Calculation of extended gcd by parametrization. Modular geometric sequence solving equation $au + b^n v = 1$.

WOLF Marc, WOLF François, LE COZ Corentin.

marc.wolf@tsoftemail.com http://mathscience.tsoftemail.com

April 18, 2018

Abstract

Firstly, we propose an algorithm for calculating the extended gcd by providing a solution that minimizes one of the two coordinates. The algorithm relies on elementary arithmetic properties to parameterize the solutions.

Secondly, we propose a modular geometric sequence to solve the linear diophantine equation $au + b^n v = 1$ with *a* and *b* coprime integers and *n* a not null natural number.

Contents

1	Introduction	2	
	1.1 The problem of extended gcd	2	
	1.2 Notation	2	
2	Extended GCD with a and b are coprime integers.	2	
	2.1 Parameter v_c	2	
	2.2 Arithmetic properties of the parameter	3	
	2.3 Presentation of the algorithm	4	
	2.4 Validity of the algorithm	5	
3	General case		
4	Solution of the equation $au + b^n v = 1$	8	
	4.1 Parameter t_c	8	
	4.2 Modular geometric sequence	8	
5	Conclusion	9	

6 References

7 Appendix : Euclid algorithms

1 Introduction

1.1 The problem of extended gcd

Let a and b be two integers, the extended gcd's problem consists in finding three integers u, v and g such that :

$$ua + vb = g$$

with *g* equal to gcd of *a* and *b*.

In number theory, this problem occurs in many situations like in the theory of corrector codes [BK84] or for the factorization of integers [B86]. Moreover, it is the elementary component of the classical algorithm of Smith invariants computation of a matrix with integer coefficients, which allows the general resolution of the linear diophantine equations [Ser]. See also [DSL15] for a recent application of the Euclid algorithm.

1.2 Notation

Let *x* and *y* be two integers, we denote "*x* mod *y*" the remainder of the Euclidean division of *x* by *y*, which belongs to [0, y - 1] by convention.

2 Extended GCD with *a* and *b* are coprime integers.

We assume therefore that *a* and *b* are *coprime* integers. Because we can reverse *a* and *b*, we will assume that *a* is an *odd* integer. If they are both odd, we will assume a < b for reducing number of arithmetic operation.

2.1 Parameter v_c

To each integer c, we associate the following equation in u and v:

$$ua + vb = c \tag{E_c}$$

As a reminder, the set of solutions of (E_c) is equal to $\{(u_0 + kb, v_0 - ka), k \in \mathbb{Z}\}$, with (u_0, v_0) corresponding to a particular solution.

Definition 1. we name *normal solution* of (E_c) the unique solution (u_c, v_c) with the condition $v_c \in [[0, a-1]]$. We call v_c the *parameter* of (E_c) .

Remark. By setting $u_c = (c - v_c b)/a$, (u_c, v_c) is the normal solution of (E_c) .

From the structure of solutions of (E_c) , we get the following proposition:

Proposition 1. For any solution (u, v) of (E_c) , $v \equiv v_c \pmod{a}$.

2.2 Arithmetic properties of the parameter

Proposition 2. In immediately way, the parameter is additive :

$$\forall c, c' \in \mathbb{Z}, v_{c+c'} \equiv v_c + v_{c'} \pmod{a}$$

Corollary 1. the parameter is multiplicative :

$$\forall c \in \mathbb{Z}, t_c \equiv t_1 * c \pmod{a}$$

Corollary 2. If c is even,

$$v_{c/2} = \frac{v_c}{2}, \text{ if } v_c \text{ is even}$$
$$= \frac{v_c + a}{2}, \text{ otherwise.}$$

We deduce the following algorithm which will be used as an elementary component of the final algorithm: with (c, v), and v as parameter of (E_c) , it returns the pair of integers obtained by dividing as many times as possible c by 2.

Algorithm 1 Function Div1(c,v)

-	
while <i>c</i> is even do	
$c \leftarrow c/2$	
if v is even then	
$v \leftarrow v/2$	
else	
$v \leftarrow (v+a)/2$	
end if	
end while	\triangleright we divide as many times as possible <i>c</i> by 2.
return (c, v)	

The parameter is obviously *linear* in *c*, but we only need the following proposition :

Proposition 3.

$$\forall c, c' \in \mathbb{Z}, v_{c-c'} \equiv v_c - v_{c'} \pmod{a}$$

Proposition 4. We determine two particular values of the parameter :

- for $c = b \mod a$, $v_c = 1$
- for $c = -b \mod a$, $v_c = a 1$

Proof. Case 1 : $c = b \mod a$

Let *q* be the quotient of the Euclidean division of *b* by *a*. We obtain the following equality :

$$-qa+b=c$$

ie (-q, 1) is solution of (E_c) . Then $v_c = 1$

Case 2 : $c = -b \mod a$

Let us proceed in a similar way. Let q' be the quotient of the Euclidean division of -b by a. One gets the following equality :

$$-q'a-b=c$$

ie (-q', -1) is solution of (E_c) . Then $v_c = a - 1$.

We will initialize the algorithm with these two values. A sole Euclidean division is performed before applying the binary algorithm.

2.3 Presentation of the algorithm

Solving the problem of extended gcd with *a* and *b* being coprime integers leads to determine v_1 . The algorithm **WWL1** proceeds by step: starting from the two values of v_c given by the precedent proposition, it uses the corollary 2 of proposition 2 to determine v_1 .

Once v_1 has been determined, the complete solution is obtained by calculating:

$$u_1 = \frac{1 - v_1 b}{a}.$$

Then (u_1, v_1) is a solution of (E_1) . However, since the Euclidean division of b by a is done at the beginning of the algorithm, computational time is saved with a < b by performing: $u_1 = -v_1q + (1 - v_1r)/a$, denoting q and r respectively the quotient and the remainder of the Euclidean division of b by a.

Algorithm 2 WWL1 Let *a* and *b* be two integers, with *a* and *b* coprimes and *a* an odd integer, returns a pair of integers (u, v) such that ua + vb = 1 and $v \in [[0, a - 1]]$

First step : initialization. $c_1 \leftarrow b - \lfloor \frac{b}{a} \rfloor a, c_2 \leftarrow a - c_1$ $v_1 \leftarrow 1, v_2 \leftarrow a - 1$ \triangleright initialization of the two values of parameter v_c . $(c_1, v_1) \leftarrow Div1(c_1, v_1)$ ▶ we divide as many times as possible c_1 by 2. $(c_2, v_2) \leftarrow Div1(c_2, v_2)$ ▶ we divide as many times as possible c_2 by 2. if $c_2 < c_1$ then $(c_1, c_2) \leftarrow (c_2, c_1), (v_1, v_2) \leftarrow (v_2, v_1)$ end if ▶ we ensure that $c_1 < c_2$ Second step : iteration. while $c_1 > 1$ do $c_2 \leftarrow c_2 - c_1$ if $v_2 - v_1 < 0$ then $v_2 \leftarrow v_2 - v_1 + a$ else $v_2 \leftarrow v_2 - v_1$ end if \triangleright we modify c_2 and we compute the associated parameter v_2 . $(c_2, v_2) \leftarrow Div1(c_2, v_2)$ ▶ we divide as many times as possible c_2 by 2. if $c_2 < c_1$ then $(c_1, c_2) \leftarrow (c_2, c_1), (v_1, v_2) \leftarrow (v_2, v_1)$ ▶ we reassign c_1 and c_2 so as to have $c_1 < c_2$. end if end while ▶ the loop is left when $c_1 = 1$ $v \leftarrow v_1$ $u_1 \leftarrow -vq, u_2 \leftarrow (1-vr)/a$ $u \leftarrow u_1 - u_2$ ▶ the solution is returned return (u, v)

2.4 Validity of the algorithm

It can be noted that $"gcd(c_1, c_2) = gcd(a, b)"$ is a loop invariant. Moreover, since each iteration of the last loop **While** c_1 or c_2 decreases, this proves the *termination* of the algorithm.

According to the precedent propositions, another invariant is: " $bv_{c_i} - c_i \equiv 0 \pmod{a}$, for i = 1, 2". This finally proves the *correction* of the algorithm.

3 General case

It is easy to adapt the precedent algorithm to the general case where *a* and *b* are not assumed to be coprimes. Experimental tests highlighted that it is more advantageous to calculate *u* at the same time as *v* as the algorithm works. We do not handle (v,c) with *v* parameter (E_c) anymore, but (u,v,c) triplets checking the conditions ua + vb = c and $v \in [[0, a - 1]]$. We divide as many times as possible *a* and *b* by 2 (which has a low computational cost) and because we can reverse *a* and *b*, we assume that a is an *odd* integer.

Algorithm 3 Function Div2(u,v,c) : Let (u,v,c) be a triplet checking the conditions ua+vb = c and $v \in [[0, a-1]]$, returns a triplet (u, v, c) checking these two conditions, obtained by dividing as many times as possible c by 2. We suppose a an odd integer

```
while c is even do

if v is even then

(u,v,c) \leftarrow (u/2,v/2,c/2)

else

(u,v,c) \leftarrow (\frac{u-b}{2},\frac{v+a}{2},\frac{c}{2})

end if

end while

return (u,v,c)
```

Proof. Let us note first that, given (u, v, c) satisfying ua + vb = c, (u - b, v + a, c) satisfies this same equation. We suppose that *c* is even. Let us show that we get necessary parities to process the algorithm:

If v is even, then ua = c - vb is even. As a is odd, this requires that u be even.

If v is odd :

- If *u* is odd, then vb = c ua is odd, and so *v* and *b* are odd integers. Then u b and v + a are even integers
- If *u* is even, then vb = c ua is even and so *b* is even, and then u b and v + a are even integers.

We get directly that *v* remains in the interval [[0, a-1]].

Algorithm 4 WWL2: Let *a* and *b* be two integers, with *a* an odd integer, returns a triplet (u, v, g) such that g = pgcd(a, b), ua + vb = g and $v \in [[0, a - 1]]$

First step : initialization. $c_1 \leftarrow b - \lfloor \frac{b}{a} \rfloor a, c_2 \leftarrow a - c_1, v_1 \leftarrow 1, v_2 \leftarrow a - 1$ $u_1 \leftarrow \frac{c_1 - v_1 b}{a}, u_2 \leftarrow 1 - u_1 - b \qquad \triangleright \text{ initialization of two triplets } (u, v, c)$ $(u_1, v_1, c_1) \leftarrow Div2(u_1, v_1, c_1)$ \triangleright we divide as many times as possible c_1 by 2. $(u_2, v_2, c_2) \leftarrow Div2(u_2, v_2, c_2) \rightarrow$ we divide as many times as possible c_2 by 2. if $c_2 < c_1$ then $(u_1, v_1, c_1, u_2, v_2, c_2) \leftarrow (u_2, v_2, c_2, u_1, v_1, c_1)$ end if ▶ we ensure that $c_1 < c_2$ Second step : iteration. while $c_1 > 0$ do $c_2 \leftarrow c_2 - c_1$ **if** $v_2 - v_1 < 0$ **then** $v_2 \leftarrow v_2 + a - v_1$, $u_2 \leftarrow u_2 - u_1 - b$ else $v_2 \leftarrow v_2 - v_1$, $u_2 \leftarrow u_2 - u_1$ end if ▶ we modify u_2 and v_2 so that they verify (E_{c_2}) . $(c_2, v_2) \leftarrow Div2(c_2, v_2)$ \triangleright we divide as many times as possible c_2 by 2. if $c_2 < c_1$ then $(u_1, v_1, c_1, u_2, v_2, c_2) \leftarrow (u_2, v_2, c_2, u_1, v_1, c_1)$ end if ▶ we reassign c_1 and c_2 so as to have $c_1 < c_2$. $c_2 \leftarrow c_2 - c_1$ end while ▶ the loop is left when $c_1 = 0$ **return** (u_2, v_2, c_2) ▶ the solution is returned

Proof. c_1 and c_2 follow the same values as with the algorithm which computes the combined gcd (See Appendix), which proves that when we go out of the **While** loop, c_2 is equal to the gcd of *a* and *b*.

Moreover, " $u_i a + v_i b = c_i$ for i = 1, 2" is an invariant of the algorithm, which proves its correction.

4 Solution of the equation $au + b^n v = 1$

We remind that v_c is the *parameter* of the equation (E_c) with (u_c, v_c) the normal solution of (E_c) . At first, we will define the parameter t_c . Then we will prove that the solution of the Diophantine equation $au + b^n v = 1$ with *a* and *b* coprime integers and *n* a not null natural number, is written as a modular geometric sequence.

4.1 Parameter t_c

We let: $t_c + v_c = 0 \equiv a \pmod{a}$ with $t_c \in [[0, a - 1]]$

The pair of integers $(u_c + b, v_c - a)$ is solution of (E_c) . With $x_c = u_c + b$, this solution is written as $(x_c, -t_c)$.

Definition 2. Values of t_c and v_c are defined as being complementary values modulo *a*.

We named *complementary normal solution* of (E_c) the unique solution $(x_c, -t_c)$ with $x_c = (c+t_cb)/a$ and checking $t_c \in [[0, a-1]]$. We named t_c the *complementary parameter* of (E_c) .

Remark. Because of relationship between the parameters v_c and t_c , arithmetic properties of both parameters are the same.

4.2 Modular geometric sequence

We denote $(E_1)^n$ the following equation: $au + b^n v = 1$. The complementary parameter of this equation is denoted $t_1(n)$.

Definition 3. A modular geometric sequence S_n is defined as follows: $S_n \equiv q * S_{n-1} \pmod{M}$ with common ratio $q \in \mathbb{Z}^*$ and value $M \in \mathbb{N}^*$.

Proposition 5. The complementary parameter $t_1(n)$ of $(E_1)^n$ with $n \in \mathbb{N}^*$ is written as a modular geometric sequence: $t_1(n) \equiv -t_1(1) * t_1(n-1) \pmod{a}$

Proof: The complementary normal solution of equation $a(x_1(1)) - bt_1(1) = 1$ $(E_1)^1$ is $(x_1(1), -t_1(1))$. The complementary normal solution of equation $ax_1(n) - b^n t_1(n) = 1$ $(E_1)^n$ is $(x_1(n), -t_1(n))$.

We assume that there exists an integer *z* such that $b^{(n-1)}$ divides $t_1(1) + za$.

We let: $t_1(n) = (t_1(1) + za)/b^{(n-1)}$ with $t_1(n) \in [[0, a - 1]]$. The complementary normal solution of $(E_1)^n$ is then $(x_1(1) + bz, -t_1(n))$.

The precedent $t_1(n)$ relation leads to solving the equation $az + b^{(n-1)}(-t_1(n)) = -t_1(1)$ denoted $(E_{-t_1(1)})^{(n-1)}$

The *a* and $b^{(n-1)}$ coefficients are coprimes. Then there exists a pair of integers $(z, -t_1(n))$ that solves the equation. Value $t_1(n)$ can be written as follows: $t_1(n) = t_{-t_1(1)}(n-1)$. Parameter t_c is multiplicative (Corollary 1), so we get: $t_1(n) \equiv -t_1(1) * t_1(n-1) \pmod{a}$.

The parameter $t_1(n)$ follows a goemetric sequence modulo *a* with first term equal to $t_1(1)$ and common ratio equal to $-t_1(1)$. So $t_1(n)$ is written :

 $t_1(n) \equiv (-1)^{(n-1)} * (t_1(1))^n \pmod{a}$

Corollary 3. the parameter $t_1(n) \in [[0, a-1]]$ is written depending on parity of n: *Case 1*: $\forall k \in \mathbb{N}^*$, n = 2k: $t_1(n) \equiv a - ((t_1(1))^{2k} \pmod{a})$ *Case 2*: $\forall k \in \mathbb{N}$, n = 2k + 1: $t_1(n) \equiv (t_1(1))^{2k+1} \pmod{a}$

Corollary 4. the parameter $v_1(n)$ of $(E_1)^n$ is written as modular geometric sequence: $v_1(n) \equiv v_1(1) * v_1(n-1) \pmod{a}$ and so $v_1(n) \equiv (v_1(1))^n \pmod{a}$.

5 Conclusion

The solutions of a linear Diophantine equation depend on one parameter denoted v_c such that: $(c - v_c b + hb, v_c - ha)$ with $h \in \mathbb{Z}$ and $v_c \in [[0, a - 1]]$. Our algorithm, based on the determination of this parameter, controls the size of the final result but also the size of all the computational intermediaries.

The complementary parameter of a linear Diophantine equation au+bv = 1with *a* and *b* coprime integers is defined as $t_1 + v_1 \equiv a \pmod{a}$. When the *b* integer is raised to the power $n, n \in \mathbb{N}^*$, the parameter $t_1(n)$ is written as a modular geometric sequence.

6 References

- [**B86**] R. P. Brent. An improved Monte Carlo factorization algorithm. BIT 20, 176-184 (1980).
- [**BK84**] R. P. Brent, H. T. Kung, Systolic VLSI arrays for polynomial GCD computations. IEEE Trans. Comput. C-33, 731-736 (1984)
- [DLS15] Doran, Lu, Smith. New algorithms for modular inversion and representation by binary quadrtic forms arising from structure in the Euclidean algorithm, 2015. arXiv:1408.4638v2
 - [Ser] Denis Serre. Matrices, theory and Applications. Springer 2010.

- [L16] H. Leung, A Note on Extended Euclid's Algorithm, arXiv:1607.00106, 2016
- [B99] R. P. Brent. Further analysis of the Binary Euclidean algorithm. PRG TR-7-99. 1999

7 Appendix : Euclid algorithms

According to our knowledge the two main algorithms for the calculation of gcd are the Euclidean algorithm [L16] and its binary version [B99]. A combined algorithm which performs Euclidean divisions and divisions by 2 is presented.

```
Algorithm 5 Binary Euclid algorithm: BinaryGCD
Let a et b be two integers, return the gcd
  m = 0
  while a and b are even do
      m \leftarrow m + 1, a, b \leftarrow a/2, b/2
  end while
                                                Computation of common power of 2
  r_1, r_2 \leftarrow \min(a, b), \max(a, b)
  while r_1 > 0 do
      r_2 \leftarrow r_2 - r_1
      while r<sub>2</sub> is even do
          r_2 \leftarrow r_2/2
      end while
      r_1, r_2 \leftarrow \min(r_1, r_2), \max(r_1, r_2)
  end while
  return r_2 \times 2^m
Algorithm 6 Combined Euclid algorithm
```

<u> </u>				
Let <i>a</i> and <i>b</i> be two integers, return the gcd				
m = 0				
while <i>a</i> and <i>b</i> are even do				
$m \leftarrow m+1$, $a, b \leftarrow a/2, b/2$				
end while	▶ Computation of the common power of 2			
$r_1, r_2 \leftarrow \min(a, b), \max(a, b)$ $(r1, r2) \leftarrow (r2 \mod r1, r1)$ return $BinaryGCD(r_1, r_2)$	We perform one Euclidean divisionWe apply the binary algorithm			