ ⋀ N -1 H 1 (S 1 , Ad ρ) → C denote the volume form in Definition 31. On R(S 1 , SL N (C)) ≅ C N -1 ν = ± √ -1 ǫ(N ) √ N dσ 1 ∧ ⋯ ∧ dσ N -1 ,
where ǫ(N) = (N -1)(N + 2) 2.

By direct application of the proposition, we get:

Corollary 34. On R reg (S 1 , SL 2 (C)) ν = ± √ 2 d tr γ
where γ is a generator of π 1 (S 1 ).

Proof of Proposition 33. We identify the variety of representations of the cyclic group π 1 (S 1 ) with SL N (C) by considering the image of a generator, that we call g. To simplify, we may assume that g is semisimple, by Proposition 32. After diagonalizing:

g = ⎛ ⎜ ⎜ ⎜ ⎝ e u 1 0 0 0 e u 2 0 ⋱ 0 0 e u N ⎞ ⎟ ⎟ ⎟ ⎠
with u 1 + ⋯ + u N = 0 and all u i are pairwise different mod 2π √ -1Z. The Cartan algebra h is the subalgebra of diagonal matrices. Since the decomposition sl N (C) = h ⊥ h ⊥ is preserved by the adjoint action of g, the torsion is the corresponding product of torsions, by Lemma 27. By looking at the action on non-diagonal entries of sl N (C), the torsion of the adjoint representation on h ⊥ is:

i≠j (e u i -u j -1) = i≠j (e u i -e u j ) = (-1) N (N -1) 2 i>j (e u i -e u j ) 2 , which is the product ∆ G (g)∆ G (g -1 ) of Weyl functions [9, §7]. Thus (27) ν = ± √ -1 N (N -1) 2 i>j (e u i -e u j ) θ H , where (28) 
θ H (∧v) = TOR(S 1 , h, o, ∧v, ∧u)⟨∧v, ∧u⟩.

We use coordinates for the Cartan algebra via the entries of the diagonal matrices:

h ≅ {(u 1 , . . . , u N ) ∈ C N ∑ u i = 0}, Lemma 35. The form θ H is the restriction to {(u 1 , . . . , u N ) ∈ C N ∑ u i = 0} of the form ± √ -1 (N -1) 1 √ N N i=1 (-1) N -i d u 1 ∧ ⋯ ∧ d u i ∧ ⋯ ∧ d u N ,
or, equivalently, of

± √ -1 (N -1) √ N d u 1 ∧ ⋯ ∧ d u N -1 .
Proof. In order to compute TOR(S 1 , h, o, ∧v, ∧u) we proceed as in the proof of Lemma 30.

In particular we chose a cell decomposition of S 1 with a single (positively oriented) cell in each dimension, and bases in homology represented by the geometric bases. With this choice of u and v, by [START_REF] Newstead | Introduction to moduli problems and orbit spaces[END_REF], TOR(S 1 , h, o, v, u) = 1.

Next we compute ⟨∧v, ∧u⟩. The basis u and v are constructed from dual basis in H * (S 1 ; Z) tensorized by a basis of h. We choose a basis for the Cartan subalgebra, e = {e 1 , . . . , e N -1 }:

e 1 = 1 0 ⋱ -1 , e 2 = 0 1 ⋱ -1 , . . . , e N -1 = 0 ⋱ 1 -1
.

Since the cells of S 1 are positively oriented, ⟨∧v, ∧u⟩ = det(B(e i , e j )) i,j ).

In addition, as B(e i , e i ) = -2 and B(e i , e j ) = -1 for i ≠ j, det(B(e i , e j )) i,j ) = (-1) N -1 N.

Thus (29) θ H (∧v) = ± (-1) N -1 N
On the other hand, direct computation yields:

N i=1 (-1) N -i d u 1 ∧ ⋯ ∧ d u i ∧ ⋯ ∧ d u N (e 1 ∧ ⋯ ∧ e N -1 ) = N .
By the natural identification of H 1 (S 1 ; h) with the Cartan algebra h we get the lemma.

We conclude the proof of Proposition 33. By [START_REF] Suslin | Projective modules over polynomial rings are free[END_REF] and Lemma 35,

(30) ν ∧ (d u 1 + ⋯ + d u N ) = √ -1 ǫ(N ) √ N i>j (e u i -e u j ) d u 1 ∧ ⋯ ∧ d u N .
Next we use Newton's identities:

σ 1 = e u 1 + ⋯ + e u N σ 2 = -1 2 (e 2u 1 + ⋯ + e 2u N -Pol(σ 1 )) ⋮ σ j = (-1) j+1 1
j (e ju 1 + ⋯ + e ju N -Pol(σ 1 , . . . , σ j-1 )) were Pol(σ 1 , . . . , σ j-1 ) denotes a polynomial expression on σ 1 , . . . , σ j-1 , whose precise value is not relevant here. From them we deduce

dσ 1 ∧ ⋯ ∧ dσ N -1 = ± 1 (N -1)! d( e u j ) ∧ d( e 2u j ) ∧ ⋯ ∧ d( e (N -1)u j ) Since d( e iu j ) = i e iu j d u j , for i = 1, . . . , m -1, Vandermonde determinant yields (31) (d u 1 + ⋯ + d u N ) ∧ dσ 1 ∧ ⋯ ∧ dσ N -1 = ± i>j (e u i -e u j )d u 1 ∧ ⋯ ∧ d u N .
Then combine (30) and (31) to prove the theorem, knowing that our tangent space is the kernel of d u 1 + ⋯ + d u N .

The form ν for SU(N). An element in SU

(N) is conjugate to a diagonal element ⎛ ⎜ ⎝ e iθ 1 ⋱ e iθ N ⎞ ⎟ ⎠
with ∑ θ i ∈ 2πZ. A matrix is regular if and only if e iθ j ≠ e iθ k for j ≠ k. By identifying R reg (S 1 , SU(N)) with the image of the generator (or its conjugacy class), functions on θ 1 , . . . , θ N invariant under permutations are well defined on R reg (S 1 , SU(N)). Also the form d θ 1 ∧ ⋯ ∧ d θ N -1 is well defined up to sign by the relation

∑ θ i ∈ 2πZ. Proposition 36. On R reg (S 1 , SU(N)) (for B(X, Y ) = -tr(X Y )), ν = ±2 N (N -1) 2 √ N i<j sin θ i -θ j 2 d θ 1 ∧ ⋯ ∧ d θ N -1 .
Proof. From the proof of Proposition 33, if g ∈ SU(N) is the image of the generator of

π 1 (S 1 ), ν = ∆ G (g) θ H . By [9, Exercise 7.3.5], ∆ G (g) = 2 N (N -1) 2 i<j sin θ i -θ j 2 .
On the other hand, by Lemma 35,

θ H = ± √ N d θ 1 ∧ ⋯ ∧ d θ N -1 ,
which proves the formula.

Remark 37. We may consider also the restriction to SL N (R). Then the expression of the volume form is just the restriction of Proposition 33. It may be either real valued or √ -1 times real, because B is not positive definite on sl N (R). The restriction of B to so N is positive definite, but its restriction to its orthogonal so ⊥ N ⊂ sl N (R) is negative definite. Notice that dim so ⊥ N = (N -1)(N + 2) 2 ≡ ǫ(N) mod 2, that determines whether it is real or √ -1 times real.

5.3.

Volume form for representation spaces of F 2 . In this subsection we compute the volume form on the space of representations of a free group of rank 2, F 2 = ⟨γ 1 , γ 2 ⟩, in SL 2 (C) and SL 3 (C). We use the notation t i 1 ⋯i k for the trace functions of γ i 1 ⋯γ i k in SL 2 (C), with the convention γ¯i = γ -1 i . For instance, the trace function of γ 1 γ -1 2 will be denoted by t 1 2.

We start with R(F 2 , SL 2 (C)). By Fricke-Klein theorem, see [START_REF] Goldman | Trace coordinates on Fricke spaces of some simple hyperbolic surfaces[END_REF], the respective trace functions of γ 1 , γ 2 and γ 1 γ 2 define an isomorphism

(32) (t 1 , t 2 , t 12 )∶ X(F 2 , SL 2 (C)) → C 3 .
Since F 2 is the fundamental group of a pair of pants S 0,3 , and γ 1 , γ 2 and γ 1 γ 2 correspond to the peripheral elements, by Theorem 3 and Corollary 34:

Corollary 38. The volume form on R * (F 2 , SL 2 (C)) is Ω F 2 = ±2 √ 2 d t 1 ∧ d t 2 ∧ d t 12 .
We next discuss the space of representations of

F 2 = ⟨γ 1 , γ 2 ⟩ in SL 3 (C).
The symmetric invariant functions σ 1 and σ 2 of a matrix in SL 3 (C) are, respectively, its trace and the trace of its inverse. Recall that the trace functions in SL 3 (C) are denoted by τ i 1 ⋯i k instead of t i 1 ⋯i k . According to [START_REF] Lawton | Generators, relations and symmetries in pairs of 3×3 unimodular matrices[END_REF],

X(F 3 , SL 3 (C)) is a branched covering of C 8 with coordinates T = (τ 1 , τ1, τ 2 , τ2, τ 12 , τ12, τ 1 2, τ1 2 )∶ X(F 2 , SL 3 (C)) → C 8 .
The branching is given by the trace of the commutators τ 12 12 and τ 21 21 that are solutions of a quadratic equation z 2 -P z + Q = 0 for some polynomials P and Q on the variables τ 1 , τ1, τ 2 , τ2, τ 12 , τ12, τ 1 2, τ1 2 , the expression of P and Q can be found in [START_REF] Lawton | Generators, relations and symmetries in pairs of 3×3 unimodular matrices[END_REF][START_REF] Lawton | Poisson geometry of SL(3, C)-character varieties relative to a surface with boundary[END_REF]. Notice that P = τ 12 12 + τ 21 21 and Q = τ 12 12 τ 21 21.

Thus, as γ 1 , γ 2 and γ 1 γ 2 represent the peripheral elements of a pair of pants S 0,3 , a generic subset of the relative variety of representations is locally parameterized by (τ 1 2, τ1 2 ); in the subset of points where there is no branching, i.e. As (τ 1 2, τ1 2 ) are local coordinates, an elementary computation yields

(33) ω = - 1 {τ 1 2, τ1 2 } d τ 1 2 ∧ d τ1 2 . Therefore (34) ω = d τ 1 2 ∧ d τ1 2 τ 21 21 -τ 12 12 .
On the other hand, by Proposition 33, the form ν 1 corresponding to γ 1 is

ν 1 = ± √ -3 d τ 1 ∧ d τ1,
and similarly for γ 2 and γ 12 . Using Theorem 3 and these computations we get:

Proposition 39. For T = (τ 1 , τ1, τ 2 , τ2, τ 12 , τ12, τ 1 2, τ1 2 )∶ R * (F 2 , SL 3 (C)) ∖ {τ 21 21 = τ 12 12} → C 8 the restriction of the holomorphic volume form on R * (F 2 , SL 3 (C)) ∖ {τ 21 21 = τ 12 12} is Ω SL 3 (C) F 2 = ±T * Ω
where

Ω = ± 3 √ -3 τ 21 21 -τ 12 12 d τ 1 ∧ d τ1 ∧ d τ 2 ∧ d τ2 ∧ d τ 12 ∧ d τ12 ∧ d τ 1 2 ∧ d τ1 2 .

Symplectic forms

Let ρ 0 ∈ R * (S, SL 2 (C)) be a good, ∂-regular representation. In this section we discuss the symplectic from on the relative character variety R * (S, ∂S, SL 2 (C)) ρ 0 for the two surfaces S 1,1 and S 0,4 , which are the surfaces with 2-dimensional relative character variety R * (S, ∂S, SL 2 (C)) ρ 0 . We use Goldman's product formula for the Poisson bracket for surfaces [START_REF] William | Invariant functions on Lie groups and Hamiltonian flows of surface group representations[END_REF], as well as Lawton's generalization [START_REF] Lawton | Poisson geometry of SL(3, C)-character varieties relative to a surface with boundary[END_REF]Sec. 4] to the relative character variety.

For this purpose, let f ∶ G → C be an invariant function (i.e. a function on G invariant under conjugation). Following Goldman [START_REF] William | The complex-symplectic geometry of SL(2, C)-characters over surfaces[END_REF], its variation function (relative to B) is defined as the unique map F ∶ G → g such that for all X ∈ g, A ∈ G,

(35) d dt f A exp(tX) t=0 = B F (A), X .
When G = SL 2 (C) and f = tr, the corresponding variation formula T∶ SL 2 (C) → sl 2 (C) must satisfy, by (35), tr(A X) = -tr T(A) X , ∀X ∈ sl 2 (C) and ∀A ∈ SL 2 (C). Thus

T(A) = tr A 2 Id -A = - 1 2 (A -A -1 ) for A ∈ SL 2 (C).
Notice that T(A) ∈ sl 2 (C) is invariant by the adjoint action of A, and T(A) ≠ 0 for A ≠ ± Id.

Proposition 40 ( [START_REF] William | The complex-symplectic geometry of SL(2, C)-characters over surfaces[END_REF][START_REF] Lawton | Poisson geometry of SL(3, C)-character varieties relative to a surface with boundary[END_REF]). Let α, β be oriented, simple closed curves meeting transversally in double points p 1 , . . . , p k ∈ S. For [ρ] ∈ R * (S, ∂S, SL 2 (C)) ρ 0 and each p i , chose representatives

ρ i ∶ π 1 (S, p i ) → SL 2 (C) of [ρ]
. Let α i , β i be elements in π 1 (S, p i ) representing α, β respectively. For the bilinear form B(X, Y ) = -tr(X Y ), the Poisson bracket of the trace functions t α and t β is

{t α , t β }([ρ]) = k i=1 ǫ(p i , α, β) B T(ρ i (α i )), T(ρ i (β i )) = - k i=1 ǫ(p i , α, β) tr T(ρ i (α i )) T(ρ i (β i ))
where ǫ(p i , α, β) denotes the oriented intersection number of α and β at p i .

For later computations, it is useful to recall (cf. [START_REF] González-Acuña | On the character variety of group representations in SL(2, C) and PSL(2, C)[END_REF]) that for all A, B ∈ SL 2 (C) 

] = γ 1 γ 2 γ -1 1 γ -1 2 .
The variety of characters X(S 1,1 , SL 2 (C)) is the variety of characters of the free group on two generators, and it is isomorphic to C 3 with coordinates t 1 , t 2 , t 12 , by Fricke-Klein (32). Equality (36) implies that t 1 t 2 = t 12 + t 1 2.

Generically, the relative character variety is the hypersurface of C 3 that is a level set of the trace of the commutator, t [START_REF] Johnson | Deformation spaces associated to compact hyperbolic manifolds[END_REF] 

= (t 1 , t 2 )∶ R * (S 1,1 , ∂S 1,1 , SL 2 (C)) ρ 0 ∖ {t 12 = t 1 2} → C 2 .
We compute next the symplectic form.

Proposition 41. Let ρ 0 ∈ R * (S, SL 2 (C)) be a good, ∂-regular representation such that t 12 (ρ 0 ) ≠ t 1 2(ρ 0 ). Then the symplectic form on R

* (S 1,1 , ∂S 1,1 , SL 2 (C)) ρ 0 ∖ {t 12 = t 1 2} is the pull-back T * ω, where ω = ±2 d t 1 ∧ d t 2 t 12 -t 1 2 . Proof. For [ρ] ∈ R * (S 1,1 , ∂S 1,1 , SL 2 (C)) ρ 0 ∖ {t 12 = t 1 2} we put A = ρ(γ 1 ) and B = ρ(γ 2 ).
As γ 1 and γ 2 intersect in a single point, by Proposition 40 and (37) the Poisson bracket, for B(X, Y ) = -tr(X Y ), between trace functions is

{t 1 , t 2 }([ρ]) = ± tr(T(A) T(B)) = ± 1 2 (t 12 -t 1 2).
The proposition follows from Equation (33). 

Ω F 2 = ±2 √ 2 d t 1 ∧ d t 2 ∧ d t 12 .
6.2. A planar surface with four boundary components. Let S 0,4 denote the planar surface with four boundary components and let λ and µ be two simple closed curves so that each one divides S 0,4 in two pairs of pants and they intersect in precisely two points.

Chose also one of the intersections points as a base point for the fundamental group.

Orient the curves λ and µ and obtain two new oriented curves α and β, by changing both crossings in a way compatible with the orientation, according to Figures 1 and2 Since the curves are oriented, we may talk about the elements they represent in π 1 (S 0,4 ), in particular the products λµ and αβ and their trace functions, t λµ and t αβ , that depend on the orientations.

Lemma 43. Up to sign, the difference t λµ -t αβ is independent of the choice of orientations of λ and µ. The sign depends on whether we change one (-) or both (+) orientations.

Proposition 44. Let ρ 0 ∈ R * (S, SL 2 (C)) be a good, ∂-regular representation such that t λµ (ρ 0 ) ≠ t αβ (ρ 0 ). Then: (1) the map T = (t λ , t µ )∶ R * (S 0,4 , ∂S 0,4 , SL 2 (C)) ρ 0 ∖ {t λµ = t αβ } → C 2 is a local parameterization.

(2) the symplectic form on R * (S 0,4 , ∂S 0,4 , SL 2 (C)) ρ 0 ∖ {t λµ = t αβ } is the pullback T * ω where

ω = ± d t λ ∧ d t µ t λµ -t αβ .
We fix the notation for both proofs. The fundamental group of S 0,4 is freely generated by three elements γ 1 , γ 2 , and γ 3 , and the peripheral curves are represented by γ 1 , γ 2 , γ 3 , and γ 1 γ 2 γ 3 , see Figure 3. We shall assume that the orientations are so that λ = γ 1 γ 2 and µ = γ 2 γ 3 . With this choice of orientation, α = γ 1 γ 2 γ 3 and β = γ 2 , so Then equality (42) follows by subtracting in (43) and using t 32 = t 23 .

t λµ -t αβ = t 1223 -t 1232 . γ 1 γ 2 γ 3 (γ 1 γ 2 γ 3 ) -1
Proof of Proposition 44. (1) We shall use a computation in cohomology, first by cutting the surface S 0,4 along λ = γ 1 γ 2 into two pairs of pants P 1 and P 2 , with π 1 (P 1 ) = ⟨γ 1 , γ 2 ⟩ and π 1 (P 2 ) = ⟨γ 3 , γ 1 γ 2 ⟩. Notice that for [ρ] ∈ R * (S 0,4 , ∂S 0,4 , SL 2 (C)) ρ 0 ∖ {t λµ = t αβ } we have that ρ π 1 (P i ) is nonabelian. Suppose that, contrary to our claim, ρ π 1 (P 1 ) is abelian that is ρ(γ 1 ) and ρ(γ 2 ) commute. Then

t λµ ([ρ]) = t 1223 ([ρ]) = t 2123 ([ρ]) = t 1232 ([ρ]) = t αβ ([ρ]) ,
contradicting the hypothesis. This argument also shows that ρ π 1 (P 2 ) is nonabelian. As ρ π 1 (P i ) is nonabelian, H 0 (π 1 (P i ); Ad ρ) = 0. Hence, we obtain the following Mayer-Vietoris exact sequence:

0 → H 0 (λ; Ad ρ) β → H 1 (S; Ad ρ) → H 1 (P 1 ; Ad ρ) ⊕ H 1 (P 2 ; Ad ρ) → H 1 (λ; Ad ρ) → 0 .
Using the local parameterization of a pair of paints, this sequence yields that the tangent space to R * (S, SL 2 (C)) at ρ is generated by the infinitesimal deformations ∂ t 1 , ∂ t 2 , ∂ t 3 , ∂ t 123 , ∂ t 12 and β(a), where 0 ≠ a ∈ H 0 (λ; Ad ρ) ≅ sl 2 (C) Ad ρ(γ) . Hence, the tangent space to R * (S, ∂S, SL 2 (C)) ρ 0 at ρ is generated by ∂ t 12 = ∂ t λ and β(a). Notice that d t λ (β(a)) = 0 since β(a) is an infinitesimal bending along λ. In order to prove that (t µ , t λ ) are local parameters at ρ we must show that d t µ (β(a)) ≠ 0.

Next we compute d t µ (β(a)). By setting

A i = ρ(γ i ), we obtain ρ(λ) = A 1 A 2 and we can chose a = 1 2 (A 1 A 2 -A -1 2 A -1 1 
). As λ is a separating curve, the infinitesimal bending is the derivative respect to ε of the path of representations:

γ 1 ↦ A 1 γ 2 ↦ A 2 γ 3 ↦ 1 + εa + o(ε) A 3 1 -εa + o(ε) , see [12, Lemma 5.1] for details. Since µ = γ 2 γ 3 is mapped to A 2 A 3 + ε(A 2 aA 3 -A 2 A 3 a) + o(ε), we have d t µ (β(a)) = tr(A 2 aA 3 -A 2 A 3 a) = 1 2 (t 2123 -t1 3 -t 2312 + t 23 21).
By Lemma 43 and its proof, and using that the trace is invariant by cyclic permutations and by taking the inverse:

t αβ -t λµ = t 1232 -t 1223 = t 2123 -t 2312 = t 12 32 -t 1 3 = t 23 21 -t1 3 .
Thus d t µ (β(a)) = t αβ -t λµ ≠ 0. This proves Assertion (1) of the proposition. We next prove Assertion (2). Let [ρ] ∈ R * (S 0,4 , ∂S 0,4 , SL 2 (C)) ρ 0 ∖ {t λµ = t αβ }, and set again A i = ρ(γ i ). We apply Proposition 40 to compute the Poisson bracket {t λ , t µ }([ρ]).

The curves λ and µ intersect in two points, p 1 and p 2 , in Figure 4. Let p 1 be the base point of the fundamental group used in Figure 3. The contribution of p 1 is

ǫ tr(T(A 1 A 2 ) T(A 2 A 3 )) = ǫ 2 t 1223 ([ρ]) -t 12 32([ρ])
for some ǫ = ±1. To compute the contribution of p 2 we consider an arc from p 1 to p 2 to relate the base points between fundamental groups. Assume that this arc is half of λ, as in Figure 4, then ρ

2 (λ) = ρ(λ) = A 1 A 2 and ρ 2 (µ) = ρ(γ 1 γ 2 γ 3 γ -1 1 ) = A 1 A 2 A 3 A -1 1 .
In addition, the orientation of the intersection is opposite to the previous one, hence the contribution of p 2 is Finally, the formula for the symplectic form on the coordinates (t λ , t µ ) follows again from equation (33).

-ǫ tr(T(A 1 A 2 ) T(A 1 A 2 A 3 A -1 1 )) = - ǫ 2 t 2123 ([ρ]) -t 1 3([ρ])
7. Volume forms for free groups of higher rank 7.1. Volume form on R * (F k , SL 2 (C)). We recall the notation t i 1 ⋯i k for the trace function tr γ of γ = γ i 1 ⋯γ i k , with the convention γ¯i = γ -1 i . We start discussing the volume form for the free group of rank three. Following [START_REF] González-Acuña | On the character variety of group representations in SL(2, C) and PSL(2, C)[END_REF], the variety of characters X(F 3 , SL 2 (C)) is a branched covering of C 6 . More precisely, the branched covering is given by trace functions:

(44) T = (t 1 , t 2 , t 3 , t 12 , t 13 , t 23 )∶ X(F 3 , SL 2 (C)) → C 6 .
The branching is given by the variables t 123 and t 213 , as they are the solutions of the quadratic equation 

z 2 -Rz + S = 0 for R = t 1 t
(G) ≅ F k . Consider subgraphs G ′ and G ′′ , so that π 1 (G ′ ) = ⟨γ 1 , γ 2 , . . . , γ k-1 ⟩ and π 1 (G ′′ ) = ⟨γ 1 , γ 2 , γ k ⟩; therefore G = G ′ ∪ G ′′ and π 1 (G ′ ∩ G ′′ ) = ⟨γ 1 , γ 2 ⟩.
Since we assume t 12 12 ≠ 2, ρ(π 1 (G ′ ∩ G ′′ )) is irreducible, therefore, the long exact sequence of Mayer-Vietoris applied to (G ′ , G ′′ ) is:

(56) 0 → H 1 (G, Ad ρ) → H 1 (G ′ , Ad ρ) ⊕ H 1 (G ′′ , Ad ρ) → H 1 (G ′ ∩ G ′′ , Ad ρ) → 0.

Interpreting cohomology groups as tangent spaces to spaces of representations, the assertion on the local parameterization is straightforward from the sequence. By an induction argument, the formula for the volume form is a consequence of the product of torsions, Corollary 38 and Proposition 45.

7.2. Volume form on R * (F k , SL 3 (C)). Before proving Proposition 6 and Theorem 7, we need two lemmas on regular elements in SL 3 (C). Recall that an element of SL 3 (C) is regular if its minimal polynomial and its characteristic polynomial have the same degree. This is the case if and only if each eigenspace is one-dimensional.

Lemma 46. Let A, B ∈ SL 3 (C). If tr(ABA -1 B -1 ) ≠ tr(BAB -1 A -1 ) then: (i) both A and B are regular and (ii) the subgroup ⟨A, B⟩ ⊂ SL 3 (C) is irreducible.

Proof. (i) Assume that A is not regular. Then it has an eigenvalue λ ∈ C * with an eigenspace E λ = ker(Aλ Id) of dimension dim E λ ≥ 2. Therefore dim(E λ ∩ B(E λ )) ≥ 1. Chose a nonzero vector v ∈ E λ ∩B(E λ ), by construction B -1 (v) ∈ E λ and (ABA -1 B -1 )(v) = v. This yields that 1 is an eigenvalue of the commutator ABA -1 B -1 , therefore it has the same eigenvalues as its inverse, which implies that tr(ABA -1 B -1 ) = tr(BAB -1 A -1 ).

(ii) By contradiction, assume that L ⊂ C 3 is a proper subspace invariant by both A and B. If dim L = 1, then this is and eigenspace of ABA -1 B -1 with eigenvalue 1, and if dim L = 2, by looking at the action on C 3 L we also deduce that 1 is an eigenvalue of ABA -1 B -1 . Therefore, by the discussion on the previous item, this contradicts the hypothesis tr(ABA -1 B -1 ) ≠ tr(BAB -1 A -1 ).

Lemma 47. Let A ∈ SL 3 (C). If A is regular then the Ad A -invariant subspace of sl 3 (C) is sl 3 (C) Ad A = ⟨A -tr(A) 3 Id, A -1 -tr(A -1 )

Id⟩.

Proof. It is clear from construction that both Atr(A) 3 Id and A -1 -tr(A -1 )

3

Id are Ad Ainvariant. All we need to show is that those elements are linearly independent, as by regularity dim sl 3 (C) Ad A = 2. If Atr(A)

3 Id and A -1 -tr(A -1 )

Proof of the lemma. Chose a ′ a basis of ker(H 1 (P ′ , Ad ρ) → H 1 (P ′ ∩ P ′′ , Ad ρ)) and a ′′ a basis of ker(H 1 (P ′′ , Ad ρ) → H 1 (P ′ ∩ P ′′ , Ad ρ)). Moreover, we can chose lifts (a ′ ), (a ′′ ) ⊂ H 1 (S, Ad ρ) which map under j∶ H 1 (S, Ad ρ) → H 1 (P ′ , Ad ρ) ⊕ H 1 (P ′′ , Ad ρ) to (a ′ , 0) and (0, a ′′ ) respectively.

Then, by using (58), a ′ ⊔v ′ is a basis for H 1 (P ′ , Ad ρ), a ′′ ⊔v ′′ is a basis for H 1 (P ′′ , Ad ρ) and (a ′ ) ⊔ (a ′′ ) ⊔ β(u) ⊔ ṽ is a basis for H 1 (S, Ad ρ).

The product formula applied to (58) yields:

Ω S (∧ (a ′ ) ∧ (a ′′ ) ∧ β(u) ∧ ṽ) = ± Ω P ′ (∧a ′ ∧ v ′ ) Ω P ′′ (∧a ′′ ∧ v ′′ ) tor(P ′ ∩ P ′′ , Ad ρ, u, v)

= ±(ω 12 ∧ ν 2 ∧ ν 12 )(∧a ′ )(ω 13 ∧ ν 3 ∧ ν 13 )(∧a ′′ ) ν 1 (∧v) 2 tor(P ′ ∩ P ′′ , Ad ρ, u, v) .

The last equality follows since d τ 

of v ′′ = (v ′′ 1 , v ′′ 2 )
. By Definition 31, ν 1 (v) 2 tor(P ′ ∩ P ′′ , Ad ρ, u, v) = ±⟨∧u, ∧v⟩, hence Ω S (∧ (a ′ ) ∧ (a ′′ ) ∧ β(u) ∧ ṽ) = ±(ω 12 ∧ ν 2 ∧ ν 12 )(∧a ′ )(ω 13 ∧ ν 3 ∧ ν 13 )(∧a ′′ )⟨∧u, ∧v⟩ = ±(ω 12 ∧ ν 2 ∧ ν 12 )(∧a ′ )(ω 13 ∧ ν 3 ∧ ν 13 )(∧a ′′ )⟨∧u, ∧v⟩

(ν 1 ∧ ν 23 )(∧v ∧ β(u)) (ν 1 ∧ ν 23 )(∧v ∧ β(u)) = ± ⟨∧u, ∧v⟩ (ν 1 ∧ ν 23 )(∧v ∧ β(u)) ω 12 ∧ ω 13 ∧ ν 2 ∧ ν 3 ∧ ν 12 ∧ ν 13 ∧ ν 1 ∧ ν 23 ∧ (a ′ ) ∧ (a ′′ ) ∧ β(u) ∧ ṽ .
The last equality follows since since β(u) is an infinitesimal bendings that vanish on ν 1 , and β(u) is in the kernel of j (see (58)). Moreover, the bases (a ′ ) and (a ′′ ) map to (a ′ , 0) and (0, a ′′ ) respectively.

To conclude the proof of Theorem 7 we need to compute the quotient ⟨∧u, ∧v⟩ (ν 1 ∧ ν 23 )(∧v ∧ β(u))

As β(u) consist of infinitesimal bendings that vanish on d τ 1 and d τ1, (ν 1 ∧ ν 23 )(∧v ∧ β(u)) = ν 1 (∧v)ν 23 (∧β(u)). To finish the proof of Theorem 7, we assume semi-simplicity, so that H 1 (γ 1 , Ad ρ) ≅ H 1 (γ 1 , R) ⊗ R sl 3 (C) Ad A and we may chose v to be {x, y} times the fundamental class. Therefore Next we compute ν(∧v). Write v = {v x , v y }, where v x and v y are the infinitesimal deformations corresponding to x and y respectively. Namely, the tangent vector to the infinitesimal paths (67) γ 1 ↦ (Id +εx)A = A + εx A and γ 1 ↦ (Id +εy)A = A + εy A in C[ε] ε 2 .

These infinitesimal deformations evaluated at γ -1 1 are, respectively, (68) γ -1 1 ↦ A -1 (Id -εx) = A -1 -εA -1 x and γ -1 1 ↦ A -1 (Id -εy) = A -1 -εA -1 y in C[ε] ε 2 . Thus, d τ 1 (v x ) = tr(x A), and as tr(x) = 0, tr(x A) = tr(x Aτ 1 3 x) = tr(x x). By the very same argument, tr(y A) = tr(A -1 x) = tr(x y) and tr(A -1 y) = tr(y 2 ), and (67) and ( 68) yield 
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 328 An holomorphic volume form on R reg (S 1 , G). As in the introduction we let G denote a simply-connected, semisimple, complex, linear Lie group, d = dim G, and r = rk G. We call a representation ρ∶ π 1 (S 1 ) → G regular if the image of the generator of π 1 (S 1 ) is a regular element g ∈ G. The set of conjugacy classes of regular representations is denoted by R reg (S 1 , G).

  τ 12 12 ≠ τ 21 21. Lawton has computed in [15, Thm. 25] the Poisson bracket: {τ 1 2, τ1 2 } = τ 21 21τ 12 12.

  tr(B) = tr(AB) + tr(AB -1 ) , and a direct calculation gives (37) tr(T(A) T(B)) = 1 2 tr(AB -AB -1

  .

Figure 1 .Figure 2 .

 12 Figure 1. Construction of α and β from an orientation of λ and µ

Figure 3 .

 3 Figure 3. The loops γ 1 , γ 2 , and γ 3 that represent the generators of π 1 (S 0,4 ). Proof of Lemma 43. It suffices to change the orientation of a single curve, so we follow the examples of Figures 1 and 2. If we change the orientation of µ then µ = γ -1 3 γ -1 2 , α = γ 1 , and β = γ -13 . We aim to prove (42) t 1223 -t 1232 = -(t 12 32 -t 1 3)

2 Figure 4 .

 24 Figure 4. The intersection points p 1 , p 2 and the arc between them.

WriteA

  = ρ(γ 1 ), B = ρ(γ 2 ), and C = ρ(γ 3 ), and x = Atr(A) 3 Id and y = A -1 -tr(A -1 ) 3 Id . Hence x, y ∈ sl 3 (C) generate the A-invariant subspace by Lemma 47. By the natural identification H 0 (γ 1 , Ad ρ) ≅ sl 3 (C) Ad A , we chose u = {x, y}.

  (66) ⟨∧u, ∧v⟩ = det tr(x 2 ) tr(xy) tr(xy) tr(y 2 ) .

(69) d τ 1 23 .

 123 (v x ) = tr(x 2 ) , d τ 1 (v y ) = tr(x y) , d τ1(v x ) = -tr(x y) , d τ1(v y ) = -tr(y 2 ).From (66) and (69) we have(70) d τ 1 ∧ d τ1(∧v) = ±⟨∧u, ∧v⟩.In addition, by Lemma 49(71) ν 23 (β(u)) = √ -3 d τ 23 ∧ d τ23(β(u)) = ± √ -3∆ 23 .Hence, asν 1 = √ -3 d τ 1 ∧ d τ1, by (70) and (71):⟨∧u, ∧v⟩ (ν 1 ∧ ν 23 )(∧v ∧ β(u)) = ⟨∧u, ∧v⟩ ν 1 (∧v)ν 23 (∧β(u))Now the volume formula follows from Lemma 50, the last equation, and the expression of the symplectic forms ω 12 and ω 13 in (34).

  ) .6.1.A torus minus a disc. Let S 1,1 denote a surface of genus 1 with a boundary component. Its fundamental group is freely generated by two elements γ 1 and γ 2 that are represented by curves that intersect at one point. The peripheral element is the commutator [γ 1 , γ 2

  [START_REF] Johnson | Deformation spaces associated to compact hyperbolic manifolds[END_REF] = c for some c ∈ C, where t 1 t 2 t 12 -2 . Therefore, given a good representation ρ 0 the variables (t 1 , t 2 ) define local coordinates of R * (S 1,1 , ∂S 1,1 , SL 2 (C)) ρ 0 precisely when ∂ ∂t 12 t 12 12 ≠ 0, ie. when (39) 2t 12 -t 1 t 2 = t 12 -t 1 2 ≠ 0, where t 1 2 = t1 2 is the trace function of γ 1 γ -1 2 . Hence we obtain a local parametrization T

	(38)	t 12 12 = t 2 1 + t 2 2 + t 2 12 -

  Remark 42. From Proposition 41 we can compute again the volume form on R * (F 2 , SL 2 (C)), already found in Corollary 38. Namely, by Theorem 3, Proposition 41, and Corollary 34, since the commutator γ 1 γ 2 γ -1 1 γ -1 2 is the peripheral element, (2t 1 -t 2 t 12 )d t 1 + (2t 2 -t 1 t 12 )d t 2 + (2t 12 -t 1 t 2 )d t 12 , thus, as t 1 t 2 = t 12 + t 1 2, by replacing (41) in (40):

	(40)	Ω F 2 = Ω S 1,1 = ±2	√ 2	d t 1 ∧ d t 2 ∧ d t 12 12 2 t 12 -t 1	.
	Differentiating (38), we get			
	(41)	d t 12 12 =			

  23 = t 1223 + t 12 32 t 12 t 32 = t 1232 + t 1 3,

	3 . We aim to prove	
	(42)	t 1223 -t 1232 = -(t 12 32 -t 1 3)
	(with negative sign, because we change the orientation of a single curve). From Equality
	(36) we have:	
	(43)	t 12 t

  Hence, for B(X, Y ) = -tr(XY ) we obtain from Proposition 40 {t λ , t µ } = -ǫ 2 (t 1223 -t 12 32 -t 2123 + t 1 3) , and by equation (42) we have t λµ -t αβ = t 1223 -t 2123 = -t 12 32 + t 1 3 .

3

  23 + t 2 t 13 + t 3 t 12 -t 1 t 2 t 3 12 t 13 t 23 -t 1 t 2 t 12 -t 1 t 3 t 13 -t 2 t 3 t 23 -4. (46) Recall that the trace is invariant by cyclic permutation of the group elements: t 123 = t 231 = t 312 . The branching locus is defined by t 123 = t 213 . Away from it, the variables (44) define local coordinates. (t 1 , t 2 , t 3 , t 12 , t 13 , t 23)∶ R * (F 3 , SL 2 (C)) → C 6 the restriction of the volume form to the open subset R * (F 3 , SL 2 (C)) ∖ {t 123 = t 213 } is the pull-back form Ω ∧ d t 2 ∧ d t 3 ∧ d t 12 ∧ d t 13 ∧ d t 23 . Proof. Consider the surface S = S 0,4 . Since γ 1 , γ 2 , γ 3 ,and γ 1 γ 2 γ 3 are the peripheral elements, using Proposition 44 and Corollary 34, ∧ d t 2 ∧ d t 3 ∧ d t 123 . R = t 123 -t 213 In addition, using t 1 t 3 = t 13 + t 1 3, 123 -(2t 13 + t 12 t 23 -t 1 t 3 ) = t 2 t 123 -t 12 t 23 -t 13 + t 1 Using the standard relations on traces, we have: t 13 = t 12 23 = t 312 2 = t 312 t2 -t 3122 = t 123 t 2 -t 1223 (52) t 1 3 = t 12 23 = t 12 t 32 -t 1232 = t 12 t 23 -t 1232 123 -t 213 )d t 123 = (t 1223 -t 1232 )d t 13 + for some polynomials p η . Using (55) to replace d t 123 by d t 13 in (48), we prove (47). of Theorem 5. Write F k = ⟨γ 1 , γ 2 , . . . , γ k ⟩ and consider the graph G with one vertex and k edges, so that π 1

	Since R = t 123 + t 213 ,					
	(50) 2t 123 -(51) ∂R ∂t 13 t 123 -∂S ∂t 13 = t 2 t (53)		
	From those equations:					
	(54)	∂R ∂t 13	t 123 -	∂S ∂t 13	= t 1223 -t 1232 .
	Hence, using (50) and (54), equality (49) becomes: (55) (t η∈{1,2,3,12,23}	p η d t η
	Proof						
	(45)						
	S = t 2 1 + t 2 2 + t 2 3 + t 2 12 + t 2 13 + t 2 23 + t Proposition 45. For		
		T = SL 2 (C) F 3 = ±T * Ω, where			
	(47) d t 1 (48) Ω = ± 4 t 123 -t 213 Ω SL 2 F 3 = Ω SL 2 S 0,4 = ±4 d t 12 ∧ d t 23 t 1223 -t 1232 ∧ d t 1 It remains to replace d t 123 by d t 13 in this formula. Differentiating the equality
			t 2 123 -R t 123 + S = 0,
	where R and S are given in (45) and (46), we deduce:
	(49)	(2t 123 -R) d t 123 =	η∈{1,2,3,12,13,23}	∂R ∂t η	t 123 -	∂S ∂t η	d t η .

  2 , d τ2, d τ 12 , d τ12, d τ 1 2, d τ1 2 vanish on each cocycle v ′ i of v ′ = (v ′ 1 , v ′ 2 ),and d τ 3 , d τ3, d τ 13 , d τ13, d τ 1 3, d τ1 3 vanish on each cocycle v ′′ i

Id were linearly dependent, then A, Id, and A -1 would satisfy a nontrivial linear relation. Multiplying it by A, the same relation would be satisfied by A 2 , A and Id, and hence A would have an eigenspace of dimension at least 2, contradicting regularity.
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Remark 48. It follows from Schur's Lemma [START_REF] Fulton | of Graduate Texts in Mathematics[END_REF] that every irreducible representation ρ∶ Γ → SL N (C) is good, that is the centralizer of ρ(Γ) coincides with the center of SL N (C).

Proof of Proposition 6. Assume k = 3, the general case follows from an induction argument as in the proof of Theorem 5.

We chose generators F 3 = ⟨γ 1 , γ 2 , γ 3 -⟩ and we identify F 3 with π 1 (S 0,4 ). We represent S 0,4 as the union of two pairs of pants P ′ and P ′′ , so that P ′ ∩ P ′′ is a circle. Chose the generators of the fundamental group so that π 1 (P ′ ) = ⟨γ 1 , γ 2 ⟩, π 1 (P ′′ ) = ⟨γ 1 , γ 3 ⟩, and γ 1 is the generator of π 1 (P ′ ∩ P ′′ ). Then the peripheral elements of P ′ are γ 1 , γ 2 , and γ 1 γ 2 , and those of P ′′ , γ 1 , γ 3 , and γ 1 γ 3 . The peripheral elements of S are γ 2 , γ 3 , γ 1 γ 2 , and 

for i = 2, 3 implies that ρ(γ j ), j = 1, 2, 3, are regular elements (Lemma 46). It follows also that ρ(γ 1 γ 2 ) and ρ(γ

The Mayer-Vietoris long exact sequence is:

Chose u a basis for H 0 (γ 1 , Ad ρ). We will proceed as in the proof of Proposition 44.

Viewing the cohomology groups as tangent spaces, the proposition will follow from the local parameterizations for the representation space of P ′ and P ′′ , and from (58), provided we show that

We prove below in Lemma 49 that d τ 23 ∧ d τ23(∧β(u)) = ±∆ 1 23 , which is nonzero by hypothesis.

Lemma 49. d τ 23 ∧ d τ23(β(∧u)) = ±∆ 1 23 , where ∆ 1 23 is as in (57). Proof. Set A 1 = ρ(γ 1 ). By Lemma 47, the elements

3 Id form a basis of the invariant subspace sl 3 (C) Ad ρ(γ 1 ) . We choose u = {x, y} via the isomorphism H 0 (γ 1 , Ad ρ) ≅ sl 3 (C) Ad A 1 . Then β(x) is the tangent vector to the infinitesimal bending:

and similarly for β(y). To compute d τ 23 and d τ23 on β(x) and β(y), we must evaluate the infinitesimal deformations on γ 2 γ 3 and γ2 γ3 . Thus the path corresponding to β(x) evaluated at γ 2 γ 3 is

Therefore, taking traces we get:

(60)

The same argument for y instead of x gives:

(61)

To evaluate d τ23 = d τ32, we take inverses in (59)

and taking traces we get:

Again the same argument for y instead of x gives:

Hence

, which concludes the proof of the lemma.

Proof of Theorem 7. We assume again that k = 3. The general case follows with the same argument as in Theorem 5.

As in the proof of Proposition 6 we decompose S = S 0,4 = P ′ ∪ P ′′ , γ 1 = P ′ ∩ P ′′ . Also, we choose generators of π 1 (P ′ ), π 1 (P ′′ ), and π 1 (P ′ ∩ P ′′ ) as in the proof of Proposition 6. The peripheral elements of S are γ 2 , γ 3 , γ 1 γ 2 , and γ 1 γ 3 .

For a representation ρ∶ π 1 (S) → SL 3 (C) we let ρ ′ ∶ π 1 (P ′ ) → SL 3 (C) and ρ ′′ ∶ π 1 (P ′′ ) → SL 3 (C) denote the restriction of ρ to π 1 (P ′ ) and π 1 (P ′′ ) respectively.

Let In what follows we let ω 12 and ω 13 denote the pullback of the symplectic form ω P ′ on R * (P ′ , ∂P ′ , SL 3 (C)) ρ ′ and ω P ′′ on R * (P ′′ , ∂P ′′ , SL 3 (C)) ρ ′′ respectively.

Given a basis v for H 1 (γ 1 , Ad ρ) we can choose lifts v ′ ⊂ H 1 (P ′ , Ad ρ), and v ′′ ⊂ H 1 (P ′′ , Ad ρ) which map to v. By exactness there exists ṽ ⊂ H 1 (S, Ad ρ) which maps to (v ′ , -v ′′ ).

Lemma 50. Let u a basis for H 0 (γ 1 , Ad ρ) and v a basis for H 1 (γ 1 , Ad ρ). Then