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HOLOMORPHIC VOLUME FORMS ON REPRESENTATION

VARIETIES OF SURFACES WITH BOUNDARY

MICHAEL HEUSENER AND JOAN PORTI

Abstract. For closed and oriented hyperbolic surfaces, a formula of Witten establishes
an equality between two volume forms on the space of representations of the surface in
a semisimple Lie group. One of the forms is a Reidemeister torsion, the other one is
the power of the Atiyah-Bott-Goldman symplectic form. We introduce an holomorphic
volume form on the space of representations of the circle, so that, for surfaces with
boundary, it appears as peripheral term in the generalization of Witten’s formula. We
compute explicit volume and symplectic forms for some simple surfaces and for the Lie
group SLN(C).

1. Introduction

Along this paper S = Sg,b denotes a compact, oriented, connected surface with nonempty
boundary, of genus g and with b ≥ 1 boundary components. We assume that χ(S) =
2 − 2g − b < 0. The fundamental group π1(S) is a free group Fk of rank k = 1 −χ(S) ≥ 2.

Let G be a connected, semisimple, complex, linear group with compact real form GR,
e.g. G = SLN(C) and GR = SU(N). We also assume that G is simply connected; notice
that since π1(S) is free, their representations lift to the universal covering of the Lie
group.

Fix a nondegenerate symmetric bilinear G-invariant form on the Lie algebra

B∶g × g → C ,

such that the restriction of B to gR, the Lie algebra of GR, is positive definite. This means
that B is a negative multiple of the Killing form.

Let R(S,G) denote the set of conjugacy classes of representations of π1(S) ≅ Fk into G.
We are only interested in irreducible representations for which the centralizer coincides
with the center of G. Following Johnson and Millson [12] we call such representations
good (see Definition 10), and we use the notation R∗(S,G) to denote the corresponding
open subset of R(S,G).

For a closed surface Σ, the bilinear form B induces two C-valued differential forms
on R∗(Σ,G), a holomorphic volume form ΩΣ defined as a Reidemeister torsion and the
Atiyah-Bott-Goldman (holomorphic) symplectic form ω. Witten has shown the following
theorem for compact groups, here we state its complexification:

Theorem 1 (Witten, [29]). If Σ is a closed, oriented and hyperbolic surface, then

ΩΣ = ω
n

n!

on R∗(Σ,G), where n = 1

2
dimR∗(Σ,G) = −1

2
χ(Σ)dim(G).
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For surfaces with boundary S, we need to consider also R(S,∂S,G)ρ0 , the relative set
of conjugacy classes of representations (for each peripheral curve we require its image
to be in a fixed conjugacy class), see Subsection 2.2. Let R∗(S,∂S,G)ρ0 denote the
corresponding open subset of good representations. The holomorphic volume form ΩS is
defined on R∗(S,G) but the holomorphic symplectic form ω is defined on R∗(S,∂S,G)ρ0 .
To relate both spaces and both forms, we need to deal with each component of ∂S, which
are circles.

We identify the variety of representations of the circle S1 with G, by mapping each
representation to the image of a fixed generator of π1(S1). We restrict to regular
representations, namely that map the generator of π1(S1) to regular elements. Then
Rreg(S1,G) ≅ Greg/G. Using that G is simply connected (see Remark 20 when G is not
simply connected), one of the consequences of Steinberg’s theorem [25] is that

Rreg(S1,G) ≅ Greg/G ≅ Cr,

where r = rankG, and that there is a natural isomorphism (Corollary 19):

H1(S1;Adρ) ≅ T[ρ]Rreg(S1,G).
In Section 4.3 we show the existence of a form ν∶ ⋀rH1(S1,Adρ) → C defined by the
formula

(1) ν(∧v) = ±
√
TOR(S1,Ad ρ,o,u,v) ⟨∧v,∧u⟩.

Here u and v denote bases of H0(S1,Adρ) and H1(S1,Ad ρ) respectively and ∧u and
∧v their exterior product. Moreover, TOR denotes the Turaev’s sign refined torsion,
o an homology orientation of H∗(S1;R) (see Section 4.2), and ⟨. , .⟩ the duality pairing
H1(S1,Adρ) ×H0(S1,Adρ) → C. We prove in Lemma 29 that the value ν(∧v) ∈ C is
independent of u.

Steinberg theorem ([25], see also [26, 21]) provides an isomorphism

(σ1, . . . , σr)∶Greg/G ≅
Ð→ C

r,

where σ1, . . . , σr denotes a system of fundamental characters of G, which also proves the
isomorphism G�G ≅ Cr.

When G = SLN(C), then r = N − 1 and (σ1, . . . , σr) are the coefficients of the charac-
teristic polynomial.

Proposition 2. When G is simply connected, then

ν = ±C dσ1 ∧⋯ ∧ dσr,

for some constant C ∈ C∗ depending on G and B. In addition, for G = SLN(C) and
B(X,Y ) = − tr(XY ) for X,Y ∈ slN(C),

C = ±(−1)(N−1)(N−2)/4
√
N.

Let ρ0 ∈ R∗(S,G) be ∂-regular, i.e. the image of each peripheral curve is a regular
element of G (Definitions 15 and 16). We have an exact sequence (Corollary 19):

0→ T[ρ]R∗(S,∂S,G)ρ0 → T[ρ]R∗(S,G)→
b

⊕
i=1

T[ρ(∂i)]Rreg(∂i,G)→ 0,

where ∂S = ∂1 ⊔ ⋯ ⊔ ∂b denote the boundary components of S. For a ∂-regular rep-
resentation ρ∶π1(S) → G we let νi denote the form corresponding to the restriction
ρ∣π1(∂i)∶π1(∂i) → G as in (1) on ∂i ≅ S1. Set d = dimG, r = rankG, and b > 0 be the
number of components of ∂S. The following generalizes Theorem 1 to surfaces with
boundary, [29] see also [1, Theorem 5.40].
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Theorem 3. Let ρ0 ∈ R(S,G) be a good, ∂-regular representation. Then on T[ρ0]R∗(S,G)
we have:

Ωπ1(S) = ±
ωn

n!
∧ ν1 ∧⋯∧ νb,

where n = 1

2
dimR∗(S,∂S,G)ρ0 = 1

2
(−χ(S)d − b r).

Notice that we write Ωπ1(S) instead of ΩS, as the simple homotopy type of S only
depends on π1(S). Following Witten [29] in the closed case, the proof of Theorem 3 is
based on Franz-Milnor duality for Reidemeister torsion.

The formula of Theorem 3 is homogeneous in the bilinear form B∶g × g → C: if B is
replaced by λ2B for some λ ∈ C∗, then ω is replaced by λ2ω, νi by λr νi and Ωπ1(S) by
λ2n+b r Ωπ1(S), as 2n + b r = −χ(S)d = dimR(S,G).

We focus now on G = SLN(C), which is simply connected and has rank r = N − 1. We
fix a bilinear form on the Lie algebra:

Convention 4. Along this paper, when G = SLN(C) we always assume B(X,Y ) =
− tr(XY ) for X,Y ∈ slN(C).

We compute explicit volume forms for spaces of representations of free groups in SL2(C)
and SL3(C). We start with a pair of pants S0,3. The fundamental group π1(S0,3) ≅ F2 is
free on two generators γ1 and γ2. By Fricke-Klein theorem, X(F2,SL2(C)) ≅ C3 and the
coordinates are precisely the traces of the peripheral elements γ1, γ2, and γ1γ2, denoted
by t1, t2, and t12 respectively. In this case the relative character variety is just a point, and
the symplectic form is trivial. Thus, by applying Theorem 3 and equality ν = ±√2d trγ
(Proposition 2), we have

ΩF2
= Ωπ1(S0,3) = ±2

√
2 d t1 ∧ d t2 ∧ d t12,

on R∗(F2,SL2(C)).
By [8], for k ≥ 3, the 3k − 3 trace functions t1, t2, t12, t3, t13, t23, . . . , tk, t1k, t2k define a

local parameterization

T ∶R∗(Fk,SL2(C)) ∖ crit(T )→ C
3k−3,

where crit(T ) = ⋃i≥3{t12i = t21i} ∪ {t121̄2̄ = 2}. Here, ti1⋯il ∶R∗(Fk,SL2(C)) → C stands for
the trace function trγ if γ = γi1⋯γil with the convention γ ī = γ−1i .

Theorem 5. The holomorphic volume form on R∗(Fk,SL2(C)) ∖ crit(T ) is Ω
SL2(C)
Fk

=
±T ∗Ω, where

Ω = ±2√2 d t1 ∧ d t2 ∧ d t12
k

⋀
i=3

√
2
d ti ∧ d t1i ∧ d t2i

t12i − t21i
.

Next we deal with SL3(C). To avoid confusion with SL2(C), the trace functions in
SL3(C) are denoted by τi1⋯ik ; notice that τī ≠ τi. Lawton obtains in [14] an explicit
description of the variety of characters X(F2,SL3(C)). It follows from his result that

T ∶= (τ1,τ1̄,τ2,τ2̄,τ12,τ1̄2̄,τ12̄,τ1̄2)∶R∗(F2,SL3(C)) ∖ {τ121̄2̄ = τ212̄1̄}→ C
8

defines a local parameterization. Using the computation of the symplectic form in [15],
we prove in Proposition 39 that, on R∗(F2,SL3(C)) ∖ {τ212̄1̄ = τ121̄2̄} the volume form is

Ω
SL3(C)
F2

= T ∗Ω, where

Ω = ± 3
√
−3

τ212̄1̄ − τ121̄2̄
dτ1 ∧ dτ1̄ ∧ dτ2 ∧ dτ2̄ ∧ dτ12 ∧ dτ1̄2̄ ∧ dτ12̄ ∧ dτ1̄2.

This is generalized to a free group of arbitrary rank. First we start with the generic
local parameters:
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Proposition 6. For k ≥ 3, the 8k − 8 trace functions

T = (τ1,τ1̄,τ2,τ2̄, . . . ,τk,τk̄,τ12,τ1̄2̄,τ13,τ1̄3̄, . . . ,τ1k,τ1̄k̄,τ23,τ2̄3̄, . . . ,τ2k,τ2̄k̄,
τ12̄,τ1̄2,τ13̄,τ1̄3, . . . ,τ1k̄,τ1̄k)

define a local parameterization T ∶R∗(Fk,SL3(C)) ∖ crit(T )→ C8k−8, with

crit(T ) =⋃
i≥2

{τ1i1̄ī = τi1̄i1̄} ∪⋃
i≥3

{∆1

2i = 0},
∆1

2i = (τ12i − τ1i2)(τ1̄2̄ī − τ1̄ī2̄) − (τ12̄ī − τ1̄i2̄)(τ1̄2i − τ1̄i2).
Next we provide the holomorphic volume form:

Theorem 7. The volume form on R∗(Fk,SL3(C)) ∖ crit(T ) is Ω
SL3(C)
Fk

= ±T ∗Ω, for

Ω = ω12 ∧ ν1 ∧ ν2 ∧ ν12
k

⋀
i=3

ω1i ∧ νi ∧ ν1i ∧ ν2i

3∆1

2i

where

νi =
√
−3 dτi ∧ dτī, νℓi =

√
−3 dτℓi ∧ dτℓ̄ ī, ω1i = 1

τ1i1̄ī − τi1̄i1̄
dτ1̄i ∧ dτ1̄i,

and ∆1

2i is as in Proposition 6.

The paper is organized as follows. In Section 2 we review the results on spaces of repre-
sentations that we need, in particular we describe the relative variety of representations.
In Section 3 we recall the tools of Reidemeister torsion, including the duality formula, on
which Theorem 3 is based. In Section 4 we describe all forms and we prove Theorem 3.
Section 5 is devoted to formulas for SLN(C), the form ν and as well as the volume form
for the free groups of rank 2 in SL2(C) and SL3(C). In Section 6 we use Goldman’s
formula for the Poisson bracket to give the symplectic form in terms of trace functions
for the relative varieties of representations of S0,4 and S1,1 in SL2(C). Finally, in Section 7
we compute volume forms on spaces of representations of free groups of higher rank in
SL2(C) and SL3(C).
Acknowledgements. We are indebted to Simon Riche for helpful discussions and for
pointing out Steinberg results to us.

2. Varieties of representations

Throughout this article G denotes a simply-connected semisimple complex linear Lie
group. We let d denote the dimension of G, and r its rank. Also recall that along this
paper S = Sg,b denotes a compact, oriented, connected surface with nonempty boundary,
of genus g and with b ≥ 1 boundary components, ∂S = ∂1 ⊔ ⋯ ⊔ ∂b. We assume that
χ(S) = 2−2g−b < 0. The fundamental group of S is a free group Fk of rank k = 1−χ(S) ≥ 2.
2.1. The variety of good representations. The set of representations of π1(S) ≅ Fk

in G is

R(S,G) = hom(π1(S),G) ≅ Gk .

It follows from [20, Chap.4, §1.2] that G is algebraic, and hence R(S,G) is an affine alge-
braic set (it has a natural algebraic structure independent of the choice of the isomorphism
π1(S) ≅ Fk).

The group G acts on R(S,G) by conjugation and we are interested in the quotient

R(S,G) = R(S,G)/G.
4



This is not a Hausdorff space, so we need to restrict to representations with some regu-
larity properties. Following [12], we define:

Definition 8. A representation ρ ∈ R(S,G) is irreducible if its image is not contained
in a proper parabolic subgroup of G.

For ρ ∈ R(S,G), its centralizer is
Z(ρ) = {g ∈ G ∣ gρ(γ) = ρ(γ)g, ∀γ ∈ π1(S)} .

Proposition 9 (Proposition 1.1 of [12]). The representation ρ ∈ R(S,G) is irreducible
if and only if the orbit O(ρ) is closed in R(S,G) and Z(ρ) is finite.
Definition 10. A representation ρ ∈ R(S,G) is good if it is irreducible and its centralizer
Z(ρ) is the center of the group G, i.e. Z(ρ) = Z(G).

The set of good representations is denoted byR∗(S,G), and its orbit space byR∗(S,G) =
R∗(S,G)/G.

Proposition 11 (Proposition 1.2 and 1.3 of [12]). The set of good representations R∗(S,G)
is a Zariski open subset of R(S,G). Furthermore the action of G on R∗(S,G) is proper.

The variety of characters is the quotient in the algebraic category:

X(S,G) = R(S,G) �G.

Namely, it is an algebraic affine set defined by its ring of polynomial functions, as the
ring of functions on R(S,G) invariant by conjugation.

The projection R(S,G) →X(S,G) factors through a surjective mapR(S,G) →X(S,G).
For good representations we have:

Proposition 12. The natural map restricts to an injection

R∗(S,G)↪ X(S,G)
whose image is a Zariski open subset and a smooth complex manifold.

For the proof, see for instance [12, §1], or [19, Proposition 3.8] for injectivity, as irre-
ducibility is equivalent to stability in GIT [12, §1]. For smoothnesses see [5].

Given a representation ρ ∈ R(S,G), the Lie algebra g turns into an π1(S)-module via
Ad ○ρ. If there is no ambiguity this module is denoted just by g, and the coefficients in
cohomology are denoted by Adρ.

Proposition 13. Let ρ ∈ R∗(S,G) be a good representation. Then there is a natural
isomorphism

T[ρ]R∗(S,G) ≅H1(S;Ad ρ).
In particular the dimension of R∗(S,G) is −χ(S)d.

This proposition can be found for instance in [24, Corollary 50], but we sketch the
proof as it may be useful for the relative case.

Proof. Let Z1 = Z1(S;Ad ρ) denote the space of crossed morphisms from π1(S) to g,
i.e. maps d∶π1(S) → g satisfying d(γµ) = d(γ) + Adρ(γ) d(µ), ∀γ,µ ∈ π1(S). Let B1 =
B1(S;Adρ) denote the subspace of inner crossed morphisms: for a ∈ g the corresponding
inner morphism maps γ ∈ π1(S) to Adρ(γ)(a) − a. Weil’s construction identifies Z1 with
TρR(S,G) (usually Z1 is the Zariski tangent space to a scheme, possibly non-reduced, but
as π1(S) is free, R(S,G) is a smooth algebraic variety). The subspace B1 corresponds to
the tangent space to the orbit AdG(ρ). Then, in order to identify the tangent space to
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R∗(S,G) with the cohomology group H1(S;Adρ) = Z1/B1, we use a slice, for instance
an étale slice provided by Luna’s theorem [23, Theorem 6.1], or an analytic slice (cf. [12]).
In the setting of a good representation ρ, a slice is a subvariety S ⊂ R(S,G) containing
ρ, invariant by Z(ρ) = Z(G), such that the conjugation map

G/Z(G) × S → R(S,G)
is locally bi-analytic at (e, ρ) and the projection S → X(S,G) is also bi-analytic at ρ. (If
ρ was not good, we should take care of the action of Z(ρ)/Z(G). In addition, for Γ not
a free group the description is more involved). Then the assertion follows easily from the
properties of the slice. �

2.2. The relative variety of representations. Let

∂S = ∂1 ⊔⋯⊔ ∂b

denote the decomposition in connected components. By abuse of notation, we also let ∂i
denote an element of the fundamental group represented by the corresponding oriented
peripheral curve. This is well defined only up to conjugacy in π1(S), but our constructions
do not depend on the representative in the conjugacy class.

Definition 14 ([13] §4.3). For ρ0 ∈ R(S,G), the relative variety of representations is

R(S,∂S,G)ρ0 = {[ρ] ∈ R(S,G) ∣ ρ(∂i) ∈ O(ρ0(∂i)), i = 1, . . . , b} .
Here O(ρ0(∂i)) denotes the conjugacy class of ρ0(∂i). We also denote

R∗(S,∂S,G)ρ0 = R(S,∂S,G)ρ0 ∩R∗(S,G) .
Besides considering good representations, we restrict our attention to representation

which map peripheral elements to regular elements of G.

Definition 15 ([26] §3.5). An element g ∈ G is called regular if its centralizer Z(g) has
minimal dimension among centralizers of elements of G. Equivalently, its conjugacy class
O(g) has maximal dimension.

This minimal dimension is r the rank of G [26, §3.5, Proposition 1]. In SLN(C), a
diagonal matrix is regular if and only if all eigenvalues are different. More generally,
g ∈ SLN(C) is regular if and only if its minimal polynomial is of degree N [26, §3.5,
Proposition 2]. In particular the companion matrix of a monic polynomial is regular.

Definition 16. A representation ρ ∈ R(S,G) is called ∂-regular if the elements ρ(∂1), . . . , ρ(∂b)
are regular.

Proposition 17. Let ρ0 ∈ R∗(S,G) be a good, ∂-regular representation.

(a) R∗(S,∂S,G)ρ0 is a complex smooth manifold of dimension

d0 = −dχ(S) − b r = d(2g(S)− 2) + b(d − r).
(b) For [ρ] ∈ R∗(S,∂S,G)ρ0 , there is a natural isomorphism:

T[ρ]R∗(S,∂S,G)ρ0 ≅ ker (H1(S;Adρ)→H1(∂S;Ad ρ)) .
Proof. We first show that the map H1(S;Ad ρ) → H1(∂S;Ad ρ) is a surjection. By
Poincaré duality H2(S,∂S;Ad ρ) ≅ H0(S;Adρ) ≅ gAdρ(π1(S)), that vanishes because Z(ρ)
is finite. Thus, by the long exact sequence of the pair (S,∂S), the map H1(S;Ad ρ) →
H1(∂S;Ad ρ) is a surjection.
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We use a slice at ρ0, S ⊂ R(M) as in the proof of Proposition 13. The fact that
H1(S;Adρ)→ H1(∂S;Ad ρ) is a surjection means that the restriction map

res ∣S ∶S → R(∂S,G) = b

∏
i=1

R(∂i,G) = Gb

is transverse to the products of orbits by conjugation

O =
b

∏
i=1

O(ρ(∂i)) .
Namely, (res ∣S)∗(TρS)+ Tres(ρ)O = Tres(ρ)G

b. It follows from the rank theorem [16, C.4.1]
that O(ρ(∂i)) ⊂ G is a complex analytic subvariety of dimension d − r because ρ is ∂-
regular. Thus (res ∣S)−1(O) is an analytic C-submanifold of codimension

dimGb
− dimO =

b

∑
i=1

(dimG − dimO(ρ(∂i))) = b r .
Now the proposition follows from the properties of the slice. �

2.3. Steinberg map. In order to understand the space of conjugacy classes of regular
representations of Z we identify each representation with the image of its generator, so
that

Rreg(Z,G) = Greg and Rreg(Z,G) = Greg/G.

Consider the Steinberg map

(2) (σ1,⋯, σr)∶G→ C
r

where σ1,⋯, σr denote the characters corresponding to a system of fundamental repre-
sentations (for SLN(C) those are the coefficients of the characteristic polynomial).

Theorem 18. (Steinberg, [25]) If G is simply connected, then the map (2) is a surjection
and has a section s∶Cr → Greg so that s(Cr) is a subvariety that intersects each orbit by
conjugation in Greg precisely once.

For instance, when G = SLN(C) the section in Theorem 18 can be chosen to be the
companion matrix (see [26, p. 120] and [11, Sec. 4.15]).

Corollary 19. If G is simply connected, then:

(i) The map (2) induces natural isomorphisms between the space of regular orbits by
conjugation, the variety of characters, and Cr:

Rreg(S1,G) ≅X(S1,G) ≅ Cr.

(ii) The Steinberg map induces a natural isomorphism

H1(S1,Adρ) ≅ T[ρ]Rreg(S1,G) ≅ Cr .

Moreover, for each good, ∂-regular representation ρ0 ∈ R∗(S,G) and [ρ] ∈ R∗(S,∂S,G)ρ0
there is an exact sequence

0→ T[ρ]R∗(S,∂S,G)ρ0 → T[ρ]R∗(S,G)→ b

⊕
i=1

T[ρ(∂i)]R
reg(∂i,G)→ 0.

Proof. For (i), notice that what we aim to prove is the isomorphism Greg/G ≅ G�G ≅ Cr;
which is straightforward from the existence of the section in Theorem 18.

For (ii), by the existence of the section we also know that the differential of Steinberg’s
map Z1(Z,Ad ρ) ≅ g → Cr is surjective whenever ρ is regular [11, §4.19]. In addition
it maps B1(Z,Ad ρ) to 0, because Steinberg map is constant on orbits by conjugation.
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Thus we have a well defined surjection H1(S1,Ad ρ) → Cr, which is an isomorphism
because of the dimension. The exact sequence follows from the long exact sequence in
cohomology of the pair (S,∂S) and the identification of cohomology groups with tangent
spaces, cf. Proposition 17. �

Remark 20. When G is not simply connected, then the universal covering G̃ → G is
finite and π1(G) can be identified with a (finite) central subgroup Z of G̃. The center of
G̃ acts on the quotient G̃� G̃ and we obtain a commutative diagram

G̃ ÐÐÐ→ G̃� G̃×××Ö
×××Öϕ

G ÐÐÐ→ G�G

where (G�G,ϕ) is a quotient for the action of Z on G̃�G̃ (see [21, Lemma 2.5]). Notice
that ϕ is a finite branched covering.

Then part (ii) of Corollary 19 can be easily adapted for those [g] ∈ G � G which are
outside the branch set of ϕ.

3. Reidemeister torsion

Let ρ ∈ R(S,G) be a representation; recall that we consider the action of π1(S) on g

via the adjoint of ρ. Most of the results in this section apply not only to g but to its real
form gR, provided that the image of the representation is contained in GR. Recall also
that we assume that B restricted to the compact real form gR is positive definite.

Consider a cell decomposition K of S. If C∗(K̃;Z) denotes the simplicial chain complex
on the universal covering, one defines

(3) C∗(K;Ad ρ) = homπ1(S)(C∗(K̃;Z),g).
We consider the so called geometric basis. Start with a B-orthonormalC-basis {m1, . . . ,md}

of g. For each i-cell eij of K we choose a lift ẽij to the universal covering K̃, then

ci = {(ẽij)∗ ⊗mk}jk
is a basis of C i(K;Ad ρ), called the geometric basis. Here, (ẽij)∗ ⊗mk∶C∗(K̃;Z) → g is

the unique π1(S)-homomorphism given by (ẽij)∗ ⊗mk(ẽil) = δjlmk.

On the other hand, if Bi = Im(δ∶C i−1(K;Ad ρ)→ C i(K;Ad ρ)) is the space of cobound-
aries, chose bi a basis for Bi ⊂ C i and chose lift b̃i to C i−1 by the coboundary map. For a
basis hi of H i(K;Adρ), consider also representatives h̃i ∈ C i(K;Adρ). Then the disjoint
union

b̃i+1 ⊔ h̃i ⊔ bi

is also a basis for C i(K;Adρ). Notice that we are interested in the case where the zero

and second cohomology groups vanish, so we assume that h̃0 = h̃2 = ∅.

Reidemeister torsion is defined as

(4) tor(S,Ad ρ,h1) = [b̃2 ⊔ h̃1 ⊔b1 ∶ c1]
[b̃1 ∶ c0][b2 ∶ c2] ∈ C∗/{±1}

Here, for two bases a and b of a vector space, [a ∶ b] denotes the determinant the matrix
whose colons are the coefficients of the vectors of a as linear combination of b.
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Remark 21. The choice of the bilinear form B is relevant, as we use a B-orthonormal
basis for g and χ(S) ≠ 0. Namely, if we replace B by λ2B, then the orthonormal basis
will be 1

λ
{m1, . . . ,md} and the torsion will be multiplied by a factor λ−χ(S)d = λdimR(S,G).

For an ordered basis a = {a1, . . . , am} of a vector space, denote

∧a = a1 ∧⋯∧ am .

Since ∧a = [a ∶ b](∧b), the notation

[a ∶ b] = ∧a /∧b
is often used in the literature (cf. [18]).

3.1. The holomorphic volume form. The tangent space to R∗(S,G) at [ρ] is iden-
tified to t H1(S;Adρ), by Proposition 13. There is a natural holomorphic volume form
on H1(S;Ad ρ):

ΩS(∧h) = ± tor(S,Ad ρ,h)
where h is a basis for H1(S;Adρ).

The surface S has the simple homotopy type of a graph. Moreover, graphs that are ho-
motopy equivalenet are also simple-homotopy equivalent, thus this volume form depends
only on the fundamental group

Ωπ1(S) = ΩS .

The bilinear form B defines a bi-invariant volume form θG on the Lie group G in the
usual way. Hence (θG)k is a volume form on R(π1(S),G) ≅ Gk.

For a good representation ρ the form θG induces also a form θO(ρ) on the orbit O(ρ)
by push-forward: the orbit map fρ∶G→ R(π1(S),G), fρ(g) = Adg ○ρ factors through the
quotient G/Z(G). The quotient map G→ G/Z(G) is a Lie group covering and we get an
isomorphism f̄ρ∶G/Z(G)→ O(ρ), and hence

(5) θO(ρ) = (fρ)∗(θG) .
The next lemma justifies why Reidemeister torsion is the natural choice of volume form

on the variety of representations up to conjugation.

Lemma 22. Let π∶R∗(S,G) →R∗(S,G) denote the projection. Then at ρ ∈ R∗(S,G) we
have: (θG)k = ±θO(ρ) ∧ π∗ΩS .

Proof. We use a graph G with one vertex and k edges to compute the torsion of S. The
Reidemeister torsion of this graph is tor(G,Ad ρ,h) = ±[b1 ⊔ h̃ ∶ c1]/[b̃1 ∶ c0]. If we make

the choice b̃1 = c0, which is a basis for g, then

tor(G,Adρ,h) = [δc0 ⊔ h̃ ∶ c1] = ( ∧ δc0 ∧ h̃)/∧c1.
We identify the 1-cells with the generators of Fk, so that every element in c1 is viewed as
a tangent vector to the variety of representations, and c1 has volume one,

(θG)k(∧c1) = 1
because we started with an B-orthonormal basis for g. Thus

(6) (θG)k(∧δc0 ∧ h̃) = ± tor(G,Adρ,h) = ±ΩS(∧h).
As δc0 is a basis of the tangent space to the orbit π∗(δc0) = 0. Moreover, using π∗(h̃) = h:
(7) (θO(ρ) ∧ π∗ΩS)(∧δc0 ∧ h̃) = θO(ρ)(∧δc0)ΩS(∧h).
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By (6) and (7), to conclude the proof of the lemma we claim that θO(ρ)(∧δc0) = 1. For
that purpose, we use the canonical identification TρO(ρ) ≅ B1(π1(S);Ad ρ). Using this
identification, the tangent map of the orbit map fρ∶G→ O(ρ) at e ∈ G, dfρ(e)∶g → TρO(ρ),
corresponds to

dfρ(e)(X) = −δ(X),
where δ∶g→ B1(π1(S);Ad ρ) denotes the coboundary operator

δ(X)(γ) = Adρ(γ)(X) −X, for γ ∈ π1(S).
Therefore for the basis δc0 of B1(π1(S);Ad ρ) we obtain by (5):

θO(ρ)(∧δc0) = θO(ρ)(∧dfρ(e)c0) = ±θG(∧c0) = 1.
This concludes the proof of the claim and the lemma. �

3.2. The nondegenerate pairing. Consider K ′ the cell decomposition dual to K: for
each i-dimensional cell eij of K there exists a dual (2 − i)-dimensional cell f 2−i

j of the
dual complex (K ′, ∂K ′). The complex C∗(K ′, ∂K ′;Z) yields the relative cohomology of

the pair (S,∂S). This can be generalized to cohomology with coefficients. If C∗(K̃;Z)
denotes the simplicial chain complex on the universal covering, recall from (3) that

C∗(K;Ad ρ) = homπ1(S)(C∗(K̃;Z),g),
and we similarly define

C∗(K ′, ∂K ′;Ad ρ) = homπ1(S)(C∗(K̃ ′, ∂K̃ ′;Z),g)
where π1(S) acts on g by the adjoint representation.

Following Milnor [18], there is a paring

[. , . ]∶Ci(K̃;Z) ×C2−i(K̃ ′, ∂K̃ ′;Z)→ Zπ1(S)
defined by [c, c′] ∶= ∑

γ∈π1(S)

(c ⋅ γc′)γ.
Here “⋅” denotes the intersection number in the universal covering. The main properties
of this paring are that for η ∈ Zπ1(S) we have:

(8) [ηc, c′] = η[c, c′], [c, ηc′] = [c, c′]η̄ and [∂c, c′] = ±[c, ∂c′].
Here the bar . ∶Zπ1(S)→ Zπ1(S) denotes the anti-involution that extends Z-linearly the
anti-morphism of π1(S) that maps γ ∈ π1(S) to γ−1. Notice that the sign ± in equation (8)
depends only on the dimension of the chains.

For each i-dimensional cell eij we fix a lift ẽij to K̃. Also, we chose a (2− i)-dimensional

cell f̃ 2−i
j which projects to f 2−i

j . By replacing f̃ 2−i
j by a translate, we can assume that

ẽij ⋅ f̃
2−i
k = δjk.

We obtain, for each i-chain c ∈ Ci(K̃;Z) and each (2 − i)-chain c′ ∈ C2−i(K̃ ′, ∂K̃ ′;Z)
that

c =∑
j

[c, f̃ 2−i
j ] ẽij and c′ =∑

j

[ẽij, c′] f̃ 2−i
j .

Given α ∈ C i(K;Ad ρ) and α′ ∈ C2−i−1(K ′, ∂K ′;Adρ) the formula

(α,α′)↦∑
j

B(α(ẽij), α′(f̃ 2−i
j ))

defines a nondegenerate pairing

(9) ⟨⋅, ⋅⟩∶C i(K;Ad ρ) ×C2−i(K ′, ∂K ′;Adρ)→ C .
10



By using equation (8), it is easy to see that this pairing satisfies

(10) ⟨δα,α′⟩ = ±⟨α, δα′⟩ ,
and therefore it induces a non-singular pairing in cohomology

(11) ⟨⋅, ⋅⟩∶H1(S;Ad ρ) ×H1(S,∂S;Ad ρ)→ C.

Given a basis h = {hi}i of H1(S;Adρ) and h′ = {h′i}i a basis of H1(S,∂S;Ad ρ), we
introduce the notation

(12) ⟨∧h,∧h′⟩ ∶= det (⟨hi, h
′
j⟩ij)

which is the natural extension of the pairing (11) to

d

⋀H1(S;Ad ρ)⊗ d

⋀H1(S,∂S;Ad ρ)→ C ,

where d = −χ(S) dimG.

3.3. The duality formula. Let ρ ∈ R(π1(S),G) be a representation.

Proposition 23 (Duality formula). Let h = {hi}i be a basis for H1(S;Ad ρ), and let
h′ = {h′i}i be a basis for H1(S,∂S;Ad ρ). Assume that the cohomology groups Hk(S;Adρ)
and Hk(S,∂S;Ad ρ) vanish in dimension k = 0,2. Then

tor(S,Ad ρ,h) tor(S,∂S,Ad ρ,h′) = ±⟨∧h,∧h′⟩
This is E. Witten’s generalization of the duality formula of W. Franz and J. Milnor. We

reproduce the proof for completeness. In Witten’s article [29] the proof of this particular
formula is only given in the closed case, and Milnor [18] and Franz [2] consider only the
acyclic case.

Proof. We chose the geometric basis of C i(K;Ad ρ) and C2−i(K ′, ∂K ′;Adρ) to be dual
to each other, by choosing dual lifts of the cells and a B-orthonormal basis of the Lie
algebra g. In this way, the matrix of the intersection form (9) with respect the geometric
basis is the identity, in particular its determinant is 1: ⟨∧ci,∧(c2−i)′⟩ = 1. Thus we view
the product of torsions in the statement of the proposition as three changes of basis, one
for each intersection form:

(13) tor(S,Ad ρ,h) tor(S,∂S,Ad ρ,h′)
= ± tor(S,Ad ρ,h) tor(S,∂S,Ad ρ,h′) ⟨∧c1,∧(c1)′⟩⟨∧c0,∧(c2)′⟩⟨∧c2,∧(c0)′⟩

= ±
[b̃2 ⊔ b1 ⊔ h̃ ∶ c1] [(̃b2)′ ⊔ (b1)′ ⊔ h̃′ ∶ (c1)′]
[b̃1 ∶ c0][b2 ∶ c2] [(b̃1)′ ∶ (c0)′][(b2)′ ∶ (c2)′]

⟨∧c1,∧(c1)′⟩⟨∧c0,∧(c2)′⟩⟨∧c2,∧(c0)′⟩
= ±
⟨∧b̃2 ∧ b1 ∧ h̃,∧(̃b2)′ ∧ (b1)′ ∧ h̃′⟩
⟨∧b̃1,∧(b2)′⟩⟨∧b2,∧(b̃1)′⟩ .

Next, following Witten, we may chose the lift of the coboundaries to be orthogonal to
the lift of the cohomology of the other complex:

⟨h̃i, (̃b2j)′⟩ = ⟨b̃2i , h̃′j⟩ = 0.
In addition, by direct application of (10):

⟨b1i , (b1j)′⟩ = ⟨b1i , h̃′j⟩ = ⟨h̃i, (b1j)′⟩ = 0.
11



Thus the numerator in (13) is the determinant of a matrix with some vanishing blocks,
and (13) becomes:

(14) ±
⟨∧b̃2,∧(b1)′⟩⟨∧b1,∧(̃b2)′⟩⟨∧h,∧h′⟩
⟨∧b̃1,∧(b2)′⟩⟨∧b2,∧(b̃1)′⟩ .

Finally, since δb̃i = bi and δ(̃bi)′ = (bi)′, ⟨∧b̃2,∧(b1)′⟩ = ±⟨∧b2,∧(b̃1)′⟩ and ⟨∧b1,∧(̃b2)′⟩ =
±⟨∧b̃1,∧(b2)′⟩, by (10). Hence (14) equals ±⟨∧h,∧h′⟩, concluding the proof. �

Remark 24. Notice that the proof generalizes in any dimension, after changing the
product by a quotient in the odd dimensional case, and taking care of the intersection
product in all cohomology groups.

4. Symplectic form and volume forms

4.1. The symplectic form on the relative variety of representations. For a good
and ∂-regular representation ρ0, the tangent space to R∗(S,∂S,G)ρ0 is the kernel of the
map i∶H1(S;Ad ρ) → H1(∂S;Ad ρ) induced by inclusion (Proposition 17). The long
exact sequence in cohomology of the pair is:

0→ H0(∂S;Ad ρ) β
→H1(S,∂S;Ad ρ) j

→H1(S;Ad ρ) i
→H1(∂S;Ad ρ)→ 0

For a, b ∈ ker(i), we define

(15) ω(a, b) = ⟨ã, b⟩,= ⟨a, b̃⟩
where ã, b̃ ∈H1(S,∂S;Ad ρ) satisfy j(ã) = a, j(̃b) = b. This form is well defined (indepen-
dent of the lift), because i and β are dual maps with respect to the pairing (11), that is⟨β(⋅), ⋅⟩ = ⟨⋅, i(⋅)⟩. Moreover we have:

Theorem 25 ([5, 10, 15]). Assume that ρ0 is a good and ∂-regular. Then the form ω is
symplectic on R∗(S,∂S,G)ρ0 .

The fact that ω is bilinear and alternating is clear from construction, non-degeneracy
follows from Poincaré duality, and the deep result is to prove dω = 0. When S is closed
this was proved by Goldman in [5]. When ∂S ≠ ∅, the result with real coefficients is due
to Guruprasad, Huebschmann, Jeffrey, and Weinstein [10], and in [15] Lawton explains
why it works in the complex case.

4.2. Sign refined Reidemeister torsion for the circle. Let V be a finite dimensional
real or complex vector space, and

ϕ∶π1(S1)→ SL(V )
be a representation. In what follows we use the refined torsion with sign due to Turaev,
that we denote TOR(S1, ϕ,o,u,v) [28, §3]. This torsion depends on the choice of an
orientation o in cohomology with constant coefficients of S1 and the choice of respective
basis u for H0(S1;ϕ) and v for H1(S1;ϕ). For a circle S1, the choice of an orientation
determines a fundamental class, hence an orientation in homology.

We start with a cell decomposition K of S1, with i-cells ei
1
, . . . , eia, i = 0,1, and a (real

or complex) basis {m1, . . . ,mk} for the vector space V . The geometric basis for C i(K;ϕ)
is then ci = {(ẽi

1
)∗⊗m1, (ẽi1)∗⊗m2, . . . , (ẽia)∗⊗mk}. As before, let B1 = Im(δ∶C0(K;ϕ)→

C1(K;ϕ)) denote the coboundary space and chose b1 as basis for B1 and lift it to b̃1 in
12



C0(K;ϕ). Consider also ṽ ⊂ C1(K;ϕ) a representative of v and similarly ũ ⊂ C0(K;ϕ)
for u. Then we define the torsion:

tor(S1, ϕ,u,v,c0,c1) = [ṽ ⊔ b1 ∶ c1]
[b̃1 ⊔ ũ ∶ c0] ∈ C∗.

Notice that there is no sign indeterminacy, because we include ci in the notation. In fact
sign indeterminacy comes from changing the order or the orientation of the cells of K.
The sign is not affected by the choice of a basis for V , because χ(S1) = 0.

Following [28, §3] we consider αi = ∑
i
l=0 dimC l(K;ϕ), βi = ∑

i
l=0 dimH l(S1;ϕ) and

N = ∑i≥0αiβi. We define

Tor(S1, ϕ,u,v,c0,c1) = (−1)N tor(S1, ϕ,u,v,c0,c1).
This quantity is invariant under subdivision of the cells of K, but it still depends on
their ordering and orientation. To make this quantity invariant, Turaev introduces the
notion of cohomology orientation, i.e. an orientation of the R-vector space H0(S1;R)⊕
H1(S1;R). We consider a geometric basis the complex with trivial coefficients C i(K;R),
ci = {(ei

1
)∗, . . . , (eia)∗}, with the same ordering and orientation of cells. We chose any

basis hi of H i(S1;R) that yield the orientation o.

Definition 26. The sign determined torsion is

TOR(S1, ϕ,o,u,v) = Tor(S1, ϕ,u,v,c0,c1) ⋅ sgn (Tor(S1,1, h0, h1, c0, c1))dimϕ

Let −o denote the homology orientation opposite to o. It is straightforward from
construction that

(16) TOR(S1, ϕ,−o,u,v) = (−1)dimϕTOR(S1, ϕ,o,u,v)
In particular, we do not need the homology orientation when dimϕ is even. For a circle
S1, the choice of an orientation determines a fundamental class, hence an orientation in
cohomology.

Let ϕi∶π1(S1) → SL(Vi) be representations into finite dimensional vector spaces, for
i = 1,2. Then H∗(S1;ϕ1 ⊕ϕ2) ≅ H∗(S1;ϕ1)⊕H∗(S1;ϕ2). Let ui and vi denote basis for
H0(S1;ϕi) and H1(S1;ϕi) respectively. The following lemma reduces to an elementary
calculation:

Lemma 27. Let ϕi∶π1(S1) → SL(Vi) be representations into finite dimensional vector
spaces, for i = 1,2. Then

TOR(S1, ϕ1 ⊕ ϕ2,o,u1 × {0} ⊔ {0} × u2,v1 × {0} ⊔ {0} × v2)
= TOR(S1, ϕ1,o,u1,v1) ⋅TOR(S1, ϕ2,o,u2,v2).

4.3. An holomorphic volume form on Rreg(S1,G). As in the introduction we let
G denote a simply-connected, semisimple, complex, linear Lie group, d = dimG, and
r = rkG.

Definition 28. We call a representation ρ∶π1(S1) → G regular if the image of the gen-
erator of π1(S1) is a regular element g ∈ G. The set of conjugacy classes of regular
representations is denoted by Rreg(S1,G).

Let ρ∶π1(S1)→ G be regular. Then dimH0(S1;Ad ρ) = r, because H0(S1;Adρ) ≅ gAdρ.
As the Euler characteristic of S1 vanishes, dimH1(S1;Ad ρ) = r. Furthermore, since G is
simply connected, we have H1(S1;Adρ) ≅ T[ρ]Rreg(S1,G) (Corollary 19).

By Poincaré duality, the pairing

⟨⋅, ⋅⟩∶H0(S1;Adρ) ×H1(S1;Ad ρ)→ H1(S1;C) ≅ C
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is non degenerate.
In the next lemma we use the refined torsion with sign due to Turaev (see Section 4.2).

By (16) changing the orientation of S1 changes the torsion TOR(S1,Ad ρ,o,u,v) by a
factor (−1)d = (−1)r, as well as ⟨∧v,∧u⟩ by the same factor.

Let GR denote the compact real form of the semisimple complex linear group G. We
will assume that the restriction of the nondegenerate symmetric bilinear G-invariant form
B on the Lie algebra to gR is positive definite. This means that B is a negative multiple
of the Killing form. In what follows we will denote by AdR∶GR → Aut(gR) the restriction
of Ad to the real form GR.

Lemma 29. If ρ∶π1(S1) → G is a regular representation, and if u and v are bases of
H0(S1;Adρ) and H1(S1;Ad ρ) respectively, then the product

TOR(S1,Ad ρ,o,u,v) ⟨∧v,∧u⟩
is independent of u.

Lemma 30. If ρ∶π1(S1) → GR is a regular representation and if u and v are bases of
H0(S1;AdR ρ), and H1(S1;AdR ρ) respectively, then

TOR(S1,AdR ρ,o,u,v) ⟨∧v,∧u⟩ > 0 .
Proof of Lemma 29. Let u and u′ be bases forH0(S1;Ad ρ), and v and v′, forH1(S1;Ad ρ).
We change bases by means of the following formulas:

TOR(S1,Adρ,o,u′,v′) = TOR(S1,Adρ,o,u,v)[v′ ∶ v][u′ ∶ u]
and ⟨∧v′,∧u′⟩ = ⟨∧v,∧u⟩[v′ ∶ v][u′ ∶ u] .
Hence

(17) TOR(S1,Adρ,o,u′,v′)⟨∧v′,∧u′⟩ = TOR(S1,Ad ρ,o,u,v)⟨∧v,∧u⟩[v′ ∶ v]2.
This proves independence of u. �

Proof of Lemma 30. We are assuming that the image of ρ is contained in the compact
real form, ρ(π1(S)) ⊂ GR. By (17) in the proof of Lemma 29, the sign is independent of
v. By regularity, H0(S1;AdR ρ) ⊂ gR is a Cartan subalgebra h, and B restricted to h is
positive definite. Hence we may chose an R-basis of gR compatible with the orthogonal
decomposition gR = h ⊥ h⊥. This is also a decomposition of π1(S1)-modules, and by
Lemma 27 the torsion decomposes accordingly as a product of torsions.

We compute the torsion of h first. Since the adjoint action of H on h is trivial, we have
natural isomorphisms

(18) H1(S1;h) ≅H1(S1,R)⊗ h and H0(S1;h) ≅H0(S1,R)⊗ h.
We chose a cell decomposition of S1 with a single (positively oriented) cell in each di-
mension. In particular, as the adjoint action of H on h is trivial, the boundary opera-
tor δ∶C0(K;h) → C1(K;h) vanishes. Chose a B-orthonormal basis for h, this provides
geometric basis c1 and c0, and since δ = 0, those are also representatives of basis in
cohomology. By choosing those bases (u = c0 and v = c1),

tor(S1,Adρ∣h,c0,c1,c0,c1) = 1.
Following the construction in Section 4.2, we compute α0 = β0 = r and α1 = β1 = 2r ≡
0 mod 2. Thus N ≡ r2 ≡ r mod 2 and

Tor(S1,Adρ∣h,c0,c1,c0,c1) = (−1)r.
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As the torsion for the trivial representation corresponds to the case r = 1, Tor for the
trivial representation is −1 and

(19) TOR(S1,Ad ρ∣h,o,c1,c0) = (−1)r ⋅ sgn(−1)r = 1.
Also, by construction, ⟨∧c1,∧c0⟩ = 1.

Next we compute the torsion of h⊥. We have H∗(S1;h⊥) = 0 and, since dimh⊥ is even,

TOR(S1,Ad ρ∣h⊥,o) = tor(S1,Adρ∣h⊥,c0,c1) = det(AdR(g) − Id)∣h⊥,
where g ∈ G is the image of a generator of π1(S1). Notice that, as dimh⊥ is even, the sign
is independent of the cohomology orientation.

Let ∆G be the Weyl function [9]. Then

det(Ad(g) − Id)∣h⊥ =∆G(g)∆G(g−1) = ∣∆G(g)∣2 > 0
(see [9, (7.47)] for details). This finishes the proof of the lemma. �

Definition 31. Let ρ∶π1(S1)→ G be a regular representation. The form

ν∶
r

⋀H1(S1;Adρ)→ C

is defined by the formula

(20) ν(∧v) = ±√TOR(S1,Adρ,o,u,v) ⟨∧v,∧u⟩
for any basis u of H1(S1;Adρ). (By Lemma 29, it is independent of u.)

We are interested in understanding ν as a differential form on Rreg(S1,G) for G simply
connected. Recall from §2.3 that when G is simply connected, the Steinberg map has
coordinates the fundamental characters (σ1, . . . , σr)∶G→ Cr.

Proposition 32. For G simply connected, there exists a constant C ∈ C∗ and a choice
of sign for ν such that

ν = C dσ1 ∧ ⋅ ⋅ ⋅ ∧ dσr.

Proof. Using Steinberg’s section s∶Cr → Greg (Theorem 18), consider for each p ∈ Cr the
subagebra gAd s(p) of elements fixed by Ad s(p). By the constant rank theorem this defines
an algebraic vector bundle

gAd ○s
→ E(s)→ C

r.

Since algebraic vector bundles over Cr are trivial [22, 27], there is a trivialization u =(u1, . . . , ur)∶Cr → E(s), so that {u1(p), . . . , ur(p)} is a basis for gAd s(p), for each p ∈
Cr. By the identifications, T[s(p)]Rreg(S1,G) ≅ H1(S1,Ad s(p)) (Corollary 19), and the
identification gAd s(p) ≅H0(S1,Ad s(p)), we have two (r,0)-forms on Cr:

(21) ⟨s∗(−),∧u⟩ and TOR(S1,Ad s,o,u, s∗(−)).
We claim that these forms are both algebraic. Assuming the claim, they are a polynomial
multiple of dz1 ∧ ⋯ ∧ dzr, for (z1, . . . , zr) the standard coordinate system for Cr. Since
they vanish nowhere in Cr, both forms in (21) are a constant multiple of dz1 ∧ ⋯ ∧ dzr.
Viewed as as forms on Rreg(S1,G), they are both a constant multiple of dσ1 ∧ ⋯ ∧ dσr

and the proposition follows, once we have shown the claim.
To prove that the forms in (21) are algebraic, use a CW-decomposition K of S1 with

a 1 and a 0-cell, so that the groups of cochains C i(K,Ad s(p)), for i = 0,1, are naturally
identified with g. We also have a natural isomorphism (Rs(p)−1)∗ ∶Ts(p)G → g, which is
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precisely the tangent map to righ multiplicatiuon by s(p)−1. This identification maps
s∗(∂zi) at p ∈ Cn to

vi(p) = (Rs(p)−1)
∗
(∂s
∂zi
(p)) ∈ g,

which is a map algebraic on p ∈ Cr. Hence the intersection product is

⟨s∗(∂z1 ∧⋯∧ ∂zr),∧u⟩ = det(⟨s∗(∂zi), uj⟩ij) = det(B(vi, uj)ij),
which is polynomial on p ∈ Cr.

To show that the torsion is algebraic, using again triviality of algebraic bundles on
Cr, complete u to a section of the trivial bundle (u1, . . . , ur, . . . , ud)∶Cr → g. Setting

b̃1 = {ur+1, . . . , ud}, then u(p)⊔b̃1(p) is a basis for g, for each p ∈ C. We view u(p)⊔b̃1(p)
as a basis for C0(K,Ad s(p)), so that u(p) projects to a basis for H0(S1,Ad s(p)), for
every p ∈ Cr. Fix c0 = c1 a basis for g. By construction:

TOR(S1,Ad s,o,u, s∗(∂z1 ∧⋯∧ ∂zr)) = ±[v ⊔ ∂b̃1 ∶ c1]
[u ⊔ b̃1 ∶ c0] ,

where the sign depends on the orientation in homology, but it is constant on p. Thus this
is a quotient of algebraic polynomial functions on Cr, but since it is defined everywhere,
it is polynomial. �

4.4. Witten’s formula. Let ρ∶π1(S) → G be a good ∂-regular representation. Let νi
denote the peripheral form of the i-th component of ∂S (Definition 31), and let ω denote
the symplectic form of the relative character variety (15). We aim to prove Theorem 3,
namely, that Ωπ1(S) = ± 1

n!
ωn ∧ ν1 ∧⋯∧ νb.

Proof of Theorem 3. We apply the duality formula (Proposition 23) and the formula of
the torsion for the long exact sequence of the pair, Equation (23) below. For this pur-
pose we discuss the bases in cohomology. Start with u a basis for H0(∂S;Ad ρ). If β
denotes the connecting map of the long exact sequence, then complete β(u) to a basis

for H1(S,∂S;Ad ρ): β(u) ⊔ h̃. Next we chose v a basis for H1(∂S;Ad ρ) that we lift to

ṽ by i, and if we set j(h̃) = h, then h ⊔ ṽ is a basis for H1(S;Ad ρ) (and h is a basis for
ker(i) = Im(j)). The bases are organized as follows:

(22) 0→H0(∂S;Ad ρ)
u

β
→ H1(S,∂S;Ad ρ)

β(u)⊔h̃

j
→H1(S;Ad ρ)

h⊔ṽ

i
→ H1(∂S;Ad ρ)

v

→ 0

As the bases have been chosen compatible with the maps of the long exact sequence, the
product formula for the torsion [17] gives:

(23) tor(S,Ad ρ,h ⊔ ṽ) = ± tor(S,∂S,Ad ρ,β(u) ⊔ h̃) tor(∂S,Ad ρ,u,v).
We shall combine (23) with the duality formula (Proposition 23):

(24) tor(S,Ad ρ,h ⊔ ṽ) tor(S,∂S,Ad ρ,β(u) ⊔ h̃) = ± ⟨∧(h ⊔ ṽ),∧(β(u) ⊔ h̃)⟩ .
We next decompose the right hand side in (24). By naturality of the intersection form,

⟨hi, β(uj)⟩ = ⟨i(hi), uj⟩ = ⟨i(j(h̃i)), uj⟩ = 0 .
Hence the right hand side in (24) becomes:

⟨∧(h ⊔ ṽ),∧(β(u) ⊔ h̃)⟩ = ⟨∧h,∧h̃⟩ ⋅ ⟨∧ṽ,∧β(u)⟩.
Again by naturality ⟨∧ṽ,∧β(u)⟩ = ⟨∧i(ṽ),∧u⟩ = ⟨∧v,∧u⟩.
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In addition, by definition

⟨∧h,∧h̃⟩ = ω(∧h,∧h).
Thus

(25) ⟨∧(h ⊔ ṽ),∧(β(u) ⊔ h̃)⟩ = ±⟨∧u,∧v⟩ω(∧h,∧h).
Hence by (23), (24), and (25):

tor(S,Ad ρ,h ⊔ ṽ)2 = ±ω(∧h,∧h)TOR(∂S,Ad ρ,u,v)⟨u,v⟩ .
Notice that on the right hand side we use Turaev’s sign refined torsion. Next we claim that
the sign of this formula is + and not −. It suffices to determine the sign in the compact
case. Then the formula will follow in the complex case by a connectedness argument (the
variety of characters of a free group is connected and irreducible, and ∂-regularity and
being good are Zariski open properties, hence they fail in a set of real codimension ≥ 2).

We show that the sign is + in the compact case by showing that all terms are positive.
Since TOR(∂S,Ad ρ,u,v)⟨u,v⟩ is positive by Lemma 30, the sign will follow from the
equality

(26) ω(∧h,∧h) = ( 1
n!
ωn(∧h))2 ,

that will also complete the proof of the theorem.
We give self-contained proof of (26) by completeness. By Darboux’s theorem there are

local coordinates so that

ω = dx1 ∧ dx2 +⋯+ dx2n−1 ∧ dx2n.

Let A be a matrix of size 2n× 2n whose colons are the components of the vectors of h in
this coordinate system. Then, if J denotes the matrix of the standard symplectic form,

ω(∧h,∧h) = det (ω(hi, hj)ij) = det(AtJA) = (detA)2.
On the other hand ωn = n!dx1 ∧ dx2 ∧⋯∧ dx2n, hence

1

n!
ωn(∧h) = detA

and we are done. �

5. Formulas for the group SLN(C)
If G = SLN(C) we can give explicit formulas for several volume forms.

5.1. The form ν for SLN(C). We know that ν is a constant multiple of dσ1 ∧⋯∧ dσr

and we shall determine the constant, completing the proof of Proposition 2. Recall that
we chose the C-bilinear form on slN(C) to be

B(X,Y ) = − tr(X Y ) ∀X,Y ∈ slN(C).
In SLN(C) the invariant functions are the symmetric functions on the spectrum: if the
eigenvalues of A ∈ SLN(C) are λ1, . . . , λN , then

σ1(A) =∑
i

λi, σ2(A) =∑
i<j

λiλj, . . . , σN−1(A) =∑
i

1

λi

.

Those symmetric functions are characterized by Cayley-Hamilton theorem:

AN
− σ1(A)AN−1

+ σ2(A)AN−2
−⋯ + (−1)N−1σN−1(A)A + (−1)N Id = 0 .
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We identify R(S1,SLN(C)) with the group SLN(C) by mapping a representation to the
image of a generator of π1(S), so that σi is a function on R(S1,SLN(C)) invariant under
conjugation. On the other hand, σ1, . . . , σN−1 are the coordinates of the isomorphism:

R(S1,SLN(C)) ≅ SLN(C)//SLN(C) ≅ CN−1.

Proposition 33. Let ν∶⋀N−1H1(S1,Adρ)→ C denote the volume form in Definition 31.
On R(S1,SLN(C)) ≅ CN−1

ν = ±(√−1)ǫ(N)√N dσ1 ∧⋯∧ dσN−1 ,

where ǫ(N) = (N − 1)(N + 2)/2.
By direct application of the proposition, we get:

Corollary 34. On Rreg(S1,SL2(C))
ν = ±√2d trγ

where γ is a generator of π1(S1).
Proof of Proposition 33. We identify the variety of representations of the cyclic group
π1(S1) with SLN(C) by considering the image of a generator, that we call g. To simplify,
we may assume that g is semisimple, by Proposition 32. After diagonalizing:

g =
⎛⎜⎜⎜⎝
eu1 0 0
0 eu2 0

⋱

0 0 euN

⎞⎟⎟⎟⎠
with u1 +⋯ + uN = 0 and all ui are pairwise different mod 2π

√
−1Z. The Cartan algebra

h is the subalgebra of diagonal matrices. Since the decomposition slN(C) = h ⊥ h⊥ is
preserved by the adjoint action of g, the torsion is the corresponding product of torsions,
by Lemma 27. By looking at the action on non-diagonal entries of slN(C), the torsion of
the adjoint representation on h⊥ is:

∏
i≠j

(eui−uj − 1) =∏
i≠j

(eui − euj) = (−1)N(N−1)/2∏
i>j

(eui − euj)2,
which is the product ∆G(g)∆G(g−1) of Weyl functions [9, §7]. Thus

(27) ν = ±(√−1)N(N−1)/2∏
i>j

(eui − euj)θH ,

where

(28) θH(∧v) =√TOR(S1,h,o,∧v,∧u)⟨∧v,∧u⟩.
We use coordinates for the Cartan algebra via the entries of the diagonal matrices:

h ≅ {(u1, . . . , uN) ∈ CN ∣ ∑ui = 0},
Lemma 35. The form θH is the restriction to {(u1, . . . , uN) ∈ CN ∣∑ui = 0} of the form

±(√−1)(N−1) 1√
N

N

∑
i=1

(−1)N−idu1 ∧⋯∧ d̂ ui ∧⋯∧ duN ,

or, equivalently, of

±(√−1)(N−1)√N du1 ∧⋯∧ duN−1.
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Proof. In order to compute TOR(S1,h,o,∧v,∧u) we proceed as in the proof of Lemma 30.
In particular we chose a cell decomposition of S1 with a single (positively oriented) cell
in each dimension, and bases in homology represented by the geometric bases. With this
choice of u and v, by (19),

TOR(S1,h,o,v,u) = 1.
Next we compute ⟨∧v,∧u⟩. The basis u and v are constructed from dual basis in
H∗(S1;Z) tensorized by a basis of h. We choose a basis for the Cartan subalgebra,
e = {e1, . . . , eN−1}:

e1 = ( 1 0
⋱
−1

) , e2 = ( 0 1
⋱
−1

) , . . . , eN−1 = ( 0 ⋱ 1
−1

) .
Since the cells of S1 are positively oriented,

⟨∧v,∧u⟩ = det(B(ei, ej))i,j).
In addition, as B(ei, ei) = −2 and B(ei, ej) = −1 for i ≠ j, det(B(ei, ej))i,j) = (−1)N−1N .
Thus

(29) θH(∧v) = ±√(−1)N−1N
On the other hand, direct computation yields:

N

∑
i=1

(−1)N−idu1 ∧⋯ ∧ d̂ ui ∧⋯∧ duN(e1 ∧⋯∧ eN−1) = N .

By the natural identification ofH1(S1;h) with the Cartan algebra h we get the lemma. �

We conclude the proof of Proposition 33. By (27) and Lemma 35,

(30) ν ∧ (du1 +⋯ + duN) = (√−1)ǫ(N)√N∏
i>j

(eui − euj)du1 ∧⋯∧ duN .

Next we use Newton’s identities:

σ1 = eu1 +⋯+ euN

σ2 = −1

2
(e2u1 +⋯ + e2uN −Pol(σ1))

⋮

σj = (−1)j+1 1

j
(eju1 +⋯+ ejuN −Pol(σ1, . . . , σj−1))

were Pol(σ1, . . . , σj−1) denotes a polynomial expression on σ1, . . . , σj−1, whose precise value
is not relevant here. From them we deduce

dσ1 ∧⋯ ∧ dσN−1 = ± 1(N − 1)!d(∑ euj) ∧ d(∑ e2uj) ∧⋯∧ d(∑ e(N−1)uj)
Since

d(∑ eiuj) = i∑ eiujduj,

for i = 1, . . . ,m − 1, Vandermonde determinant yields

(31) (du1 +⋯ + duN) ∧ dσ1 ∧⋯∧ dσN−1 = ±∏
i>j

(eui − euj)du1 ∧⋯∧ duN .

Then combine (30) and (31) to prove the theorem, knowing that our tangent space is the
kernel of du1 +⋯ + duN . �
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5.2. The form ν for SU(N). An element in SU(N) is conjugate to a diagonal element

⎛⎜⎝
eiθ1

⋱

eiθN

⎞⎟⎠
with ∑ θi ∈ 2πZ. A matrix is regular if and only if eiθj ≠ eiθk for j ≠ k.

By identifying Rreg(S1,SU(N)) with the image of the generator (or its conjugacy class),
functions on θ1, . . . , θN invariant under permutations are well defined onRreg(S1,SU(N)).
Also the form dθ1 ∧⋯ ∧ dθN−1 is well defined up to sign by the relation ∑ θi ∈ 2πZ.
Proposition 36. On Rreg(S1,SU(N)) (for B(X,Y ) = − tr(X Y )),

ν = ±2N(N−1)/2
√
N∏

i<j

sin (θi − θj
2
)dθ1 ∧⋯∧ dθN−1.

Proof. From the proof of Proposition 33, if g ∈ SU(N) is the image of the generator of
π1(S1), ν = ∣∆G(g)∣ θH . By [9, Exercise 7.3.5],

∣∆G(g)∣ = 2N(N−1)/2∏
i<j

∣sin(θi − θj
2
)∣ .

On the other hand, by Lemma 35,

θH = ±
√
N dθ1 ∧⋯∧ dθN−1,

which proves the formula. �

Remark 37. We may consider also the restriction to SLN(R). Then the expression of
the volume form is just the restriction of Proposition 33. It may be either real valued or√
−1 times real, because B is not positive definite on slN(R). The restriction of B to soN

is positive definite, but its restriction to its orthogonal so⊥N ⊂ slN(R) is negative definite.
Notice that dim so⊥N = (N − 1)(N + 2)/2 ≡ ǫ(N) mod 2, that determines whether it is real

or
√
−1 times real.

5.3. Volume form for representation spaces of F2. In this subsection we compute
the volume form on the space of representations of a free group of rank 2, F2 = ⟨γ1, γ2⟩,
in SL2(C) and SL3(C). We use the notation ti1⋯ik for the trace functions of γi1⋯γik in
SL2(C), with the convention γī = γ−1i . For instance, the trace function of γ1γ−12 will be
denoted by t12̄.

We start with R(F2,SL2(C)). By Fricke-Klein theorem, see [4], the respective trace
functions of γ1, γ2 and γ1γ2 define an isomorphism

(32) (t1, t2, t12)∶X(F2,SL2(C))→ C
3 .

Since F2 is the fundamental group of a pair of pants S0,3, and γ1, γ2 and γ1γ2 correspond
to the peripheral elements, by Theorem 3 and Corollary 34:

Corollary 38. The volume form on R∗(F2,SL2(C)) is
ΩF2
= ±2
√
2d t1 ∧ d t2 ∧ d t12 .

We next discuss the space of representations of F2 = ⟨γ1, γ2⟩ in SL3(C).
The symmetric invariant functions σ1 and σ2 of a matrix in SL3(C) are, respectively, its

trace and the trace of its inverse. Recall that the trace functions in SL3(C) are denoted
by τi1⋯ik instead of ti1⋯ik . According to [14], X(F3,SL3(C)) is a branched covering of C8

with coordinates

T = (τ1,τ1̄,τ2,τ2̄,τ12,τ1̄2̄,τ12̄,τ1̄2)∶X(F2,SL3(C))→ C
8.
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The branching is given by the trace of the commutators τ121̄2̄ and τ212̄1̄ that are solutions
of a quadratic equation

z2 − Pz +Q = 0
for some polynomials P andQ on the variables τ1,τ1̄,τ2,τ2̄,τ12,τ1̄2̄,τ12̄,τ1̄2, the expression
of P and Q can be found in [14, 15]. Notice that P = τ121̄2̄ + τ212̄1̄ and Q = τ121̄2̄ τ212̄1̄.

Thus, as γ1, γ2 and γ1γ2 represent the peripheral elements of a pair of pants S0,3,
a generic subset of the relative variety of representations is locally parameterized by(τ12̄,τ1̄2); in the subset of points where there is no branching, i.e. τ121̄2̄ ≠ τ212̄1̄. Lawton
has computed in [15, Thm. 25] the Poisson bracket:

{τ12̄,τ1̄2} = τ212̄1̄ − τ121̄2̄.
As (τ12̄,τ1̄2) are local coordinates, an elementary computation yields

(33) ω = −
1{τ12̄,τ1̄2}dτ12̄ ∧ dτ1̄2.

Therefore

(34) ω =
dτ12̄ ∧ dτ1̄2

τ212̄1̄ − τ121̄2̄
.

On the other hand, by Proposition 33, the form ν1 corresponding to γ1 is

ν1 = ±
√
−3 dτ1 ∧ dτ1̄,

and similarly for γ2 and γ12. Using Theorem 3 and these computations we get:

Proposition 39. For

T = (τ1,τ1̄,τ2,τ2̄,τ12,τ1̄2̄,τ12̄,τ1̄2)∶R∗(F2,SL3(C)) ∖ {τ212̄1̄ = τ121̄2̄}→ C
8

the restriction of the holomorphic volume form on R∗(F2,SL3(C)) ∖ {τ212̄1̄ = τ121̄2̄} is

Ω
SL3(C)
F2

= ±T ∗Ω where

Ω = ±
3
√
−3

τ212̄1̄ − τ121̄2̄
dτ1 ∧ dτ1̄ ∧ dτ2 ∧ dτ2̄ ∧ dτ12 ∧ dτ1̄2̄ ∧ dτ12̄ ∧ dτ1̄2.

6. Symplectic forms

Let ρ0 ∈ R∗(S,SL2(C)) be a good, ∂-regular representation. In this section we discuss
the symplectic from on the relative character variety R∗(S,∂S,SL2(C))ρ0 for the two
surfaces S1,1 and S0,4, which are the surfaces with 2-dimensional relative character variety
R∗(S,∂S,SL2(C))ρ0 . We use Goldman’s product formula for the Poisson bracket for
surfaces [6], as well as Lawton’s generalization [15, Sec. 4] to the relative character variety.

For this purpose, let f ∶G→ C be an invariant function (i.e. a function on G invariant
under conjugation). Following Goldman [7], its variation function (relative to B) is
defined as the unique map F ∶G→ g such that for all X ∈ g, A ∈ G,

(35)
d

dt
f(A exp(tX))∣

t=0
= B(F (A),X) .

When G = SL2(C) and f = tr, the corresponding variation formula T∶SL2(C) → sl2(C)
must satisfy, by (35), tr(AX) = − tr (T(A)X), ∀X ∈ sl2(C) and ∀A ∈ SL2(C). Thus

T(A) = trA
2

Id−A = −
1

2
(A −A−1) for A ∈ SL2(C).

Notice that T(A) ∈ sl2(C) is invariant by the adjoint action of A, and T(A) ≠ 0 for
A ≠ ± Id.
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Proposition 40 ([7, 15]). Let α,β be oriented, simple closed curves meeting transver-
sally in double points p1, . . . , pk ∈ S. For [ρ] ∈ R∗(S,∂S,SL2(C))ρ0 and each pi, chose
representatives

ρi∶π1(S, pi)→ SL2(C)
of [ρ]. Let αi, βi be elements in π1(S, pi) representing α,β respectively. For the bilinear
form B(X,Y ) = − tr(X Y ), the Poisson bracket of the trace functions tα and tβ is

{tα, tβ}([ρ]) = k

∑
i=1

ǫ(pi, α, β)B(T(ρi(αi)),T(ρi(βi)))
= −

k

∑
i=1

ǫ(pi, α, β) tr (T(ρi(αi)) T(ρi(βi)))
where ǫ(pi, α, β) denotes the oriented intersection number of α and β at pi.

For later computations, it is useful to recall (cf. [8]) that for all A,B ∈ SL2(C)
(36) tr(A) tr(B) = tr(AB) + tr(AB−1) ,
and a direct calculation gives

(37) tr(T(A) T(B)) = 1

2
tr(AB −AB−1) .

6.1. A torus minus a disc. Let S1,1 denote a surface of genus 1 with a boundary com-
ponent. Its fundamental group is freely generated by two elements γ1 and γ2 that are
represented by curves that intersect at one point. The peripheral element is the commu-
tator [γ1, γ2] = γ1γ2γ

−1
1
γ−1
2
. The variety of characters X(S1,1,SL2(C)) is the variety of

characters of the free group on two generators, and it is isomorphic to C3 with coordinates
t1, t2, t12, by Fricke-Klein (32). Equality (36) implies that t1t2 = t12 + t12̄.

Generically, the relative character variety is the hypersurface of C3 that is a level set
of the trace of the commutator, t121̄2̄ = c for some c ∈ C, where

(38) t121̄2̄ = t21 + t
2

2 + t
2

12 − t1t2t12 − 2 .

Therefore, given a good representation ρ0 the variables (t1, t2) define local coordinates of
R∗(S1,1, ∂S1,1,SL2(C))ρ0 precisely when ∂

∂t12
t121̄2̄ ≠ 0, ie. when

(39) 2t12 − t1t2 = t12 − t12̄ ≠ 0,

where t12̄ = t1̄2 is the trace function of γ1γ−12 . Hence we obtain a local parametrization

T = (t1, t2)∶R∗(S1,1, ∂S1,1,SL2(C))ρ0 ∖ {t12 = t12̄}→ C
2.

We compute next the symplectic form.

Proposition 41. Let ρ0 ∈ R∗(S,SL2(C)) be a good, ∂-regular representation such that
t12(ρ0) ≠ t12̄(ρ0). Then the symplectic form on R∗(S1,1, ∂S1,1,SL2(C))ρ0 ∖ {t12 = t12̄} is
the pull-back T ∗ω, where

ω = ±2
d t1 ∧ d t2

t12 − t12̄
.

Proof. For [ρ] ∈ R∗(S1,1, ∂S1,1,SL2(C))ρ0 ∖ {t12 = t12̄} we put A = ρ(γ1) and B = ρ(γ2).
As γ1 and γ2 intersect in a single point, by Proposition 40 and (37) the Poisson bracket,
for B(X,Y ) = − tr(X Y ), between trace functions is

{t1, t2}([ρ]) = ± tr(T(A) T(B)) = ±1
2
(t12 − t12̄).

The proposition follows from Equation (33). �
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Remark 42. From Proposition 41 we can compute again the volume form on R∗(F2,SL2(C)),
already found in Corollary 38. Namely, by Theorem 3, Proposition 41, and Corollary 34,
since the commutator γ1γ2γ

−1
1
γ−1
2

is the peripheral element,

(40) ΩF2
= ΩS1,1

= ±2
√
2
d t1 ∧ d t2 ∧ d t121̄2̄

t12 − t12̄
.

Differentiating (38), we get

(41) d t121̄2̄ = (2t1 − t2t12)d t1 + (2t2 − t1t12)d t2 + (2t12 − t1t2)d t12 ,
thus, as t1t2 = t12 + t12̄, by replacing (41) in (40):

ΩF2
= ±2
√
2d t1 ∧ d t2 ∧ d t12.

6.2. A planar surface with four boundary components. Let S0,4 denote the planar
surface with four boundary components and let λ and µ be two simple closed curves so
that each one divides S0,4 in two pairs of pants and they intersect in precisely two points.
Chose also one of the intersections points as a base point for the fundamental group.

Orient the curves λ and µ and obtain two new oriented curves α and β, by changing
both crossings in a way compatible with the orientation, according to Figures 1 and 2.

µ

λ

α

β

Figure 1. Construction of α and β from an orientation of λ and µ

µ

λ

α

β

Figure 2. Construction of α and β from another orientation of λ and µ

Since the curves are oriented, we may talk about the elements they represent in π1(S0,4),
in particular the products λµ and αβ and their trace functions, tλµ and tαβ , that depend
on the orientations.

Lemma 43. Up to sign, the difference tλµ−tαβ is independent of the choice of orientations
of λ and µ. The sign depends on whether we change one (-) or both (+) orientations.
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Proposition 44. Let ρ0 ∈ R∗(S,SL2(C)) be a good, ∂-regular representation such that
tλµ(ρ0) ≠ tαβ(ρ0). Then:

(1) the map T = (tλ, tµ)∶R∗(S0,4, ∂S0,4,SL2(C))ρ0 ∖{tλµ = tαβ}→ C2 is a local parameter-
ization.

(2) the symplectic form on R∗(S0,4, ∂S0,4,SL2(C))ρ0 ∖ {tλµ = tαβ} is the pullback T ∗ω

where

ω = ±
d tλ ∧ d tµ

tλµ − tαβ
.

We fix the notation for both proofs. The fundamental group of S0,4 is freely generated
by three elements γ1, γ2, and γ3, and the peripheral curves are represented by γ1, γ2, γ3,
and γ1γ2γ3, see Figure 3. We shall assume that the orientations are so that λ = γ1γ2 and
µ = γ2γ3. With this choice of orientation, α = γ1γ2γ3 and β = γ2, so

tλµ − tαβ = t1223 − t1232.

γ1

γ2

γ3

(γ1γ2γ3)−1

Figure 3. The loops γ1, γ2, and γ3 that represent the generators of π1(S0,4).
Proof of Lemma 43. It suffices to change the orientation of a single curve, so we follow
the examples of Figures 1 and 2. If we change the orientation of µ then µ = γ−1

3
γ−1
2
, α = γ1,

and β = γ−1
3
. We aim to prove

(42) t1223 − t1232 = −(t123̄2̄ − t13̄)
(with negative sign, because we change the orientation of a single curve). From Equality
(36) we have:

(43)
t12t23 = t1223 + t123̄2̄
t12t32 = t1232 + t13̄,

Then equality (42) follows by subtracting in (43) and using t32 = t23. �

Proof of Proposition 44. (1) We shall use a computation in cohomology, first by cutting
the surface S0,4 along λ = γ1γ2 into two pairs of pants P1 and P2, with π1(P1) = ⟨γ1, γ2⟩
and π1(P2) = ⟨γ3, γ1γ2⟩. Notice that for [ρ] ∈ R∗(S0,4, ∂S0,4,SL2(C))ρ0 ∖ {tλµ = tαβ} we
have that ρ∣π1(Pi) is nonabelian. Suppose that, contrary to our claim, ρ∣π1(P1) is abelian
that is ρ(γ1) and ρ(γ2) commute. Then

tλµ([ρ]) = t1223([ρ]) = t2123([ρ]) = t1232([ρ]) = tαβ([ρ]) ,
contradicting the hypothesis. This argument also shows that ρ∣π1(P2) is nonabelian.

As ρ∣π1(Pi) is nonabelian, H
0(π1(Pi);Adρ) = 0. Hence, we obtain the following Mayer-

Vietoris exact sequence:

0→H0(λ;Ad ρ) β
→ H1(S;Adρ)→H1(P1;Adρ)⊕H1(P2;Ad ρ)→ H1(λ;Adρ)→ 0 .
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Using the local parameterization of a pair of paints, this sequence yields that the tangent
space to R∗(S,SL2(C)) at ρ is generated by the infinitesimal deformations ∂t1 , ∂t2 , ∂t3 ,
∂t123 , ∂t12 and β(a), where 0 ≠ a ∈H0(λ;Adρ) ≅ sl2(C)Adρ(γ). Hence, the tangent space to
R∗(S,∂S,SL2(C))ρ0 at ρ is generated by ∂t12 = ∂tλ and β(a). Notice that d tλ(β(a)) = 0
since β(a) is an infinitesimal bending along λ. In order to prove that (tµ, tλ) are local
parameters at ρ we must show that d tµ(β(a)) ≠ 0.

Next we compute d tµ(β(a)). By setting Ai = ρ(γi), we obtain ρ(λ) = A1A2 and we can
chose a = 1

2
(A1A2 −A

−1
2
A−1

1
). As λ is a separating curve, the infinitesimal bending is the

derivative respect to ε of the path of representations:

γ1 ↦ A1

γ2 ↦ A2

γ3 ↦ (1 + εa + o(ε))A3(1 − εa + o(ε)),
see [12, Lemma 5.1] for details. Since µ = γ2γ3 is mapped to A2A3 + ε(A2aA3 −A2A3a) +
o(ε), we have

d tµ(β(a)) = tr(A2aA3 −A2A3a) = 1
2
(t2123 − t1̄3 − t2312 + t232̄1̄).

By Lemma 43 and its proof, and using that the trace is invariant by cyclic permutations
and by taking the inverse:

tαβ − tλµ = t1232 − t1223 = t2123 − t2312
= t123̄2̄ − t13̄ = t232̄1̄ − t1̄3.

Thus d tµ(β(a)) = tαβ − tλµ ≠ 0. This proves Assertion (1) of the proposition.

µ

λ

p1

p2

Figure 4. The intersection points p1, p2 and the arc between them.

We next prove Assertion (2). Let [ρ] ∈ R∗(S0,4, ∂S0,4,SL2(C))ρ0 ∖ {tλµ = tαβ}, and set
again Ai = ρ(γi). We apply Proposition 40 to compute the Poisson bracket {tλ, tµ}([ρ]).

The curves λ and µ intersect in two points, p1 and p2, in Figure 4. Let p1 be the base
point of the fundamental group used in Figure 3. The contribution of p1 is

ǫ tr(T(A1A2)T(A2A3)) = ǫ

2
(t1223([ρ]) − t123̄2̄([ρ]))

for some ǫ = ±1. To compute the contribution of p2 we consider an arc from p1 to p2 to
relate the base points between fundamental groups. Assume that this arc is half of λ,
as in Figure 4, then ρ2(λ) = ρ(λ) = A1A2 and ρ2(µ) = ρ(γ1γ2γ3γ−11 ) = A1A2A3A

−1
1
. In

addition, the orientation of the intersection is opposite to the previous one, hence the
contribution of p2 is

−ǫ tr(T(A1A2)T(A1A2A3A
−1
1 )) = − ǫ2(t2123([ρ]) − t13̄([ρ]))
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Hence, for B(X,Y ) = − tr(XY ) we obtain from Proposition 40

{tλ, tµ} = − ǫ
2
(t1223 − t123̄2̄ − t2123 + t13̄) ,

and by equation (42) we have

tλµ − tαβ = t1223 − t2123 = −t123̄2̄ + t13̄ .

Finally, the formula for the symplectic form on the coordinates (tλ, tµ) follows again
from equation (33). �

7. Volume forms for free groups of higher rank

7.1. Volume form on R∗(Fk,SL2(C)). We recall the notation ti1⋯ik for the trace func-
tion trγ of γ = γi1⋯γik , with the convention γī = γ−1i .

We start discussing the volume form for the free group of rank three. Following [8],
the variety of characters X(F3,SL2(C)) is a branched covering of C6. More precisely, the
branched covering is given by trace functions:

(44) T = (t1, t2, t3, t12, t13, t23)∶X(F3,SL2(C))→ C
6 .

The branching is given by the variables t123 and t213, as they are the solutions of the
quadratic equation

z2 −Rz + S = 0
for

R = t1t23 + t2t13 + t3t12 − t1t2t3(45)

S = t21 + t
2

2 + t
2

3 + t
2

12 + t
2

13 + t
2

23 + t12t13t23 − t1t2t12 − t1t3t13 − t2t3t23 − 4.(46)

Recall that the trace is invariant by cyclic permutation of the group elements:

t123 = t231 = t312.

The branching locus is defined by t123 = t213. Away from it, the variables (44) define local
coordinates.

Proposition 45. For

T = (t1, t2, t3, t12, t13, t23)∶R∗(F3,SL2(C))→ C
6

the restriction of the volume form to the open subset R∗(F3,SL2(C))∖{t123 = t213} is the
pull-back form Ω

SL2(C)
F3

= ±T ∗Ω, where

(47) Ω = ±
4

t123 − t213
d t1 ∧ d t2 ∧ d t3 ∧ d t12 ∧ d t13 ∧ d t23 .

Proof. Consider the surface S = S0,4. Since γ1, γ2, γ3, and γ1γ2γ3 are the peripheral
elements, using Proposition 44 and Corollary 34,

(48) ΩSL2

F3
= ΩSL2

S0,4
= ±4

d t12 ∧ d t23

t1223 − t1232
∧ d t1 ∧ d t2 ∧ d t3 ∧ d t123.

It remains to replace d t123 by d t13 in this formula. Differentiating the equality

t2123 −Rt123 + S = 0,

where R and S are given in (45) and (46), we deduce:

(49) (2t123 −R)d t123 = ∑
η∈{1,2,3,12,13,23}

(∂R
∂tη

t123 −
∂S

∂tη
)d tη .

26



Since R = t123 + t213,

(50) 2t123 −R = t123 − t213

In addition, using t1t3 = t13 + t13̄,

(51)
∂R

∂t13
t123 −

∂S

∂t13
= t2t123 − (2t13 + t12t23 − t1t3) = t2t123 − t12t23 − t13 + t13̄

Using the standard relations on traces, we have:

t13 = t122̄3 = t3122̄ = t312t2̄ − t3122 = t123t2 − t1223(52)

t13̄ = t122̄3̄ = t12t32 − t1232 = t12t23 − t1232(53)

From those equations:

(54)
∂R

∂t13
t123 −

∂S

∂t13
= t1223 − t1232 .

Hence, using (50) and (54), equality (49) becomes:

(55) (t123 − t213)d t123 = (t1223 − t1232)d t13 + ∑
η∈{1,2,3,12,23}

pη d tη

for some polynomials pη. Using (55) to replace d t123 by d t13 in (48), we prove (47). �

Proof of Theorem 5. Write Fk = ⟨γ1, γ2, . . . , γk⟩ and consider the graph G with one vertex
and k edges, so that π1(G) ≅ Fk. Consider subgraphs G′ and G′′, so that π1(G′) =⟨γ1, γ2, . . . , γk−1⟩ and π1(G′′) = ⟨γ1, γ2, γk⟩; therefore G = G′ ∪G′′ and π1(G′ ∩G′′) = ⟨γ1, γ2⟩.
Since we assume t121̄2̄ ≠ 2, ρ(π1(G′∩G′′)) is irreducible, therefore, the long exact sequence
of Mayer-Vietoris applied to (G′,G′′) is:
(56) 0→H1(G,Ad ρ)→H1(G′,Adρ)⊕H1(G′′,Adρ)→ H1(G′ ∩ G′′,Adρ)→ 0.

Interpreting cohomology groups as tangent spaces to spaces of representations, the asser-
tion on the local parameterization is straightforward from the sequence. By an induction
argument, the formula for the volume form is a consequence of the product of torsions,
Corollary 38 and Proposition 45. �

7.2. Volume form on R∗(Fk,SL3(C)). Before proving Proposition 6 and Theorem 7,
we need two lemmas on regular elements in SL3(C). Recall that an element of SL3(C) is
regular if its minimal polynomial and its characteristic polynomial have the same degree.
This is the case if and only if each eigenspace is one-dimensional.

Lemma 46. Let A,B ∈ SL3(C). If tr(ABA−1B−1) ≠ tr(BAB−1A−1) then:
(i) both A and B are regular and
(ii) the subgroup ⟨A,B⟩ ⊂ SL3(C) is irreducible.
Proof. (i) Assume that A is not regular. Then it has an eigenvalue λ ∈ C∗ with an
eigenspace Eλ = ker(A − λ Id) of dimension dimEλ ≥ 2. Therefore dim(Eλ ∩B(Eλ)) ≥ 1.
Chose a nonzero vector v ∈ Eλ∩B(Eλ), by construction B−1(v) ∈ Eλ and (ABA−1B−1)(v) =
v. This yields that 1 is an eigenvalue of the commutator ABA−1B−1, therefore it has the
same eigenvalues as its inverse, which implies that tr(ABA−1B−1) = tr(BAB−1A−1).

(ii) By contradiction, assume that L ⊂ C3 is a proper subspace invariant by both A

and B. If dimL = 1, then this is and eigenspace of ABA−1B−1 with eigenvalue 1, and
if dimL = 2, by looking at the action on C3/L we also deduce that 1 is an eigenvalue
of ABA−1B−1. Therefore, by the discussion on the previous item, this contradicts the
hypothesis tr(ABA−1B−1) ≠ tr(BAB−1A−1). �
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Lemma 47. Let A ∈ SL3(C). If A is regular then the AdA-invariant subspace of sl3(C)
is

sl3(C)AdA = ⟨A − tr(A)
3

Id,A−1 − tr(A−1)
3

Id⟩.
Proof. It is clear from construction that both A −

tr(A)
3

Id and A−1 −
tr(A−1)

3
Id are AdA-

invariant. All we need to show is that those elements are linearly independent, as by

regularity dim sl3(C)AdA = 2. If A − tr(A)
3

Id and A−1 −
tr(A−1)

3
Id were linearly dependent,

then A, Id, and A−1 would satisfy a nontrivial linear relation. Multiplying it by A, the
same relation would be satisfied by A2, A and Id, and hence A would have an eigenspace
of dimension at least 2, contradicting regularity. �

Remark 48. It follows from Schur’s Lemma [3] that every irreducible representation
ρ∶Γ→ SLN(C) is good, that is the centralizer of ρ(Γ) coincides with the center of SLN(C).
Proof of Proposition 6. Assume k = 3, the general case follows from an induction argu-
ment as in the proof of Theorem 5.

We chose generators F3 = ⟨γ1, γ2, γ3∣−⟩ and we identify F3 with π1(S0,4). We represent
S0,4 as the union of two pairs of pants P ′ and P ′′, so that P ′ ∩ P ′′ is a circle. Chose the
generators of the fundamental group so that π1(P ′) = ⟨γ1, γ2⟩, π1(P ′′) = ⟨γ1, γ3⟩, and γ1
is the generator of π1(P ′ ∩P ′′). Then the peripheral elements of P ′ are γ1, γ2, and γ1γ2,
and those of P ′′, γ1, γ3, and γ1γ3. The peripheral elements of S are γ2, γ3, γ1γ2, and
γ1γ3.

Let [ρ] ∈ R∗(F3,SL3(C))∖{τ121̄2̄ = τ212̄1̄}∪{τ131̄3̄ = τ313̄1̄}∪{∆1
23
= 0} be a representation

where

(57) ∆1

23 = (τ123 − τ132)(τ1̄2̄3̄ − τ1̄3̄2̄) − (τ12̄3̄ − τ13̄2̄)(τ1̄23 − τ1̄32).
We have to show that the 16 functions

(τ1,τ1̄,τ2,τ2̄,τ3,τ3̄,τ12,τ1̄2̄,τ13,τ1̄3̄,τ23,τ2̄3̄,τ12̄,τ1̄2,τ13̄,τ1̄3)
define a local parameterization at [ρ]. The hypothesis tr(ρ([γ1, γi])]) ≠ tr(ρ([γi, γ1]))
for i = 2,3 implies that ρ(γj), j = 1,2,3, are regular elements (Lemma 46). It follows
also that ρ(γ1γ2) and ρ(γ1γ3) are regular since tr(ρ([γ1γi, γ1])) = tr(ρ([γi, γ1])) and
tr(ρ([γ1, γ1γi])) = tr(ρ([γ1, γi])) for i = 2,3. The Mayer-Vietoris long exact sequence is:

(58) 0→ H0(γ1,Adρ) β
Ð→H1(S,Ad ρ) j

Ð→H1(P ′,Adρ)⊕H1(P ′′,Ad ρ)
∆
Ð→ H1(γ1,Adρ)→ 0 .

Chose u a basis for H0(γ1,Adρ). We will proceed as in the proof of Proposition 44.
Viewing the cohomology groups as tangent spaces, the proposition will follow from the
local parameterizations for the representation space of P ′ and P ′′, and from (58), provided
we show that

dτ23 ∧ dτ2̄3̄(∧β(u)) ≠ 0.
We prove below in Lemma 49 that dτ23 ∧ dτ2̄3̄(∧β(u)) = ±∆1

23
, which is nonzero by

hypothesis. �

Lemma 49. dτ23 ∧ dτ2̄3̄(β(∧u)) = ±∆1
23
, where ∆1

23
is as in (57).

Proof. Set A1 = ρ(γ1). By Lemma 47, the elements

x = A1 −
trA1

3
Id and y = A−11 −

trA−1
1

3
Id
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form a basis of the invariant subspace sl3(C)Ad ρ(γ1). We choose u = {x, y} via the iso-
morphism H0(γ1,Adρ) ≅ sl3(C)AdA1 .

Then β(x) is the tangent vector to the infinitesimal bending:

γ1 ↦ A, γ2 ↦ B, γ3 ↦ (Id+εx)C(Id−εx) = C + ε(xC −Cx) in C[ε]/ε2
and similarly for β(y). To compute dτ23 and dτ2̄3̄ on β(x) and β(y), we must evaluate
the infinitesimal deformations on γ2γ3 and γ̄2γ̄3. Thus the path corresponding to β(x)
evaluated at γ2γ3 is

(59) γ2γ3 ↦ BC + ε(BxC −BCx) = BC + ε(BAC −BCA).
Therefore, taking traces we get:

(60) dτ23(β(x)) = τ213 − τ231 = τ132 − τ123.
The same argument for y instead of x gives:

(61) dτ23(β(y)) = τ21̄3 − τ231̄ = τ1̄32 − τ1̄23.
To evaluate dτ2̄3̄ = dτ3̄2̄, we take inverses in (59)

(62) (γ2γ3)−1 ↦ C−1B−1 + ε(xC−1B−1 −C−1xB−1) = C−1B−1 + ε(AC−1B−1 −C−1AB−1)
and taking traces we get:

(63) dτ2̄3̄(β(x)) = τ13̄2̄ − τ3̄12̄ = τ13̄2̄ − τ12̄3̄.
Again the same argument for y instead of x gives:

(64) dτ2̄3̄(β(y)) = τ1̄3̄2̄ − τ3̄1̄2̄ = τ1̄3̄2̄ − τ1̄2̄3̄.
Hence

dτ23 ∧ dτ2̄3̄(β(x) ∧ β(y)) = ±(τ123 − τ132)(τ1̄2̄3̄ − τ1̄3̄2̄) − (τ12̄3̄ − τ13̄2̄)(τ1̄23 − τ1̄32)
= ±∆1

23 ,

which concludes the proof of the lemma. �

Proof of Theorem 7. We assume again that k = 3. The general case follows with the same
argument as in Theorem 5.

As in the proof of Proposition 6 we decompose S = S0,4 = P ′ ∪ P ′′, γ1 = P ′ ∩ P ′′. Also,
we choose generators of π1(P ′), π1(P ′′), and π1(P ′∩P ′′) as in the proof of Proposition 6.
The peripheral elements of S are γ2, γ3, γ1γ2, and γ1γ3.

For a representation ρ∶π1(S) → SL3(C) we let ρ′∶π1(P ′) → SL3(C) and ρ′′∶π1(P ′′) →
SL3(C) denote the restriction of ρ to π1(P ′) and π1(P ′′) respectively.

Let [ρ] ∈ R(S,SL3(C)) ∖ {τ121̄2̄ = τ212̄1̄} ∪ {τ131̄3̄ = τ313̄1̄} ∪ {∆1
23
= 0}. It follows

from Lemma 46 and Remark 48 that ρ′ and ρ′′ are good, ∂-regular representations.
In what follows we let ω12 and ω13 denote the pullback of the symplectic form ωP ′ on
R∗(P ′, ∂P ′,SL3(C))ρ′ and ωP ′′ on R∗(P ′′, ∂P ′′,SL3(C))ρ′′ respectively.

Given a basis v for H1(γ1,Ad ρ) we can choose lifts v′ ⊂ H1(P ′,Adρ), and v′′ ⊂
H1(P ′′,Adρ) which map to v. By exactness there exists ṽ ⊂H1(S,Ad ρ) which maps to(v′,−v′′).
Lemma 50. Let u a basis for H0(γ1,Adρ) and v a basis for H1(γ1,Adρ). Then

(65) ΩS = ±
⟨∧u,∧v⟩(ν1 ∧ ν23)(∧v ∧ β(u))ω12 ∧ ω13 ∧ ν2 ∧ ν3 ∧ ν12 ∧ ν13 ∧ ν1 ∧ ν23.
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Proof of the lemma. Chose a′ a basis of ker(H1(P ′,Ad ρ) → H1(P ′ ∩ P ′′,Adρ)) and a′′

a basis of ker(H1(P ′′,Adρ) → H1(P ′ ∩ P ′′,Adρ)). Moreover, we can chose lifts (̃a′),(̃a′′) ⊂ H1(S,Ad ρ) which map under j∶H1(S,Ad ρ) → H1(P ′,Adρ) ⊕H1(P ′′,Adρ) to(a′,0) and (0,a′′) respectively.
Then, by using (58), a′⊔v′ is a basis forH1(P ′,Adρ), a′′⊔v′′ is a basis forH1(P ′′,Adρ)

and (̃a′) ⊔ (̃a′′) ⊔ β(u) ⊔ ṽ is a basis for H1(S,Ad ρ).
The product formula applied to (58) yields:

ΩS(∧(̃a′) ∧ (̃a′′) ∧ β(u) ∧ ṽ) = ±ΩP ′(∧a′ ∧ v′)ΩP ′′(∧a′′ ∧ v′′)
tor(P ′ ∩ P ′′,Adρ,u,v)

= ±(ω12 ∧ ν2 ∧ ν12)(∧a′)(ω13 ∧ ν3 ∧ ν13)(∧a′′) ν1(∧v)2
tor(P ′ ∩ P ′′,Adρ,u,v) .

The last equality follows since d τ2, d τ2̄, d τ12, d τ1̄2̄, d τ12̄, d τ1̄2 vanish on each cocycle
v′i of v′ = (v′

1
, v′

2
), and d τ3, d τ3̄, d τ13, d τ1̄3̄, d τ13̄, d τ1̄3 vanish on each cocycle v′′i of

v′′ = (v′′
1
, v′′

2
).

By Definition 31, ν1(v)2/tor(P ′ ∩ P ′′,Adρ,u,v) = ±⟨∧u,∧v⟩, hence
ΩS(∧(̃a′) ∧ (̃a′′) ∧ β(u) ∧ ṽ) = ±(ω12 ∧ ν2 ∧ ν12)(∧a′)(ω13 ∧ ν3 ∧ ν13)(∧a′′)⟨∧u,∧v⟩

= ±(ω12 ∧ ν2 ∧ ν12)(∧a′)(ω13 ∧ ν3 ∧ ν13)(∧a′′)⟨∧u,∧v⟩(ν1 ∧ ν23)(∧v ∧ β(u))(ν1 ∧ ν23)(∧v ∧ β(u))
= ±

⟨∧u,∧v⟩(ν1 ∧ ν23)(∧v ∧ β(u))ω12 ∧ω13 ∧ν2 ∧ν3 ∧ν12 ∧ν13 ∧ν1 ∧ν23(∧ (̃a′)∧ (̃a′′)∧β(u)∧ ṽ) .
The last equality follows since since β(u) is an infinitesimal bendings that vanish on ν1,

and β(u) is in the kernel of j (see (58)). Moreover, the bases (̃a′) and (̃a′′) map to (a′,0)
and (0,a′′) respectively. �

To conclude the proof of Theorem 7 we need to compute the quotient

⟨∧u,∧v⟩(ν1 ∧ ν23)(∧v ∧ β(u))
As β(u) consist of infinitesimal bendings that vanish on dτ1 and dτ1̄,

(ν1 ∧ ν23)(∧v ∧ β(u)) = ν1(∧v)ν23(∧β(u)).
Write

A = ρ(γ1), B = ρ(γ2), and C = ρ(γ3),
and

x = A −
tr(A)
3

Id and y = A−1 −
tr(A−1)

3
Id .

Hence x, y ∈ sl3(C) generate the A-invariant subspace by Lemma 47. By the natural
identification H0(γ1,Ad ρ) ≅ sl3(C)AdA, we chose u = {x, y}.

To finish the proof of Theorem 7, we assume semi-simplicity, so that H1(γ1,Adρ) ≅
H1(γ1,R) ⊗R sl3(C)AdA and we may chose v to be {x, y} times the fundamental class.
Therefore

(66) ⟨∧u,∧v⟩ = det(tr(x2) tr(xy)
tr(xy) tr(y2)) .
30



Next we compute ν(∧v). Write v = {vx, vy}, where vx and vy are the infinitesimal
deformations corresponding to x and y respectively. Namely, the tangent vector to the
infinitesimal paths

(67) γ1 ↦ (Id+εx)A = A + εxA and γ1 ↦ (Id+εy)A = A + εyA in C[ε]/ε2.
These infinitesimal deformations evaluated at γ−1

1
are, respectively,

(68)
γ−11 ↦ A−1(Id−εx) = A−1−εA−1 x and γ−11 ↦ A−1(Id−εy) = A−1−εA−1 y in C[ε]/ε2.
Thus, dτ1(vx) = tr(xA), and as tr(x) = 0, tr(xA) = tr(xA − τ1

3
x) = tr(xx). By the very

same argument, tr(y A) = tr(A−1x) = tr(xy) and tr(A−1 y) = tr(y2), and (67) and (68)
yield

(69)
dτ1(vx) = tr(x2) , dτ1(vy) = tr(xy) ,
dτ1̄(vx) = − tr(xy) , dτ1̄(vy) = − tr(y2).

From (66) and (69) we have

(70) dτ1 ∧ dτ1̄(∧v) = ±⟨∧u,∧v⟩.
In addition, by Lemma 49

(71) ν23(β(u)) =√−3 dτ23 ∧ dτ2̄3̄(β(u)) = ±√−3∆23.

Hence, as ν1 =
√
−3dτ1 ∧ dτ1̄, by (70) and (71):

⟨∧u,∧v⟩
(ν1 ∧ ν23)(∧v ∧ β(u)) =

⟨∧u,∧v⟩
ν1(∧v)ν23(∧β(u)) = ±

1

3∆1
23

.

Now the volume formula follows from Lemma 50, the last equation, and the expression
of the symplectic forms ω12 and ω13 in (34). �
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