
Calculation of extended gcd by
parametrization. Modular geometric

sequence solving equation au + bnv = 1.

WOLF Marc, WOLF François, LE COZ Corentin.

marc.wolf@tsoftemail.com
http://mathscience.tsoftemail.com

April 18, 2018

Abstract

Firstly, we propose an algorithm for calculating the extended gcd by
providing a solution that minimizes one of the two coordinates. The algo-
rithm relies on elementary arithmetic properties to parameterize the solu-
tions.

Secondly, we propose a modular geometric sequence to solve the linear
diophantine equation au + bnv = 1 with a and b coprime integers and n a
not null natural number.

Contents

1 Introduction 2
1.1 The problem of extended gcd . 2
1.2 Notation . 2

2 Extended GCD with a and b are coprime integers. 2
2.1 Parameter vc . 2
2.2 Arithmetic properties of the parameter 3
2.3 Presentation of the algorithm . 4
2.4 Validity of the algorithm . 5

3 General case 6

4 Solution of the equation au + bnv = 1 8
4.1 Parameter tc . 8
4.2 Modular geometric sequence . 8

5 Conclusion 9

1

6 References 9

7 Appendix : Euclid algorithms 10

1 Introduction

1.1 The problem of extended gcd

Let a and b be two integers, the extended gcd’s problem consists in finding
three integers u, v and g such that :

ua+ vb = g

with g equal to gcd of a and b.
In number theory, this problem occurs in many situations like in the theory

of corrector codes [BK84] or for the factorization of integers [B86]. Moreover,
it is the elementary component of the classical algorithm of Smith invariants
computation of a matrix with integer coefficients, which allows the general
resolution of the linear diophantine equations [Ser]. See also [DSL15] for a
recent application of the Euclid algorithm.

1.2 Notation

Let x and y be two integers, we denote ”x mod y” the remainder of the Eu-
clidean division of x by y, which belongs to ~0, y − 1� by convention.

2 Extended GCD with a and b are coprime integers.

We assume therefore that a and b are coprime integers. Because we can reverse
a and b, we will assume that a is an odd integer. If they are both odd, we will
assume a < b for reducing number of arithmetic operation.

2.1 Parameter vc
To each integer c, we associate the following equation in u and v :

ua+ vb = c (Ec)

As a reminder, the set of solutions of (Ec) is equal to {(u0 +kb,v0−ka), k ∈Z},
with (u0,v0) corresponding to a particular solution.

Definition 1. we name normal solution of (Ec) the unique solution (uc,vc) with
the condition vc ∈ ~0, a− 1�. We call vc the parameter of (Ec).

Remark. By setting uc = (c − vcb)/a, (uc,vc) is the normal solution of (Ec).

From the structure of solutions of (Ec), we get the following proposition:

Proposition 1. For any solution (u,v) of (Ec), v ≡ vc (mod a).

2

2.2 Arithmetic properties of the parameter

Proposition 2. In immediately way, the parameter is additive :

∀c,c′ ∈Z,vc+c′ ≡ vc + vc′ (mod a)

Corollary 1. the parameter is multiplicative :

∀c ∈Z, tc ≡ t1 ∗ c (mod a)

Corollary 2. If c is even,

vc/2 =
vc
2
, if vc is even

=
vc + a

2
, otherwise.

We deduce the following algorithm which will be used as an elementary
component of the final algorithm: with (c,v), and v as parameter of (Ec), it
returns the pair of integers obtained by dividing as many times as possible c
by 2.

Algorithm 1 Function Div1(c,v)
while c is even do

c← c/2
if v is even then

v← v/2
else

v← (v + a)/2
end if

end while . we divide as many times as possible c by 2.
return (c,v)

The parameter is obviously linear in c, but we only need the following
proposition :

Proposition 3.
∀c,c′ ∈Z,vc−c′ ≡ vc − vc′ (mod a)

Proposition 4. We determine two particular values of the parameter :

• for c = b mod a, vc = 1

• for c = −b mod a, vc = a− 1

Proof. Case 1 : c = b mod a
Let q be the quotient of the Euclidean division of b by a. We obtain the follow-
ing equality :

−qa+ b = c

3

ie (−q,1) is solution of (Ec). Then vc = 1
Case 2 : c = −b mod a

Let us proceed in a similar way. Let q′ be the quotient of the Euclidean division
of −b by a. One gets the following equality :

−q′a− b = c

ie (−q′ ,−1) is solution of (Ec). Then vc = a− 1.

We will initialize the algorithm with these two values. A sole Euclidean
division is performed before applying the binary algorithm.

2.3 Presentation of the algorithm

Solving the problem of extended gcd with a and b being coprime integers leads
to determine v1. The algorithm WWL1 proceeds by step: starting from the
two values of vc given by the precedent proposition, it uses the corollary 2 of
proposition 2 to determine v1.

Once v1 has been determined, the complete solution is obtained by calcu-
lating:

u1 =
1− v1b

a
.

Then (u1,v1) is a solution of (E1). However, since the Euclidean division of
b by a is done at the beginning of the algorithm, computational time is saved
with a < b by performing: u1 = −v1q+ (1−v1r)/a, denoting q and r respectively
the quotient and the remainder of the Euclidean division of b by a.

4

Algorithm 2 WWL1 Let a and b be two integers, with a and b coprimes and
a an odd integer, returns a pair of integers (u,v) such that ua + vb = 1 and
v ∈ ~0, a− 1�
First step : initialization.

c1← b − bb
a
ca, c2← a− c1

v1← 1, v2← a− 1 . initialization of the two values of parameter vc.

(c1,v1)←Div1(c1,v1) . we divide as many times as possible c1 by 2.
(c2,v2)←Div1(c2,v2) . we divide as many times as possible c2 by 2.

if c2 < c1 then
(c1, c2)← (c2, c1), (v1,v2)← (v2,v1)

end if . we ensure that c1 < c2

Second step : iteration.
while c1 > 1 do

c2← c2 − c1
if v2 − v1 < 0 then

v2← v2 − v1 + a
else

v2← v2 − v1
end if . we modify c2 and we compute the associated parameter v2.

(c2,v2)←Div1(c2,v2) . we divide as many times as possible c2 by 2.

if c2 < c1 then
(c1, c2)← (c2, c1), (v1,v2)← (v2,v1)

end if . we reassign c1 and c2 so as to have c1 < c2.

end while . the loop is left when c1 = 1

v← v1
u1←−vq, u2← (1− vr)/a
u← u1 −u2
return (u,v) . the solution is returned

2.4 Validity of the algorithm

It can be noted that ”gcd(c1, c2) = gcd(a,b)” is a loop invariant. Moreover, since
each iteration of the last loop While c1 or c2 decreases, this proves the termi-
nation of the algorithm.

According to the precedent propositions, another invariant is: ”bvci − ci ≡ 0
(mod a), for i = 1,2”. This finally proves the correction of the algorithm.

5

3 General case

It is easy to adapt the precedent algorithm to the general case where a and
b are not assumed to be coprimes. Experimental tests highlighted that it is
more advantageous to calculate u at the same time as v as the algorithm works.
We do not handle (v,c) with v parameter (Ec) anymore, but (u,v,c) triplets
checking the conditions ua+vb = c and v ∈ ~0, a−1�. We divide as many times
as possible a and b by 2 (which has a low computational cost) and because we
can reverse a and b, we assume that a is an odd integer.

Algorithm 3 Function Div2(u,v,c) : Let (u,v,c) be a triplet checking the con-
ditions ua+vb = c and v ∈ ~0, a−1�, returns a triplet (u,v,c) checking these two
conditions, obtained by dividing as many times as possible c by 2. We suppose
a an odd integer

while c is even do
if v is even then

(u,v,c)← (u/2,v/2, c/2)
else

(u,v,c)← (
u − b

2
,
v + a

2
,
c
2

)

end if
end while
return (u,v,c)

Proof. Let us note first that, given (u,v,c) satisfying ua+ vb = c, (u − b,v + a,c)
satisfies this same equation. We suppose that c is even. Let us show that we get
necessary parities to process the algorithm:

If v is even, then ua = c − vb is even. As a is odd, this requires that u be
even.

If v is odd :

• If u is odd, then vb = c−ua is odd, and so v and b are odd integers. Then
u − b and v + a are even integers

• If u is even, then vb = c − ua is even and so b is even, and then u − b and
v + a are even integers.

We get directly that v remains in the interval ~0, a− 1�.

6

Algorithm 4 WWL2: Let a and b be two integers, with a an odd integer, returns
a triplet (u,v,g) such that g =pgcd(a,b), ua+ vb = g and v ∈ ~0, a− 1�
First step : initialization.

c1← b − bb
a
ca, c2← a− c1, v1← 1, v2← a− 1

u1←
c1 − v1b

a
, u2← 1−u1 − b . initialization of two triplets (u,v,c)

(u1,v1, c1)←Div2(u1,v1, c1) . we divide as many times as possible c1 by 2.

(u2,v2, c2)←Div2(u2,v2, c2) . we divide as many times as possible c2 by 2.

if c2 < c1 then
(u1,v1, c1,u2,v2, c2)← (u2,v2, c2,u1,v1, c1)

end if . we ensure that c1 < c2

Second step : iteration.
while c1 > 0 do

c2← c2 − c1
if v2 − v1 < 0 then

v2← v2 + a− v1, u2← u2 −u1 − b
else

v2← v2 − v1, u2← u2 −u1
end if

. we modify u2 and v2 so that they verify (Ec2
).

(c2,v2)←Div2(c2,v2) . we divide as many times as possible c2 by 2.

if c2 < c1 then
(u1,v1, c1,u2,v2, c2)← (u2,v2, c2,u1,v1, c1)

end if . we reassign c1 and c2 so as to have c1 < c2.
c2← c2 − c1

end while . the loop is left when c1 = 0

return (u2,v2, c2) . the solution is returned

Proof. c1 and c2 follow the same values as with the algorithm which computes
the combined gcd (See Appendix), which proves that when we go out of the
While loop, c2 is equal to the gcd of a and b.

Moreover, “uia+vib = ci for i = 1,2” is an invariant of the algorithm, which
proves its correction.

7

4 Solution of the equation au + bnv = 1

We remind that vc is the parameter of the equation (Ec) with (uc,vc) the normal
solution of (Ec). At first, we will define the parameter tc. Then we will prove
that the solution of the Diophantine equation au+bnv = 1 with a and b coprime
integers and n a not null natural number, is written as a modular geometric
sequence.

4.1 Parameter tc
We let: tc + vc = 0 ≡ a (mod a) with tc ∈ ~0, a− 1�

The pair of integers (uc + b,vc − a) is solution of (Ec). With xc = uc + b, this
solution is written as (xc,−tc).

Definition 2. Values of tc and vc are defined as being complementary values
modulo a.
We named complementary normal solution of (Ec) the unique solution (xc,−tc)
with xc = (c+tcb)/a and checking tc ∈ ~0, a−1�. We named tc the complementary
parameter of (Ec).

Remark. Because of relationship between the parameters vc and tc, arithmetic
properties of both parameters are the same.

4.2 Modular geometric sequence

We denote (E1)n the following equation: au + bnv = 1. The complementary
parameter of this equation is denoted t1(n).

Definition 3. A modular geometric sequence Sn is defined as follows:
Sn ≡ q ∗ Sn−1 (mod M) with common ratio q ∈Z∗ and value M ∈N∗.

Proposition 5. The complementary parameter t1(n) of (E1)n with n ∈N∗ is written
as a modular geometric sequence:
t1(n) ≡ −t1(1) ∗ t1(n− 1) (mod a)

Proof : The complementary normal solution of equation a(x1(1))−bt1(1) = 1
(E1)1 is (x1(1),−t1(1)). The complementary normal solution of equation ax1(n)−
bnt1(n) = 1 (E1)n is (x1(n),−t1(n)).

We assume that there exists an integer z such that b(n−1) divides t1(1) + za.

We let: t1(n) = (t1(1) + za)/b(n−1) with t1(n) ∈ ~0, a − 1�. The complementary
normal solution of (E1)n is then (x1(1) + bz,−t1(n)).

The precedent t1(n) relation leads to solving the equation az + b(n−1)(−t1(n)) =
−t1(1) denoted (E−t1(1))(n−1)

8

The a and b(n−1) coefficients are coprimes. Then there exists a pair of inte-
gers (z,−t1(n)) that solves the equation. Value t1(n) can be written as follows:
t1(n) = t−t1(1)(n − 1). Parameter tc is multiplicative (Corollary 1), so we get:
t1(n) ≡ −t1(1) ∗ t1(n− 1) (mod a).

The parameter t1(n) follows a goemetric sequence modulo a with first term
equal to t1(1) and common ratio equal to −t1(1). So t1(n) is written :

t1(n) ≡ (−1)(n−1) ∗ (t1(1))n (mod a)

Corollary 3. the parameter t1(n) ∈ ~0, a− 1� is written depending on parity of n:
Case 1: ∀k ∈N∗, n = 2k: t1(n) ≡ a− ((t1(1))2k (mod a))
Case 2: ∀k ∈N, n = 2k + 1: t1(n) ≡ (t1(1))2k+1 (mod a)

Corollary 4. the parameter v1(n) of (E1)n is written as modular geometric se-
quence: v1(n) ≡ v1(1) ∗ v1(n− 1) (mod a) and so v1(n) ≡ (v1(1))n (mod a).

5 Conclusion

The solutions of a linear Diophantine equation depend on one parameter de-
noted vc such that: (c − vcb + hb,vc − ha) with h ∈ Z and vc ∈ ~0, a − 1�. Our
algorithm, based on the determination of this parameter, controls the size of
the final result but also the size of all the computational intermediaries.

The complementary parameter of a linear Diophantine equation au+bv = 1
with a and b coprime integers is defined as t1 + v1 ≡ a (mod a). When the b
integer is raised to the power n, n ∈ N

∗, the parameter t1(n) is written as a
modular geometric sequence.

6 References

[B86] R. P. Brent. An improved Monte Carlo factorization algorithm. BIT 20,
176-184 (1980).

[BK84] R. P. Brent, H. T. Kung, Systolic VLSI arrays for polynomial GCD compu-
tations. IEEE Trans. Comput. C-33, 731-736 (1984)

[DLS15] Doran, Lu, Smith. New algorithms for modular inversion and represen-
tation by binary quadrtic forms arising from structure in the Euclidean
algorithm, 2015. arXiv:1408.4638v2

[Ser] Denis Serre. Matrices, theory and Applications. Springer 2010.

9

[L16] H. Leung, A Note on Extended Euclid’s Algorithm, arXiv:1607.00106,
2016

[B99] R. P. Brent. Further analysis of the Binary Euclidean algorithm. PRG
TR-7-99. 1999

7 Appendix : Euclid algorithms

According to our knowledge the two main algorithms for the calculation
of gcd are the Euclidean algorithm [L16] and its binary version [B99]. A
combined algorithm which performs Euclidean divisions and divisions
by 2 is presented.

Algorithm 5 Binary Euclid algorithm: BinaryGCD
Let a et b be two integers, return the gcd
m = 0
while a and b are even do

m←m+ 1, a,b← a/2,b/2
end while . Computation of common power of 2

r1, r2←min(a,b),max(a,b)
while r1 > 0 do

r2← r2 − r1
while r2 is even do

r2← r2/2
end while
r1, r2←min(r1, r2),max(r1, r2)

end while

return r2 × 2m

Algorithm 6 Combined Euclid algorithm
Let a and b be two integers, return the gcd
m = 0
while a and b are even do

m←m+ 1, a,b← a/2,b/2
end while . Computation of the common power of 2

r1, r2←min(a,b),max(a,b)
(r1, r2)← (r2 mod r1, r1) . We perform one Euclidean division
return BinaryGCD(r1, r2) . We apply the binary algorithm

10

