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Classification Based on Euclidean Distance
Distribution for Blind Identification of Error

Correcting Codes in Non-Cooperative Contexts
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and Mélanie Marazin, Member, IEEE,

Abstract—The use of channel code is mandatory in current
digital communication systems. It allows to access the information
on the receiver side despite the presence of noise. In this paper,
we are interested in the blind identification of the parameters
of an error correcting code from a received noisy data stream.
Literature provides a large amount of contributions for this
problem in the hard-decision case but few in the soft-decision
case. It is well known that soft-decision methods allow significant
gain in decoding techniques. Thence, we propose an algorithm
which is able to identify the length of a code through a
classification process from the bits likelihood values. It highlights
a difference of behavior between an i.i.d. sequence and an
encoded one. This method does not rely on any a priori knowledge
about the encoder involved. Indeed, the distribution of n-length
code words in an n-dimensional space depends on the encoder
characteristics. Some areas of this n-dimensional space are left
vacant because of the redundancy added by the encoder. Despite
the presence of noise, it is still possible to detect this phenomenon.
Furthermore, an adaptation of a collisions method based on
the birthday paradox gives us access to an estimation of the
code dimension. Finally, we investigate the performance of this
estimation methods to show their efficiency.

Index Terms—Blind identification, Coding, Electronic Warfare,
Interception, Non-Cooperative Context.

I. INTRODUCTION

IN current telecommunication systems, the use of error cor-
recting codes allows to retrieve information by correcting

errors due to a noisy channel. To perform such a correction,
redundant information is added before sending it through the
channel. On the receiver side, after the demodulation and
synchronization processes, the sent sequences are decoded and
some (or all) errors are corrected.

In traditional schemes, transmission parameters are known
by the transmitter and the receiver. In non-cooperative context,
such as electronic warfare, a third party needs to blindly re-
construct the emitted message from the received signal without
knowing the coding parameters. In AMC, we may have partial
information available (i.e. list of potential code used). The
proposed method could be used in any of these cases with
little adaptations. It estimates the code length and rate. We
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assume here that the acquired signal has been successfully
demodulated and frame synchronized. Therefore, we consider
a BPSK-modulated stream at the output of an additive white
Gaussian noise (AWGN) channel. In this context, the problem
considered here is formulated as follows: “given this received
signal, how do we identify the parameters of the involved
encoder?”. We aim to blindly determine the parameters of a
binary linear block code: namely, its length and its dimension.
In this paper, we extend some concepts of the hard-decision
context to the soft-decision context. For instance, we adapt
the collision counting principle proposed in [1]: we count
an amount of classes instead. Each class can be viewed as
colliding elements in an n-dimensional space.

Over the last few years, many methods using hard bits infor-
mation to identify the channel coding have been proposed for
linear codes [2]–[9], LDPC codes [5], [6], convolutional codes
[1], [8], [10]–[15], turbo-codes [16], [17], Reed-Solomon [18]
and cyclic codes [19]. More recently, new methods based on
soft bits information have been proposed [20], [21]. A Log
Likelihood Ratio’s (LLR) metrics analysis is performed to
identify an encoder from a candidate set in the context of the
Adaptive Modulation and Coding (AMC). These algorithms
establish the likelihood of each candidate code and choose
the most likely. The LLR computation is obtained from the
syndrome posterior probability (i.e. the probability that all the
parity check relations of the code are satisfied). Furthermore,
some techniques such as [22] allows the receiver to reconstruct
the sub-coder of a turbo code. However, Yu et al. assume
the sub-code parameters to be known (length, dimension and
constraint length). The blind identification of the encoder
parameters is a prerequisite to blind reconstruction. The main
objective of this article is to propose an answer to this need.

In the context of electronic warfare, a catalogue of possible
candidate codes may not be available and the encoder param-
eters remain the first elements to identify. It is well known
that soft-decision methods allow significant gain in decoding
techniques. Thence, we propose an algorithm which is able to
identify the length of a code through a classification process
from the bits likelihood values. The noisy intercepted stream is
divided into contiguous blocks of equal length. They are then
regrouped into classes. This classification is operated with a
Euclidean distance criterion. A threshold is established, if the
distance between two blocks is lower than this threshold, they
belong to the same class. When the block size reaches the
code length, the number of classes drops: namely the number



2

Encoder Channel
m s y

Transmitter

Cooperative

Non-cooperative
known

unknown
unknown
unknown

known
known

Fig. 1. Comparison of cooperative and non-cooperative contexts

of classes deficiency principle. We define blocks sharing a class
as colliding blocks. Also, the amount of collisions is related
to the code dimension. From this, we manage to estimate the
code dimension. Indeed, with the proper distance threshold
the noisy words distribution is related to a classic birthday
problem.

In the following, we give both formal and intuitive de-
finitions of the number of classes deficiency. Section II is
related to the code length estimation. We present the general
aspects of the classification method and a detailed description
of the associated algorithm. We also give specifications con-
cerning the threshold on the Euclidean distances. Section III
deals with the code dimension estimation. Finally, to confirm
the interest in this new algorithm, some results are discussed
in section IV.

A. Model and notations

Without loss of generality, we consider C(nc, kc), a binary
linear encoder which length and dimension are respectively
denoted nc and kc with kc < nc on the transmitter side.
The transmission model is described by the Figure 1. In
the non-cooperative context, the intercepted stream y is the
only available knowledge about the transmission from the
eavesdropper point of view.

On the receiver side, we consider we access a reliability
measure from each intercepted bit: a LLR. We therefore
consider that the received data result from a BPSK modulation
and from passing through an additive white Gaussian noise
channel. This channel is characterized with its noise variance
σ2
w. As a matter of clarification, we assume that synchroniza-

tion is perfect, that the resulting signal is demodulated and that
we access LLR of the intercepted bits. Finally, the intercepted
noisy signal y is made up of N samples:

y(k) = s(k) + w(k),∀k ∈ [[0, N − 1]] (1)

where s(k) (resp. w(k)) is the kth elements of the sent signal
(resp. the noise). The sequence s results from a concatenation
of BPSK-modulated code words: for all k, s(k) is in {±1}. For
instance, the ith vector of n consecutive samples is denoted
si = [s(i ·n), · · · , s(i ·n+n−1)]. The received signal samples
y(k) are proportional to the LLR of the sent samples s(k).
Finally, we assume that the synchronization is known. More
specifically, the received data stream begin with a full code
word.

(a) (b)

Fig. 2. Observation of noisy words in 3-dimensional Euclidean space: (a)
without encoding, (b) with encoding nc = 3 and kc = 2.

In the following, we denote by P(E) and by E(X), the
probability of an event E and the expectation of a random
variable X respectively. A random variable is always repre-
sented by a capital letter while lower case letter stands for the
corresponding deterministic value. The uniform distribution on
a set I is identified by U(I). Likewise, N (µ, σ2) stands for
the normal distribution of mean µ and variance σ2 whereas
χ2(n) describes a chi-squared distribution with n degrees of
freedom. Moreover, Euclidean distances between two vectors
a and b is written as dE(a, b).

B. Number of Classes Deficiency

Our method is based on geometric considerations. Intui-
tively, if we were able to represent an infinite number of
noisy received code words in a nc-dimensional Euclidean
space, their positions would be altered by the AWGN channel
effects. In fact, each code word would “move to a nearby
point according to a spherical Gaussian distribution” [23].
Nevertheless, we would notice the formation of agglomerates
(if the noise power is not too high). These agglomerates
concentrate around the initial positions of the non-noisy code
words. Furthermore, we can predict that this space is sparse
compared to the i.i.d. case. Indeed, due to the redundancy
induced by the encoder, only 2kc possible code words are
placed in a space which is able to contain 2nc . To illustrate
this phenomena, Figure 2 compares two distribution cases in
a 3-dimensional Euclidean space: without encoding 2(a), with
encoding 2(b). In the case 2(b) it visually seems to be easier to
discriminate the agglomerates (and thus the initial code words
positions) thanks to the the sparsity despite the effects of noise.

In this paper, we aim to detect the code length nc through
a classification process. Each agglomerate is a class. A first
definition of the Number of Classes Deficiency could be:
it is a phenomena due to the redundancy induced by the
encoder where the quantity of classes is less than expected in
a given n-dimensional Euclidean space. We need to quantify
this deficiency:

Definition 1. Number of Classes Deficiency (NCD):
Let us define random variables Z(n) counting the number

of classes in a given n-dimensional Euclidean space for a
classification of i.i.d. n-tuples and zc(n) the number of classes
observed from the encoded stream. The deficiency is:

∆NCD(n) = E(Z(n))− zc(n) (2)
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In the next section, we develop our criterion based on
Definition 1 to identify the code length nc.

II. THE CODE LENGTH ESTIMATION: nc
A. The classification process

To estimate the code length, we propose to find the di-
mension n for which we have the larger class deficiency. For
this purpose, the noisy intercepted stream of N samples is
split in L contiguous blocks B(n)

i of length n as described by
equality (3), with L =

⌊
N
n

⌋
and i ∈ [[0, L− 1]].

B
(n)
i = [y(i · n), · · · , y(i · n+ n− 1)] (3)

Then, a classification process based on a Euclidean distance
criterion is operated on these blocks through two main steps
for each value of n:

1. The first block B(n)
0 defines the first element of the first

class: we name it a reference word R0. For each i 6= 0,
the following blocks B(n)

i are compared to R0: if the
Euclidean distance between R0 and B

(n)
i is below a

chosen threshold β, then they are parts of the same class.
Otherwise, if this distance is larger than 2β, then B

(n)
i

becomes the reference word of an other class. When a
distance lies between β and 2β, the involved block is
put aside until the others has been handled. This way
of choosing the reference words allows to minimize the
class overlapping.

2. The put aside blocks are classified with the same process.
Nevertheless, the choice of a new reference word is less
constrained. Its distance to an existing reference word can
lie between β and 2β.

Once it enters a class, a block is removed from the set of all
the created blocks, i.e. each block belongs to only one class.
Finally, for each n, we get access to the number of classes
zc(n) such as:

zc(n) = Card(R(n)) (4)

where R(n) is the set of all reference words for a given n,
and Card(R(n)) his cardinal.

A first appreciation of the results given by the classification
process is depicted with Figure 3(a). Here, the chosen encoder
is an irregular LDPC code which length and rate are nc = 25
and ρ = 2

5 respectively. For this example, N = 25000 bits
have been sent. The expectation of the number of classes in
the absence of encoding (black squares) and the numbers of
classes obtained in the encoded case (red cercles) for each
block size n are compared. We notice that the respective
amounts of classes in the coded and in the uncoded cases
roughly match for each block size n, except for one. At
n = nc = 25, the code generates an NCD phenomenon. Due to
the limitation on the number of received bits N , for n lying
between 13 and 30, the value of E(Z(n)) decreases. More
precisely, in this case bNn c is an upper bound of E(Z(n)).

Nevertheless, because of the particular shape of the curve,
this result is not directly exploitable. Moreover, we notice
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Fig. 3. The NCD highlighting: (a) comparison of the E(Z(n)) and zc(n),
(b) normalized NCD

some subsidiary deficiencies for different values of n between
10 and 15. These are due to the particular structure of the con-
sidered LDPC code. To automatically detect the preponderant
deficiency, we implement a normalized NCD (Definition 2).
The effects of this normalization are illustrated by Figure 3(b)
which reveals the most significant deficiency.

Definition 2. The Normalized Number of Classes Deficiency
ϕ:

ϕ(n) =
E(Z(n))− zc(n)

E(Z(n))

=
∆NCD(n)

E(Z(n))
(5)

This definition leads to the following detection criterion:

n̂c = arg max
n

(ϕ(n)) (6)

In this presentation of the principle of our algorithm, we
willingly skipped the definition of the threshold β. It seems
obvious that the choice of this parameter value is central
in our method. Consequently, in the following, we highlight
the dependencies to the threshold β: the number of classes
observed from the encoded stream zc(n) and the random
variable Z(n) are denoted zc(n, β) and Z(n)

β respectively. The
normalized NCD becomes: ϕ(n, β).
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B. Characterization of the threshold β

At first, the ideal approach should be to directly process
the classification algorithm for an optimal threshold βopt. We
consider that when the normalized deficiency ϕ is maximum,
β is optimal. For example, with the same code as previously
(nc = 25, kc = 10), we can empirically determine the
best threshold as showed Figure 4 for n = nc. The optimal
threshold is βopt ≈ 3.7. A way to obtain the optimal threshold
would be to solve the following problem:

βopt = arg max
β

E (ϕ(n, β)) (7)

Unfortunately, we are not able to provide an analytical ex-
pression for βopt since it depends on the code itself. Thereby,
instead of choosing a fixed threshold, we sweep on several
values with a chosen step.

From Figure 4, we observe that ϕ(n = nc, β) = 0 for
extreme values of β. On one hand, for the largest thresholds,
all blocks are agglomerated in one class in both encoded and
non-encoded cases. On the other hand, when β tends to 0, each
single block is considered as a class. Hence, we eliminate some
values of β to limit the computing effort. First, it seems useless
to process the classification for β < mini 6=j(dE(B

(n)
i , B

(n)
j )).

There would be as many classes as created blocks. In this con-
text, it would be impossible to observe an NCD. It provides us
the minimum threshold: βmin(n) = mini 6=j(dE(B

(n)
i , B

(n)
j )).

Second, there is no use to choose β greater than the average
distance between two blocks. Indeed, let us define Xd2 the
random variable representing the squared Euclidean distance
between two randomly chosen blocks. According to an appro-
ximation based on the Central Limit Theorem [24], for a large
n, Xd2 is normally distributed with mean µd2 and variance
σ2
d2 . Indeed, Xd2 is a sum of i.i.d. equally normally distributed

random variables (more details are available in Appendix A).
In other words:

P(d2E(B
(n)
i , B

(n)
j ) 6 µd2) =

1

2
(8)

It means that there is one chance over two that two randomly
chosen blocks belong to the same class when β2 reaches µd2 .
For this reason, in our classification process, exceeding β =√
µd2 gives too much agglomeration power to each block. This
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Fig. 5. Observation of aβ(n) · ϕ(n, β) with the limitation region for the
values of β

ascertainment leads us to an upper bound for β: βmax(n) =√
µd2 . Finally, for a fixed n:

min
i 6=j

(dE(B
(n)
i , B

(n)
j )) 6 β 6

√
µd2 (9)

We have now access to several values of ϕ(n, β) for β
lying between βmin and βmax for each block size. To take a
decision about the preponderance of a deficiency, we define a
new normalized NCD:

Definition 3. The Steady Normalized Number of Classes
Deficiency ϕs:

ϕs(n) =
∑

β∈[βmin(n), βmax(n)]

aβ(n) · ϕ(n, β) (10)

with aβ(n) the normalization coefficient depending on the
value taken by β for a specific n.

aβ(n) =
Z

(n)
β −minβ(Z

(n)
β )

maxβ(Z
(n)
β )−minβ(Z

(n)
β )

(11)

Figure 5 represents aβ(n) · ϕ(n, β) on a grid defined for
n ∈ [[10, 30]] and for β lying between βmin(n) and βmax(n)]
with a step of ∆β = 0.5. More details about the influence
of ∆β and its impact on the code length estimation are
available in the result section. In Figure 5, the points of
greatest amplitude correspond to the block size n = nc = 25
and the threshold lying between β = 2.5 and β = 5.5. For
β > βmax and β < βmin, aβ(n)·ϕ(n, β) is not estimated (and
it is replaced by a 0 in Figure 5). In this example, we observe
that the choice of βmax and βmin reduces the computation
time without eliminating any value of interest.
ϕs(n) is obtained by summing each column depicted in

Figure 5 (see Definition 3). For a fixed n, ϕs(n) is the
weighted sum of several values of ϕ(n, β). Each normaliza-
tion coefficient aβ(n) allows to scale each value of ϕ(n, β)
according to its statistical reliability (the more created classes,
the more reliable the measured deficiency). Finally, an NCD
must be both preponderant and reliable to be discriminant.
Figure 6 represents ϕs versus n. The greater deficiency is
obtained for n = nc. Indeed, the detection criterion derives
from the Definition 3:

n̂c = arg max
n

(ϕs(n)) (12)
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C. Blind identification algorithm

The blind identification process is summarized by the Al-
gorithm 1. In this subsection, we give a detailed description of
the classification process: the steps 1 and 2. They correspond
to the two main steps described in subsection II-A. For a block
size n and a distance threshold β, the objective is to compute
a number of classes zc(n, β) = Card(R(n)). As defined
previously, R(n) is the set of all reference words for given n
and β. Since Rz is the reference word of the zth created class:
R(n) = {Rz|z ∈ [[0, zc(n, β)−1]]}. These reference words are
selected among the L created blocks through step 1 and step
2. Moreover, they agglomerate other blocks: it creates classes.
A block is considered as classified when it is a reference word
or when it is agglomerated by one of them. For a given n we
denote by I(n)b (k) a set of blocks subscripts. It is defined as
follows:

I(n)b (k) = {i| dE(B
(n)
k , B

(n)
i ) 6 b} (13)

In step 1, the first reference is the block R0 = B
(n)
0

(line 8). I(n)β (0) represents the subscripts of all the blocks
agglomerated by B(n)

0 . The next reference word R1 is chosen
among the remaining unclassified blocks. Furthermore, to
minimize the class overlapping, R1 must be at a distance
of at least 2β from R0. Finally, every blocks in I(n)2β (0) are
ineligible to be the next reference words. In step 1, for each
while loop, the classified blocks (I(n)β (k)) and the blocks in
I(n)2β (k) are respectively buffered in F (n)

β and in F (n)
2β (line 11

and 12 respectively). For each loop, the next chosen reference
is the first block distant of at least 2β from every previous
references (line 13).

In step 2, the same classification is processed with the
remaining unclassified blocks from step 1 (i.e. with the blocks
in {0, 1, · · · , L−1}\F (n)

β ). The first reference word is chosen
line 15 and the following ones are selected line 19. At the end
of step 2, every blocks has been classified in zc(n, β) classes.

About the time complexity: The computation cost mainly
depends on the amount of operations needed to compute the
Euclidean distances. Indeed, for a fixed n, all the two by two
distances between blocks are computed. It performs n multi-
plications and 2n−1 additions for each of the bN/nc(bN/nc−1)2

Euclidean distances. Therefore, about (3n−1) bN/nc(bN/nc−1)2

Algorithm 1 BLIND IDENTIFICATION ALGORITHM

Require: y, nmin, nmax
1· for n = nmin to nmax do
2· Create L n-length blocks B(n)

i from y with respect to
(3)

3· Compute βmin(n) and βmax(n)
4· for β = βmin(n) to βmax(n) do
5· F (n)

2β = ∅
6· F (n)

β = ∅
7· R(n) = ∅
8· k = 0
9· while Card(F (n)

2β ) < L do
10· R(n) ← R(n) ∪ {B(n)

k }
11· F (n)

β ← F (n)
β ∪ I(n)β (k)


Step 1.

12· F (n)
2β ← F

(n)
2β ∪ I

(n)
2β (k)

13· k = min({0, 1, · · · , L− 1} \ F (n)
2β )

14· end while
15· k = min({1, · · · , L} \ F (n)

β )

16· while Card(F (n)
β ) < L do

17· R(n) ← R(n) ∪ {B(n)
k }

18· F (n)
β ← F (n)

β ∪ I(n)β (k)

 Step 2.
19· k = min({0, 1, · · · , L− 1} \ F (n)

β )
20· end while
21· zc(n, β) = Card(R(n))
22· Compute ϕ(n, β)
23· end for
24· Compute ϕs(n)
25· end for
26· n̂c = arg maxn(ϕs(n))
Ensure: n̂c

operations are needed to compute the Euclidean distances: this
algorithm has a polynomial time complexity of O(nN2). As
a matter of clarification: the amount of intercepted bits has a
great influence on the computation time. The more intercepted
bits, the more created blocks, the more two by two distances
to compute.

In comparison, the method proposed in [2] is based on a
Gauss-Jordan elimination. This algorithm is known to have a
polynomial complexity of O(n3), where n is the size of the
consecutive created matrices. To work properly our method
needs that the amount of created blocks to be large enough:
n � L. As a conclusion the elimination based algorithm is
less complex than the deficiency based algorithm since n2 �
N . However, in the result section we show that this loss in
complexity is compensated by an enhanced efficiency.

As an illustration, we propose some tests about the compu-
tation time in the result section.

III. THE CODE DIMENSION ESTIMATION: kc

In this section, we propose a method to estimate the code
dimension kc. From the blind identification algorithm, we
suppose that we have now access to the correct code length
nc. With a perfect classification process, we could assume that
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each created class is a reliable representation of one given code
word. This assumption allows us to see the number of classes
as the number of different intercepted code words. Therefore,
with infinite observation time, the measured deficiency should
be 2nc − 2kc in a nc-dimensional space where there is only
2kc code words and we would immediately have an estimate
of kc.

Since the channel observation time is finite, we would
probably not get one representation of each code word. Fur-
thermore, our classification process does not provide a unique
value for the deficiency. In this context, we use some results
of the well known birthday problem by counting collisions
as in [1]. Indeed, because of the redundancy induced by the
encoder, the expected number of collisions is related to kc.
When the distance between two blocks of size nc is less than
a given threshold βcol, we consider that there is a collision. In
the next subsections, we exhibit the expectation of the number
of collisions and we define βcol.

A. Expectation of the number of collisions E(Xcol)

In absence of noise, for K = 2kc possible code words, the
probability that a random pair of blocks comes from the same
code word is 1

K . For L = b Nnc
c intercepted code words, there

is L·(L−1)
2 computable distances to detect the collisions. The

resulting expectation for the value of the number of collisions
is: E(Xcol) = L·(L−1)

2
1
K . In our case, we take noise into

account. Let denote by Pcol = P(dE(B
(nc)
i , B

(nc)
j ) ≤ βcol)

the probability that two blocks B(nc)
i and B

(nc)
j are in the

same class (i.e. collide). Therefore, the expectation for the
total number of collisions Xcol becomes:

E(Xcol) =
L(L− 1)

2
·Pcol (14)

From the total probability theorem:

Pcol = P(si = sj)Pd + P(si 6= sj)Pfa (15)

with:

P(si = sj) = 1− P(si 6= sj) =
1

K

Pd represents the probability of true collision, i.e. the prob-
ability that two blocks collide given that they both are noisy
versions of the same code word. For our purpose, those two
blocks are meant to collide. The expression of the probability
Pd derives from a chi-squared distribution with nc degrees of
freedom:

Pd = P(dE(B
(nc)
i , B

(nc)
j ) ≤ βcol| si = sj)

=
γ
(
nc

2 ,
β2
col

4σ2
w

)
Γ
(
nc

2

) (16)

Here, Γ (·) and γ (·, ·) respectively denotes the gamma func-
tion and the incomplete gamma function (more detail in
Appendix B). Pfa is the probability of false collision, i.e.
the probability that two blocks collide given that they do not
come from the same code word:

Pfa = P(dE(B
(nc)
i , B

(nc)
j ) ≤ βcol| si 6= sj) (17)

TABLE I
VALUES OF THE THRESHOLD βcol FOR DIFFERENT Eb/N0

Eb/N0 -9 -7 -5 -3 -1 1 3 5

βcol 8.5 6.8 5.4 4.3 3.4 2.7 2.1 1.7

Since, we do not know the code words distribution, we can
not have an expression for Pfa. However, we assume that Pfa
is negligible for β = βcol, especially for high signal-to-noise
ratio (it is discussed in the result section). Therefore, we use
the following approximation in our estimation process:

Pcol ≈
1

K
·Pd (18)

Finally, from the intercepted sequence, we compute the
empirical number of collisions:

x̂col = Card
(
{(i, j)16i<j6L : dE(B

(nc)
i , B

(nc)
j ) 6 βcol}

)
(19)

Therefore, from equations (14) and (18):

x̂col ≈
L(L− 1)

2
· 1

K
·Pd (20)

Since K = 2kc and kc is an integer, we propose the following
estimator for the code dimension:

k̂c =

⌊
log2

(
L(L− 1)

2x̂col
·Pd

)⌉
(21)

where bxe is the nearest integer to x. The empirical number
of collisions x̂col depends on a collision threshold βcol which
is relative to the probability Pd.

B. Choice of the collision threshold βcol
To obtain a representative number of collisions, we aim

at finding the distance for which two initially identical code
words are colliding. That is, we define this distance as:

βcol , arg max
β∈[βmin, βmax]

f

(
β2

2σ2
w

, nc

)
(22)

where f(x, n) is the probability density function associated to
the chi-squared distribution with degrees of freedom n. As a
matter of clarification:

f(x, n) =

(
1
2

)n
2

Γ
(
n
2

) (x)
n
2−1 e−

x
2 (23)

The equality (22) defines βcol as the distance maximizing the
density of truly colliding code words. Even if Pfa is unknown,
this value for βcol ensure that the number of true collisions is
large. Let us now consider the same LDPC code with nc = 25
and kc = 10. For each Eb/N0 value, the collision threshold
βcol is defined with respect to (22). Some of these thresholds
are gathered in Table I.

The greater the noise, the higher the collision threshold.
Indeed, on one hand, when the amount of noise increases,
each code word deviates even more from its original position.
It results in the increasing of the mean distance between two
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identical code words. On the other hand, the probability of
false collision increases, which leads to errors of estimation.
It will be discussed in the section IV.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
methods. We highlight the performance of our algorithm by
confronting it to a method based on hard decision taken over
the received sequence of bits [2]. In the following, GEADC
refers to this methods and stands for Gaussian Elimination
with Almost Dependent Columns. To illustrate our results, we
use three LDPC codes, C1: (nc = 25, kc = 10), C2: (nc = 25,
kc = 20) and C3: (nc = 15, kc = 10). Their respective rates
are 2

5 , 4
5 and 2

3 . The choice of this three codes is motivated
by the will to apprehend the influence of the code rate on the
performance of our method. To test the time complexity of
our algorithm, we also give figures for a longer LDPC code
C4: (nc = 96, kc = 48).

A. Detection of nc
In this subsection, we check that our method is relevant.

For C1, C2 and C3, we compare the probability of correct
estimation for the code length (denoted Pnc ) with our method
on one side (denoted NCD), and with the GEADC method on
the other side for 1000 code words. The GEADC method is
computed for 5 virtualization iterations. At each iteration, the
algorithm operates a random permutation on the lines of the
interception matrix. This permutation improves the estimation
because the Gauss elimination is performed on another set
of data. A thousand Monte-Carlo trials have been run to plot
the curves in Figure 7: 7(a), 7(b) and 7(c) are respectively
concerned with C1, C2 and C3. During each trial, a new
intercepted bits stream has been randomly generated: noise
and information bits. The grid step for β is fixed at 0.5.

From Figure 7, we observe that our method based on LLRs
outperforms the Gauss reduction method whatever the code
chosen. For a probability of correct estimation close to 0.8,
the gain with our method is about 4 dB for C1, and 3 dB
for C2 and C3. Furthermore, we notice that the smaller the
code rate, the better the performance. On one side, when nc
is fixed (nc = 25 for C1 and C2), the mean distance between
classes tends to be greater for the code with fewer code words
(C1). On the other side, when kc is fixed (kc = 10 for C1 and
C3), the mean distance is greater when the code length grows
since all the code words are on the surface of a nc-sphere
(with radius

√
nc).

1) About the observation time: The observation time has
a significant impact on the probability of detection. Indeed,
the more data, the more accurate the detection. For different
signal-to-noise ratio, Figure 8 shows the detection probability
versus the number of intercepted code words b Nnc

c for C1,
C2 and C3. For each code, we choose two points of interest.
For 1000 code words and ∆β = 0.5, we focus on the
lowest Eb/N0 for which the algorithm reaches Pnc

= 1 and
the one for Pnc ≈ 0.5. It allows us to observe gains (or
losses) when increasing (or decreasing respectively) the length
of intercepted sequence. All the three codes have the same

−10 −8 −6 −4 −2 0 2 4
0

0.5

1

Eb/N0 (dB)

P
n
c

NCD
GEADC

(a)

−10 −8 −6 −4 −2 0 2 4
0

0.5

1

Eb/N0 (dB)
P

n
c

NCD
GEADC

(b)

−10 −8 −6 −4 −2 0 2 4
0

0.5

1

Eb/N0 (dB)

P
n
c

NCD
GEADC

(c)

Fig. 7. Comparison of the soft and hard information based methods (red
triangles and black circles respectively) for C1 (7(a)), C2 (7(b)) and C3

(7(c))

behavior. For instance, doubling the amount b Nnc
c from 1000

to 2000 almost double the probability of correct identification
for C1 and C3 at lowest Eb/N0s. Both codes have the same
dimension kc = 10 and these orders of magnitude for b Nnc

c
deeply affects the population inside classes since there are
210 different code words. For C2 (kc = 20), the effect is less
significant: more words are needed to reach the same perfor-
mance. Reducing the quantity of received code words has the
opposite impact: the population inside classes decreases and
the distribution of the blocks in the n-dimensional space tends
to be uniform even if n = nc.

Finally, maximizing the number of treated bits improves the
performance of our algorithm. Nevertheless, the computation
time increases significantly with the quantity of intercepted
bits. Indeed, at each iteration on the block size n, the number
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Fig. 8. Impact of the quantity of received code words for C1 (8(a)), C2

(8(b)) and C3 (8(c))

of computed distances is b
N
n c(bNn c−1)

2 .

2) About the threshold grid step size ∆β: The quality of
the code length estimation also depends on the choice of the
threshold β. However, being unable to theoretically determine
an optimal threshold, we explore and compute ϕ(n, β) for
several values of β. It leads us to the choice of a grid step
∆β. Figure 9 depicts the impact of ∆β on the probability of
detection for C1, C2 and C3 at the same respective signal-
to-noise ratios as previously. The thinner ∆β, the better the
detection, but it asks then a bigger computing effort. The
choice of the threshold step is related to the code rate. For
a fixed nc, when the code rate gets larger, the redundancy
decreases. In this case, it is not possible to roughly look
for classes because there are fewer unoccupied locations in
the nc-dimensional space. Here, C2 requires to choose the

0 0.5 1 1.5 2
0

0.5

1

∆β

P
n
c

C1: −8 dB
C1: −5 dB

(a)

0 0.5 1 1.5 2
0

0.5

1

∆β
P

n
c

C2: −4 dB
C2: −0 dB

(b)

0 0.5 1 1.5 2
0

0.5

1

∆β

P
n
c

C3: −7 dB
C3: −3 dB

(c)

Fig. 9. Influence of the threshold step on the detection for C1 (9(a)), C2

(9(b)) and C3 (9(c))

thinnest ∆β to reach the optimal performance of our algorithm
while ∆β has no significant impact in the case of C1. On the
other side, it is possible to reduce the complexity for C1 by
choosing a larger ∆β without reducing the efficiency. The
optimal threshold step should ensure a correct identification
while minimizing the computing effort. As a consequence, for
increasing rate, decreasing threshold step are needed. However,
according to Figure 9, when ∆β < 1, it has little influence on
Pnc .

3) Performance for unsynchronized bits streams: The algo-
rithm presented here, is sensitive to the frame synchronization.
Since it relies on the computation of Euclidean distances, two
blocks are likely to be separated in different classes even if
they share identical parts of the same code word. Figure 10
shows the impact of an unsynchronized sequence on the
detection performance for the three codes (C1, C2 and C3). For
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Fig. 10. Impact of the frame synchronization on the code length estimation

C2 and C3, as expected, our method performs well around the
synchronization region (when ∆t tends to nc or to 0). For C1,
the method performs better whatever the synchronization ∆t.
Indeed, C1 is a quasi-cyclic code with parameter 5. Finally, the
robustness of the method to the frame synchronization depends
on the type of the code. To find the beginning of a code word,
a solution would be to run the algorithm for different values
of ∆t.

4) About the computation time and complexity: We ran a
simulation for a longer code (C4: nc = 96, kc = 48) to
show that our method can deal with codes having a length of
hundreds of bits. The main issue is the size of the intercepted
sequence of bits. Simulation has been run with a Intel(R)
Xeon(R) CPU E5-2670 2.60GHz configuration and Matlab.
Neither optimization of the Matlab code nor parallelization
have been done. It is just an illustration of the evolution

TABLE II
PROBABILITY OF CORRECT IDENTIFICATION AND COMPUTATION TIME

FOR A LDPC CODE (96, 48)

bN/ncc 9000 11000 15000 20000 24000

T (min) 9 15 28 60 100

Pnc 0.55 0.69 0.89 0.99 1

of the computation time versus the number of intercepted
bits. Despite the length of the code, it is still possible to
detect it perfectly when the amount of received code words is
L = 24000, i.e. 2304000 bits. Table II synthesizes the results
in terms of computation time T in minutes and probability
of correct estimation Pnc

. At a Eb/N0 of 10 dB and for
100 Monte Carlo trials, we test C4 from 9000 to 24000
received code words. T is the time for one trial. The major
issue is related to the computational complexity: 100 minutes
are needed to detect the channel code with 24000 code
words. However, this complexity issue is not intractable. It
is conceivable to parallelize some processes: for example, the
classifications operated for each block size are independent.
Identically, within each classification, each threshold β can be
tested separately.

B. Estimation of kc
From the classification process, we have now an estimate

of nc. All the results exposed here rely on the assumption of
a perfect estimation of the code length. For 2000 code words,
Figure 11 allows us to observe the impact of the noise on
the probability of correct estimation of kc: Pkc . From 1000
Monte-Carlo trials, we notice different behaviors related to the
code used. The most accurate estimation results from testing
C1: it has the lowest code rate. With the same dimension, the
algorithm performs less with C3 because of its larger code
rate. In the case of C2, the amount of received code words
is too low when b Nnc

c = 2000. At high Eb/N0, there is not
enough collisions or even no collision at all to estimate kc.
Furthermore, due to its high rate, a slight increase of noise
makes different code words collide. Indeed, the Pfa has a
greater influence on the Pcol according to (15) since K = 220.
In the following, we give more details about the observation
time and about the impact of the neglected Pfa.

1) About the observation time: The dimension estimator
efficiency substantially depends on the amount of received
code words. As shown in Figure 12, when the quantity of
received code words increases the probability of having at least
one collision converges to 1. We can also see that the noise
has an impact on the required amount of code words needed
to properly estimate the code dimension. Indeed, adding noise
increases the Pfa. As a result, we need more words to retrieve
kc efficiently for C3 at 4 dB. At 5 dB, 1000 code words are
enough to perfectly estimate kc for both C1 and C3 while 1500
code words are needed to reach the same performance for C3

at 4 dB. This difference of behavior is due to the respective
code rate. Indeed, for two codes having the same dimension
kc (e.g. C1 and C3), it is easier to estimate kc for code having
the lower rate (here, C1) since the mean distance increases
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Fig. 11. Probability of correct estimation of the code dimension with noise
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Fig. 12. Probability of correct estimation of kc for different amounts of
received code words for C1 and C3 at 5 and 4 dB

when the code rate decreases. Notice that performance for C2

is not given since we would have to intercept much more than
2000 code words in order to estimate kc for that code (i.e. due
to its length and rate).

2) About the impact of the Pfa: In subsections III-A
and III-B, we proposed an approximation for Pcol by neglect-
ing Pfa for high Eb/N0 values. Indeed, the amount of false
collisions converges to 0 with decreasing noise. To illustrate
that, Figure 13 shows how false and true collisions respectively
affects the total probability of collision for different values.
For this purpose, we compare (1− 1

K ) ·Pfa and 1
K ·Pd for

C1 with L = b Nnc
c = 2000 intercepted code words. Since

we have a theoretical expression for Pd and an estimation
of the probability of collision P̂col = 2x̂col

L(L−1) , we easily
access an estimated value of Pfa from (15). For higher Eb/N0

values, the impact of the probability of false collision is
comparatively negligible in the calculation of Pcol with respect
to the probability of true collision. We also notice that when
(1 − 1

K ) · Pfa reaches the order of magnitude of 1
K · Pd at

−5 dB, Pkc drops to 0 at the same Eb/N0 value as shown on
Figure 11. The proportion of false collisions is too high and
prevent from estimating kc.

Now, we perform the same analysis, but for C2. The
estimator is less efficient for C2 with 2000 code words. On
one hand, we see from Figure 11 that Pkc is about 0.35 at 5
dB. On the other hand, we notice on Figure 14 that 1

K · Pd
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Fig. 13. Comparison of the respective influences of Pfa and Pd on the
probability of collision for different Eb/N0 values with b N

nc
c = 2000 for

C1
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Fig. 14. Comparison of the respective influences of Pfa and Pd on the
probability of collision for different Eb/N0 values with b N

nc
c = 2000 for

C2

TABLE III
PROBABILITY OF CORRECT IDENTIFICATION FOR kc FOR AN ERRONEOUS

ESTIMATED VALUE FOR NOISE VARIANCE

εσw 0 % ±1 % ±2 % ±5 % ±7.5% ±10%

Pkc 1 1 1 0.7 0.14 0

is lower than (1 − 1
K ) · Pfa for most of the Eb/N0 value.

Moreover, for any Eb/N0 value, Pcol ≈ (1 − 1
K ) · Pfa. In

this circumstances, most of the occurring collisions between
2 and 5 dB are false collisions. This behavior is due to the
high code rate. Indeed, the higher the code rate, the lower
the minimal distance. Any alterations due to the noise implies
false collisions with high probability.

3) About the noise variance estimation: The noise variance
has an impact on the choice of the threshold βcol for the
dimension estimation. Therefore, an erroneous estimated value
σ̂2
w for the noise variance might affect the estimation of the

code dimension. We ran some tests with C1: we artificially
generated errors εσ̂2

w
= ±1%, ±2%, ±5%, ±10% (e.g.

εσ̂2
w

= ±1% means that σ̂2
w = 0.99σ2

w or σ̂2
w = 1.01σ2

w).
Table III sums up the results by giving the probability of
correct identification Pkc and the corresponding threshold for
a Eb/N0 of 0 dB:

We notice that minor errors in the estimation of the noise
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variance does not alter the performance.

V. CONCLUSION

In this paper, we proposed the design of a new algorithm
based on soft information. The method presented here allows
to blindly recover the length and the dimension of a code
from a noisy intercepted bit stream. The identification of the
code length relies on a classification method using Euclidean
distances as criterion. This method highlights a difference of
behavior in the number of classes created between a coded data
stream and an i.i.d. sequence when increasing the size of the
classes. In presence of a code, the theoretical number of classes
is limited by the length of the information words. To retrieve
this length, we also adapt a result from the birthday problem
and proposed an estimator. The expected number of collision
depends on the code dimension. Both length and dimension
estimation rely on the observation time and on the amount of
noise.

The method described is applied to linear block codes. No
a priori knowledge about their construction or their family is
needed. By considering soft-decision instead of hard-decision,
we aimed to reproduce the performance gap between soft and
hard decoding. From our result, we showed that our method
performs better than the Gaussian elimination based on almost
dependent columns in [2]. Several improvements are to be
investigated. For now, the classification process is quite naive:
by choosing more reliable reference words instead of random
ones, it might be more efficient. Also, due to its complexity,
this method is particularly adapted to low length codes: it
could be interesting to apply our procedure to convolutional
codes.

APPENDIX A
DETAILS ON THE CENTRAL LIMIT THEOREM

APPROXIMATION

Let us define Y (k) = S(k) + W (k) the random vari-
able carrying the kth bit likelihood value of the received
sequence. S(k) ∼ U({−1, +1} and W (k) ∼ N (0, σ2

w).
If we consider X(p) = (Y (i · n+ p)− Y (j · n+ p))

2, then
X(0), X(1), X(2), · · · , X(n − 1) is a sequence of i.i.d. ran-
dom variables. These variables are all mutually independent
and each of them has the same probability distribution as the
others. Let us denote by µX and by σ2

X the expected value and
variance of this distribution. From an approximation based on
the Central Limit Theorem [24], for a large n, it is possible to
consider An = X(0) +X(1) + · · ·+X(n− 1) as a normally
distributed variable of expected value nµX and variance nσ2

X .
Consequently, Xd2 =

∑n−1
p=0 (Y (i · n+ p)− Y (j · n+ p))2 is

normally distributed with mean µd2 = n · µX and variance
σ2
d2 = n · σ2

X .

APPENDIX B
DETAILS ABOUT THE PROBABILITY OF TRUE COLLISION Pd

Here, the same notations as in Appendix A are used.

Pd = P(dE(B
(nc)
i , B

(nc)
j ) ≤ βcol| si = sj)

= P(Xd2 ≤ β2
col| si = sj)

= P(

nc−1∑
p=0

X(p)| si = sj)

Considering the condition si = sj , X(p) = (W (i · n + p) −
W (j · n + p))2. In addition, W (i · n + p) −W (j · n + p) is
normally distributed with mean µX = 0 and variance σ2

X =

2σ2
w. In this context, we conclude that Xd2

2σ2
w
∼ χ2(nc). Hence,

the cumulative distribution function:

Pd =
γ
(
nc

2 ,
β2
col

4σ2
w

)
Γ
(
nc

2

)
where Γ(·) and γ(·, ·), respectively stand for the gamma
function:

Γ(x) =

∫ +∞

0

tx−1e−tdt

and the incomplete gamma function:

γ(a, x) =

∫ x

0

ta−1e−tdt
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