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with equal to gcd of and . In number theory, this problem occurs in many situations like in the theory of corrector codes [1] or for the factorization of integers [2]. Moreover, it is the elementary component of the classical algorithm of Smith invariants computation of a matrix with integer coefficients, which allows the general resolution of the linear diophantine equations [3]. See also [4] for a recent application of the Euclid algorithm.

Notation

Let and be two integers, we denote the remainder of the Euclidean division of by , which belongs to by convention.

2 Extended GCD with and coprime integers.

The purpose of this section is to propose an algorithm to solve the extended gcd problem in the case of coprime integers. Let us take .

The normalizer

For any integer , we consider the following equation in and :

It is well-known that solutions exist if and only if , and that given a particular solution , the set of all solutions is equal to .

Definition 1. Assume . Then there exists a unique solution of verifying , which will be called the normal solution.

will be called the normalizer of .

Remark. Knowing , we can deduce , and therefore all the solutions of . Furthermore, if , , and if and , .

From the structure of solutions of , we get the following proposition:

Proposition 1. For any solution of , .

Definition 2. Under the same assumptions as definition 1, we can define the co-normalizer of to be the unique such that solves for some .

Arithmetic properties of the normalizer

Let .

Proposition 2. The normalizer is additive:

It is easily proved by summing the equations and . Corollary 1. The normalizer is multiplicative:

In particular:

From the previous propositions, we deduce that the normalizer is -linear in modulo , but for our algorithm we will only need the following corollary:

Corollary 2. We have:

Under certain assumptions, the normalizer may also be stable by division: Proposition 3. If is odd and is even, then and:

Proof. Assume odd, even, . The fact that will follow from the fact that we will write it as a linear combination of and .  If is even, is even as well, and so is . Therefore verify , which clearly implies .

 If is odd: o Either is odd, which means that is odd, so must be odd. o Or is even, in which case is even and so must be even too. In both cases, still verify , and , from which we deduce that .

Remark. Similar properties for the co-normalizer can be also shown.

We deduce from the above proposition the following algorithm, which will be part of the 

Presentation of the algorithm

Solving the problem of extended gcd with and being coprime integers is equivalent to determining . The algorithm WWL1 proceeds in two steps: an initialization with the two values of given by the previous proposition, and then a descent loop using corollary 2 of proposition 2 to determine .

Once has been determined, the complete solution is obtained by calculating: 

Validity of the algorithm

It can be noted that throughout the loop, we keep equal to the normalizer of . Furthermore, at each step of the loop, decreases, with and remaining positive. This proves the termination of the algorithm (the sequence of has to be finite). We deduce that at the end of the loop or . However, because , we deduce that remains constant equal to its initial value by hypothesis. Hence at the end of the loop, if was equal to , this would necessarily mean than , which is impossible: otherwise at the previous step we would already have one of the , which would mean that we should already have exited the loop.

If then , Else

, End If  we modify and so that they verify .

 we divide as many times as possible by .

If then

End If  we reassign and so as to have .

End While

 the loop is left when Return  the solution is returned

Proof. The same arguments as in the proof of WWL1 hold: decreases strictly along the loop, which ensures that it terminates, always remains the normal solution of along the loop, and stays equal to , so that when necessarily . Remark 1. Here the exit condition is somehow simpler but it actually means one more step than WWL1 when , which could be optimized away in the coprime case. Remark 2. The algorithm can be adapted to return the co-normalizer instead of the normalizer. This is left to the reader.

Conclusion

We have reduced linear Diophantine equations solutions to a single and unique integer, its normalizer. We have used this terminology to develop a solution of the extended gcd problem, which has the advantage of controlling the size of the final result as well as that of the intermediary steps, while remaining very simple to implement. Our benchmark with other algorithms (see appendix) suggested a similar complexity, but an average computational gain of 15% which makes it advantageous to use. Optimizing the algorithm was not our main concern for this article, however we discuss some further possible improvements at the end of the appendix.

• [1] R. P. Brent, H. T. Kung, Systolic VLSI arrays for polynomial GCD computations. IEEE Trans. Comput. C-33, 731-736 (1984) 
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General case

It is impractical to impose for and to be coprimes, therefore we will adapt the previous algorithm to the general case where and are any numbers. Experimental tests also highlighted that it is more advantageous to calculate at the same time as the normalizer during the finite descent. Hence our algorithm will return, when it is possible, the unique triplet satisfying both conditions and . If and are both even, a first step is to factor them both by the greatest power of possible (which boils down to a cheap bit shift), so that one of them necessarily becomes odd. From now on, let us assume by symmetry that is odd.

Algorithm 3: Function Div2(u,v,c): Given integers verifying the conditions , and , returns a triplet verifying the same conditions, obtained by dividing as many times as possible by .

While do If then

Else

End If End While Return

Proof. This is an extension of the algorithm Div1, exploiting directly the result of the second corollary of proposition 2.

. 

Appendix: gcd algorithms

We present here two popular gcd algorithms (not in their extended version for the sake of simplicity), namely the Euclidean algorithm [5] and its binary version [6]. We note that the steps followed by our WWL2 algorithm are exactly the same as a combination of those two, and as stated in the conclusion of our article outperforms on average those two.

Algorithm 5: (classical Euclid algorithm) EulerGCD: Given two integers, returns their gcd.

While do

End While Return

This algorithm is the most self-contained, however it performs quite badly due to the high numerical cost of the Euclidean divisions. The next one takes advantage of the inexpensivity of divisions by 2 (bit shifts):

Algorithm 6: (binary Euclid algorithm) BinaryGCD: Given two integers, returns their gcd.

While do

End While  Factorization of a power of

While do

While do

End While

End While Return

As stated before, the following mixed Euclid algorithm is a mixture of the two previous ones, which only keeps a single Euclidean division: On average, the cost of this single division is compensated by a significant decrease in the number of remaining binary algorithm steps. For large integers, it could be interesting to check whether performing more than one Euclidean division yields yet a more significant gain. Another idea would be to trigger an Euclidean division when the binary algorithm is likely to perform many substractions in a row (typically if is large and odd, and is small and even).