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Abstract. We prove the strong unique continuation property for manybody Schrödinger operators with an external potential and an interaction potential both in L p loc (R d ), where p > max(2d/3, 2), independently of the number of particles. With the same assumptions, we obtain the Hohenberg-Kohn theorem, which is one of the most fundamental results in Density Functional Theory.

Density Functional Theory (DFT) is one of the most successful methods in quantum physics and chemistry to simulate matter at the microscopic scale [START_REF] Cancès | Computational quantum chemistry: a primer[END_REF][START_REF] Dreizler | Density functional theory[END_REF][START_REF] Engel | Density Functional Theory: An Advanced Course[END_REF]. It is a very active field of research, applied to very diverse physical situations, going from atoms and small molecules to condensed matter systems [START_REF] Jones | Density functional theory: Its origins, rise to prominence, and future[END_REF].

One of the basis of DFT is due to Hohenberg and Kohn in 1964 [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF], who showed that in equilibrium, the knowledge of the ground state density alone is sufficient to characterize the system. In other words, all the information of a quantum system is contained in its ground state one-particle density. The Hohenberg-Kohn theorem was precised by Lieb in [START_REF] Lieb | Density functionals for Coulomb systems[END_REF], who emphasized that it relies on a unique continuation property (UCP) for the many-particle Hamiltonian.

A typical (strong) unique continuation result [START_REF] Tataru | Unique continuation problems for partial differential equations[END_REF] is that if a wavefunction Ψ vanishes sufficiently fast at one point and solves Schrödinger's equation HΨ = 0, then Ψ = 0. Unique continuation properties began to be developped by Carleman in [START_REF] Carleman | Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes[END_REF] and, today, a broad range of results exists when the operator is H = -∆ + V (x), with V in some L p loc space. A famous result of Jerison and Kenig [START_REF] Jerison | Unique continuation and absence of positive eigenvalues for Schrödinger operators[END_REF] covers the case p = d/2 in dimension d. It was later improved by Koch and Tataru in [START_REF] Koch | Carleman estimates and unique continuation for secondorder elliptic equations with nonsmooth coefficients[END_REF].

Unfortunately, these results are not well adapted to the situation of Schrödinger operators describing N particles, which are defined on R dN . In order to apply the existing results, one would need assumptions on the potentials depending on N . To the best of our knowledge, two works, due to Georgescu [START_REF] Georgescu | On the unique continuation property for Schrödinger Hamiltonians[END_REF] and Schechter-Simon [START_REF] Schechter | Unique continuation for Schrödinger operators with unbounded potentials[END_REF], provide a unique continuation property for many-particle Hamiltonians with an assumption on the potentials independent of N . However, they require the wavefunction to vanish on an open set (weak UCP), and for the Hohenberg-Kohn theorem strong UCP is needed.

Recently, Laestadius, Benedicks and Penz [START_REF] Laestadius | Unique Continuation for the Magnetic Schrödinger Equation[END_REF] have proved the first strong UCP result for many-body operators using ideas of Kurata [START_REF] Kurata | A unique continuation theorem for the Schrödinger equation with singular magnetic field[END_REF] and Regbaoui [START_REF] Regbaoui | Unique continuation from sets of positive measure[END_REF], but they need extra assumptions on the negative part of 2V + x • ∇V , which naturally appears in the Virial identity. In [START_REF]A mathematical aspect of Hohenberg-Kohn theorem[END_REF], Zhou used the result of Schechter and Simon to state a weak form of the Hohenberg-Kohn theorem, but this was already implicit in the work of Lieb [START_REF] Lieb | Density functionals for Coulomb systems[END_REF]. We refer to [START_REF] Cancès | Computational quantum chemistry: a primer[END_REF][START_REF] Englisch | Hohenberg-Kohn theorem and non-V-representable densities[END_REF][START_REF] Kryachko | On the original proof by reductio ad absurdum of the Hohenberg-Kohn theorem for many-electron coulomb systems[END_REF][START_REF] Lammert | In search of the Hohenberg-Kohn theorem[END_REF][START_REF] Levy | On the simple constrained-search reformulation of the Hohenberg-Kohn theorem to include degeneracies and more (1964-1979[END_REF][START_REF] Lieb | Density functionals for Coulomb systems[END_REF][START_REF] Pino | A re-statement of the Hohenberg-Kohn theorem and its extension to finite subspaces[END_REF][START_REF] Zhou | Hohenberg-Kohn theorem for Coulomb type systems and its generalization[END_REF] for a discussion on the importance of the unique continuation principle for the Hohenberg-Kohn theorem.

In this article, we provide the first strong UCP for many-body operators in L p spaces and deduce the first complete proof of the Hohenberg-Kohn theorem in these spaces. Our proof mainly uses the method of Georgescu [START_REF] Georgescu | On the unique continuation property for Schrödinger Hamiltonians[END_REF], together with a Carleman estimate proved in [START_REF] Garrigue | Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian[END_REF]. We also use ideas from Figueiredo-Gossez [START_REF] De Figueiredo | Strict monotonicity of eigenvalues and unique continuation[END_REF] to pass from the vanishing of Ψ on a set of positive measure to the vanishing to infinite order at one point. In short, we can handle any number N of particles living in R d , with potentials in L p loc (R d ) with p > max(2d/3, 2). We deduce the Hohenberg-Kohn theorem with similar assumptions.
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Main results

1.1. Strong unique continuation property. We denote by B R the ball of radius R centered at the origin. Our main result is the following.

Theorem 1.1 (Strong UCP). Let V ∈ L 2 loc (R n
) such that for some δ > 0 and for every R > 0, there exists c R 0 such that for any u ∈ H 2 (R n ),

ˆBR |V | 2 |u| 2 ǫ δ,n ˆRn (-∆) 3 4 -δ u 2 + c R ˆRn |u| 2 , (1) 
where ǫ δ,n is a constant depending only on δ and on the dimension n. Let Ψ ∈ H 2 loc (R n ) be a solution to -∆Ψ + V Ψ = 0. If Ψ vanishes on a set of positive measure or if it vanishes to infinite order at a point, then Ψ = 0.

The constant ǫ δ,n depends on the best constant of the Carleman inequality (8) which we are going to use later. We recall that Ψ vanishes to infinite order at x 0 ∈ R n when for all k 1, there is a c k such that

ˆ|x-x 0 |<ǫ |Ψ| 2 dx < c k ǫ k , for every ǫ < 1.
The assumption (1) can be rewritten in the sense of operators, in the form

|V | 2 1 B R ǫ δ,n (-∆) 3 2 -2δ + c R . This is satified if V ∈ L p loc (R n ) with p > max(2n/3, 2) (see the proof of Corollary 1.
2). However, the condition (1) has a better behavior with respect to the dimension than a condition in L p spaces. It is more appropriate to deal with N -body operators for which n = dN , as we will see. We denote by B R (x) the ball of radius R and centered on x ∈ R n . Assumption ( 1) is equivalent to saying that for any x ∈ R n , there exists c x such that

|V | 2 1 B 1 (x) ǫ ′ δ,n (-∆) 3 2 -2δ + c x in R n . (2) 
Indeed (2) follows from (1) by taking R = |x| + 1 whereas the converse statement can be obtained by (fractional) localization, e.g. as in [START_REF] Lenzmann | Minimizers for the Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs[END_REF]Lemma A.1]. We have stated our main result in R n for simplicity, but there is a similar statement in a connected domain Ω. One should then replace ( 1) by ( 2) with small balls B R (x) ⊂ Ω. Our proof is really local in space. Following Simon in [29, section C.9], we conjecture that Theorem 1.1 holds under the weaker condition

|V | 1 B R ǫ n (-∆) + c R , with Ψ in H 1 loc (R n ).
A weak UCP was proved by Schechter and Simon in [28] using estimates from Protter [START_REF] Protter | Unique continuation for elliptic equations[END_REF], but with the stronger hypothesis

|V | 2 1 B R ǫ n (-∆) + c R .
Our Theorem 1.1 improves the weak UCP of Georgescu in [START_REF] Georgescu | On the unique continuation property for Schrödinger Hamiltonians[END_REF], which has an assumption similar to [START_REF] Cancès | Computational quantum chemistry: a primer[END_REF]. He used the estimate from Theorem 8.3.1 of [START_REF] Hörmander | Linear partial differential operators[END_REF], due to Hörmander and we instead use a new Carleman estimate that we proved in [START_REF] Garrigue | Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian[END_REF].

1.2. Application to N -body operators. We consider N particles in R d , submitted to an external potential v and interacting with an even two-body potential w. The corresponding N -body Hamiltonian takes the form

H N (v) = - N i=1 ∆ x i + N i=1 v(x i ) + 1 i<j N w(x i -x j ), (3) 
on L 2 (R dN ). In order to ensure that the total potential

V (x 1 , . . . , x N ) := N i=1 v(x i ) + 1 i<j N w(x i -x j ), (4) 
satisfies the assumption (1) in R dN , it is sufficient that v and w satisfy (1) in R d , but with an ǫ that can be taken as small as we want.

Corollary 1.2 (UCP for many-body Schrödinger operators). Assume that the potentials satisfy

|v| 2 1 B R + |w| 2 1 B R ǫ δ,d,N (-∆) 3 2 -2δ + c R in R d , (5) 
for some δ > 0 and for all R > 0, where ǫ δ,d,N is a small constant depending only on δ, d and N . For instance v, w ∈ L p loc (R d ) with p > max(2d/3). Let Ψ ∈ H 2 loc (R dN ) be a solution to H N (v)Ψ = 0. If Ψ vanishes on a set of positive measure or if it vanishes to infinite order at a point, then Ψ = 0. 1.3. Hohenberg-Kohn theorem. The one-particle density of a wavefunction Ψ is defined as

ρ Ψ (x) := N i=1 ˆ|Ψ(x 1 , ..., x i-1 , x, x i+1 , ..., x N )| 2 dx 1 • • • dx i-1 dx i+1 • • • dx N .
From Corollary 1.2, we can deduce the following version of the Hohenberg-Kohn theorem.

Theorem 1.3 (Hohenberg-Kohn). Let w, v 1 , v 2 ∈ (L p + L ∞ )(R d , R), with p > max(2d/3
). If there are two normalised eigenfunctions Ψ 1 and Ψ 2 of H N (v 1 ) and H N (v 2 ), corresponding to the first eigenvalues, and such that ρ Ψ 1 = ρ Ψ 2 , then there exists a constant c such that

v 1 = v 2 + c.
The exact same theorem is valid if we take spin into account and assume that Ψ 1 , Ψ 2 are the first eigenfunctions of H N (v 1 ), H N (v 2 ) in any subspace invariant by the two operators. In particular the theorem applies to bosons and fermions. Our result covers the physical case of Coulomb potentials as in [START_REF] Zhou | Hohenberg-Kohn theorem for Coulomb type systems and its generalization[END_REF]. However, in this situation, eigenfunctions are real analytic on an open set of full measure, and the argument is much easier.

We recall the proof from [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF][START_REF] Lieb | Density functionals for Coulomb systems[END_REF] for the convenience of the reader.

Proof. We denote by ρ := ρ Ψ 1 = ρ Ψ 2 the common density. Since Ψ 1 is the ground state for v 1 , then

E 1 := Ψ 1 , H N (v 1 )Ψ 1 Ψ 2 , H N (v 1 )Ψ 2 = Ψ 2 , H N (v 2 )Ψ 2 + ˆRd ρ(v 1 -v 2 ).
We also have

E 2 := Ψ 2 , H N (v 2 )Ψ 2 Ψ 1 , H N (v 1 )Ψ 1 + ˆRd ρ(v 2 -v 1 )
.

Hence E 1 -E 2 = ´Rd ρ(v 1 -v 2 ) and Ψ 2 , H N (v 1 )Ψ 2 = E 1 , so Ψ 2 is a ground state for H N (v 1 )
, and

H N (v 1 )Ψ 2 = E 1 Ψ 2 . Together with H N (v 2 )Ψ 2 = E 2 Ψ 2 ,
this gives

E 1 -E 2 + N i=1 (v 2 -v 1 )(x i ) Ψ 2 = 0.
Since, by Corollary 1.2, the normalised function Ψ 2 cannot vanish on a set of positive measure, we get

E 1 -E 2 + N i=1 (v 2 -v 1 )(x i ) = 0
almost everywhere. Integrating this relation over x 2 , . . . , x N in a bounded domain we conclude, as wanted, that v 1 -v 2 = c. Eventually, using again

E 1 -E 2 = ´Rd ρ(v 1 -v 2 ) yields c = (E 1 -E 2 )/N .
The rest of the paper is devoted to the proof of our main results.

Proof of Theorem 1.1

Step 1. Vanishing on a set of positive measure implies vanishing to infinite order at one point. We will need to pass from Ψ vanishing on a set of positive measure, which is the needed hypothesis for the Hohenberg-Kohn theorem, to Ψ vanishing to infinite order at a point, which is the usual hypothesis for strong unique continuation. We reformulate here Proposition 3 of [START_REF] De Figueiredo | Strict monotonicity of eigenvalues and unique continuation[END_REF] with slightly weaker assumptions.

Proposition 2.1 (Figueiredo-Gossez [3]). Let V ∈ L 1 loc (R n ) such that for every R > 0, there exist a R < 1 and c R > 0 such that |V | 1 B R a R (-∆) + c R . (6) 
If Ψ ∈ H 1 loc (R n ) vanishes on a set of positive measure and if -∆Ψ + V Ψ = 0 weakly, then Ψ has a zero of infinite order.

The proof is written in [START_REF] De Figueiredo | Strict monotonicity of eigenvalues and unique continuation[END_REF] under the assumption that V ∈ L n/2 loc (R n ) but after inspection, one realises that it only relies on [START_REF] Englisch | Hohenberg-Kohn theorem and non-V-representable densities[END_REF]. We remark that our assumption (1) is stronger than [START_REF] Englisch | Hohenberg-Kohn theorem and non-V-representable densities[END_REF]. This is because the square root is operator monotone, and therefore

|V | 1 B R ǫ n (-∆) 3 2 -2δ + c R ǫ 2 3 n (-∆) + c ′ R .
For this reason, we will assume for the rest of the proof that Ψ vanishes to infinite order at one point, which can be taken to be the origin without loss of generality.

Step 2. ∇Ψ and ∆Ψ vanish to infinite order as well. First we remark that if Ψ ∈ L 2 (R n ), then vanishing to infinite order at the origin is equivalent to ´B1 |x| -τ |Ψ| 2 dx being finite for every τ 0. Indeed, if Ψ vanishes to infinite order at the origin, that is ´Bǫ |Ψ| 2 c k ǫ k , then we get, after integrating over ǫ,

c k ˆ1 0 ´Bǫ |Ψ| 2 ǫ k dǫ = ˆB1 ˆ1 0 |Ψ(x)| 2 1 |x| ǫ ǫ k dǫ dx = 1 k -1 ˆB1 |Ψ(x)| 2 1 |x| k-1 -1 dx. Conversely, if ´|x| 1 |x| -τ |Ψ| 2 is finite for every τ 0, then ǫ -k ˆBǫ |Ψ| 2 ˆBǫ |x| -k |Ψ(x)| 2 dx ˆB1 |x| -k |Ψ(x)| 2 dx.
The finiteness of these integrals will play an important role later.

Lemma 2.2 (Finiteness of weighted norms)

. i) Let V ∈ L 1 loc (R n ) such that there exist a < 1 and c > 0 such that |V | 1 B 1 a(-∆) + c.
Let Ψ ∈ H 1 loc (R n ) satisfying -∆Ψ+V Ψ = 0 weakly. If Ψ vanishes to infinite order at the origin, then ∇Ψ as well.

ii) Let V ∈ L 2 loc (R n ) such that there exist a < 1 and c > 0 such that

|V | 2 1 B 1 a(-∆) 2 + c. Let Ψ ∈ H 2 loc (R n ) satisfying -∆Ψ + V Ψ = 0.
If Ψ vanishes to infinite order at the origin, then ∇Ψ and ∆Ψ as well.

Proof. i) We take ǫ ∈ (0, 1/2] and define a smooth localisation function η with support in B 2ǫ , equal to 1 in B ǫ , and such that |∇η| c/ǫ and |∆η| c/ǫ 2 . Multiplying the equation by η 2 Ψ and taking the real parts yields

-Re ˆV |ηΨ| 2 = -Re ˆΨη 2 ∆Ψ = Re ˆ∇Ψ • ∇ η 2 Ψ = ˆ|η∇Ψ| 2 + Re ˆΨ∇Ψ • ∇η 2 = ˆ|η∇Ψ| 2 + 1 2 ˆ∇ |Ψ| 2 • ∇η 2 = ˆ|η∇Ψ| 2 - 1 2 ˆ|Ψ| 2 ∆η 2 .
So by the assumption on V ,

ˆ|η∇Ψ| 2 a ˆ|∇ (ηΨ)| 2 + c ˆ|ηΨ| 2 + 1 2 ˆ|Ψ| 2 ∆η 2 = a ˆ|η∇Ψ| 2 + a ˆ|Ψ∇η| 2 + 1 -a 2 ˆ|Ψ| 2 ∆η 2 + c ˆ|ηΨ| 2 .
So, since a < 1, we get

ˆBǫ |∇Ψ| 2 ˆ|η∇Ψ| 2 c a ǫ -2 ˆB2ǫ |Ψ| 2 < c a c k 2 k ǫ k-2 ,
for any k 0, where we used that Ψ vanishes to infinite order. This proves the result.

ii) By i), we know that ∇Ψ vanishes to infinite order at the origin. We take the same function η as in i) and use the Schrödinger equation pointwise to get

ˆ|η∆Ψ| 2 = ˆ|V ηΨ| 2 a ˆ|∆ (ηΨ)| 2 + c ˆ|ηΨ| 2 a(1 + α) ˆ|η∆Ψ| 2 + 2 1 + 1 α ˆ|Ψ∆η| 2 + 4 1 + 1 α ˆ|∇Ψ • ∇η| 2 + c ˆ|ηΨ| 2 ,
for any α > 0. We take α such that a(1 + α) < 1 and thus

ˆBǫ |∆Ψ| 2 ˆ|η∆Ψ| 2 c a ǫ -4 ˆB2ǫ |Ψ| 2 + |∇Ψ| 2 < c a c k 2 k ǫ k-4 ,
which proves the result.

Step 3. Carleman estimate. One common tool for unique continuation results is the Carleman estimate. We use here a new Carleman inequality with singular weights which we have recently proved in [8, Corollary 1.2]. We define the weight function

φ(x) := -ln |x| + (-ln |x|) -1/2 . (7) 
In dimension n, for any ξ > 0 there exist constants κ ξ,n and τ 0 1 such that for any s ∈ [0, 1], any τ τ 0 and any u

∈ C ∞ c (B 1 \ {0} , C), we have 1 τ 3 2 -2s (-∆) (1-ξ)s e τ φ u L 2 (R n ) κ ξ,n e τ φ ∆u L 2 (B 1 ) . (8) 
Step 4. Proof that Ψ = 0. We consider some number τ 0 (large), and we call c any constant that does not depend on τ . We take a smooth localisation function η, equal to 1 in B 1/2 ⊂ R n , supported in B 1 , and such that 0 η 1. We take the weight function φ as in [START_REF] Garrigue | Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian[END_REF]. It verifies e φ(x) + |∇φ| c |x| -1 and |∆φ| c |x| -2 for c sufficiently large.

In step 1, we have shown that Ψ vanishes to infinite order at the origin and in step 2 we have deduced the same property for ∇Ψ and ∆Ψ. Moreover,

ˆB1 |Ψ(x)| 2 |x| τ dx + ˆB1 |∇Ψ(x)| 2 |x| τ dx + ˆB1 |∆Ψ(x)| 2 |x| τ dx < +∞,
for all τ 0. All the integrals with e τ φ are finite as well and the following calculations are valid. In addition, from the Carleman inequality (8), we know that e τ φ Ψ belongs to H 3/2 loc (R n ) for all τ . By the assumption (1) on V , we have

e τ φ V ηΨ L 2 (B 1 ) √ ǫ δ,n (-∆) 3 4 -δ e τ φ ηΨ L 2 (R n ) + c e τ φ ηΨ L 2 (B 1 )
.

Applying the Carleman estimate ( 8) with s = 3/4 and ξ = 4δ/3, we get

(-∆) 3 4 -δ e τ φ ηΨ L 2 (R n ) κ 4δ/3,n e τ φ ∆(ηΨ) L 2 (B 1 )
, and hence e τ φ V ηΨ

L 2 (B 1 )
κ 4δ/3,n √ ǫ δ,n e τ φ ∆(ηΨ)

L 2 (B 1 )
+ c e τ φ ηΨ

L 2 (B 1 )
.

Now we estimate

e τ φ ∆(ηΨ)

L 2 (B 1 )
e τ φ η∆Ψ

L 2 (B 1 )
+ 2 e τ φ ∇η • ∇Ψ

L 2 (B 1 ) + e τ φ Ψ∆η L 2 (B 1 )
e τ φ V ηΨ

L 2 (B 1 )
+ c e τ φ ∇Ψ

L 2 (B 1 \B 1/2 ) + c e τ φ Ψ L 2 (B 1 \B 1/2 ) κ 4δ/3,n √ ǫ δ,n e τ φ ∆ (ηΨ) L 2 (B 1 )
+ c e τ φ ηΨ

L 2 (B 1 )
+ ce τ φ( 1 2 ) .

We take ǫ δ,n = 1 4κ 2 4δ/3,n , and move the term e τ φ ∆(ηΨ) L 2 (B 1 ) to the left side of the inequality, which yields e τ φ ∆(ηΨ)

L 2 (B 1 ) c e τ φ ηΨ L 2 (B 1 )
+ ce τ φ( 1 2 ) . 1 In the published version of the present article [START_REF] Garrigue | Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem[END_REF], we used another Carleman estimate with the different weight φ(x) = -ln |x| + λ |x| 2 , taken from [START_REF] Tataru | Unique continuation problems for partial differential equations[END_REF]Theorem 12]. After publication, we realized that the estimate on ∆ e τ φ u was not known for this weight.

The estimate with the weight [START_REF] Garrigue | Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem[END_REF], proved in [START_REF] Garrigue | Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian[END_REF], is of remedies.

But by the Carleman inequality (8) applied with s = 0, we have

e τ φ ηΨ L 2 (B 1 ) cτ -3 2 e τ φ ∆(ηΨ) L 2 (B 1 )
, so for τ big enough so that cτ -3 2 < 1/2, we find

||ηΨ|| L 2 (B 1/2 ) e τ (φ(•)-φ( 1 2 )) ηΨ L 2 (B 1/2 ) cτ -3 2 .
Eventually, letting τ → +∞, we get Ψ = 0 almost everywhere in B 1/2 . We can then propagate this small region B 1/2 , where Ψ vanishes, to the whole space, as explained for instance in [START_REF] Reed | Methods of Modern Mathematical Physics. IV. Analysis of operators[END_REF].

Proof of Corollary 1.2

We take n = dN . Let R > 0 and Ψ ∈ H 3/2 (R dN ). We apply the inequality (5) to the function x i → Ψ(. . . , x i , . . . ) and then integrate over

x 1 , . . . , x i-1 , x i+1 , . . . , x N to get ˆBR |v(x i )| 2 |Ψ| 2 ǫ δ,d,N ˆRdN (-∆ x i ) 3 4 -δ Ψ 2 + c R ˆRdN |Ψ| 2 .
For j = i, applying (5) with a radius 2R, we have similarly

ˆBR |w(x i -x j )| 2 |Ψ| 2 ǫ δ,d,N ˆRdN (-∆ x i ) 3 4 -δ Ψ 2 + c R ˆRdN |Ψ| 2 .
We consider the many-body potential

V (x 1 , . . . , x N ) := N i=1 v(x i ) + 1 i<j N w(x i -x j ), (9) 
for which To finish, we prove that the assumption that v, w ∈ L p loc (R d ) with p > max(2d/3, 2) implies [START_REF] Engel | Density Functional Theory: An Advanced Course[END_REF]. This is very classical [START_REF] Kato | Fundamental properties of Hamiltonian operators of Schrödinger type[END_REF]23] tends to 0 when M → +∞. We can do a similar treatment for w. Therefore, this proves that for s ∈ (0, d/2) and q 1, if v, w ∈ L qd 2s loc (R d ), then for any R > 0 and any ǫ > 0, there is c ǫ,R such that

|V | 2 1 B R = 1 B R N i=1 v(x i ) + 1 i<j N w(x i -x j ) 2 N (N + 1) 2   N i=1 1 B R |v(x i )| 2 + 1 i<j N 1 B R |w(x i -x j )| 2
|v| q 1 B R + |w| q 1 B R ǫ(-∆) s + c ǫ,R in R d .
For the case d ∈ {1, 2}, we need v, w ∈ L 2 loc (R d ) because we use |V | 2 . We have the Sobolev embedding H 3/2 (R d ) ֒→ L ∞ (R d ), and the argument is the same.

3 2

 3 -2δ + N c R ,where in the last inequality we have used that

.

  Thus we can takeǫ δ,d,N = 4ǫ δ,dN N (N + 1) 2 = 1 N (N + 1) 2 κ 2 4δ/3,dN ,and we obtain the result by applying Theorem 1.1.

2 L 2 + M ||u|| 2 L 2 ,

 222 First let s ∈ (0, d/2),let v ∈ L d 2s loc (R d ), R > 0 and u ∈ H s (R d ) supported in B R ⊂ R d . We have v = v1 |v|>M + v1 |v|<M , so ˆRd |v| |u| 2 ˆRd v1 {|v|>M }∩B R |u| 2 + Mwhere, in the last line, we have used the Sobolev inequality. By dominated convergence,v1 |v|>M L d 2s (B R )