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UNIQUE CONTINUATION FOR

MANY-BODY SCHRÖDINGER OPERATORS

AND THE HOHENBERG-KOHN THEOREM

LOUIS GARRIGUE

Abstract. We prove the strong unique continuation property for many-
body Schrödinger operators with an external potential and an interac-
tion potential both in Lp

loc
(Rd), where p > 2 if d = 3 and p = max(2d/3, 2)

otherwise, independently of the number of particles. With the same as-
sumptions, we obtain the Hohenberg-Kohn theorem, which is one of the
most fundamental results in Density Functional Theory.

Density Functional Theory (DFT) is one of the most successful methods
in quantum physics and chemistry to simulate matter at the microscopic
scale [1, 4, 5]. It is a very active field of research, applied to very diverse
physical situations, going from atoms and small molecules to condensed
matter systems. One of the basis of DFT is due to Hohenberg and Kohn
in 1964 [7], who showed that in equilibrium, the knowledge of the ground
state density alone is sufficient to characterize the system. In other words,
all the information of a quantum system is contained in its ground state
one-particle density. The Hohenberg-Kohn theorem was precised by Lieb
in [19], who emphasized that it relies on a unique continuation property
(UCP) for the many-particle Hamiltonian.

A typical (strong) unique continuation result [26] is that if a wavefunction
Ψ vanishes sufficiently fast at one point and solves Schrödinger’s equation
HΨ = 0, then Ψ = 0. Unique continuation properties began to be devel-
opped by Carleman in [2] and, today, a broad range of results exists when
the operator is H = −∆+V (x), with V in some Lp

loc space. A famous result
of Jerison and Kenig [10] covers the case p = d/2 in dimension d. It was
later improved by Koch and Tataru in [12].

Unfortunately, these results are not well adapted to the situation of
Schrödinger operators describing N particles, which are defined on R

dN .
In order to apply the existing results, one would need assumptions on the
potentials depending on N . To the best of our knowledge, two works, due
to Georgescu [6] and Schechter-Simon [24], provide a unique continuation
property for many-particle Hamiltonians with an assumption on the poten-
tials independent of N . However, they require the wavefunction to vanish
on an open set (weak UCP), and for the Hohenberg-Kohn theorem strong
UCP is needed.

Recently, Laestadius and Benedicks [15] have proved the first strong UCP
result for many-body operators using ideas of Kurata [14] and Regbaoui [23],
but they need extra assumptions on the negative part of 2V + x · ∇V , which
naturally appears in the Virial identity. In [28], Zhou used the result of
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2 L. GARRIGUE

Schechter and Simon to state a weak form of the Hohenberg-Kohn theorem,
but this was already implicit in the work of Lieb [19]. We refer to [1, 13,
16,18,19,27] for a discussion on the importance of the unique continuation
principle for the Hohenberg-Kohn theorem.

In this article, we provide the first strong UCP for many-body operators
in Lp spaces and deduce the first complete proof of the Hohenberg-Kohn
theorem in these spaces. Our proof mainly uses the method of Georgescu [6],
together with Carleman estimates due to Hörmander [9] and Tataru [26]. We
also use ideas from Figueiredo-Gossez [3] to pass from the vanishing of Ψ on
a set of positive measure to the vanishing to infinite order at one point. In
short, we can handle any number N of particles living in R

d, with potentials
in Lp

loc(R
d) with

{

p > 2 if d = 3,

p = max
(

2d
3 , 2

)

if d 6= 3.

We deduce the Hohenberg-Kohn theorem with similar assumptions.

Acknowledgement. I warmly thank Mathieu Lewin, my PhD advisor, for
having supervised me during this work. This project has received funding
from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement MDFT
No 725528).

1. Main results

1.1. Strong unique continuation property. We denote by BR the ball
of radius R centered at the origin. Our main result is the following.

Theorem 1.1 (Strong UCP). Let V ∈ L2
loc(R

n) such that for every R > 0,
there exists cR > 0 such that for any u ∈ H2(Rn),

ˆ

BR

|V |2 |u|2 6 ǫn

ˆ

Rn

∣

∣

∣
(−∆)

3

4u
∣

∣

∣

2
+ cR

ˆ

Rn

|u|2 , (1)

where ǫn is a constant depending only on the dimension n. Let Ψ ∈ H2
loc(R

n)
be a solution to −∆Ψ+ VΨ = 0. If Ψ vanishes on a set of positive measure
or if it vanishes to infinite order at a point, then Ψ = 0.

The constant ǫn depends on the best constant of the Carleman inequality
(10) which we are going to use later. We recall that Ψ vanishes to infinite
order at X0 ∈ R

n when for all k > 1, there is a ck such that
ˆ

|X−X0|<ǫ
|Ψ|2 dX < ckǫ

k,

for every ǫ < 1.
The assumption (1) can be rewritten in the sense of operators, in the form

|V |2 1BR
6 ǫn(−∆)

3

2 + cR.

This is satified if V ∈ Lp
loc(R

n) with p = max(2n/3, 2) in dimension n 6= 3
and p > 2 in dimension n = 3. However, the condition (1) has a better
behavior with respect to the dimension than a condition in Lp spaces. It is
more appropriate to deal with N -body operators for which n = dN , as we
will see. We denote by BR(x) the ball of radius R and centered on x ∈ R

n.
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Assumption (1) is equivalent to saying that for any x ∈ R
n, there exists cx

such that

|V |2 1B1(x) 6 ǫ′n(−∆)
3

2 + cx in R
n. (2)

Indeed (2) follows from (1) by taking R = |x| + 1 whereas the converse
statement can be obtained by (fractional) localization, e.g. as in [17, Lemma
A.1]. We have stated our main result in R

n for simplicity, but there is a
similar statement in a connected domain Ω. One should then replace (1) by
(2) with small balls BR(x) ⊂ Ω. Our proof is really local in space.

Following Simon in [25, section C.9], we conjecture that the same result
holds under the weaker condition

|V |1BR
6 ǫn(−∆) + cR,

with Ψ in H1
loc(R

n). A weak UCP was proved by Schechter and Simon in [24]
using estimates from Protter [21], but with the stronger hypothesis

|V |2 1BR
6 ǫn(−∆) + cR.

Our Theorem 1.1 improves the weak UCP of Georgescu in [6], which has an
assumption similar to (1). He used the estimate from Theorem 8.3.1 of [8],
due to Hörmander and we instead use a more recent Carleman estimate,
presented by Tataru in [26].

1.2. Application to N-body operators. We consider N particles in R
d,

submitted to an external potential v and interacting with a two-body po-
tential w. The corresponding N -body Hamiltonian takes the form

HN (v) = −
N
∑

i=1

∆xi +

N
∑

i=1

v(xi) +
1

2

∑

16i 6=j6N

w(xi − xj), (3)

on L2(RdN ). In order to ensure that the total potential

V (x1, . . . , xN ) :=
N
∑

i=1

v(xi) +
1

2

∑

16i 6=j6N

w(xi − xj), (4)

satisfies the assumption (1) in R
dN , it is sufficient that v and w satisfy (1)

in R
d, but with an ǫ that can be taken as small as we want.

Corollary 1.2 (UCP for many-body Schrödinger operators). Assume that
the potentials satisfy

|v|2 1BR
+ |w|2 1BR

6 ǫd,N (−∆)
3

2 + cR in R
d, (5)

for all R > 0, where ǫd,N is a small constant depending only on d and N .

For instance v,w ∈ Lp
loc(R

d) with
{

p > 2 if d = 3,

p = max
(

2d
3 , 2

)

if d 6= 3.
(6)

Let Ψ ∈ H2
loc(R

dN ) be a solution to HN (v)Ψ = 0. If Ψ vanishes on a set of
positive measure or if it vanishes to infinite order at a point, then Ψ = 0.
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1.3. Hohenberg-Kohn theorem. The one-particle density of a wavefunc-
tion Ψ is defined as

ρΨ(x) :=

N
∑

i=1

ˆ

|Ψ(x1, ..., xi−1, x, xi+1, ..., xN )|2 dx1 · · · dxi−1dxi+1 · · · dxN .

From Corollary 1.2, we can deduce the following version of the Hohenberg-
Kohn theorem.

Theorem 1.3 (Hohenberg-Kohn). Let w, v1, v2 ∈ (Lp+L∞)(Rd,R), with p
as in (6). If there are two normalised eigenfunctions Ψ1 and Ψ2 of HN (v1)
and HN (v2), corresponding to the first eigenvalues, and such that ρΨ1

= ρΨ2
,

then there exists a constant c such that v1 = v2 + c.

The exact same theorem is valid if we take spin into account and assume
that Ψ1,Ψ2 are the first eigenfunctions of HN (v1),H

N (v2) in any subspace
invariant by the two operators. In particular the theorem applies to bosons
and fermions. Our result covers the physical case of Coulomb potentials as
in [27]. However, in this situation, eigenfunctions are real analytic on an
open set of full measure, and the argument is much easier.

We recall the proof from [7,19] for the convenience of the reader.

Proof. We denote by ρ := ρΨ1
= ρΨ2

the common density. Since Ψ1 is the
ground state for v1, then

E1 := (Ψ1,H
N (v1)Ψ1) 6 (Ψ2,H

N (v1)Ψ2) = (Ψ2,H
N (v2)Ψ2)+

ˆ

Rd

ρ(v1−v2).

We also have

E2 := (Ψ2,H
N (v2)Ψ2) 6 (Ψ1,H

N (v1)Ψ1) +

ˆ

Rd

ρ(v2 − v1).

Hence E1−E2 =
´

Rd ρ(v1−v2) and (Ψ2,H
N (v1)Ψ2) = E1, so Ψ2 is a ground

state forHN (v1), andHN (v1)Ψ2 = E1Ψ2. Together withHN (v2)Ψ2 = E2Ψ2,
this gives

(

E1 − E2 +

N
∑

i=1

(v2 − v1)(xi)

)

Ψ2 = 0.

Since, by Corollary 1.2, the normalised function Ψ2 cannot vanish on a set
of positive measure, we get

E1 −E2 +

N
∑

i=1

(v2 − v1)(xi) = 0 (7)

almost everywhere. Integrating this relation over x2, . . . , xN in a bounded
domain we conclude, as wanted, that v1−v2 = c. Using the initial Schrödinger
equations, we can deduce that c = (E1 − E2)/N . �

The rest of the paper is devoted to the proof of our main results.
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2. Proof of Theorem 1.1

Step 1. Vanishing on a set of positive measure implies vanishing

to infinite order at one point. We will need to pass from Ψ vanishing on
a set of positive measure, which is the needed hypothesis for the Hohenberg-
Kohn theorem, to Ψ vanishing to infinite order at a point, which is the usual
hypothesis for strong unique continuation. We reformulate here Proposition
3 of [3] with slightly weaker assumptions.

Proposition 2.1 (Figueiredo-Gossez [3]). Let V ∈ L1
loc(R

n) such that for
every R > 0, there exist aR < 1 and cR > 0 such that

|V |1BR
6 aR(−∆) + cR. (8)

If Ψ ∈ H1
loc(R

n) vanishes on a set of positive measure and if −∆Ψ+VΨ = 0
weakly, then Ψ has a zero of infinite order.

The proof is written in [3] under the assumption that V ∈ L
n/2
loc (R

n) but
after inspection, one realises that it only relies on (8). We remark that
our assumption (1) is stronger than (8). This is because the square root is
operator monotone, and therefore

|V |1BR
6

√

ǫn(−∆)
3

2 + cR 6 ǫ
2

3
n (−∆) + c′R.

For this reason, we will assume for the rest of the proof that Ψ vanishes to
infinite order at one point, which can be taken to be the origin without loss
of generality.

Step 2. ∇Ψ and ∆Ψ vanish to infinite order as well. First we remark
that if Ψ ∈ L2(Rn), then vanishing to infinite order at the origin is equivalent

to
´

B1
|x|−τ |Ψ|2 dx being finite for every τ > 0. Indeed, if Ψ vanishes

to infinite order at the origin, that is
´

Bǫ
|Ψ|2 6 ckǫ

k, then we get, after
integrating over ǫ,

ck >

ˆ 1

0

´

Bǫ
|Ψ|2

ǫk
dǫ =

ˆ

B1

ˆ 1

0
|Ψ(x)|2

1|x|6ǫ

ǫk
dǫ dx

=
1

k − 1

ˆ

B1

|Ψ(x)|2
(

1

|x|k−1
− 1

)

dx.

Conversely, if
´

|x|61 |x|
−τ |Ψ|2 is finite for every τ > 0, then

ǫ−k

ˆ

Bǫ

|Ψ|2 6
ˆ

Bǫ

|x|−k |Ψ(x)|2 dx 6

ˆ

B1

|x|−k |Ψ(x)|2 dx.

The finiteness of these integrals will play an important role later.

Lemma 2.2 (Finiteness of weighted norms).
i) Let V ∈ L1

loc(R
n) such that there exist a < 1 and c > 0 such that

|V |1B1
6 a(−∆) + c.

Let Ψ ∈ H1
loc(R

n) satisfying −∆Ψ+VΨ = 0 weakly. If Ψ vanishes to infinite
order at the origin, then ∇Ψ as well.

ii) Let V ∈ L2
loc(R

n) such that there exist a < 1 and c > 0 such that

|V |2 1B1
6 a(−∆)2 + c.
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Let Ψ ∈ H2
loc(R

n) satisfying −∆Ψ+VΨ = 0. If Ψ vanishes to infinite order
at the origin, then ∇Ψ and ∆Ψ as well.

Proof. i) We take ǫ ∈ (0, 1/2] and define a smooth localisation function
η with support in B2ǫ, equal to 1 in Bǫ, and such that |∇η| 6 c/ǫ and
|∆η| 6 c/ǫ2. Multiplying the equation by η2Ψ and taking the real parts
yields

−Re

ˆ

V |ηΨ|2 = −Re

ˆ

Ψη2∆Ψ = Re

ˆ

∇Ψ · ∇
(

η2Ψ
)

=

ˆ

|η∇Ψ|2 +Re

ˆ

Ψ∇Ψ · ∇η2 =

ˆ

|η∇Ψ|2 + 1

2

ˆ

∇ |Ψ|2 · ∇η2

=

ˆ

|η∇Ψ|2 − 1

2

ˆ

|Ψ|2∆η2.

So by the assumption on V ,
ˆ

|η∇Ψ|2 6 a

ˆ

|∇ (ηΨ)|2 + c

ˆ

|ηΨ|2 + 1

2

ˆ

|Ψ|2∆η2

= a

ˆ

|η∇Ψ|2 + a

ˆ

|Ψ∇η|2 + 1− a

2

ˆ

|Ψ|2 ∆η2 + c

ˆ

|ηΨ|2 .

So, since a < 1, we get
ˆ

Bǫ

|∇Ψ|2 6
ˆ

|η∇Ψ|2 6 caǫ
−2

ˆ

B2ǫ

|Ψ|2 < cack2
kǫk−2,

for any k > 0, where we used that Ψ vanishes to infinite order. This proves
the result.

ii) By i), we know that ∇Ψ vanishes to infinite order at the origin. We
take the same function η as in i) and use the equation pointwise to get

ˆ

|η∆Ψ|2 =
ˆ

|V ηΨ|2 6 a

ˆ

|∆(ηΨ)|2 + c

ˆ

|ηΨ|2

6 a(1 + α)

ˆ

|η∆Ψ|2 + 2

(

1 +
1

α

)
ˆ

|Ψ∆η|2

+ 4

(

1 +
1

α

)
ˆ

|∇Ψ · ∇η|2 + c

ˆ

|ηΨ|2 ,

for any α > 0. We take α such that a(1 + α) < 1/2 and thus
ˆ

Bǫ

|∆Ψ|2 6
ˆ

|η∆Ψ|2 6 caǫ
−4

ˆ

B2ǫ

(

|Ψ|2 + |∇Ψ|2
)

< cack2
kǫk−4,

which proves the result. �

Step 3. Carleman estimate. One common tool for unique continuation
results is the Carleman estimate. As in [26], we will use the weighted Sobolev
norm

||u||Hs
τ (R

n) :=
∣

∣

∣

∣

∣

∣

(

−∆+ τ2
)

s
2 u
∣

∣

∣

∣

∣

∣

L2(Rn)
.

The estimate we will need is the following.

Lemma 2.3 (Carleman inequality). Define the function

φ(x) := − ln
(

|x|+ λ |x|2
)

, (9)
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with λ sufficiently large. Then there are c, τ0 such that for any function
u ∈ H2

0 (B1) ⊂ H2(Rn), any s ∈ [0, 2] and any τ > τ0,

τ
3

2
−s
∣

∣

∣

∣

∣

∣
eτφu

∣

∣

∣

∣

∣

∣

Hs
τ (R

n)
6 κn

∣

∣

∣

∣

∣

∣
eτφ∆u

∣

∣

∣

∣

∣

∣

L2(B1)
. (10)

Proof. By Theorem 8 in [26], there are c, τ0 such that for any τ > τ0,

∣

∣

∣

∣

∣

∣
eτφu

∣

∣

∣

∣

∣

∣

2

H2
τ

= τ4
∣

∣

∣

∣

∣

∣
eτφu

∣

∣

∣

∣

∣

∣

2

L2

+ 2τ2
∣

∣

∣

∣

∣

∣
∇
(

eτφu
)∣

∣

∣

∣

∣

∣

2

L2

+
∣

∣

∣

∣

∣

∣
∆
(

eτφu
)∣

∣

∣

∣

∣

∣

2

L2

6 cτ
∣

∣

∣

∣

∣

∣eτφ∆u
∣

∣

∣

∣

∣

∣

2

L2

.

This contains
∣

∣

∣

∣eτφu
∣

∣

∣

∣

2

H0
τ

6 cτ−3
∣

∣

∣

∣eτφ∆u
∣

∣

∣

∣

2

L2 and we get (10) by Hölder’s

inequality. �

Step 4. Proof that Ψ = 0. We consider some number τ > 0 (large),
and we call c any constant that does not depend on τ . We take a smooth
localisation function η, equal to 1 in B1/2 ⊂ R

n, supported in B1, and
such that 0 6 η 6 1. We take the weight function φ as in (9). It verifies

eφ(x) + |∇φ| 6 c |x|−1 and |∆φ| 6 c |x|−2 for c sufficiently large.
In step 1, we have shown that Ψ vanishes to infinite order at the origin and

in step 2 we have deduced the same property for ∇Ψ and ∆Ψ. Moreover,
ˆ

B1

|Ψ(x)|2
|x|τ dx+

ˆ

B1

|∇Ψ(x)|2
|x|τ dx+

ˆ

B1

|∆Ψ(x)|2
|x|τ dx < +∞,

for all τ > 0. All the integrals with eτφ are finite as well and the following
calculations are valid. In addition, from the Carleman inequality (10), we
know that eτφΨ belongs to H2

loc(R
n) for all τ . Hence it also belongs to

H
3/2
loc (R

n).
By the assumption (1) on V , we have
∣

∣

∣

∣

∣

∣
eτφV ηΨ

∣

∣

∣

∣

∣

∣

L2(B1)
6

√
ǫn

∣

∣

∣

∣

∣

∣
(−∆)

3

4

(

eτφηΨ
)∣

∣

∣

∣

∣

∣

L2(Rn)
+ c

∣

∣

∣

∣

∣

∣
eτφηΨ

∣

∣

∣

∣

∣

∣

L2(B1)
.

Applying the Carleman estimate (10), we get
∣

∣

∣

∣

∣

∣(−∆)
3

4

(

eτφηΨ
)∣

∣

∣

∣

∣

∣

L2(Rn)
6 κn

∣

∣

∣

∣

∣

∣eτφ∆(ηΨ)
∣

∣

∣

∣

∣

∣

L2(B1)
,

and hence
∣

∣

∣

∣

∣

∣eτφV ηΨ
∣

∣

∣

∣

∣

∣

L2(B1)
6 κn

√
ǫn

∣

∣

∣

∣

∣

∣eτφ∆(ηΨ)
∣

∣

∣

∣

∣

∣

L2(B1)
+ c

∣

∣

∣

∣

∣

∣eτφηΨ
∣

∣

∣

∣

∣

∣

L2(B1)
.

Now we estimate
∣

∣

∣

∣

∣

∣
eτφ∆(ηΨ)

∣

∣

∣

∣

∣

∣

L2(B1)

6

∣

∣

∣

∣

∣

∣
eτφη∆Ψ

∣

∣

∣

∣

∣

∣

L2(B1)
+ 2

∣

∣

∣

∣

∣

∣
eτφ∇η · ∇Ψ

∣

∣

∣

∣

∣

∣

L2(B1)
+
∣

∣

∣

∣

∣

∣
eτφΨ∆η

∣

∣

∣

∣

∣

∣

L2(B1)

6

∣

∣

∣

∣

∣

∣eτφV ηΨ
∣

∣

∣

∣

∣

∣

L2(B1)
+ c

∣

∣

∣

∣

∣

∣eτφ∇Ψ
∣

∣

∣

∣

∣

∣

L2(B1\B1/2)
+ c

∣

∣

∣

∣

∣

∣eτφΨ
∣

∣

∣

∣

∣

∣

L2(B1\B1/2)

6 κn
√
ǫn

∣

∣

∣

∣

∣

∣eτφ∆(ηΨ)
∣

∣

∣

∣

∣

∣

L2(B1)
+ c

∣

∣

∣

∣

∣

∣eτφηΨ
∣

∣

∣

∣

∣

∣

L2(B1)
+ ceτφ(

1

2
).
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We take

ǫn =
1

4κ2n
,

and move the term
∣

∣

∣

∣eτφ∆(ηΨ)
∣

∣

∣

∣

L2(B1)
to the left side of the inequality, which

yields
∣

∣

∣

∣

∣

∣eτφ∆(ηΨ)
∣

∣

∣

∣

∣

∣

L2(B1)
6 c

∣

∣

∣

∣

∣

∣eτφηΨ
∣

∣

∣

∣

∣

∣

L2(B1)
+ ceτφ(

1

2
).

But by the Carleman inequality (10) applied with s = 0, we have
∣

∣

∣

∣

∣

∣eτφηΨ
∣

∣

∣

∣

∣

∣

L2(B1)
6 cτ−

3

2

∣

∣

∣

∣

∣

∣eτφ∆(ηΨ)
∣

∣

∣

∣

∣

∣

L2(B1)
,

so eventually, for τ big enough so that cτ−
3

2 < 1/2, we find

||ηΨ||L2(B1/2)
6

∣

∣

∣

∣

∣

∣
eτ(φ(·)−φ( 1

2
))ηΨ

∣

∣

∣

∣

∣

∣

L2(B1/2)
6 cτ−

3

2 .

Eventually, letting τ → +∞, we get Ψ = 0 almost everywhere in B1/2. We
can then propagate this small region B1/2, where Ψ vanishes, to the whole
space, as explained for instance in [22].

3. Proof of Corollary 1.2

We take n = dN . Let R > 0 and Ψ ∈ Hs(RdN ). We apply the in-
equality (5) to the function xi 7→ Ψ(. . . , xi, . . . ) and then integrate over
x1, . . . , xi−1, xi+1, . . . , xN to get

ˆ

BR

|v(xi)|2 |Ψ|2 6 ǫd,N

ˆ

RdN

∣

∣

∣(−∆xi)
3

4Ψ
∣

∣

∣

2
+ cR

ˆ

RdN

|Ψ|2 .

For j 6= i, applying (5) with a radius 2R, we have similarly
ˆ

BR

|w(xi − xj)|2 |Ψ|2 6 ǫd,N

ˆ

RdN

∣

∣

∣(−∆xi)
3

4Ψ
∣

∣

∣

2
+ cR

ˆ

RdN

|Ψ|2 .

We consider the many-body potential

V (x1, . . . , xN ) :=

N
∑

i=1

v(xi) +
1

2

∑

16i 6=j6N

w(xi − xj), (11)

for which

|V |2 1BR
= 1BR

∣

∣

∣

∣

∣

∣

N
∑

i=1

v(xi) +
1

2

∑

16i 6=j6N

w(xi − xj)

∣

∣

∣

∣

∣

∣

2

6
N(N + 1)

2





N
∑

i=1

1BR
|v(xi)|2 +

1

2

∑

16i 6=j6N

1BR
|w(xi − xj)|2





6
N(N + 1)2

4

(

ǫd,N

N
∑

i=1

(−∆xi)
3

2 +NcR

)

6
N(N + 1)2

4

(

ǫd,N (−∆)
3

2 +NcR

)

,
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where in the last inequality we have used that
∑N

i=1 |ki|3 6

(

∑N
i=1 |ki|2

) 3

2

.

Thus we can take

ǫd,N =
4ǫdN

N(N + 1)2
=

1

N(N + 1)2κ2dN
,

and we obtain the result by applying Theorem 1.1.
To finish, let us prove that assumption v,w ∈ Lp

loc(R
d) with p as in (6)

implies (5). This is very classical [11, 20]. First let s ∈ (0, d/2), let v ∈
L

d
2s
loc(R

d), R > 0 and u ∈ Hs(Rd) supported in BR ⊂ R
d. We have

v = v1|v|>M + v1|v|<M , so
ˆ

Rd

|v| |u|2 6
ˆ

Rd

∣

∣v1{|v|>M}∩BR

∣

∣ |u|2 +M

ˆ

Rd

|u|2

6
∣

∣

∣

∣v1|v|>M

∣

∣

∣

∣

L
d
2s (BR)

||u||2
L

2d
d−2s

+M ||u||2L2

6 cd,s
∣

∣

∣

∣v1|v|>M

∣

∣

∣

∣

L
d
2s (BR)

∣

∣

∣

∣

∣

∣
(−∆)

s
2u
∣

∣

∣

∣

∣

∣

2

L2

+M ||u||2L2 ,

where, in the last line, we have used the Sobolev inequality. By dominated
convergence,

∣

∣

∣

∣v1|v|>M

∣

∣

∣

∣

L
d
2s (BR)

tends to 0 when M → +∞. We can do a

similar treatment for w. Therefore, this proves that for s ∈ (0, d/2) and

q > 1, if v,w ∈ L
qd
2s
loc(R

d), then for any R > 0 and any ǫ > 0, there is cǫ,R
such that

|v|q 1BR
+ |w|q 1BR

6 ǫ(−∆)s + cǫ,R in R
d .

For the case d ∈ {1, 2}, we need v,w ∈ L2
loc(R

d) because we use |V |2. We

have the Sobolev embedding H3/2(Rd) →֒ L∞(Rd), and the argument is the
same.
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